1
|
Sutaoney P, Rai SN, Sinha S, Choudhary R, Gupta AK, Singh SK, Banerjee P. Current perspective in research and industrial applications of microbial cellulases. Int J Biol Macromol 2024; 264:130639. [PMID: 38453122 DOI: 10.1016/j.ijbiomac.2024.130639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/12/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
The natural interactions between various bacteria, fungi, and other cellulolytic microorganisms destroy lignocellulosic polymers. The efficacy of this process is determined by the combined action of three main enzymes: endoglucanases, exo-glucanases, and β-glucosidase. The enzyme attacks the polymeric structure's β-1,4-linkages during the cellulose breakdown reaction. This mechanism is crucial for the environment as it recycles cellulose in the biosphere. However, there are problems with enzymatic cellulose breakdown, including complex cellulase structure, insufficient degradation efficacy, high production costs, and post-translational alterations, many of which are closely related to certain unidentified cellulase properties. These issues impede the practical use of cellulases. A developing area of research is the application of this similar paradigm for industrial objectives. Cellulase enzyme exhibits greater promise in many critical industries, including biofuel manufacture, textile smoothing and finishing, paper and pulp manufacturing, and farming. However, the study on cellulolytic enzymes must move forward in various directions, including increasing the activity of cellulase as well as designing peptides to give biocatalysts their desired attributes. This manuscript includes an overview of current research on different sources of cellulases, their production, and biochemical characterization.
Collapse
Affiliation(s)
- Priya Sutaoney
- Present address-Department of Microbiology, Kalinga University, Raipur 492101, Chhattisgarh, India; Microbiology Laboratory, School of Studies in Life Science, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Sachchida Nand Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Sakshi Sinha
- Present address-Department of Microbiology, Kalinga University, Raipur 492101, Chhattisgarh, India
| | - Rachana Choudhary
- Department of Microbiology, Shri Shankaracharya Mahavidyalaya, Junwani, Durg 490005, Chhattisgarh, India
| | - A K Gupta
- Microbiology Laboratory, School of Studies in Life Science, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Santosh Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India.
| | - Paromita Banerjee
- Department of Cardiology, All India Institute of Medical Sciences, Rishikesh, 249203, Uttarakhand, India.
| |
Collapse
|
2
|
Olaniyi OO, Oriade B, Lawal OT, Ayodeji AO, Olorunfemi YO, Igbe FO. Purification and biochemical characterization of pullulanase produced from Bacillus sp. modified by ethyl-methyl sulfonate for improved applications. Prep Biochem Biotechnol 2024; 54:455-469. [PMID: 37587838 DOI: 10.1080/10826068.2023.2245884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Strain improvement via chemical mutagen could impart traits with better enzyme production or improved characteristics. The present study sought to investigate the physicochemical properties of pullulanase produced from the wild Bacillus sp and the mutant. The pullulanases produced from the wild and the mutant Bacillus sp. (obtained via induction with ethyl methyl sulfonate) were purified in a-three step purification procedure and were also characterized. The wild and mutant pullulanases, which have molecular masses of 40 and 43.23 kDa, showed yields of 2.3% with 6.0-fold purification and 2.0% with 5.0-fold purification, respectively, and were most active at 50 and 40 °C and pH 7 and 8, respectively. The highest stability of the wild and mutant was between 40 and 50 °C after 1 h, although the mutant retained greater enzymatic activity between pH 6 and 9 than the wild. The mutant had a decreased Km of 0.03 mM as opposed to the wild type of 1.6 mM. In comparison to the wild, the mutant demonstrated a better capacity for tolerating metal ions and chelating agents. These exceptional characteristics of the mutant pullulanase may have been caused by a single mutation, which could improve its utility in industrial and commercial applications.
Collapse
Affiliation(s)
- Oladipo O Olaniyi
- Microbiology Department, Federal University of Technology, Akure, Nigeria
| | - Blessing Oriade
- Microbiology Department, Federal University of Technology, Akure, Nigeria
| | - Olusola T Lawal
- Biochemistry Department, Federal University of Technology, Akure, Nigeria
| | - Adeyemi O Ayodeji
- Department of Biological Sciences, Joseph Ayo-Babalola University, Arakeji, Nigeria
| | | | - Festus O Igbe
- Biochemistry Department, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
3
|
Olaniyi OO, Ajulo AS, Lawal OT, Olatunji VK. Engineered Alcaligenes sp. by chemical mutagen produces thermostable and acido-alkalophilic endo-1,4-β-mannanases for improved industrial biocatalyst. Prep Biochem Biotechnol 2023; 53:1120-1136. [PMID: 36752611 DOI: 10.1080/10826068.2023.2172038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
This study reported physicochemical properties of purified endo-1,4-β-mannanase from the wild type, Alcaligenes sp. and its most promising chemical mutant. The crude enzymes from fermentation of wild and mutant bacteria were purified by ammonium sulfate precipitation, ion exchange and gel-filtration chromatography followed by an investigation of the physicochemical properties of purified wild and mutant enzymes. β-mannanase from wild and mutant Alcaligenes sp. exhibited 1.75 and 1.6 purification-folds with percentage recoveries of 2.6 and 2.5% and molecular weights of 61.6 and 80 kDa respectively. The wild and mutant β-mannanase were most active at 40 and 50 °C with optimum pH 6.0 for both and were thermostable with very high percentage activity but the wild-type β-mannanase showed better stability over a broad pH activity. The β-mannanase activity from the parent strain was stimulated in the presence of Mn2+, Co2+, Zn2+, Mg2+ and Na+. Vmax and Km for the wild type and its mutant were found to be 0.747 U//mL/min and 5.2 × 10-4 mg/mL, and 0.247 U/mL/min and 2.47 × 10-4 mg/mL, respectively. Changes that occurred in the nucleotide sequences of the most improved mutant may be attributed to its thermo-stability, thermo-tolerant and high substrate affinity- desired properties for improved bioprocesses.
Collapse
Affiliation(s)
| | | | - Olusola Tosin Lawal
- Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | | |
Collapse
|
4
|
Karmakar M, Lahiri D, Nag M, Dutta B, Dash S, Sarkar T, Pandit S, Upadhye VJ, Ray RR. Purification, Characterization, and Application of Endoglucanase from Rhizopus oryzae as Antibiofilm Agent. Appl Biochem Biotechnol 2023; 195:5439-5457. [PMID: 35793059 DOI: 10.1007/s12010-022-04043-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2022] [Indexed: 11/28/2022]
Abstract
The enzyme endoglucanase is responsible for the depolymerization of cellulose. This study focuses on characterization and purification of endoglucanase from Rhizopus oryzae MTCC 9642 through a simple size exclusion method and its effective application as an antibiofilm agent. Extracellular ß-1,4-endoglucanase, an enzyme that catalyzes the hydrolysis of carboxymethyl cellulose, was found to be synthesized by Rhizopus oryzae MTCC 9642. The enzyme was purified up to homogeneity simply by size exclusion process through ultrafiltration and gel chromatography. The molecular weight of purified enzyme protein was estimated to be 39.8 kDa and it showed the highest substrate affinity towards carboxymethyl-cellulose with Km and Vmax values of 0.833 mg ml-1 and of 0.33 mmol glucose min-1 mg-1protein, respectively. The purified enzyme exhibited optimal activity at pH 6 with a broad stability range of pH 3-8. The most preferred temperature was 35 °C and 50% of activity could be retained after the thermal exposure at 40 °C for 25 min. The purified enzyme protein was inactivated by Cu2+, while the activity could be enhanced by the addition of exogenous thiols. Since biofilm is a challenge for health sector, with the aim of eradicating the biofilm, the purified endoglucanase was used to remove biofilm produced by two nosocomial bacteria. As predicted by in silico molecular docking interaction, the purified enzyme could effectively degrade biofilm architecture of bacterial strains S. aureus and P. aeruginosa by 76.52 ± 6.52% and 61.67 ± 8.76%, respectively. The properties of purified enzyme protein, as elucidated by in vitro and in silico characterization, may be favourable for its commercial applications as a potent antibiofilm agent.
Collapse
Affiliation(s)
- Moumita Karmakar
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal, Kalyani, India
| | - Dibyajit Lahiri
- Department of Biotechnology, University of Engineering and Management, Kolkata, West Bengal, India
| | - Moupriya Nag
- Department of Biotechnology, University of Engineering and Management, Kolkata, West Bengal, India
| | - Bandita Dutta
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal, Kalyani, India
| | - Sudipta Dash
- Department of Biotechnology, University of Engineering and Management, Kolkata, West Bengal, India
| | - Tanmay Sarkar
- West Bengal State Council of Technical Education, Govt. of West Bengal, Malda, India
| | - Soumya Pandit
- Department of Life Sciences, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Vijay Jagdish Upadhye
- Center of Research for Development (CR4D), Parul Institute of Applied Sciences (PIAS) Parul University (DSIR-SIRO Recognized), Vadodara, Gujarat, India
| | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal, Kalyani, India.
| |
Collapse
|
5
|
Tan MCY, Zakaria MR, Liew KJ, Chong CS. Draft genome sequence of Hahella sp. CR1 and its ability in producing cellulases for saccharifying agricultural biomass. Arch Microbiol 2023; 205:278. [PMID: 37420023 DOI: 10.1007/s00203-023-03617-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/09/2023]
Abstract
Hahella is a genus that has not been well-studied, with only two identified species. The potential of this genus to produce cellulases is yet to be fully explored. The present study isolated Hahella sp. CR1 from mangrove soil in Tanjung Piai National Park, Malaysia, and performed whole genome sequencing (WGS) using NovaSeq 6000. The final assembled genome consists of 62 contigs, 7,106,771 bp, a GC ratio of 53.5%, and encoded for 6,397 genes. The CR1 strain exhibited the highest similarity with Hahella sp. HN01 compared to other available genomes, where the ANI, dDDH, AAI, and POCP were 97.04%, 75.2%, 97.95%, and 91.0%, respectively. In addition, the CAZymes analysis identified 88 GTs, 54 GHs, 11 CEs, 7 AAs, 2 PLs, and 48 CBMs in the genome of strain CR1. Among these proteins, 11 are related to cellulose degradation. The cellulases produced from strain CR1 were characterized and demonstrated optimal activity at 60 ℃, pH 7.0, and 15% (w/v) sodium chloride. The enzyme was activated by K+, Fe2+, Mg2+, Co2+, and Tween 40. Furthermore, cellulases from strain CR1 improved the saccharification efficiency of a commercial cellulase blend on the tested agricultural wastes, including empty fruit bunch, coconut husk, and sugarcane bagasse. This study provides new insights into the cellulases produced by strain CR1 and their potential to be used in lignocellulosic biomass pre-treatment.
Collapse
Affiliation(s)
- Melvin Chun Yun Tan
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Muhammad Ramziuddin Zakaria
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Kok Jun Liew
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Chun Shiong Chong
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| |
Collapse
|
6
|
Mohammadi S, Tarrahimofrad H, Arjmand S, Zamani J, Haghbeen K, Aminzadeh S. Expression, characterization, and activity optimization of a novel cellulase from the thermophilic bacteria Cohnella sp. A01. Sci Rep 2022; 12:10301. [PMID: 35717508 PMCID: PMC9206686 DOI: 10.1038/s41598-022-14651-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 06/09/2022] [Indexed: 11/09/2022] Open
Abstract
Cellulases are hydrolytic enzymes with wide scientific and industrial applications. We described a novel cellulase, CelC307, from the thermophilic indigenous Cohnella sp. A01. The 3-D structure of the CelC307 was predicted by comparative modeling. Docking of CelC307 with specific inhibitors and molecular dynamic (MD) simulation revealed that these ligands bound in a non-competitive manner. The CelC307 protein was purified and characterized after recombinant expression in Escherichia coli (E. coli) BL21. Using CMC 1% as the substrate, the thermodynamic values were determined as Km 0.46 mM, kcat 104.30 × 10-3 (S-1), and kcat/Km 226.73 (M-1 S-1). The CelC307 was optimally active at 40 °C and pH 7.0. The culture condition was optimized for improved CelC307 expression using Plackett-Burman and Box-Behnken design as follows: temperature 20 °C, pH 7.5, and inoculation concentration with an OD600 = 1. The endoglucanase activity was positively modulated in the presence of Na+, Li+, Ca2+, 2-mercaptoethanol (2-ME), and glycerol. The thermodynamic parameters calculated for CelC307 confirmed its inherent thermostability. The characterized CelC307 may be a suitable candidate for various biotechnological applications.
Collapse
Affiliation(s)
- Shima Mohammadi
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Hossein Tarrahimofrad
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Sareh Arjmand
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Javad Zamani
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Kamahldin Haghbeen
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Saeed Aminzadeh
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| |
Collapse
|
7
|
Surendran A, Siddiqui Y, Ali NS, Manickam S. Inhibition and kinetic studies of cellulose- and hemicellulose-degrading enzymes of Ganoderma boninense by naturally occurring phenolic compounds. J Appl Microbiol 2018; 124:1544-1555. [PMID: 29405525 DOI: 10.1111/jam.13717] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/01/2018] [Accepted: 01/25/2018] [Indexed: 11/28/2022]
Abstract
AIM Ganoderma sp, the causal pathogen of the basal stem rot (BSR) disease of oil palm, secretes extracellular hydrolytic enzymes. These play an important role in the pathogenesis of BSR by nourishing the pathogen through the digestion of cellulose and hemicellulose of the host tissue. Active suppression of hydrolytic enzymes secreted by Ganoderma boninense by various naturally occurring phenolic compounds and estimation of their efficacy on pathogen suppression is focused in this study. METHODS AND RESULTS Ten naturally occurring phenolic compounds were assessed for their inhibitory effect on the hydrolytic enzymes of G. boninense. The enzyme kinetics (Vmax and Km ) and the stability of the hydrolytic enzymes were also characterized. The selected compounds had shown inhibitory effect at various concentrations. Two types of inhibitions namely uncompetitive and noncompetitive were observed in the presence of phenolic compounds. Among all the phenolic compounds tested, benzoic acid was the most effective compound suppressive to the growth and production of hydrolytic enzymes secreted by G. boninense. The phenolic compounds as inhibitory agents can be a better replacement for the metal ions which are known as conventional inhibitors till date. The three hydrolytic enzymes were stable in a wide range of pH and temperature. CONCLUSION These findings highlight the efficacy of the applications of phenolic compounds to control Ganoderma. SIGNIFICANCE AND IMPACT OF THE STUDY The study has proved a replacement for chemical controls of G. boninense with naturally occurring phenolic compounds.
Collapse
Affiliation(s)
- A Surendran
- Institute of Tropical Agriculture and food Security, The Laboratory of Climate-Smart Food Crop Production, University Putra Malaysia, Serdang, Malaysia
| | - Y Siddiqui
- Institute of Tropical Agriculture and food Security, The Laboratory of Climate-Smart Food Crop Production, University Putra Malaysia, Serdang, Malaysia
| | - N S Ali
- Department of Plant Protection, Faculty of Agriculture, University Putra Malaysia, Serdang, Selangor, Malaysia
| | - S Manickam
- Department of Chemical and Environmental Engineering, University of Nottingham Malaysia Campus, Semenyih, Selangor, Malaysia
| |
Collapse
|
8
|
Affiliation(s)
- R. Rashmi
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India
| | - K. R. Siddalingamurthy
- Department of Biochemistry, Jnanabharathi Campus, Bangalore University, Bengaluru, India
| |
Collapse
|
9
|
de Brito AR, Santos Reis ND, Silva TP, Ferreira Bonomo RC, Trovatti Uetanabaro AP, de Assis SA, da Silva EGP, Aguiar-Oliveira E, Oliveira JR, Franco M. Comparison between the univariate and multivariate analysis on the partial characterization of the endoglucanase produced in the solid state fermentation by Aspergillus oryzae ATCC 10124. Prep Biochem Biotechnol 2017; 47:977-985. [DOI: 10.1080/10826068.2017.1365247] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Aila Riany de Brito
- Pos-Graduation Program in Food Engineering, Department of Basic and Instrumental Studies, State University of Southwest Bahia, Ilhéus, Bahia, Brazil
| | - Nadabe dos Santos Reis
- Pos-Graduation Program in Food Engineering, Department of Basic and Instrumental Studies, State University of Southwest Bahia, Ilhéus, Bahia, Brazil
| | - Tatielle Pereira Silva
- Pos-Graduation Program in Chemistry, Department of Exact Sciences and Technology, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| | | | | | | | | | - Elizama Aguiar-Oliveira
- Department of Exact Sciences and Technology, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| | - Julieta Rangel Oliveira
- Department of Exact Sciences and Technology, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| | - Marcelo Franco
- Department of Exact Sciences and Technology, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| |
Collapse
|
10
|
Basotra N, Kaur B, Di Falco M, Tsang A, Chadha BS. Mycothermus thermophilus (Syn. Scytalidium thermophilum): Repertoire of a diverse array of efficient cellulases and hemicellulases in the secretome revealed. BIORESOURCE TECHNOLOGY 2016; 222:413-421. [PMID: 27744242 DOI: 10.1016/j.biortech.2016.10.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/04/2016] [Accepted: 10/05/2016] [Indexed: 05/25/2023]
Abstract
Mycothermus thermophilus (Syn. Scytalidium thermophilum/Humicola insolens), a thermophilic fungus, is being reported to produce appreciable titers of cellulases and hemicellulases during shake flask culturing on cellulose/wheat-bran/rice straw based production medium. The sequential and differential expression profile of endoglucanases, β-glucosidases, cellobiohydrolases and xylanases using zymography was studied. Mass spectrometry analysis of secretome (Q-TOF LC/MS) revealed a total of 240 proteins with 92 CAZymes of which 62 glycosyl hydrolases belonging to 30 different families were present. Cellobiohydrolase I (17.42%), β glucosidase (8.69%), endoglucanase (6.2%), xylanase (4.16%) and AA9 (3.95%) were the major proteins in the secretome. In addition, carbohydrate esterases, polysaccharide lyases, auxiliary activity and a variety of carbohydrate binding modules (CBM) were identified using genomic database of the culture indicating to an elaborate genetic potential of this strain for hydrolysis of lignocellulosics. The cellulases from the strain hydrolyzed alkali treated rice straw and bagasse into fermentable sugars efficiently.
Collapse
Affiliation(s)
- Neha Basotra
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| | - Baljit Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| | - Marcos Di Falco
- Center for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec H4B 1R6, Canada.
| | - Adrian Tsang
- Center for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec H4B 1R6, Canada.
| | | |
Collapse
|
11
|
Puseenam A, Tanapongpipat S, Roongsawang N. Co-expression of Endoxylanase and Endoglucanase in Scheffersomyces stipitis and Its Application in Ethanol Production. Appl Biochem Biotechnol 2015; 177:1690-700. [DOI: 10.1007/s12010-015-1846-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/08/2015] [Indexed: 12/21/2022]
|
12
|
Kaur A, Chadha BS. Penicillium janthinellum: a Source of Efficient and High Levels of β-Glucosidase. Appl Biochem Biotechnol 2014; 175:937-49. [DOI: 10.1007/s12010-014-1330-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 10/15/2014] [Indexed: 01/16/2023]
|
13
|
Sharma R, Kocher GS, Bhogal RS, Oberoi HS. Cellulolytic and xylanolytic enzymes from thermophilic Aspergillus terreus RWY. J Basic Microbiol 2014; 54:1367-77. [PMID: 25047723 DOI: 10.1002/jobm.201400187] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 06/10/2014] [Indexed: 11/05/2022]
Abstract
Thermophilic Aspergillus terreus RWY produced cellulases and xylanases in optimal concentrations at 45 °C in solid state fermentation process, though enzyme production was also observed at 50 and 55 °C. Filter paper cellulase (FP), endoglucanase (EG), β-glucosidase (BGL), cellobiohydrolase (CBH), xylanase, β-xylosidase, α-L-arabinofuranosidase and xylan esterase activities for A. terreus RWY at 45 °C in 72 h were 11.3 ± 0.65, 103 ± 6.4, 122.5 ± 8.7, 10.3 ± 0.66, 872 ± 22.5, 22.1 ± 0.75, 126.4 ± 8.4 and 907 ± 15.5 U (g-ds)(-1) , respectively. Enzyme was optimally active at temperatures and pH ranging between 50-60 °C and 4.0-6.0, respectively. The half life (T1/2 ) of 270 and 240 min at 70 and 75 °C, respectively for the enzyme indicates its stability at higher temperatures. The addition of MnCl2 , CoCl2 , and FeCl3 significantly enhanced cellulase activity. Enzyme demonstrated multiplicity by having seven, one and three isoform(s) for EG, CBH and BGL, respectively. Significant production of functionally active consortium of cellulolytic and xylanolytic enzymes from A. terreus RWY makes it a potential candidate in bioprocessing applications.
Collapse
Affiliation(s)
- Reetika Sharma
- Central Institute of Post-Harvest Engineering and Technology, P.O. PAU, Ludhiana, Punjab, India; Department of Microbiology, Punjab Agricultural University, Ludhiana, Punjab, India
| | | | | | | |
Collapse
|
14
|
An Acidic Thermostable Recombinant Aspergillus nidulans Endoglucanase Is Active towards Distinct Agriculture Residues. Enzyme Res 2013; 2013:287343. [PMID: 23936633 PMCID: PMC3723094 DOI: 10.1155/2013/287343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 06/11/2013] [Accepted: 06/13/2013] [Indexed: 11/18/2022] Open
Abstract
Aspergillus nidulans is poorly exploited as a source of enzymes for lignocellulosic residues degradation for biotechnological purposes. This work describes the A. nidulans Endoglucanase A heterologous expression in Pichia pastoris, the purification and biochemical characterization of the recombinant enzyme. Active recombinant endoglucanase A (rEG A) was efficiently secreted as a 35 kDa protein which was purified through a two-step chromatography procedure. The highest enzyme activity was detected at 50°C/pH 4. rEG A retained 100% of activity when incubated at 45 and 55°C for 72 h. Purified rEG A kinetic parameters towards CMC were determined as K m = 27.5 ± 4.33 mg/mL, V max = 1.185 ± 0.11 mmol/min, and 55.8 IU (international units)/mg specific activity. Recombinant P. pastoris supernatant presented hydrolytic activity towards lignocellulosic residues such as banana stalk, sugarcane bagasse, soybean residues, and corn straw. These data indicate that rEG A is suitable for plant biomass conversion into products of commercial importance, such as second-generation fuel ethanol.
Collapse
|
15
|
Das A, Jana A, Paul T, Halder SK, Ghosh K, Maity C, Mohapatra PKD, Pati BR, Mondal KC. Thermodynamics and kinetic properties of halostable endoglucanase from Aspergillus fumigatus ABK9. J Basic Microbiol 2013; 54 Suppl 1:S142-51. [PMID: 23832828 DOI: 10.1002/jobm.201300350] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 06/07/2013] [Indexed: 11/09/2022]
Abstract
An endoglucanase from Aspergillus fumigatus ABK9 was purified from the culture extract of solid-state fermentation and its some characteristics were evaluated. The molecular weight of the purified enzyme (56.3 kDa) was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, zymogram analysis and confirmed by MALDI-TOF mass spectrometry. The enzyme was active optimally at 50 °C, pH 5.0 and stable over a broad range of pH (4.0-7.0) and NaCl concentration of 0-3.0 M. The pKa1 and pKa2 of the ionizable groups of the active sites were 2.94 and 6.53, respectively. The apparent Km , Vmax , and Kcat values for carboxymethyl cellulose were 6.7 mg ml(-1), 775.4 µmol min(-1) , and 42.84 × 10(4) s(-1), respectively. Thermostability of the enzyme was evidenced by the high activation energy (91.45 kJ mol(-1)), large enthalpy for activation of denaturation (88.77 kJ mol(-1)), longer half-life (T1/2) (433 min at 50 °C), higher melting temperature (Tm ) (73.5 °C), and Q10 (1.3) values. All the characteristics favors its suitability as halotolerant and thermostable enzyme during bioprocessing of lignocellulosic materials.
Collapse
Affiliation(s)
- Arpan Das
- Department of Microbiology, Vidyasagar University, Midnapore, West Bengal, India
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ibrahim MF, Razak MNA, Phang LY, Hassan MA, Abd-Aziz S. Crude cellulase from oil palm empty fruit bunch by Trichoderma asperellum UPM1 and Aspergillus fumigatus UPM2 for fermentable sugars production. Appl Biochem Biotechnol 2013; 170:1320-35. [PMID: 23666614 DOI: 10.1007/s12010-013-0275-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 04/29/2013] [Indexed: 11/25/2022]
Abstract
Cellulase is an enzyme that converts the polymer structure of polysaccharides into fermentable sugars. The high market demand for this enzyme together with the variety of applications in the industry has brought the research on cellulase into focus. In this study, crude cellulase was produced from oil palm empty fruit bunch (OPEFB) pretreated with 2% NaOH with autoclave, which was composed of 59.7% cellulose, 21.6% hemicellulose, and 12.3% lignin using Trichoderma asperellum UPM1 and Aspergillus fumigatus UPM2. Approximately 0.8 U/ml of FPase, 24.7 U/ml of CMCase and 5.0 U/ml of β-glucosidase were produced by T. asperellum UPM1 at a temperature of 35 °C and at an initial pH of 7.0. A 1.7 U/ml of FPase, 24.2 U/ml of CMCase, and 1.1 U/ml of β-glucosidase were produced by A. fumigatus UPM2 at a temperature of 45 °C and at initial pH of 6.0. The crude cellulase was best produced at 1% of substrate concentration for both T. asperellum UPM1 and A. fumigatus UPM2. The hydrolysis percentage of pretreated OPEFB using 5% of crude cellulase concentration from T. asperellum UPM1 and A. fumigatus UPM2 were 3.33% and 19.11%, with the reducing sugars concentration of 1.47 and 8.63 g/l, respectively.
Collapse
Affiliation(s)
- M F Ibrahim
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | | | | | | | | |
Collapse
|
17
|
Song S, Tang Y, Yang S, Yan Q, Zhou P, Jiang Z. Characterization of two novel family 12 xyloglucanases from the thermophilic Rhizomucor miehei. Appl Microbiol Biotechnol 2013; 97:10013-24. [DOI: 10.1007/s00253-013-4770-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/06/2013] [Accepted: 02/10/2013] [Indexed: 11/30/2022]
|
18
|
Gupta V, Prasanna R, Chaudhary V, Nain L. Biochemical, structural and functional characterization of two novel antifungal endoglucanases from Anabaena laxa. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2012. [DOI: 10.1016/j.bcab.2012.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
19
|
Pol D, Menon V, Rao M. Biochemical characterization of a novel thermostable xyloglucanase from an alkalothermophilic Thermomonospora sp. Extremophiles 2011; 16:135-46. [PMID: 22120834 DOI: 10.1007/s00792-011-0413-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 11/10/2011] [Indexed: 11/28/2022]
Abstract
Xyloglucanase from an extracellular culture filtrate of alkalothermophilic Thermomonospora sp. was purified to homogeneity with a molecular weight of 144 kDa as determined by SDS-PAGE and exhibited specificity towards xyloglucan with apparent K (m) of 1.67 mg/ml. The enzyme was active at a broad range of pH (5-8) and temperatures (40-80°C). The optimum pH and temperature were 7 and 70°C, respectively. The enzyme retained 100% activity at 50°C for 60 h with half-lives of 14 h, 6 h and 7 min at 60, 70 and 80°C, respectively. The kinetics of thermal denaturation revealed that the inactivation at 80°C is due to unfolding of the enzyme as evidenced by the distinct red shift in the wavelength maximum of the fluorescence profile. Xyloglucanase activity was positively modulated in the presence of Zn(2+), K(+), cysteine, β-mercaptoethanol and polyols. Thermostability was enhanced in the presence of additives (polyols and glycine) at 80°C. A hydrolysis of 55% for galactoxyloglucan (GXG) from tamarind kernel powder (TKP) was obtained in 12 h at 60°C and 6 h at 70°C using thermostable xyloglucanases, favouring a reduction in process time and enzyme dosage. The enzyme was stable in the presence of commercial detergents (Ariel), indicating its potential as an additive to laundry detergents.
Collapse
Affiliation(s)
- Dipali Pol
- Division of Biochemical Sciences, National Chemical Laboratory, Pune, India
| | | | | |
Collapse
|
20
|
Thermostable Bacterial Endoglucanases Mined from Swiss-Prot Database. Appl Biochem Biotechnol 2011; 165:1473-84. [DOI: 10.1007/s12010-011-9368-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 09/02/2011] [Indexed: 10/17/2022]
|
21
|
Sharma M, Soni R, Nazir A, Oberoi HS, Chadha BS. Evaluation of Glycosyl Hydrolases in the Secretome of Aspergillus fumigatus and Saccharification of Alkali-Treated Rice Straw. Appl Biochem Biotechnol 2010; 163:577-91. [DOI: 10.1007/s12010-010-9064-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2010] [Accepted: 08/09/2010] [Indexed: 10/19/2022]
|
22
|
Nazir A, Soni R, Saini HS, Kaur A, Chadha BS. Profiling differential expression of cellulases and metabolite footprints in Aspergillus terreus. Appl Biochem Biotechnol 2009; 162:538-47. [PMID: 19779865 DOI: 10.1007/s12010-009-8775-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2009] [Accepted: 09/09/2009] [Indexed: 11/30/2022]
Abstract
This study reports differential expression of endoglucanase (EG) and beta-glucosidase (betaG) isoforms of Aspergillus terreus. Expression of multiple isoforms was observed, in presence of different carbon sources and culture conditions, by activity staining of poly acrylamide gel electrophoresis gels. Maximal expression of four EG isoforms was observed in presence of rice straw (28 U/g DW substrate) and corn cobs (1.147 U/ml) under solid substrate and shake flask culture, respectively. Furthermore, the sequential induction of EG isoforms was found to be associated with the presence of distinct metabolites (monosaccharides/oligosaccharides) i.e., xylose (X), G(1), G(3) and G(4) as well as putative positional isomers (G(1)/G(2), G(2)/G(3)) in the culture extracts sampled at different time intervals, indicating specific role of these metabolites in the sequential expression of multiple EGs. Addition of fructose and cellobiose to corn cobs containing medium during shake flask culture resulted in up-regulation of EG activity, whereas addition of mannitol, ethanol and glycerol selectively repressed the expression of three EG isoforms (Ia, Ic and Id). The observed regulation profile of betaG isoforms was distinct when compared to EG isoforms, and addition of glucose, fructose, sucrose, cellobiose, mannitol and glycerol resulted in down-regulation of one or more of the four betaG isoforms.
Collapse
Affiliation(s)
- Asiya Nazir
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143 005, India
| | | | | | | | | |
Collapse
|