1
|
Ighilahriz K, Benchouk A, Belkebir Y, Seghir N, Yahi L. Production of biosurfactant by Bacillus megaterieum using agro-food wastes and its application in petroleum sludge oil recovery. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2024; 22:413-424. [PMID: 39464818 PMCID: PMC11499483 DOI: 10.1007/s40201-024-00919-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/23/2024] [Indexed: 10/29/2024]
Abstract
The objective of this study is to utilize cost-effective renewable substrates derived from agro-food wastes for the production of biosurfactant by Bacillus megaterium, which was isolated from petroleum sludge. Various agro-food waste materials, namely potato peelings (PP), rice cooking water (RW), biscuit by products (BB), carob pods (CP), and eggshells, were evaluated as nutrient sources for bacterial growth compared to a synthetic medium (SM). The results indicate that the medium comprising carob pods, potato peels supplemented with eggshells promoted the growth of the bacteria and the production of Biosurfactants at a rate of 150 mg/l and 140 mg/l respectively. The biosurfactant exhibited an emulsification index (E24) of 55.23 ± 0.32%, 46.47 ± 3% 43.80 ± 0.4%, 18.33 ± 0.25% and 20 ± 0.11% for PP, CP, SM, BB and RW respectively. The biosurfactant produced from PP had the ability to decrease the surface tension of water from 74 to 39.38 mN/m, with a critical micelle concentration (CMC) of 15 mg/L. The chemical characterization of purified biosurfactant was done using Fourier-transform infrared spectroscopy (FTIR) and Thermal gravity (TG), as well as differential scanning calorimetry (DSC) analysis (TG/DSC), revealing the functional groups and thermostability of the biosurfactant. The DSC spectrum for PP biosurfactant showed the highest thermostability with crystalline temperature (Tc) of 150 °C and melting point (Tm) of 295 °C. The extracted biosurfactant was mixed with petroleum sludge, composed of heavy oil, 40.64 ± 0.19% of extracted oil was obtained after 5 h of reaction while using PP based medium.
Collapse
Affiliation(s)
- K. Ighilahriz
- Laboratory of Petroleum Biotechnology and Environment, Central Directorate Research and Development, Sonatrach, Boumerdes, Algeria
| | - A. Benchouk
- Laboratory of Petroleum Biotechnology and Environment, Central Directorate Research and Development, Sonatrach, Boumerdes, Algeria
| | - Y. Belkebir
- Laboratory of Petroleum Biotechnology and Environment, Central Directorate Research and Development, Sonatrach, Boumerdes, Algeria
| | - N. Seghir
- Laboratory of Petroleum Biotechnology and Environment, Central Directorate Research and Development, Sonatrach, Boumerdes, Algeria
| | - L. Yahi
- Laboratory of Petroleum Biotechnology and Environment, Central Directorate Research and Development, Sonatrach, Boumerdes, Algeria
| |
Collapse
|
2
|
He L, Li O, Qin J, Chen C, Li Z, Tong M. Effects of mono- and multicomponent nonaqueous-phase liquid on the migration and retention of pollutant-degrading bacteria in porous media. WATER RESEARCH 2024; 268:122673. [PMID: 39486151 DOI: 10.1016/j.watres.2024.122673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 11/04/2024]
Abstract
The successful implementation of in-situ bioremediation of nonaqueous-phase liquid (NAPL) contamination in soil-groundwater systems is greatly influenced by the migration performance of NAPL-degrading bacteria. However, the impact and mechanisms of NAPL on the migration/retention of pollutant-degrading bacteria remain unclear. This study investigated the migration/retention performance of A. lwoffii U1091, a strain capable of degrading diesel while producing surfactants, in porous media without and with the presence of mono- and multicomponent NAPL (n-dodecane and diesel) under environmentally relevant conditions. The results showed that under all examined conditions (5 and 50 mM NaCl solution at flow rates of 4 and 8 m/d), the presence of n-dodecane/diesel in porous media could reduce the migration and enhance retention of A. lwoffii in quartz sand columns. Moreover, comparing with mutlicomponent NAPLs of n-dodecane, the monocomponent NAPLs (diesel) exhibited a greater reduction effect on the retention of A. lwoffii in porous media. Through systemically investigating the potential mechanisms via tracer experiment, visible chamber experiment, and theoretical calculation, we found that the reduction in porosity, repulsive forces and movement speeds, the presence of stagnant flow zones in porous media, particularly the biosurfactants generated by A. lwoffii contributed to the enhanced retention of bacteria in NAPL-contaminated porous media. Moreover, owing to presence of the greater amount of hydrophilic components in diesel than in n-dodecane, the available binding sites for the adsorption of bacteria were lower in diesel, resulting in the slightly decreased retention of A. lwoffii in porous media containing diesel than n-dodecane. This study demonstrated that comparing with porous media without NAPL contamination, the retention of strain capable of degrading NAPL in porous media with NAPL contamination was enhanced, beneficial for the subsequent biodegradation of NAPL.
Collapse
Affiliation(s)
- Lei He
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China; College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Ouyang Li
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Jianmei Qin
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Chunmao Chen
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Zhenshan Li
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
3
|
Mohy Eldin A, Hossam N. Microbial surfactants: characteristics, production and broader application prospects in environment and industry. Prep Biochem Biotechnol 2023; 53:1013-1042. [PMID: 37651735 DOI: 10.1080/10826068.2023.2175364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Microbial surfactants are green molecules with high surface activities having the most promising advantages over chemical surfactants including their ability to efficiently reducing surface and interfacial tension, nontoxic emulsion-based formulations, biocompatibility, biodegradability, simplicity of preparation from low cost materials such as residual by-products and renewable resources at large scales, effectiveness and stabilization under extreme conditions and broad spectrum antagonism of pathogens to be part of the biocontrol strategy. Thus, biosurfactants are universal tools of great current interest. The present work describes the major types and microbial origin of surfactants and their production optimization from agro-industrial wastes in the batch shake-flasks and bioreactor systems through solid-state and submerged fermentation industries. Various downstream strategies that had been developed to extract and purify biosurfactants are discussed. Further, the physicochemical properties and functional characteristics of biosurfactants open new future prospects for the development of efficient and eco-friendly commercially successful biotechnological product compounds with diverse potential applications in environment, industry, biomedicine, nanotechnology and energy-saving technology as well.
Collapse
Affiliation(s)
- Ahmed Mohy Eldin
- Department of Microbiology, Soils, Water and Environmental Research Institute (SWERI), Agricultural Research Center (ARC), Giza, Egypt
| | | |
Collapse
|
4
|
Andreolli M, Villanova V, Zanzoni S, D'Onofrio M, Vallini G, Secchi N, Lampis S. Characterization of trehalolipid biosurfactant produced by the novel marine strain Rhodococcus sp. SP1d and its potential for environmental applications. Microb Cell Fact 2023; 22:126. [PMID: 37443119 DOI: 10.1186/s12934-023-02128-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/17/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Biosurfactants are surface-active compounds with environmental and industrial applications. These molecules show higher biocompatibility, stability and efficiency compared to synthetic surfactants. On the other hand, biosurfactants are not cost-competitive to their chemical counterparts. Cost effective technology such as the use of low-cost substrates is a promising approach aimed at reducing the production cost. This study aimed to evaluate the biosurfactant production and activity by the novel strain Rhodococcus sp. SP1d by using different growth substrates. Therefore, to exploit the biosurfactant synthesized by SP1d for environmental applications, the effect of this compound on the bacteria biofilm formation was evaluated. Eventually, for a possible bioremediation application, the biosurfactant properties and its chemical characteristics were investigated using diesel as source of carbon. RESULTS Rhodococcus sp. SP1d evidence the highest similarity to Rhodococcus globerulus DSM 43954T and the ability to biosynthesize surfactants using a wide range of substrates such as exhausted vegetable oil, mineral oil, butter, n-hexadecane, and diesel. The maximum production of crude biosurfactant after 10 days of incubation was reached on n-hexadecane and diesel with a final yield of 2.38 ± 0.51 and 1.86 ± 0.31 g L- 1 respectively. Biosurfactants produced by SP1d enhanced the biofilm production of P. protegens MP12. Moreover, the results showed the ability of SP1d to produce biosurfactants on diesel even when grown at 10 and 18 °C. The biosurfactant activity was maintained over a wide range of NaCl concentration, pH, and temperature. A concentration of 1000 mg L- 1 of the crude biosurfactant showed an emulsification activity of 55% towards both xylene and olive oil and a reduction of 25.0 mN m- 1 of surface tension of water. Eventually, nuclear magnetic resonance spectroscopy indicated that the biosurfactant is formed by trehalolipids. CONCLUSIONS The use of low-cost substrates such as exhausted oils and waste butter reduce both the costs of biosurfactant synthesis and the environmental pollution due to the inappropriate disposal of these residues. High production yields, stability and emulsification properties using diesel and n-hexadecane as substrates, make the biosurfactant produced by SP1d a sustainable biocompound for bioremediation purpose. Eventually, the purified biosurfactant improved the biofilm formation of the fungal antagonistic strain P. protegens MP12, and thus seem to be exploitable to increase the adherence and colonization of plant surfaces by this antagonistic strain and possibly enhance antifungal activity.
Collapse
Affiliation(s)
- Marco Andreolli
- VUCC-DBT Verona University Culture Collection, Department of Biotechnology, University of Verona, Strada le Grazie, 15, Verona, 37134, Italy.
- Department of Biotechnology, University of Verona, Strada le Grazie, 15, Verona, 37134, Italy.
| | - Valeria Villanova
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Serena Zanzoni
- Centro Piattaforme Tecnologiche, University of Verona, Verona, Italy
| | - Mariapina D'Onofrio
- Department of Biotechnology, University of Verona, Strada le Grazie, 15, Verona, 37134, Italy
| | - Giovanni Vallini
- Department of Biotechnology, University of Verona, Strada le Grazie, 15, Verona, 37134, Italy
| | - Nicola Secchi
- Eurovix S.p.A, Viale Mattei 17, Entratico, Bergamo, 24060, Italy
| | - Silvia Lampis
- VUCC-DBT Verona University Culture Collection, Department of Biotechnology, University of Verona, Strada le Grazie, 15, Verona, 37134, Italy
- Department of Biotechnology, University of Verona, Strada le Grazie, 15, Verona, 37134, Italy
| |
Collapse
|
5
|
Sánchez-León E, Huang-Lin E, Amils R, Abrusci C. Production and Characterisation of an Exopolysaccharide by Bacillus amyloliquefaciens: Biotechnological Applications. Polymers (Basel) 2023; 15:polym15061550. [PMID: 36987330 PMCID: PMC10056187 DOI: 10.3390/polym15061550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
The Bacillus amyloliquefaciens RT7 strain was isolated from an extreme acidic environment and identified. The biodegradation capabilities of the strain using different carbon sources (glucose, oleic acid, Tween 80, PEG 200, and the combination of glucose-Tween 80) were evaluated via an indirect impedance technique. The glucose-Tween 80 combination was further studied using nuclear magnetic resonance (NMR). The exopolysaccharide (EPSRT7) that had been produced with the strain when biodegrading glucose-Tween 80 was isolated and characterised using different techniques (GC-MS, HPLC/MSMS, ATR-FTIR, TGA, and DSC), and its molecular weight was estimated. The results show that the average molecular weight of EPSRT7 was approximately 7.0794 × 104 Da and a heteropolysaccharide composed of mannose, glucose, galactose, and xylose (molar ratio, 1:0.5:0.1:0.1) with good thermostability. EPSRT7 showed good emulsifying activity against different natural oils and hydrocarbons at high concentrations (2 mg/mL) and at the studied pH range (3.1-7.2). It also presented good emulsifying activity compared to that of commercial emulsifiers. Lastly, EPSRT7 showed antioxidant capacity for different free radicals, a lack of cytotoxicity, and antioxidant activity at the cellular level. EPSRT7 has promising applications in bioremediation processes and other industrial applications.
Collapse
Affiliation(s)
- Enrique Sánchez-León
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, UAM, Cantoblanco, 28049 Madrid, Spain
| | - Elisa Huang-Lin
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, UAM, Cantoblanco, 28049 Madrid, Spain
| | - Ricardo Amils
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, UAM, Cantoblanco, 28049 Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
| | - Concepción Abrusci
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, UAM, Cantoblanco, 28049 Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
| |
Collapse
|
6
|
Leow YS, Abdullah N, Awang Biak DR, Rozita Rosli NSJ, Teh HF. Production of Biosurfactant Using Bacillus subtilis Natto Fermentation. PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY 2023. [DOI: 10.47836/pjst.31.2.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Biosurfactants are microbial amphiphiles produced as primary metabolites by varieties of microorganisms. They are preferred over chemically derived surfactants owing to their intrinsic properties, such as superior environmental compatibility, biodegradability, anti-inflammatory and antimicrobial activity, and higher tolerance towards extreme environmental conditions such as temperature, salinity, and pH levels. However, commercial production of biosurfactants is still lacking. The main reason for this is the low yields obtained from fermentation processes, which causes them to be unable to compete compared to chemical surfactants. The present study conducted a one-factor-at-a-time (OFAT) analysis on fermentation conditions to enhance biosurfactant yield from a probiotic strain, Bacillus subtilis Natto. The fermentation was conducted by varying parameters such as nitrogen source, vegetable oils, inoculum size, amino acids, and pH of the fermentation medium. Results showed a significant improvement of 45% in biosurfactant production from B. subtilis Natto when the initial pH of the fermentation medium was adjusted to pH 6.8, urea as the nitrogen source, inoculum size of 6% v/v and the addition of palm olein at a concentration of 2% v/v as a substrate in the fermentation medium.
Collapse
|
7
|
Ravinder P, Manasa M, Roopa D, Bukhari NA, Hatamleh AA, Khan MY, M. S. R, Hameeda B, El Enshasy HA, Hanapi SZ, Sayyed RZ. Biosurfactant producing multifarious Streptomyces puniceus RHPR9 of Coscinium fenestratum rhizosphere promotes plant growth in chilli. PLoS One 2022; 17:e0264975. [PMID: 35290374 PMCID: PMC8923452 DOI: 10.1371/journal.pone.0264975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/19/2022] [Indexed: 12/29/2022] Open
Abstract
The present study involves isolation of Streptomyces spp. from rhizosphere of Coscinium fenestratum Gaertn, an endangered medicinal plant from Western Ghats of Karnataka, India. Four potential isolates were identified by 16S rRNA sequencing as Streptomyces sp. RHPR3, Streptomyces puniceus RHPR9, Streptomyces sp. RHPR14 and Streptomyces mediolani RHPR25. An enrichment culture method was used for the isolation of Streptomyces spp. for biosurfactant activity. Among four potential Streptomyces spp., S. puniceus RHPR9 showed highest Emulsification index (EI) (78±0.2%) and Emulsification assay (EA) (223±0.2 EU mL-1). Thin layer chromatography, Fourier transform infrared spectroscopy (FTIR) and mass spectrometric analysis revealed that as glycolipid. Further confirmed by presence of fatty acids like hexanoic acid methyl ester, decanoic acid by Gas chromatography mass spectroscopy (GC-MS) analysis. S. puniceus RHPR9 showed a significant IAA production (41μg mL-1), solubilized P (749.1 μg mL-1), growth promotion of chilli (Capsicum annuum L.) was evaluated using paper towel method and greenhouse conditions. S. puniceus RHPR9 showed a significant increase in seed vigor index (2047) and increase in plant biomass (65%) when compared to uninoculated control. To our knowledge, this is the first report on epiphytic S. puniceus RHPR9 isolated from an endangered medicinal plant C. fenestratum Gaertn, for biosurfactant production and plant growth promotion activities.
Collapse
Affiliation(s)
- Polapally Ravinder
- Department of Microbiology, University College of Science, Osmania University Hyderabad, Hyderabad, India
| | - M. Manasa
- Department of Microbiology, University College of Science, Osmania University Hyderabad, Hyderabad, India
| | - D. Roopa
- Department of Wildlife and Management, Kuvempu University Shankaraghatta, Karnataka, India
| | - Najat A. Bukhari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ashraf Atef Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Reddy M. S.
- Asian PGPR Society for Sustainable Agriculture, Auburn University, Auburn, Alabama, United States of America
| | - Bee Hameeda
- Department of Microbiology, University College of Science, Osmania University Hyderabad, Hyderabad, India
- * E-mail: ,
| | - Hesham Ali El Enshasy
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), Skudai, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Skudai, Johor, Malaysia
- City of Scientific Research and Technology Applications (SRTA), New Burg Al Arab, Alexandria, Egypt
| | - Siti Zulaiha Hanapi
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), Skudai, Johor, Malaysia
| | - R. Z. Sayyed
- Department of Microbiology, PSGVP Mandal’s, S I Patil Arts, G B Patel Science & STKVS Commerce College, Shahada, India
| |
Collapse
|
8
|
Singh V, Waris Z, Banat IM, Saha S, Padmanabhan P. Assessment of Rheological Behaviour of Water-in-Oil Emulsions Mediated by Glycolipid Biosurfactant Produced by Bacillus megaterium SPSW1001. Appl Biochem Biotechnol 2022; 194:1310-1326. [PMID: 34694553 DOI: 10.1007/s12010-021-03717-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/08/2021] [Indexed: 10/20/2022]
Abstract
A screening programme using mineral salt medium supplemented with n-hexadecane resulted in isolating a Bacillus megaterium SPSW1001 which was capable of producing surface active molecules lowering culture medium surface tension to 27.43 ± 0.029 mN/m and interfacial tension to 0.38 ± 0.03 mN/m at 72 h and an emulsification index (E24) (85.63%). The biosurfactant product was further used to assess its effects on the rheological characteristics of water-in-oil emulsion prepared with engine oil. Structural characterization of the biosurfactant product by FTIR revealed a C-O-C stretch in sugar moiety and ester carbonyl linkage group between sugar and fatty acids, respectively, while mass spectral analysis revealed its glycolipid nature, with an m/z value of 662.44. The fluid behaviour of water-in-oil emulsion showed a non-Newtonian viscoelastic dilatant flow after yielding exemplified appropriately by Herschel-Bulkley model with 100% confidence of fit. The present study is significant in formulation and handling, processing, and transport of emulsion and in understanding flocculation characteristics.
Collapse
Affiliation(s)
- Varsha Singh
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Zairah Waris
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Ibrahim M Banat
- School of Biomedical Sciences, Faculty of Life and Health Sciences, University of Ulster, Coleraine, BT52 1SA, Northern Ireland, UK
| | - Sriparna Saha
- Department of Computer Science and Engineering, Indian Institute of Technology, Patna, Bihar, 801106, India
| | - Padmini Padmanabhan
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| |
Collapse
|
9
|
Zargar AN, Lymperatou A, Skiadas I, Kumar M, Srivastava P. Structural and functional characterization of a novel biosurfactant from Bacillus sp. IITD106. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127201. [PMID: 34560483 DOI: 10.1016/j.jhazmat.2021.127201] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/29/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Plant saponins are attractive biosurfactants and have been used to enhance phytoremediation. There are only limited reports on saponins produced by bacteria. Here, we report structural and functional characterization of a novel saponin produced by Bacillus sp. IITD106. Biosurfactant production was determined by emulsion index, drop collapse, oil displacement and hemolytic assays. The biosurfactant was stable over a range of temperature (30 °C to 70 °C), salinity (0-150 g liter-1) and pH (4-10). The surface tension of the medium reduced from 58.89 mN/m to 27.29 mN/m using the isolated biosurfactant. Chromatographic analysis revealed the biosurfactant to be a glycolipid. LCMS, FT-IR and NMR analysis identified the biosurfactant to be a saponin containing two sugar groups and a 5 ringed triterpene sapogenin unit. Genome sequencing of the strain revealed the presence of genes responsible for biosynthesis of saponin. Statistical optimization of culture medium resulted in 9.3-fold increase in biosurfactant production. Kinetics study of biosurfactant production performed in a stirred tank batch bioreactor resulted in 6.04 g liter-1 and 6.9 g liter-1 biomass and biosurfactant concentration, respectively. The biosurfactant was found to solubilize polycyclic aromatic hydrocarbons. The potential of cell free biosurfactant containing broth to enhance oil recovery was tested in a sand pack column and recovery of 63% of residual oil was observed. To our knowledge this is the first report of saponin production by any of the strains of Bacillus.
Collapse
Affiliation(s)
- Arif Nissar Zargar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India; Indian Oil Corporation, R&D Centre, Sector-13, Faridabad 121007, India; Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Anna Lymperatou
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Ioannis Skiadas
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Manoj Kumar
- Indian Oil Corporation, R&D Centre, Sector-13, Faridabad 121007, India
| | - Preeti Srivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
10
|
Madankar CS, Meshram A. Review on classification, physicochemical properties and applications of microbial surfactants. TENSIDE SURFACT DET 2022. [DOI: 10.1515/tsd-2021-2353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
Biosurfactants are amphiphilic microbial compounds synthesized from plants and micro organisms that have both hydrophilic and hydrophobic zones, which are classified into liquid-liquid, liquid-solid and liquid-gas interfaces. Due to their versatile nature, low toxicity, and high reactivity at extreme temperatures, as well as – extremely important – their good biodegradability and environmental compatibility, biobased surfactants provide approaches for use in many environmental industries. Biosurfactants produced by microorganisms have potential applications in bioremediation as well as in the petroleum, agricultural, food, cosmetics and pharmaceutical industries. In this review article, we include a detailed overview of the knowledge obtained over the years, such as factors influencing bio-surfactant production and developments in the incorporation of biomolecules in different industries and future research needs.
Collapse
Affiliation(s)
- Chandu S. Madankar
- Department of Oils, Oleochemicals and Surfactants Technology , Institute of Chemical Technology , Mumbai , India
| | - Ashwini Meshram
- Department of Oils, Oleochemicals and Surfactants Technology , Institute of Chemical Technology , Mumbai , India
| |
Collapse
|
11
|
Adnan M, Siddiqui AJ, Hamadou WS, Ashraf SA, Hassan MI, Snoussi M, Badraoui R, Jamal A, Bardakci F, Awadelkareem AM, Sachidanandan M, Patel M. Functional and Structural Characterization of Pediococcus pentosaceus-Derived Biosurfactant and Its Biomedical Potential against Bacterial Adhesion, Quorum Sensing, and Biofilm Formation. Antibiotics (Basel) 2021; 10:antibiotics10111371. [PMID: 34827310 PMCID: PMC8614858 DOI: 10.3390/antibiotics10111371] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 11/26/2022] Open
Abstract
Biosurfactants are surface-active molecules of microbial origin and alternatives to synthetic surfactants with various applications. Due to their environmental-friendliness, biocompatibility, biodegradability, effectiveness to work under various environmental conditions, and non-toxic nature, they have been recently recognized as potential agents with therapeutic and commercial importance. The biosurfactant produced by various probiotic lactic acid bacteria (LAB) has enormous applications in different fields. Thus, in vitro assessment of biofilm development prevention or disruption by natural biosurfactants derived from probiotic LAB is a plausible approach that can lead to the discovery of novel antimicrobials. Primarily, this study aims to isolate, screen, and characterize the functional and biomedical potential of biosurfactant synthesized by probiotic LAB Pediococcus pentosaceus (P. pentosaceus). Characterization consists of the assessment of critical micelle concentration (CMC), reduction in surface tension, and emulsification index (% EI24). Evaluation of antibacterial, antibiofilm, anti-QS, and anti-adhesive activities of cell-bound biosurfactants were carried out against different human pathogenic bacteria (B. subtilis, P. aeruginosa, S. aureus, and E. coli). Moreover, bacterial cell damage, viability of cells within the biofilm, and exopolysaccharide (EPS) production were also evaluated. As a result, P. pentosaceus was found to produce 4.75 ± 0.17 g/L biosurfactant, which displayed a CMC of 2.4 ± 0.68 g/L and reduced the surface tension from 71.11 ± 1.12 mN/m to 38.18 ± 0.58 mN/m. P. pentosaceus cells bound to the crude biosurfactant were found to be effective against all tested bacterial pathogens. It exhibited an anti-adhesion ability and impeded the architecture of the biofilm matrix by affecting the viability and integrity of bacterial cells within biofilms and reducing the total EPS content. Furthermore, the crude biosurfactant derived from P. pentosaceus was structurally characterized as a lipoprotein by GC-MS analysis, which confirms the presence of lipids and proteins. Thus, our findings represent the potent anti-adhesion and antibiofilm potential of P. pentosaceus crude biosurfactant for the first time, which may be explored further as an alternative to antibiotics or chemically synthesized toxic antibiofilm agents.
Collapse
Affiliation(s)
- Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.); (F.B.)
- Correspondence: (M.A.); (M.P.)
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.); (F.B.)
| | - Walid Sabri Hamadou
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.); (F.B.)
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (S.A.A.); (A.M.A.)
| | - Md Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 10025, India;
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.); (F.B.)
- Laboratory of Genetics, Biodiversity and Valorisation of Bioresources, High Institute of Biotechnology, University of Monastir, Monastir 5000, Tunisia
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.); (F.B.)
- Section of Histology-Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, La Rabta-Tunis 1007, Tunisia
| | - Arshad Jamal
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.); (F.B.)
| | - Fevzi Bardakci
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (A.J.S.); (W.S.H.); (M.S.); (R.B.); (A.J.); (F.B.)
| | - Amir Mahgoub Awadelkareem
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (S.A.A.); (A.M.A.)
| | - Manojkumar Sachidanandan
- Department of Oral Radiology, College of Dentistry, University of Hail, Hail P.O. Box 2440, Saudi Arabia;
| | - Mitesh Patel
- Bapalal Vaidya Botanical Research Center, Department of Biosciences, Veer Narmad South Gujarat University, Surat 395007, India
- Correspondence: (M.A.); (M.P.)
| |
Collapse
|
12
|
Sanjivkumar M, Deivakumari M, Immanuel G. Investigation on spectral and biomedical characterization of rhamnolipid from a marine associated bacterium Pseudomonas aeruginosa (DKB1). Arch Microbiol 2021; 203:2297-2314. [PMID: 33646338 DOI: 10.1007/s00203-021-02220-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/03/2021] [Accepted: 02/09/2021] [Indexed: 12/24/2022]
Abstract
Bio-surfactants are a principal group of significant molecules obtained from the microbial sources expressed with distinctive characteristics like biodegradation of hydrocarbons and also have different biomedical properties. The present investigation aims to assess the biomedical properties of synthesized bio-surfactant, rhamnolipid from Pseudomonas aeruginosa (DKB1) under in vitro conditions. The candidate bacterium P. aeruginosa (DKB1) was isolated from oil-polluted fishing harbors of Kanyakumari coast. Initially, the bio-surfactant production by this candidate strain was confirmed by oil displacement assay, hemolytic assay, drop collapse assay and emulsification index. Further, the production of bio-surfactant was achieved through submerged fermentation process using Bushnell-Haas mineral salts medium supplemented with 2% olive oil. The yield of the bio-surfactant was attained as 2.4 g/l and confirmed as rhamnolipid through blue agar plate assay; further, the extracted rhamnolipid was purified and characterized through standard procedures. In stability studies, the rhamnolipid could withstand up to pH 12, temperature 100 °C and 15% of NaCl concentration. The biomedical application of rhamnolipid (30 μg ml-1) was determined by antibacterial, antioxidant and cytotoxic studies. It exhibited a maximum growth inhibition against Bacillus subtilis (26 mm) with the MIC value of 8 μg ml-1. In antioxidant test, rhamnolipid expressed significant (P < 0.0001) inhibition of total reducing power (44.11%), DPPH activity (61.60%), hydroxyl radical (83.30%) and nitric oxide (51.86%) scavenging ability at 100 μg ml-1with the respective IC50 values of 130.50, 77.18, 52.08 and 95.43 μg ml-1. The anticancer activity of the rhamnolipid was assessed with the help of MTT test against MCF-7, HT-29 and E-143 cancer cell lines individually, and the viability of the cells was observed, respectively, as 10.24, 17.66 and 13.50% at 250 μg ml-1concentration with the respective IC50 values of 140.2, 81.02 and 138.9 μg ml-1. From the results, it could be concluded that the rhamnolipid produced by P. aeruginosa (DKB1) isolated from oil-polluted area has effective biomedical properties.
Collapse
Affiliation(s)
- Muthusamy Sanjivkumar
- Department of Microbiology, K.R. College of Arts and Science, Kovilpatti, Tamilnadu, 628503, India
| | - Murugan Deivakumari
- MNP Laboratory, Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam, Kanyakumari, Tamilnadu, 629502, India
| | - Grasian Immanuel
- MNP Laboratory, Centre for Marine Science and Technology, Manonmaniam Sundaranar University, Rajakkamangalam, Kanyakumari, Tamilnadu, 629502, India.
| |
Collapse
|
13
|
Mahfouz S, Mansour G, Murphy DJ, Hanano A. Dioxin impacts on lipid metabolism of soil microbes: towards effective detection and bioassessment strategies. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-020-00347-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AbstractDioxins are the most toxic known environmental pollutants and are mainly formed by human activities. Due to their structural stability, dioxins persist for extended periods and can be transported over long distances from their emission sources. Thus, dioxins can be accumulated to considerable levels in both human and animal food chains. Along with sediments, soils are considered the most important reservoirs of dioxins. Soil microorganisms are therefore highly exposed to dioxins, leading to a range of biological responses that can impact the diversity, genetics and functional of such microbial communities. Dioxins are very hydrophobic with a high affinity to lipidic macromolecules in exposed organisms, including microbes. This review summarizes the genetic, molecular and biochemical impacts of dioxins on the lipid metabolism of soil microbial communities and especially examines modifications in the composition and architecture of cell membranes. This will provide a useful scientific benchmark for future attempts at soil ecological risk assessment, as well as in identifying potential dioxin-specific-responsive lipid biomarkers. Finally, potential uses of lipid-sequestering microorganisms as a part of biotechnological approaches to the bio-management of environmental contamination with dioxins are discussed.
Collapse
|
14
|
Stancu MM. Biosurfactant production by a Bacillus megaterium strain. Open Life Sci 2020; 15:629-637. [PMID: 33817251 PMCID: PMC7747503 DOI: 10.1515/biol-2020-0068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 06/29/2020] [Accepted: 07/05/2020] [Indexed: 12/16/2022] Open
Abstract
The aim of the present study was to investigate the ability of Bacillus megaterium IBBPo17 (GenBank KX499518) cells to produce biosurfactant when the growth was done in the presence of long-chain n-alkane n-hexadecane on medium supplemented with yeast extract, proteose peptone, starch, or cellulose. B. megaterium IBBPo17 revealed a higher growth in the presence of n-hexadecane when the medium was supplemented with yeast extract, proteose peptone, or starch, compared with cellulose. Biosurfactant production was higher when B. megaterium IBBPo17 was grown in the presence of n-hexadecane on yeast extract, proteose peptone, or starch supplemented medium, compared with biosurfactant produced on cellulose supplemented medium. A direct correlation between cell growth and biosurfactant production was observed. When the growth of B. megaterium IBBPo17 cells was higher, the decrease in pH values of the medium was higher too, and more amount of CO2 was released. Changes in cell morphology, aggregation of the cells in clusters, and biofilm formation were observed when B. megaterium IBBPo17 was grown in the presence of n-hexadecane on medium supplemented with yeast extract, proteose peptone, starch, or cellulose. Due to its physiological abilities, this Gram-positive bacterium could be a promising candidate for the bioremediation of petroleum hydrocarbon polluted environments.
Collapse
Affiliation(s)
- Mihaela Marilena Stancu
- Institute of Biology Bucharest of Romanian Academy, 296 Splaiul Independentei, Bucharest, 060031, P.O. Box 56-53, Romania
| |
Collapse
|
15
|
Trudgeon B, Dieser M, Balasubramanian N, Messmer M, Foreman CM. Low-Temperature Biosurfactants from Polar Microbes. Microorganisms 2020; 8:E1183. [PMID: 32756528 PMCID: PMC7466143 DOI: 10.3390/microorganisms8081183] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 11/17/2022] Open
Abstract
Surfactants, both synthetic and natural, are used in a wide range of industrial applications, including the degradation of petroleum hydrocarbons. Organisms from extreme environments are well-adapted to the harsh conditions and represent an exciting avenue of discovery of naturally occurring biosurfactants, yet microorganisms from cold environments have been largely overlooked for their biotechnological potential as biosurfactant producers. In this study, four cold-adapted bacterial isolates from Antarctica are investigated for their ability to produce biosurfactants. Here we report on the physical properties and chemical structure of biosurfactants from the genera Janthinobacterium, Psychrobacter, and Serratia. These organisms were able to grow on diesel, motor oil, and crude oil at 4 °C. Putative identification showed the presence of sophorolipids and rhamnolipids. Emulsion index test (E24) activity ranged from 36.4-66.7%. Oil displacement tests were comparable to 0.1-1.0% sodium dodecyl sulfate (SDS) solutions. Data presented herein are the first report of organisms of the genus Janthinobacterium to produce biosurfactants and their metabolic capabilities to degrade diverse petroleum hydrocarbons. The organisms' ability to produce biosurfactants and grow on different hydrocarbons as their sole carbon and energy source at low temperatures (4 °C) makes them suitable candidates for the exploration of hydrocarbon bioremediation in low-temperature environments.
Collapse
Affiliation(s)
- Benjamin Trudgeon
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA; (B.T.); (M.M.); (C.M.F.)
- Department of Civil & Environmental Engineering, Montana State University, Bozeman, MT 59715, USA
| | - Markus Dieser
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA; (B.T.); (M.M.); (C.M.F.)
- Department of Chemical & Biological Engineering, Montana State University, Bozeman, MT 59715, USA
| | | | - Mitch Messmer
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA; (B.T.); (M.M.); (C.M.F.)
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA;
| | - Christine M. Foreman
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA; (B.T.); (M.M.); (C.M.F.)
- Department of Chemical & Biological Engineering, Montana State University, Bozeman, MT 59715, USA
| |
Collapse
|
16
|
Ekpenyong M, Asitok A, Antai S, Ekpo B, Antigha R, Ogarekpe N. Statistical and Artificial Neural Network Approaches to Modeling and Optimization of Fermentation Conditions for Production of a Surface/Bioactive Glyco-lipo-peptide. Int J Pept Res Ther 2020; 27:475-495. [PMID: 32837457 PMCID: PMC7375705 DOI: 10.1007/s10989-020-10094-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2020] [Indexed: 11/30/2022]
Abstract
A freshwater alkaliphilic strain of Pseudomonas aeruginosa, grown on waste frying oil-basal medium, produced a surface-active metabolite identified as glycolipopeptide. Bioprocess conditions namely temperature, pH, agitation and duration were comparatively modeled using statistical and artificial neural network (ANN) methods to predict and optimize product yield using the matrix of a central composite rotatable design (CCRD). Response surface methodology (RSM) was the statistical approach while a feed-forward neural network, trained with Levenberg–Marquardt back-propagation algorithm, was the neural network method. Glycolipopeptide model was predicted by a significant (P < 0.001, R2 of 0.9923) quadratic function of the RSM with a mean squared error (MSE) of 3.6661. The neural network model, on the other hand, returned an R2 value of 0.9964 with an MSE of 1.7844. From all error metrics considered, ANN glycolipopeptide model significantly (P < 0.01) outperformed RSM counterpart in predictive modeling capability. Optimization of factor levels for maximum glycolipopeptide concentration produced bioprocess conditions of 32 °C for temperature, 7.6 for pH, agitation speed of 130 rpm and a fermentation time of 66 h, at a combined desirability function of 0.872. The glycosylated lipid-tailed peptide demonstrated significant anti-bacterial activity (MIC = 8.125 µg/mL) against Proteus vulgaris, dose-dependent anti-biofilm activities against Escherichia coli (83%) and Candida dubliniensis (90%) in 24 h and an equally dose-dependent cytotoxic activity against human breast (MCF-7: IC50 = 65.12 µg/mL) and cervical (HeLa: IC50 = 16.44 µg/mL) cancer cell lines. The glycolipopeptide compound is recommended for further studies and trials for application in human cancer therapy.
Collapse
Affiliation(s)
- Maurice Ekpenyong
- Department of Microbiology, University of Calabar, Calabar, Cross River State Nigeria
| | - Atim Asitok
- Department of Microbiology, University of Calabar, Calabar, Cross River State Nigeria
| | - Sylvester Antai
- Department of Microbiology, University of Calabar, Calabar, Cross River State Nigeria
| | - Bassey Ekpo
- Department of Chemistry, University of Calabar, Calabar, Cross River State Nigeria.,Nigerian National Petroleum Corporation (NNPC), Port Harcourt, Nigeria
| | - Richard Antigha
- Department of Civil Engineering, Cross River University of Technology, Calabar, Cross River State Nigeria
| | - Nkpa Ogarekpe
- Department of Civil Engineering, Cross River University of Technology, Calabar, Cross River State Nigeria
| |
Collapse
|
17
|
Enhancement of glycolipid production by Stenotrophomonas acidaminiphila TW3 cultivated in low cost substrate. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Huang B, Liang Y, Pan H, Xie L, Jiang T, Jiang T. Hemolytic and cytotoxic activity from cultures of Aureococcus anophagefferens-a causative species of brown tides in the north-western Bohai Sea, China. CHEMOSPHERE 2020; 247:125819. [PMID: 31927184 DOI: 10.1016/j.chemosphere.2020.125819] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/20/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
Brown tides were first observed in 2009 in the north-western Bohai Sea (Qinhuangdao sea area), China, and blooms have occurred at different scales in late spring every year since then. Although the detrimental effects on marine organisms of the causative phytoplankton species Aureococcus anophagefferens have been extensively studied, the mechanism remains poorly understood. We used erythrocytes and adrenal gland chromaffin tumor cells (PC12) to explore the hemolytic activity and cytotoxicity, respectively, of chloroform and methanol extracts of cultured A. anophagefferens isolated from the north-western Bohai Sea area. The methanol extracts showed no hemolytic or cytotoxic activity. Chloroform extracts had a potent hemolytic effect on rabbit erythrocytes; thin layer chromatography (TLC) indicated that the hemolysin was a kind of glycolipid compound. Erythrocyte lysis assay showed that erythrocytes of sea bream were sensitive to the hemolysin, whereas those of human and chicken erythrocytes were insensitive. The hemolytic effects were elevated as temperatures rose from 4 °C to 37 °C. Hemolytic blocking experiments showed that sphingomyelin and d-xylose can inhibit hemolysis significantly, while osmotic protectants with different hydrated molecular diameters had no inhibition, and the hemolysins had no obvious phospholipase activity. The chloroform extracts of A. anophagefferens had significant inhibitory effects on the viability of PC12 cells, and can induce efflux of lactic dehydrogenase (LDH) of PC12 cells and lead to their necrosis.
Collapse
Affiliation(s)
- Baiqiang Huang
- Research Center of Harmful Algae & Marine Biology, Jinan University, Guangzhou, 510632, China
| | - Yanlan Liang
- Research Center of Harmful Algae & Marine Biology, Jinan University, Guangzhou, 510632, China
| | - Huizhu Pan
- Research Center of Harmful Algae & Marine Biology, Jinan University, Guangzhou, 510632, China
| | - Lei Xie
- Research Center of Harmful Algae & Marine Biology, Jinan University, Guangzhou, 510632, China
| | - Tao Jiang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266200, China.
| | - Tianjiu Jiang
- Research Center of Harmful Algae & Marine Biology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
19
|
Velazquez S, Griffiths W, Dietz L, Horve P, Nunez S, Hu J, Shen J, Fretz M, Bi C, Xu Y, Van Den Wymelenberg KG, Hartmann EM, Ishaq SL. From one species to another: A review on the interaction between chemistry and microbiology in relation to cleaning in the built environment. INDOOR AIR 2019; 29:880-894. [PMID: 31429989 PMCID: PMC6852270 DOI: 10.1111/ina.12596] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/11/2019] [Accepted: 08/15/2019] [Indexed: 05/12/2023]
Abstract
Since the advent of soap, personal hygiene practices have revolved around removal, sterilization, and disinfection-both of visible soil and microscopic organisms-for a myriad of cultural, aesthetic, or health-related reasons. Cleaning methods and products vary widely in their recommended use, effectiveness, risk to users or building occupants, environmental sustainability, and ecological impact. Advancements in science and technology have facilitated in-depth analyses of the indoor microbiome, and studies in this field suggest that the traditional "scorched-earth cleaning" mentality-that surfaces must be completely sterilized and prevent microbial establishment-may contribute to long-term human health consequences. Moreover, the materials, products, activities, and microbial communities indoors all contribute to, or remove, chemical species to the indoor environment. This review examines the effects of cleaning with respect to the interaction of chemistry, indoor microbiology, and human health.
Collapse
Affiliation(s)
| | - Willem Griffiths
- Biology and the Built Environment CenterUniversity of OregonEugeneOR
| | - Leslie Dietz
- Biology and the Built Environment CenterUniversity of OregonEugeneOR
| | - Patrick Horve
- Biology and the Built Environment CenterUniversity of OregonEugeneOR
| | - Susie Nunez
- Biology and the Built Environment CenterUniversity of OregonEugeneOR
| | - Jinglin Hu
- Department of Civil and Environmental EngineeringNorthwestern UniversityEvanstonIL
| | - Jiaxian Shen
- Department of Civil and Environmental EngineeringNorthwestern UniversityEvanstonIL
| | - Mark Fretz
- Institute for Health and the Built EnvironmentUniversity of OregonPortlandOR
| | - Chenyang Bi
- Department of Civil Environmental EngineeringVirginia Polytechnic Institute and State UniversityBlacksburgVA
| | - Ying Xu
- Department of Building ScienceTsinghua UniversityBeijingChina
| | - Kevin G. Van Den Wymelenberg
- Biology and the Built Environment CenterUniversity of OregonEugeneOR
- Institute for Health and the Built EnvironmentUniversity of OregonPortlandOR
| | - Erica M. Hartmann
- Department of Civil and Environmental EngineeringNorthwestern UniversityEvanstonIL
| | - Suzanne L. Ishaq
- Biology and the Built Environment CenterUniversity of OregonEugeneOR
| |
Collapse
|
20
|
Md Badrul Hisham NH, Ibrahim MF, Ramli N, Abd-Aziz S. Production of Biosurfactant Produced from Used Cooking Oil by Bacillus sp. HIP3 for Heavy Metals Removal. Molecules 2019; 24:E2617. [PMID: 31323813 PMCID: PMC6681096 DOI: 10.3390/molecules24142617] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 02/02/2023] Open
Abstract
Heavy metals from industrial effluents and sewage contribute to serious water pollution in most developing countries. The constant penetration and contamination of heavy metals into natural water sources may substantially raise the chances of human exposure to these metals through ingestion, inhalation, or skin contact, which could lead to liver damage, cancer, and other severe conditions in the long term. Biosurfactant as an efficient biological surface-active agent may provide an alternative solution for the removal of heavy metals from industrial wastes. Biosurfactants exhibit the properties of reducing surface and interfacial tension, stabilizing emulsions, promoting foaming, high selectivity, and specific activity at extreme temperatures, pH, and salinity, and the ability to be synthesized from renewable resources. This study aimed to produce biosurfactant from renewable feedstock, which is used cooking oil (UCO), by a local isolate, namely Bacillus sp. HIP3 for heavy metals removal. Bacillus sp. HIP3 is a Gram-positive isolate that gave the highest oil displacement area with the lowest surface tension, of 38 mN/m, after 7 days of culturing in mineral salt medium and 2% (v/v) UCO at a temperature of 30 °C and under agitation at 200 rpm. An extraction method, using chloroform:methanol (2:1) as the solvents, gave the highest biosurfactant yield, which was 9.5 g/L. High performance liquid chromatography (HPLC) analysis confirmed that the biosurfactant produced by Bacillus sp. HIP3 consists of a lipopeptide similar to standard surfactin. The biosurfactant was capable of removing 13.57%, 12.71%, 2.91%, 1.68%, and 0.7% of copper, lead, zinc, chromium, and cadmium, respectively, from artificially contaminated water, highlighting its potential for bioremediation.
Collapse
Affiliation(s)
- Nurul Hanisah Md Badrul Hisham
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia
| | - Mohamad Faizal Ibrahim
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia
| | - Norhayati Ramli
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia
| | - Suraini Abd-Aziz
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia.
| |
Collapse
|
21
|
Hanano A, Shaban M, Almutlk D, Almousally I. The cytochrome P450 BM-1 of Bacillus megaterium A14K is induced by 2,3,7,8-Tetrachlorinated dibenzo-p-dioxin: Biophysical, molecular and biochemical determinants. CHEMOSPHERE 2019; 216:258-270. [PMID: 30384294 DOI: 10.1016/j.chemosphere.2018.10.103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/10/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
The current study describes biological changes in Bacillus megaterium A14K cells growing in the presence of 2,3,7,8-Tetrachlorinated dibenzo-p-dioxin (TCDD), the most potent congener of dioxins. The results indicate that the metabolizing of 2,3,7,8-TCDD by BmA14K was accompanied with a novel morphological and biophysical profile typified by the growth of single cells with high levels of biosurfactant production, surface hydrophobicity and cell membrane permeability. Moreover, the TCDD-grown bacteria exhibited a specific fatty acid profile characterized by low ratios of branched/straight chain fatty acids (BCFAs/SCFAs) and saturated/unsaturated fatty acids (SFAs/USFAs) with a specific "signature" due to the presence of branched chain unsaturated fatty acids (BCUFAs). This was synchronized with a significant induction of P450BM-1, an unsaturated fatty acid-metabolizing enzyme in B. megaterium. Subsequently, the profile of oxygenated fatty acids in the TCDD-grown bacteria was typified by the presence of 5,6-epoxy derived from unsaturated C15, C16 and C17 fatty acids, that were absent in control bacteria. A net increase was also detected in both hydroxylated and epoxidized fatty acids, especially those derived from C15:0 and C16:1, respectively, suggesting a specific TCDD-induced "signature" of oxygenated fatty acids in BmA14K. Overall, this study sheds light on the use of B. megaterium A14K as a promising bioindicator/biodegrader of dioxins.
Collapse
Affiliation(s)
- Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria.
| | - Mouhnad Shaban
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria
| | - Douaa Almutlk
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria
| | - Ibrahem Almousally
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria
| |
Collapse
|
22
|
Biological control of the soft rot bacterium Pectobacterium carotovorum by Bacillus amyloliquefaciens strain Ar10 producing glycolipid-like compounds. Microbiol Res 2018; 217:23-33. [PMID: 30384906 DOI: 10.1016/j.micres.2018.08.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/17/2018] [Accepted: 08/28/2018] [Indexed: 11/21/2022]
Abstract
Four hundred and fifty bacteria were evaluated for antagonistic activity against bacterial soft rot of potato caused by Pectobacterium carotovorum sp strain II16. A strain Ar10 exhibiting potent antagonist activity has been identified as Bacillus amyloliquefaciens on the basis of biochemical and molecular characterization. Cell free supernatant showed a broad spectrum of antibacterial activity against human and phytopathogenic bacteria in the range of 10-60 AU/mL. Incubation of P. carotovorum cells with increasing concentrations of the antibacterial compound showed a killing rate of 94.8 and 96% at MIC and 2xMIC respectively. In addition, the antibacterial agent did not exert haemolytic activity at the active concentration and has been preliminary characterized by TLC and GC-MS as a glycolipid compound. Treatment of potato tubers with strain Ar10 for 72 h significantly reduced the severity of disease symptoms (100 and 85.05% reduction of necrosis deep / area and weight loss respectively). The same levels in disease symptoms severity was also recorded following treatment of potato tubers with cell free supernatant for 1 h. Data suggest that protection against potato soft rot disease may be related to glycolipid production by strain Ar10. The present study affords new alternatives for anti-Pectobacterium carotovorum bioactive compounds against the soft rot disease of potato.
Collapse
|
23
|
Nurfarahin AH, Mohamed MS, Phang LY. Culture Medium Development for Microbial-Derived Surfactants Production-An Overview. Molecules 2018; 23:molecules23051049. [PMID: 29723959 PMCID: PMC6099601 DOI: 10.3390/molecules23051049] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/22/2018] [Accepted: 04/24/2018] [Indexed: 12/14/2022] Open
Abstract
Surfactants are compounds that can reduce the surface tension between two different phases or the interfacial tension of the liquid between water and oil, possessing both hydrophilic and hydrophobic moieties. Biosurfactants have traits that have proven to be advantageous over synthetic surfactants, but these compounds do not compete economically with synthetic surfactants. Different alternatives increase the yield of biosurfactants; development of an economical production process and the usage of cheaper substrates during process have been employed. One of the solutions relies on the suitable formulation of a production medium by including alternative raw materials sourced from agro-wastes, hydrocarbons, or by-products of a process might help in boosting the biosurfactant production. Since the nutritional factors required will be different among microorganisms, the establishment of a suitable formulation for biosurfactant production will be challenging. The present review describes various nutrients and elements considered in the formulation of a production medium with an approach focusing on the macronutrient (carbon, nitrogen source, and C/N ratio), minerals, vitamins, metabolic regulators, and salinity levels which may aid in the study of biosurfactant production in the future.
Collapse
Affiliation(s)
- Abdul Hamid Nurfarahin
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia.
| | - Mohd Shamzi Mohamed
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia.
- Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia.
| | - Lai Yee Phang
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia.
| |
Collapse
|
24
|
Utilization of Agro-Industry Residue for Rhamnolipid Production by P. aeruginosa AMB AS7 and Its Application in Chromium Removal. Appl Biochem Biotechnol 2017; 183:70-90. [DOI: 10.1007/s12010-017-2431-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 01/27/2017] [Indexed: 11/25/2022]
|
25
|
Hanano A, Shaban M, Almousally I. Biochemical, Molecular, and Transcriptional Highlights of the Biosynthesis of an Effective Biosurfactant Produced by Bacillus safensis PHA3, a Petroleum-Dwelling Bacteria. Front Microbiol 2017; 8:77. [PMID: 28179901 PMCID: PMC5263155 DOI: 10.3389/fmicb.2017.00077] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/11/2017] [Indexed: 11/13/2022] Open
Abstract
Petroleum crude oil (PCO)-dwelling microorganisms have exceptional biological capabilities to tolerate the toxicity of petroleum contaminants and are therefore promising emulsifier and/or degraders of PCO. This study describes a set of PCO-inhabiting bacterial species, one of which, identified as Bacillus safensis PHA3, produces an efficient biosurfactant which was characterized as a glycolipid. Fourier transform infrared spectrometer, nuclear magnetic resonance, Thin layer chromatography, HPLC, and GC-MS analysis of the purified biosurfactant revealed that the extracted molecule under investigation is likely a mannolipid molecule with a hydrophilic part as mannose and a hydrophobic part as hexadecanoic acid (C16:0). The data reveal that: (i) PHA3 is a potential producer of biosurfactant (9.8 ± 0.5 mg mL-1); (ii) pre-adding 0.15% of the purified glycolipid enhanced the degradation of PCO by approximately 2.5-fold; (iii) the highest emulsifying activity of biosurfactant was found against the PCO and the lowest was against the naphthalene; (iv) the optimal PCO-emulsifying activity was found at 30-60°C, pH 8 and a high salinity. An orthologous gene encodes a putative β-diglucosyldiacylglycerol synthase (β-DGS) was identified in PHA3 and its transcripts were significantly up-regulated by exogenous PAHs, i.e., pyrene and benzo(e)pyrene but much less by mid-chain n-alkanes (ALKs) and fatty acids. Subsequently, the accumulation of β-DGS transcripts coincided with an optimal growth of bacteria and a maximal accumulation of the biosurfactant. Of particular interest, we found that PHA3 actively catalyzed the degradation of PAHs notably the pyrene and benzo(e)pyrene but was much less effective in the mono-terminal oxidation of ALKs. Such characteristics make Bacillus safensis PHA3 a promising model for enhanced microbial oil recovery and environmental remediation.
Collapse
Affiliation(s)
- Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria Damascus, Syria
| | - Mouhnad Shaban
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria Damascus, Syria
| | - Ibrahem Almousally
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria Damascus, Syria
| |
Collapse
|
26
|
Balan SS, Kumar CG, Jayalakshmi S. Aneurinifactin, a new lipopeptide biosurfactant produced by a marine Aneurinibacillus aneurinilyticus SBP-11 isolated from Gulf of Mannar: Purification, characterization and its biological evaluation. Microbiol Res 2016; 194:1-9. [PMID: 27938857 DOI: 10.1016/j.micres.2016.10.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 10/13/2016] [Accepted: 10/22/2016] [Indexed: 11/25/2022]
Abstract
Biosurfactants are microbial-derived amphiphilic molecules having hydrophobic and hydrophilic moieties produced by bacteria, fungi, yeasts and algae and are extracellular or cell wall-associated compounds. In an ongoing survey for bioactive microbial metabolites from microbes isolated from diverse ecological niches, a new lipopeptide biosurfactant was identified from a marine bacterium; Aneurinibacillus aneurinilyticus strain SBP-11, which was isolated from a marine diversity hotspot, Gulf of Mannar, India. A new lipopeptide biosurfactant was purified and characterized based on TLC, FT-IR, NMR, GC-MS, HPLC, MALDI-TOF-MS and tandem MS analysis as Stearic acid-Thr-Tyr-Val-Ser-Tyr-Thr (named as Aneurinifactin). The critical micelle concentration of Aneurinifactin was 26mgL-1 at a surface tension of 26mNm-1. Further, the biosurfactant showed stable emulsification at a wide range of pH (2-9) and temperature up to 80°C. Aneurinifactin showed promising antimicrobial activity and concentration dependent efficient oil recovery. This is the first report on Aneurinifactin, a lipopeptide biosurfactant produced by a marine A. aneurinilyticus SBP-11, which could be explored as a promising candidate for use in various biomedical and industrial applications.
Collapse
Affiliation(s)
- Shanmugasundaram Senthil Balan
- CAS in Marine Biology, Faculty of Marine Sciences, Annamalai University, Porto Novo, Tamil Nadu 608502, India; Present address: Department of Medicinal Plant Biotechnology, Sharmila Institute of Medicinal Products Research Academy, Thanjavur, Tamil Nadu 613007, India
| | - C Ganesh Kumar
- Medicinal Chemistry and Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India.
| | - Singaram Jayalakshmi
- CAS in Marine Biology, Faculty of Marine Sciences, Annamalai University, Porto Novo, Tamil Nadu 608502, India
| |
Collapse
|
27
|
Sharma D, Saharan BS. Functional characterization of biomedical potential of biosurfactant produced by Lactobacillus helveticus. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2016; 11:27-35. [PMID: 28352537 PMCID: PMC5042301 DOI: 10.1016/j.btre.2016.05.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 04/30/2016] [Accepted: 05/04/2016] [Indexed: 11/27/2022]
Abstract
Various lactic acid bacteria (LAB) have been isolated and screened for biosurfactant production and their biomedical and food applications. Additionally, various different concentrations of the biosurfactant (0.625-25 mg ml-1) were used to evaluate its antimicrobial and antiadhesive potential against a range of pathogenic microorganisms. Biosurfactant was found to be stable to pH changes over a range of 4.0-12.0, being most effective at pH 7 and showed no apparent loss of surface tension and emulsification efficiency after heat treatment at 125 °C for 15 min. Present study demonstrated that biosurfactant obtained from Lactobacillus helveticus has the ability to counteract effectively the initial deposition of biofilm forming pathogens to silicone surfaces and to significantly sluggish biofilm growth.
Collapse
Affiliation(s)
- Deepansh Sharma
- Department of Microbiology, Kurukshetra University, Kurukshetra 136 119, India
- School of Biotechnology and Biosciences, Lovely Professional University, Jalandhar, India
| | | |
Collapse
|
28
|
Priji P, Sajith S, Unni KN, Anderson RC, Benjamin S. Pseudomonas sp. BUP6, a novel isolate from Malabari goat produces an efficient rhamnolipid type biosurfactant. J Basic Microbiol 2016; 57:21-33. [PMID: 27400277 DOI: 10.1002/jobm.201600158] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/20/2016] [Indexed: 01/02/2023]
Abstract
This study describes the characteristics of a biosurfactant produced by Pseudomonas sp. BUP6, a rumen bacterium, and optimization of parameters required for its production. Initial screening of five parameters (pH, temperature, agitation, incubation, and substrate concentration) was carried out employing Plackett-Burman design, which reduced the number of parameters to 3 (pH, temperature, and incubation) according to their significance on the yield of biosurfactant. A suitable statistical model for the production of biosurfactant by Pseudomonas sp. BUP6 was established according to Box-Behnken design, which resulted in 11% increase (at pH 7, 35 °C, incubation 75 h) in the yield (2070 mg L-1 ) of biosurfactant. The biosurfactant was found stable at a wide range of pH (3-9) with 48 mg L-1 critical micelle concentration; and maintained over 90% of its emulsification ability even after boiling and in presence of sodium chloride (0.5%). The highest cell hydrophobicity (37%) and emulsification (69%) indices were determined with groundnut oil and kerosene, respectively. The biosurfactant was found to inhibit the growth and adhesion of E. coli and S. aureus significantly. From the phytotoxicity studies, the biosurfactant did not show any adverse effect on the germinating seeds of rice and green gram. The structural characterization of biosurfactant employing orcinol method, thin layer chromatography and FT-IR indicated that it is a rhamnolipid (glycolipid). Thus, Pseudomonas sp. BUP6, a novel isolate from Malabari goat is demonstrated as a producer of an efficient rhamnolipid type biosurfactant suitable for application in various industries.
Collapse
Affiliation(s)
- Prakasan Priji
- Enzyme Technology Laboratory, Biotechnology Division, Department of Botany, University of Calicut, Kerala, India
| | - Sreedharan Sajith
- Enzyme Technology Laboratory, Biotechnology Division, Department of Botany, University of Calicut, Kerala, India
| | - Kizhakkepowathial Nair Unni
- Enzyme Technology Laboratory, Biotechnology Division, Department of Botany, University of Calicut, Kerala, India
| | - Robin C Anderson
- United States Department of Agriculture, Agricultural Research Service, College Station, TX 77845, USA
| | - Sailas Benjamin
- Enzyme Technology Laboratory, Biotechnology Division, Department of Botany, University of Calicut, Kerala, India
| |
Collapse
|
29
|
Application of nanoparticles derived from marine Staphylococcus lentus in sensing dichlorvos and mercury ions. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.04.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Economic Production and Oil Recovery Efficiency of a Lipopeptide Biosurfactant from a Novel Marine Bacterium Bacillus simplex. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.als.2016.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Kumar AP, Janardhan A, Viswanath B, Monika K, Jung JY, Narasimha G. Evaluation of orange peel for biosurfactant production by Bacillus licheniformis and their ability to degrade naphthalene and crude oil. 3 Biotech 2016; 6:43. [PMID: 28330114 PMCID: PMC4742421 DOI: 10.1007/s13205-015-0362-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 09/02/2015] [Indexed: 11/22/2022] Open
Abstract
A Gram-positive bacterium was isolated from mangrove soil and was identified as Bacillus licheniformis (KC710973). The potential of a mangrove microorganism to utilize different natural waste carbon substrates for biosurfactant production and biodegradation of hydrocarbons was evaluated. Among several substrates used in the present study, orange peel was found to be best substrate of biosurfactant yield with 1.796 g/L and emulsification activity of 75.17 % against diesel. Fourier transform infrared spectroscopy analysis of biosurfactant compound revealed that the isolated biosurfactant is in lipopeptide nature. The 1H-NMR of the extracted biosurfactant from B. licheniformis has a doublet signal at 0.8–0.9 ppm corresponding to six hydrogen atoms suggests the presence of a terminal isopropyl group. The spectra showed two main regions corresponding to resonance of α-carbon protons (3.5–5.5 ppm) and side-chain protons (0.25–3.0 ppm). All the data suggests that the fatty acid residue is from lipopeptide. From the biodegradation studies, it concluded that the biosurfactant produced by B. licheniformis further can add to its value as an ecofriendly and biodegradable product.
Collapse
|
32
|
Brumano LP, Soler MF, da Silva SS. Recent Advances in Sustainable Production and Application of Biosurfactants in Brazil and Latin America. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1089/ind.2015.0027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Larissa Pereira Brumano
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, São Paulo, Brazil
| | - Matheus Francisco Soler
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, São Paulo, Brazil
| | - Silvio Silvério da Silva
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, São Paulo, Brazil
| |
Collapse
|
33
|
Nalini S, Parthasarathi R, Prabudoss V. Production and characterization of lipopeptide from Bacillus cereus SNAU01 under solid state fermentation and its potential application as anti-biofilm agent. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2016. [DOI: 10.1016/j.bcab.2016.01.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
|
35
|
Gogoi D, Bhagowati P, Gogoi P, Bordoloi NK, Rafay A, Dolui SK, Mukherjee AK. Structural and physico-chemical characterization of a dirhamnolipid biosurfactant purified from Pseudomonas aeruginosa: application of crude biosurfactant in enhanced oil recovery. RSC Adv 2016. [DOI: 10.1039/c6ra11979d] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The present study describes the structural characterization and biotechnological application of a dirhamnolipid biosurfactant produced byPseudomonas aeruginosastrain NBTU-01 isolated from a petroleum oil-contaminated soil sample.
Collapse
Affiliation(s)
- Debananda Gogoi
- ONGC-Centre for Petroleum Biotechnology & Microbial Biotechnology and Protein Research Laboratory
- Department of Molecular Biology and Biotechnology
- Tezpur University
- Tezpur-784028
- India
| | - Pabitra Bhagowati
- ONGC-Centre for Petroleum Biotechnology & Microbial Biotechnology and Protein Research Laboratory
- Department of Molecular Biology and Biotechnology
- Tezpur University
- Tezpur-784028
- India
| | - Pronob Gogoi
- Department of Chemical Sciences
- Tezpur University
- Tezpur-784028
- India
| | - Naba K. Bordoloi
- ONGC-Centre for Petroleum Biotechnology & Microbial Biotechnology and Protein Research Laboratory
- Department of Molecular Biology and Biotechnology
- Tezpur University
- Tezpur-784028
- India
| | - Abu Rafay
- C-CAMP
- National Center for Biological Sciences
- Bengaluru-560065
- India
| | - Swapan K. Dolui
- Department of Chemical Sciences
- Tezpur University
- Tezpur-784028
- India
| | - Ashis K. Mukherjee
- ONGC-Centre for Petroleum Biotechnology & Microbial Biotechnology and Protein Research Laboratory
- Department of Molecular Biology and Biotechnology
- Tezpur University
- Tezpur-784028
- India
| |
Collapse
|
36
|
Coronel-León J, Marqués A, Bastida J, Manresa A. Optimizing the production of the biosurfactant lichenysin and its application in biofilm control. J Appl Microbiol 2015; 120:99-111. [DOI: 10.1111/jam.12992] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 09/29/2015] [Accepted: 10/16/2015] [Indexed: 01/05/2023]
Affiliation(s)
- J. Coronel-León
- Unitat de Microbiología; Facultat de Farmacia; Universitat de Barcelona; Barcelona Spain
| | - A.M. Marqués
- Unitat de Microbiología; Facultat de Farmacia; Universitat de Barcelona; Barcelona Spain
| | - J. Bastida
- Departamento de Ingeniería Química; Universidad de Murcia, El Espinardo; Murcia Spain
| | - A. Manresa
- Unitat de Microbiología; Facultat de Farmacia; Universitat de Barcelona; Barcelona Spain
| |
Collapse
|
37
|
Li S, Pi Y, Bao M, Zhang C, Zhao D, Li Y, Sun P, Lu J. Effect of rhamnolipid biosurfactant on solubilization of polycyclic aromatic hydrocarbons. MARINE POLLUTION BULLETIN 2015; 101:219-225. [PMID: 26494247 DOI: 10.1016/j.marpolbul.2015.09.059] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 05/05/2023]
Abstract
Rhamnolipid biosurfactant-producing bacteria, Bacillus Lz-2, was isolated from oil polluted water collected from Dongying Shengli oilfield, China. The factors that influence PAH solubilization such as biosurfactant concentration, pH, ionic strength and temperature were discussed. The results showed that the solubilities of naphthalene, phenanthrene and pyrene increased linearly with the rise of rhamnolipid biosurfactant dose above the biosurfactant critical micelle concentration (CMC). Furthermore, the molar solubilization ratio (MSR) values decreased in the following order: naphthalene>phenanthrene>pyrene. However, the solubility percentage increased and followed the opposite order: pyrene>phenanthrene>naphthalene. The solubilities of PAHs in rhamnolipid biosurfactant solution increased with the rise of pH and ionic strength, and reached the maximum values under the conditions of pH11 and NaCl concentration 8 g · L(-1). The solubility of phenanthrene and pyrene increased with the rise of temperature.
Collapse
Affiliation(s)
- Shudong Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yongrui Pi
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Mutai Bao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| | - Cong Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Dongwei Zhao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yiming Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Peiyan Sun
- Key Laboratory of Marine Spill Oil Identification and Damage Assessment Technology, State Oceanic Administration, Qingdao 266033, China; North China Sea Environmental Monitoring Center of State Oceanic Administration, Qingdao 266033, China
| | - Jinren Lu
- College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
38
|
Leite GGF, Figueirôa JV, Almeida TCM, Valões JL, Marques WF, Duarte MDDC, Gorlach-Lira K. Production of rhamnolipids and diesel oil degradation by bacteria isolated from soil contaminated by petroleum. Biotechnol Prog 2015; 32:262-70. [PMID: 26588432 DOI: 10.1002/btpr.2208] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 11/11/2015] [Indexed: 12/22/2022]
Abstract
Biosurfactants are microbial secondary metabolites. The most studied are rhamnolipids, which decrease the surface tension and have emulsifying capacity. In this study, the production of biosurfactants, with emphasis on rhamnolipids, and diesel oil degradation by 18 strains of bacteria isolated from waste landfill soil contaminated by petroleum was analyzed. Among the studied bacteria, gram-positive endospore forming rods (39%), gram positive rods without endospores (17%), and gram-negative rods (44%) were found. The following methods were used to test for biosurfactant production: oil spreading, emulsification, and hemolytic activity. All strains showed the ability to disperse the diesel oil, while 77% and 44% of the strains showed hemolysis and emulsification of diesel oil, respectively. Rhamnolipids production was observed in four strains that were classified on the basis of the 16S rRNA sequences as Pseudomonas aeruginosa. Only those strains showed the rhlAB gene involved in rhamnolipids synthesis, and antibacterial activity against Escherichia coli, P. aeruginosa, Staphylococcus aureus, Bacillus cereus, Erwinia carotovora, and Ralstonia solanacearum. The highest production of rhamnolipids was 565.7 mg/L observed in mineral medium containing olive oil (pH 8). With regard to the capacity to degrade diesel oil, it was observed that 7 strains were positive in reduction of the dye 2,6-dichlorophenolindophenol (2,6-DCPIP) while 16 had the gene alkane mono-oxygenase (alkB), and the producers of rhamnolipids were positive in both tests. Several bacterial strains have shown high potential to be explored further for bioremediation purposes due to their simultaneous ability to emulsify, disperse, and degrade diesel oil. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:262-270, 2016.
Collapse
Affiliation(s)
- Giuseppe G F Leite
- Molecular Biology Dept., Center of Exact and Natural Sciences, Federal University of Paraiba, Cidade Universitária, João Pessoa, Paraiba, 58051-900, Brazil
| | - Juciane V Figueirôa
- Molecular Biology Dept., Center of Exact and Natural Sciences, Federal University of Paraiba, Cidade Universitária, João Pessoa, Paraiba, 58051-900, Brazil
| | - Thiago C M Almeida
- Molecular Biology Dept., Center of Exact and Natural Sciences, Federal University of Paraiba, Cidade Universitária, João Pessoa, Paraiba, 58051-900, Brazil
| | - Jaqueline L Valões
- Molecular Biology Dept., Center of Exact and Natural Sciences, Federal University of Paraiba, Cidade Universitária, João Pessoa, Paraiba, 58051-900, Brazil
| | - Walber F Marques
- Molecular Biology Dept., Center of Exact and Natural Sciences, Federal University of Paraiba, Cidade Universitária, João Pessoa, Paraiba, 58051-900, Brazil
| | - Maria D D C Duarte
- Molecular Biology Dept., Center of Exact and Natural Sciences, Federal University of Paraiba, Cidade Universitária, João Pessoa, Paraiba, 58051-900, Brazil
| | - Krystyna Gorlach-Lira
- Molecular Biology Dept., Center of Exact and Natural Sciences, Federal University of Paraiba, Cidade Universitária, João Pessoa, Paraiba, 58051-900, Brazil
| |
Collapse
|
39
|
Sharma D, Saharan BS, Chauhan N, Procha S, Lal S. Isolation and functional characterization of novel biosurfactant produced by Enterococcus faecium. SPRINGERPLUS 2015; 4:4. [PMID: 25674491 PMCID: PMC4320184 DOI: 10.1186/2193-1801-4-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 12/16/2014] [Indexed: 02/06/2023]
Abstract
The objective of the present study was to isolate the biosurfactant (BS) producing lactic acid bacteria (LAB) from traditional fermented food (buttermilk) and its functional and structural characterization. BS isolated from strain MRTL9 reduced surface tension from 72.0 to 40.2 mN m(-1). The critical micelle concentration (CMC) of BS was 2.25 mg ml(-1) with emulsification efficiency (E24) after 24 h of 64% against kerosene oil. The cell bound BS was partially purified by silica gel column chromatography and found as glycolipid. The gas chromatography and mass spectroscopy data revealed the fatty acid as hexadecanoic acid. Xylose was determined as hydrophilic moiety. The BS was found to be stable to pH changes over a range of 4.0-12.0, being most effective at pH 7 and showed no apparent loss of surface tension and emulsification efficiency after heat treatment at 120°C for 15 min. The outcomes of cellular toxicity showed lower toxicity of BS in comparison to SDS and rhamnolipids. Current study confirmed the preventive anti-adhesion activity of BS. These amphiphilic molecules, interferes with the microbial adhesion and found to be least cytotoxic with cellular compatibility with mouse fibroblasts cells.
Collapse
Affiliation(s)
- Deepansh Sharma
- Department of Microbiology, Kurukshetra University, Kurukshetra, 136 119 INDIA
- Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana 132 001 India
| | | | - Nikhil Chauhan
- Division of Microbiology and Immunology, Vector Control Research Center, Puducherry, 605006 India
| | - Suresh Procha
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136 119 India
| | - Sohan Lal
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136 119 India
| |
Collapse
|
40
|
Production and structural characterization of Lactobacillus helveticus derived biosurfactant. ScientificWorldJournal 2014; 2014:493548. [PMID: 25506070 PMCID: PMC4253709 DOI: 10.1155/2014/493548] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/13/2014] [Accepted: 10/19/2014] [Indexed: 01/12/2023] Open
Abstract
A probiotic strain of lactobacilli was isolated from traditional soft Churpi cheese of Yak milk and found positive for biosurfactant production. Lactobacilli reduced the surface tension of phosphate buffer saline (PBS) from 72.0 to 39.5 mNm−1 pH 7.2 and its critical micelle concentration (CMC) was found to be 2.5 mg mL−1. Low cost production of Lactobacilli derived biosurfactant was carried out at lab scale fermenter which yields 0.8 mg mL−1 biosurfactant. The biosurfactant was found least phytotoxic and cytotoxic as compared to the rhamnolipid and sodium dodecyl sulphate (SDS) at different concentration. Structural attributes of biosurfactant were determined by FTIR, NMR (1H and 13C), UPLC-MS, and fatty acid analysis by GCMS which confirmed the presence of glycolipid type of biosurfactant closely similar to xylolipids. Biosurfactant is mainly constituted by lipid and sugar fractions. The present study outcomes provide valuable information on structural characterization of the biosurfactant produced by L. helveticus MRTL91. These findings are encouraging for the application of Lactobacilli derived biosurfactant as nontoxic surface active agents in the emerging field of biomedical applications.
Collapse
|
41
|
Rashad MM, Nooman MU, Ali MM, Al-kashef AS, Mahmoud AE. Production, characterization and anticancer activity of Candida bombicola sophorolipids by means of solid state fermentation of sunflower oil cake and soybean oil. GRASAS Y ACEITES 2014. [DOI: 10.3989/gya.098413] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
42
|
A combined artificial neural network modeling–particle swarm optimization strategy for improved production of marine bacterial lipopeptide from food waste. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2014.01.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
43
|
Kiran GS, Sabarathnam B, Thajuddin N, Selvin J. Production of Glycolipid Biosurfactant from Sponge-Associated Marine Actinobacterium Brachybacterium paraconglomeratum MSA21. J SURFACTANTS DETERG 2014. [DOI: 10.1007/s11743-014-1564-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
44
|
Isolation and characterization of a biosurfactant from Deinococcus caeni PO5 using jackfruit seed powder as a substrate. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-013-0738-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
45
|
Bharali P, Singh SP, Dutta N, Gogoi S, Bora LC, Debnath P, Konwar BK. Biodiesel derived waste glycerol as an economic substrate for biosurfactant production using indigenous Pseudomonas aeruginosa. RSC Adv 2014. [DOI: 10.1039/c4ra05594b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Biodiesel plant waste glycerol as low-cost substrate for biosurfactant production.
Collapse
Affiliation(s)
- Pranjal Bharali
- Department of Molecular Biology and Biotechnology
- Tezpur (Central) University
- Tezpur 784028, India
| | - Salam Pradeep Singh
- Department of Molecular Biology and Biotechnology
- Tezpur (Central) University
- Tezpur 784028, India
| | - Nippu Dutta
- Department of Chemical Sciences
- Tezpur (Central) University
- Tezpur 784028, India
| | - Shyamalima Gogoi
- Department of Molecular Biology and Biotechnology
- Tezpur (Central) University
- Tezpur 784028, India
| | - L. C. Bora
- Department of Plant Pathology
- Assam Agricultural University
- Jorhat-785013, India
| | - P. Debnath
- Department of Plant Pathology
- Assam Agricultural University
- Jorhat-785013, India
| | - Bolin Kumar Konwar
- Department of Molecular Biology and Biotechnology
- Tezpur (Central) University
- Tezpur 784028, India
| |
Collapse
|
46
|
Manivasagan P, Sivasankar P, Venkatesan J, Sivakumar K, Kim SK. Optimization, production and characterization of glycolipid biosurfactant from the marine actinobacterium, Streptomyces sp. MAB36. Bioprocess Biosyst Eng 2013; 37:783-97. [PMID: 24061563 DOI: 10.1007/s00449-013-1048-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 09/02/2013] [Indexed: 11/25/2022]
Abstract
A potential glycolipid biosurfactant producer Streptomyces sp. MAB36 was isolated from marine sediment samples. Medium composition and culture conditions for the glycolipid biosurfactant production by Streptomyces sp. MAB36 were optimized, using two statistical methods: Plackett-Burman design was applied to find out the key ingredients and conditions for the best yield of glycolipid biosurfactant production and central composite design was used to optimize the concentration of the four significant variables, starch, casein, crude oil and incubation time. Fructose and yeast extract were the best carbon and nitrogen sources for the production of the glycolipid biosurfactant. Biochemical characterizations including FTIR and MS studies suggested the glycolipid nature of the biosurfactant. The isolated glycolipid biosurfactant reduced the surface tension of water from 73.2 to 32.4 mN/m. The purified glycolipid biosurfactant showed critical micelle concentrations of 36 mg/l. The glycolipid biosurfactant was effective at very low concentrations over a wide range of temperature, pH, and NaCl concentration. The purified glycolipid biosurfactant showed strong antimicrobial activity. Thus, the strain Streptomyces sp. MAB36 has proved to be a potential source of glycolipid biosurfactant that could be used for the bioremediation processes in the marine environment.
Collapse
Affiliation(s)
- Panchanathan Manivasagan
- Marine Biotechnology Laboratory, Department of Chemistry, Pukyong National University, Busan, 608-737, Republic of Korea,
| | | | | | | | | |
Collapse
|
47
|
Emulsifying activity and stability of a non-toxic bioemulsifier synthesized by Microbacterium sp. MC3B-10. Int J Mol Sci 2013; 14:18959-72. [PMID: 24065097 PMCID: PMC3794815 DOI: 10.3390/ijms140918959] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 09/03/2013] [Accepted: 09/04/2013] [Indexed: 11/17/2022] Open
Abstract
A previously reported bacterial bioemulsifier, here termed microbactan, was further analyzed to characterize its lipid component, molecular weight, ionic character and toxicity, along with its bioemulsifying potential for hydrophobic substrates at a range of temperatures, salinities and pH values. Analyses showed that microbactan is a high molecular weight (700 kDa), non-ionic molecule. Gas chromatography of the lipid fraction revealed the presence of palmitic, stearic, and oleic acids; thus microbactan may be considered a glycolipoprotein. Microbactan emulsified aromatic hydrocarbons and oils to various extents; the highest emulsification index was recorded against motor oil (96%). The stability of the microbactan-motor oil emulsion model reached its highest level (94%) at 50 °C, pH 10 and 3.5% NaCl content. It was not toxic to Artemia salina nauplii. Microbactan is, therefore, a non-toxic and non-ionic bioemulsifier of high molecular weight with affinity for a range of oily substrates. Comparative phylogenetic assessment of the 16S rDNA gene of Microbacterium sp. MC3B-10 with genes derived from other marine Microbacterium species suggested that this genus is well represented in coastal zones. The chemical nature and stability of the bioemulsifier suggest its potential application in bioremediation of marine environments and in cosmetics.
Collapse
|
48
|
Pradhan AK, Pradhan N, Sukla LB, Panda PK, Mishra BK. Inhibition of pathogenic bacterial biofilm by biosurfactant produced by Lysinibacillus fusiformis S9. Bioprocess Biosyst Eng 2013; 37:139-49. [PMID: 23719930 DOI: 10.1007/s00449-013-0976-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 05/15/2013] [Indexed: 11/29/2022]
Abstract
A biosurfactant producing microbe isolated from a river bank was identified as Lysinibacillus fusiformis S9. It was identified with help of biochemical tests and 16S rRNA gene phylogenetic analysis. The biosurfactant S9BS produced was purified and characterized as glycolipid. The biosurfactant showed remarkable inhibition of biofilm formation by pathogenic bacteria like Escherichia coli and Streptococcus mutans. It was interesting to note that at concentration of 40 μg ml(-1) the biosurfactant did not show any bactericidal activity but restricted the biofilm formation completely. L. fusiformis is reported for the first time to produce a glycolipid type of biosurfactant capable of inhibiting biofilm formation by pathogenic bacteria. The biosurfactant inhibited bacterial attachment and biofilm formation equally well on hydrophilic as well as hydrophobic surfaces like glass and catheter tubing. This property is significant in many biomedical applications where the molecule should help in preventing biofouling of surfaces without being toxic to biotic system.
Collapse
Affiliation(s)
- Arun Kumar Pradhan
- Bioresources Engineering Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013, India
| | | | | | | | | |
Collapse
|
49
|
Characteristics of crude oil biodegradation by biosurfactant-producing bacterium Bacillus subtilis JK-1. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s13765-012-3269-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
50
|
Production and characterization of biosurfactant from marine bacterium Inquilinus limosus KB3 grown on low-cost raw materials. ANN MICROBIOL 2013. [DOI: 10.1007/s13213-012-0592-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|