1
|
Zhang Y, Xiao P, Pan D, Zhou X. New Insights into the Modification of the Non-Core Metabolic Pathway of Steroids in Mycolicibacterium and the Application of Fermentation Biotechnology in C-19 Steroid Production. Int J Mol Sci 2023; 24:ijms24065236. [PMID: 36982310 PMCID: PMC10049677 DOI: 10.3390/ijms24065236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Androsta-4-ene-3,17-dione (AD), androsta-1,4-diene-3,17-dione (ADD), and 9α-hydroxy-4-androstene-3,17-dione (9-OHAD), which belong to C-19 steroids, are critical steroid-based drug intermediates. The biotransformation of phytosterols into C-19 steroids by Mycolicibacterium cell factories is the core step in the synthesis of steroid-based drugs. The production performance of engineered mycolicibacterial strains has been effectively enhanced by sterol core metabolic modification. In recent years, research on the non-core metabolic pathway of steroids (NCMS) in mycolicibacterial strains has made significant progress. This review discusses the molecular mechanisms and metabolic modifications of NCMS for accelerating sterol uptake, regulating coenzyme I balance, promoting propionyl-CoA metabolism, reducing reactive oxygen species, and regulating energy metabolism. In addition, the recent applications of biotechnology in steroid intermediate production are summarized and compared, and the future development trend of NCMS research is discussed. This review provides powerful theoretical support for metabolic regulation in the biotransformation of phytosterols.
Collapse
Affiliation(s)
- Yang Zhang
- School of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Peiyao Xiao
- School of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Delong Pan
- School of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Xiuling Zhou
- School of Life Science, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
2
|
A xanthine oxidase inhibit activity component from biotransformation of cholesterol by Streptomyces cellulosae WHX1301. Heliyon 2023; 9:e14160. [PMID: 36915485 PMCID: PMC10006828 DOI: 10.1016/j.heliyon.2023.e14160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Steroids are one of the most widely used groups of medicines presently. There are some steroid drugs that have acquired with the transformation of microorganism. It's indispensability to screen the strain that is able to utilize steroids to generate new products. This study has screened a transformation strain WHX1301 that have ability to convert cholesterol. Based on the 16S rRNA gene sequence comparison, the isolate WHX1301 has been demonstrated to most similar as Streptomyces cellulosae. Separation and purification of transformation product were identifying by NMR and ESI-MS. The major of product was 2,7-dihydroxycholesterol, and the by-product were 7-Hydroxycholestane-3,5-diene, Cholesterane-3,5-diene. Fortunately, 2,7-dihydroxycholesterol has inhibitory activity against xanthine oxidase with a 34.8% inhibition rate at a concentration of 20 μg/ml. Using the resting cells of Streptomyces cellulosae WHX1301 to transform cholesterol, the product yield can reach 76%. Present paper is the first report regarding the microbial transformation of steroids by Streptomyces cellulosae.
Collapse
|
3
|
Nunes VO, Vanzellotti NDC, Fraga JL, Pessoa FLP, Ferreira TF, Amaral PFF. Biotransformation of Phytosterols into Androstenedione—A Technological Prospecting Study. Molecules 2022; 27:molecules27103164. [PMID: 35630641 PMCID: PMC9147728 DOI: 10.3390/molecules27103164] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 02/05/2023] Open
Abstract
Androstenedione (AD) is a key intermediate in the body’s steroid metabolism, used as a precursor for several steroid substances, such as testosterone, estradiol, ethinyl estradiol, testolactone, progesterone, cortisone, cortisol, prednisone, and prednisolone. The world market for AD and ADD (androstadienedione) exceeds 1000 tons per year, which stimulates the pharmaceutical industry’s search for newer and cheaper raw materials to produce steroidal compounds. In light of this interest, we aimed to investigate the progress of AD biosynthesis from phytosterols by prospecting scientific articles (Scopus, Web of Science, and Google Scholar databases) and patents (USPTO database). A wide variety of articles and patents involving AD and phytosterol were found in the last few decades, resulting in 108 relevant articles (from January 2000 to December 2021) and 23 patents of interest (from January 1976 to December 2021). The separation of these documents into macro, meso, and micro categories revealed that most studies (articles) are performed in China (54.8%) and in universities (76%), while patents are mostly granted to United States companies. It also highlights the fact that AD production studies are focused on “process improvement” techniques and on possible modifications of the “microorganism” involved in biosynthesis (64 and 62 documents, respectively). The most-reported “process improvement” technique is “chemical addition” (40%), which means that the addition of solvents, surfactants, cofactors, inducers, ionic liquids, etc., can significantly increase AD production. Microbial genetic modifications stand out in the “microorganism” category because this strategy improves AD yield considerably. These documents also revealed the main aspects of AD and ADD biosynthesis: Mycolicibacterium sp. (basonym: Mycobacterium sp.) (40%) and Mycolicibacterium neoaurum (known previously as Mycobacterium neoaurum) (32%) are the most recurrent species studied. Microbial incubation temperatures can vary from 29 °C to 37 °C; incubation can last from 72 h to 14 days; the mixture is agitated at 140 to 220 rpm; vegetable oils, mainly soybean, can be used as the source of a mixture of phytosterols. In general, the results obtained in the present technological prospecting study are fundamental to mapping the possibilities of AD biosynthesis process optimization, as well as to identifying emerging technologies and methodologies in this scenario.
Collapse
Affiliation(s)
- Victor Oliveira Nunes
- By&Bio—By-Products to Bioproducts Lab, Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil; (V.O.N.); (N.d.C.V.); (J.L.F.); (F.L.P.P.); (T.F.F.)
| | - Nathália de Castro Vanzellotti
- By&Bio—By-Products to Bioproducts Lab, Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil; (V.O.N.); (N.d.C.V.); (J.L.F.); (F.L.P.P.); (T.F.F.)
| | - Jully Lacerda Fraga
- By&Bio—By-Products to Bioproducts Lab, Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil; (V.O.N.); (N.d.C.V.); (J.L.F.); (F.L.P.P.); (T.F.F.)
| | - Fernando Luiz Pellegrini Pessoa
- By&Bio—By-Products to Bioproducts Lab, Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil; (V.O.N.); (N.d.C.V.); (J.L.F.); (F.L.P.P.); (T.F.F.)
- Centro Universitário SENAI CIMATEC, Salvador 41650-010, BA, Brazil
| | - Tatiana Felix Ferreira
- By&Bio—By-Products to Bioproducts Lab, Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil; (V.O.N.); (N.d.C.V.); (J.L.F.); (F.L.P.P.); (T.F.F.)
| | - Priscilla Filomena Fonseca Amaral
- By&Bio—By-Products to Bioproducts Lab, Escola de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil; (V.O.N.); (N.d.C.V.); (J.L.F.); (F.L.P.P.); (T.F.F.)
- Correspondence: ; Tel.: +55-21-3938-7623
| |
Collapse
|
4
|
Feng J, Wu Q, Zhu D, Ma Y. Biotransformation Enables Innovations Toward Green Synthesis of Steroidal Pharmaceuticals. CHEMSUSCHEM 2022; 15:e202102399. [PMID: 35089653 DOI: 10.1002/cssc.202102399] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Steroids have been widely used in birth-control, prevention, and treatment of various diseases, representing the largest sector after antibiotics in the global pharmaceutical market. The steroidal active pharmaceutical ingredients (APIs) have been produced via partial synthetic processes first mainly from sapogenins, which was converted into 16-dehydropregnenolone by the famous "Marker Degradation". Traditional mutation and screening, and process engineering have resulted in the industrial production of 4-androstene-3,17-dione (AD), androst-1,4-diene-3,17-dione (ADD), 9α-hydroxy-androsta-4-ene-3,17-dione (9α-OH-AD), and so on, which serve as the key intermediates for the synthesis of steroidal APIs. Recently, genetic and metabolic engineering have generated highly efficient microbial strains for the production of these precursors, leading to the replacement of sapogenins with phytosterols as the starting materials. Further advances in synthetic biology hold promise in the design and construction of microbial cell factories for the industrial production of steroidal intermediates and/or APIs from simple carbon sources such as glucose. Integration of biotransformation into the synthesis of steroidal APIs can greatly reduce the number of reaction steps, achieve lower waste discharge and higher production efficiency, thus enabling a greener steroidal pharmaceutical industry.
Collapse
Affiliation(s)
- Jinhui Feng
- National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 Xi Qi Dao, Tianjin, 300308, P. R. China
| | - Qiaqing Wu
- National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 Xi Qi Dao, Tianjin, 300308, P. R. China
| | - Dunming Zhu
- National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 Xi Qi Dao, Tianjin, 300308, P. R. China
| | - Yanhe Ma
- National Technology Innovation Center of Synthetic Biology, National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 Xi Qi Dao, Tianjin, 300308, P. R. China
| |
Collapse
|
5
|
Rohman A, Dijkstra BW. Application of microbial 3-ketosteroid Δ 1-dehydrogenases in biotechnology. Biotechnol Adv 2021; 49:107751. [PMID: 33823268 DOI: 10.1016/j.biotechadv.2021.107751] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/27/2021] [Accepted: 04/02/2021] [Indexed: 11/19/2022]
Abstract
3-Ketosteroid Δ1-dehydrogenase catalyzes the 1(2)-dehydrogenation of 3-ketosteroid substrates using flavin adenine dinucleotide as a cofactor. The enzyme plays a crucial role in microbial steroid degradation, both under aerobic and anaerobic conditions, by initiating the opening of the steroid nucleus. Indeed, many microorganisms are known to possess one or more 3-ketosteroid Δ1-dehydrogenases. In the pharmaceutical industry, 3-ketosteroid Δ1-dehydrogenase activity is exploited to produce Δ1-3-ketosteroids, a class of steroids that display various biological activities. Many of them are used as active pharmaceutical ingredients in drug products, or as key precursors to produce pharmaceutically important steroids. Since 3-ketosteroid Δ1-dehydrogenase activity requires electron acceptors, among other considerations, Δ1-3-ketosteroid production has been industrially implemented using whole-cell fermentation with growing or metabolically active resting cells, in which the electron acceptors are available, rather than using the isolated enzyme. In this review we discuss biotechnological applications of microbial 3-ketosteroid Δ1-dehydrogenases, covering commonly used steroid-1(2)-dehydrogenating microorganisms, the bioprocess for preparing Δ1-3-ketosteroids, genetic engineering of 3-ketosteroid Δ1-dehydrogenases and related genes for constructing new, productive industrial strains, and microbial fermentation strategies for enhancing the product yield. Furthermore, we also highlight the recent development in the use of isolated 3-ketosteroid Δ1-dehydrogenases combined with a FAD cofactor regeneration system. Finally, in a somewhat different context, we summarize the role of 3-ketosteroid Δ1-dehydrogenase in cholesterol degradation by Mycobacterium tuberculosis and other mycobacteria. Because the enzyme is essential for the pathogenicity of these organisms, it may be a potential target for drug development to combat mycobacterial infections.
Collapse
Affiliation(s)
- Ali Rohman
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia; Laboratory of Proteomics, Research Center for Bio-Molecule Engineering (BIOME), Universitas Airlangga, Surabaya 60115, Indonesia; Laboratory of Biophysical Chemistry, University of Groningen, 9747 AG Groningen, the Netherlands.
| | - Bauke W Dijkstra
- Laboratory of Biophysical Chemistry, University of Groningen, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
6
|
Sambyal K, Singh RV. Production aspects of testosterone by microbial biotransformation and future prospects. Steroids 2020; 159:108651. [PMID: 32360419 DOI: 10.1016/j.steroids.2020.108651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/30/2020] [Accepted: 04/24/2020] [Indexed: 10/24/2022]
Abstract
In human males, TS plays a key role in maintaining health and sexual functioning. Cholesterol acts as a precursor molecule for its biosynthesis. The microbial biotransformation of cholesterol by numerous microbes like bacteria, fungi, yeasts, etc. has led to the synthesis of TS out of human body making it a great example for industrial steroid production due to its therapeutic properties. Biotransformation through microbes is more advantageous over chemical synthesis as it gives higher conversion rates, higher specificity; reaction goes under mild conditions like temperature and neutral pH, thus being an effective alternate to chemical route. Current review focuses on production aspects of TS by microbial biotransformation and its future prospects with recent advancement.
Collapse
Affiliation(s)
- Krishika Sambyal
- University Institute of Biotechnology, Chandigarh University, Gharuan, Punjab, India
| | - Rahul Vikram Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
7
|
Biotransformation of Phytosterols to Androst-1,4-Diene-3,17-Dione by Mycobacterium sp. ZFZ Expressing 3-Ketosteroid-Δ1-Dehydrogenase. Catalysts 2020. [DOI: 10.3390/catal10060663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
As an important hormone drug intermediate, androst-1,4-diene-3,17-dione can be bio-converted from phytosterols. However, separation and purification in the downstream process are very difficult due to the similarity in structure and physiological characteristics between ADD and androstenedione (AD). This phenomenon was correlated to the insufficient enzyme activity of 3-ketosteroid-Δ1-dehydrogenase (KSDD), which specifically catalyzes the C1,2 dehydrogenation of AD. In order to obtain a highly purified ADD from phytosterols, the dehydrogenation effect of different kinds of KSDDs and the transcription effect of four promoter sequences on ksdd were analyzed in Mycobacterium sp. ZFZ (ZFZ), the cell host that transform phytosterols to AD in the oil-aqueous system. A tandem KSDD expression cassette containing strain ZFZ-2111 yielded 2.06 ± 0.09 g L−1 ADD, with a molar ratio of ADD/AD at 41.47:1.00 in 120 h. In waste cooking oil-aqueous media, the proportion of ADD in the fermentation by ZFZ-2111 was 92%. The present study provides a reliable theoretical basis for the step-by-step transformation of phytosterols to ADD.
Collapse
|
8
|
Microbial transformation of cholesterol: reactions and practical aspects-an update. World J Microbiol Biotechnol 2019; 35:131. [PMID: 31432251 DOI: 10.1007/s11274-019-2708-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 08/03/2019] [Indexed: 12/11/2022]
Abstract
Cholesterol is a C27-sterol employed as starting material for the synthesis of valuable pharmaceutical steroids and precursors. The microbial transformations of cholesterol have been widely studied, since they are performed with high regio- and stereoselectivity and allow the production of steroidal compounds which are difficult to synthesize by classical chemical methods. In recent years, ongoing research is being conducted to discover novel biocatalysts and to develop biotechnological processes to improve existing biocatalysts and biotransformation reactions. The main objective of this review is to present the most remarkable advances in fungal and bacterial transformation of cholesterol, focusing on the different types of microbial reactions and biocatalysts, biotransformation products, and practical aspects related to sterol dispersion improvement, covering literature since 2000. It reviews the conversion of cholesterol by whole-cell biocatalysts and by purified enzymes that lead to various structural modifications, including side chain cleavage, hydroxylation, dehydrogenation/reduction, isomerization and esterification. Finally, approaches used to improve the poor solubility of cholesterol in aqueous media, such as the use of different sterol-solubilizing agents or two-phase conversion system, are also discussed.
Collapse
|
9
|
Biochemical characterization of acyl-coenzyme A synthetases involved in mycobacterial steroid side-chain catabolism and molecular design: synthesis of an anti-mycobacterial agent. 3 Biotech 2019; 9:169. [PMID: 30997306 DOI: 10.1007/s13205-019-1703-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 04/03/2019] [Indexed: 01/26/2023] Open
Abstract
The metabolism of host cholesterol by Mycobacterium tuberculosis is an important factor for both its virulence and pathogenesis. However, the rationale for this cholesterol metabolism has not been fully understood yet. In the present study, we characterized several previously undescribed acyl-CoA synthetases that are involved in the steroid side-chain degradation in Mycobacterium smegmatis, and an analogue of intermediate from steroid degradation, 5'-O-(lithocholoyl sulfamoyl) adenosine (LCA-AMS), was successfully designed and synthesized to be used as a specific anti-mycobacterial agent. The acyl-CoA synthetases exhibited strong preferences for the length of side chain. FadD19 homologs, including FadD19 (MSMEG_5914), FadD19-2 (MSMEG_2241), and FadD19-4 (MSMEG_3687), are unanimously favorable cholesterol with a C8 alkanoate side chain. FadD17 (MSMEG_5908) and FadD1 (MSMEG_4952) showed high preferences for steroids, containing a C5 alkanoate side chain. FadD8 (MSMEG_1098) exhibited specific activity toward cholestenoate with a C8 alkanoate side chain. An acylsulfamoyl analogue of lithocholate, 5'-O-(lithocholoyl sulfamoyl) adenosine (LCA-AMS), was designed and synthesized. As expected, the intermediate analogue not only specifically inhibited those steroid-activated acyl-CoA synthetases, but also selectively inhibited the growth of mycobacterial species, including M. tuberculosis, M. smegmatis, and Mycobacterium neoaurum. Overall, our research advanced our understanding of mycobacterial steroid degradation and provided new insights to develop novel mechanism-based anti-mycobacterial agents.
Collapse
|
10
|
Shao M, Zhang X, Rao Z, Xu M, Yang T, Xu Z, Yang S. Identification of steroid C27 monooxygenase isoenzymes involved in sterol catabolism and stepwise pathway engineering of Mycobacterium neoaurum for improved androst-1,4-diene-3,17-dione production. ACTA ACUST UNITED AC 2019; 46:635-647. [DOI: 10.1007/s10295-018-02135-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/31/2018] [Indexed: 11/28/2022]
Abstract
Abstract
Cholesterol oxidase, steroid C27 monooxygenase and 3-ketosteroid-Δ1-dehydrogenase are key enzymes involved in microbial catabolism of sterols. Here, three isoenzymes of steroid C27 monooxygenase were firstly characterized from Mycobacterium neoaurum as the key enzyme in sterol C27-hydroxylation. Among these three isoenzymes, steroid C27 monooxygenase 2 exhibits the strongest function in sterol catabolism. To improve androst-1,4-diene-3,17-dione production, cholesterol oxidase, steroid C27 monooxygenase 2 and 3-ketosteroid-Δ1-dehydrogenase were coexpressed to strengthen the metabolic flux to androst-1,4-diene-3,17-dione, and 3-ketosteroid 9α-hydroxylase, which catalyzes the androst-1,4-diene-3,17-dione catabolism, was disrupted to block the androst-1,4-diene-3,17-dione degradation pathway in M. neoaurum JC-12. Finally, the recombinant strain JC-12S2-choM-ksdd/ΔkshA produced 20.1 g/L androst-1,4-diene-3,17-dione, which is the highest reported production with sterols as substrate. Therefore, this work is hopes to pave the way for efficient androst-1,4-diene-3,17-dione production through metabolic engineering.
Collapse
Affiliation(s)
- Minglong Shao
- 0000 0001 0708 1323 grid.258151.a The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology Jiangnan University 1800 Lihu Avenue 214122 Wuxi Jiangsu People’s Republic of China
| | - Xian Zhang
- 0000 0001 0708 1323 grid.258151.a The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology Jiangnan University 1800 Lihu Avenue 214122 Wuxi Jiangsu People’s Republic of China
| | - Zhiming Rao
- 0000 0001 0708 1323 grid.258151.a The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology Jiangnan University 1800 Lihu Avenue 214122 Wuxi Jiangsu People’s Republic of China
| | - Meijuan Xu
- 0000 0001 0708 1323 grid.258151.a The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology Jiangnan University 1800 Lihu Avenue 214122 Wuxi Jiangsu People’s Republic of China
| | - Taowei Yang
- 0000 0001 0708 1323 grid.258151.a The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology Jiangnan University 1800 Lihu Avenue 214122 Wuxi Jiangsu People’s Republic of China
| | - Zhenghong Xu
- 0000 0001 0708 1323 grid.258151.a Laboratory of Pharmaceutical Engineering, School of Biotechnology Jiangnan University 214122 Wuxi Jiangsu Province People’s Republic of China
| | - Shangtian Yang
- 0000 0001 2285 7943 grid.261331.4 Department of Chemical and Biomolecular Engineering The Ohio State University 43210 Columbus OH USA
| |
Collapse
|
11
|
Hao M, Fan G, Zhang Y, Xin Y, Zhang L. Preparation and characterization of copper-Brevibacterium cholesterol oxidase hybrid nanoflowers. Int J Biol Macromol 2019; 126:539-548. [PMID: 30593816 DOI: 10.1016/j.ijbiomac.2018.12.237] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/24/2018] [Accepted: 12/26/2018] [Indexed: 01/10/2023]
Abstract
Brevibacterium cholesterol oxidase (COD)-Cu hybrid nanoflowers were prepared, optimized and characterized for structural and catalytic properties. Regarding scanning electron microscopy (SEM), Fourier transform-infrared spectroscopy (FTIR) and X-ray diffraction (XRD) assays, COD molecules were successfully encapsulated with Cu3(PO4)2·3H2O based hybrid nanoflowers. After immobilization in hybrid nanoflowers, the interaction between COD and flavo-cofactor (FAD) was enhanced; and regarding to differential scanning calorimetry (DSC) assay, the Tm value of immobilized COD was increased from 60.5 °C (free enzyme) to 138.49 °C (nanoflowers). Additionally, in activity assay, Cu-COD nanoflowers revealed improved resistance to temperature and pH. After 10 times of recycling, approximately 70% of initial activity of Cu-COD nanoflowers was maintained, while the free COD was inactivated after 3 times of recycling. Furthermore, using cholesterol as substrate, in n-octane/water biphasic reaction system, the stability of Cu-COD nanoflowers was significantly promoted, and the initial conversion ration could be over two times as that of free enzyme. In brief, the hybrid nanoflowers dramatically enhanced the structural and thermo stability, the tolerance to biphasic mixture, and the catalytic efficiency of COD; and Cu-COD nanoflowers should be of great potential in the bioconversion of sterol derivatives.
Collapse
Affiliation(s)
- Mengyao Hao
- The Key Laboratory of Industry Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, PR China
| | - Guangming Fan
- The Key Laboratory of Industry Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, PR China
| | - Yao Zhang
- The Key Laboratory of Industry Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, PR China
| | - Yu Xin
- The Key Laboratory of Industry Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, PR China.
| | - Liang Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, Jiangsu, PR China.
| |
Collapse
|
12
|
Giorgi V, Chaves M, Menéndez P, García Carnelli C. Bioprospecting of whole-cell biocatalysts for cholesterol biotransformation. World J Microbiol Biotechnol 2019; 35:12. [PMID: 30604276 DOI: 10.1007/s11274-018-2586-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/22/2018] [Indexed: 11/28/2022]
Abstract
Microorganisms were isolated from industrial wool scouring effluents and from the soil adjacent to the wastewater treatment lagoon, both sterols-rich environments, in order to search for novel biocatalysts able to transform cholesterol. The isolates were identified on the basis of morphological and biochemical characteristics and phylogenetic analysis. Furthermore, a rapid and accurate bacteria identification by matrix assisted laser desorption/ionization-time-of-flight mass spectrometry was carried out. Bacteria and fungi including representatives of the genera Fusarium, Talaromyces, Trichoderma, Mucor, Aspergillus, Citrobacter, Proteus, Klebsiella, Exiguobacterium, Acinetobacter, Tsukamurella, Bacillus, and Streptomyces were found and evaluated for their ability to biotransform cholesterol by whole-cell treatment system. The results show that a Trichoderma koningiopsis strain, as well as two strains of Mucor circinelloides were able to transform cholesterol into value-added products. The major products were characterized as 7β-hydroxycholesterol, 4-cholesten-3-one, 5α,6α-epoxycholestan-3β-ol and 5β,6β-epoxycholestan-3β-ol. To the best of our knowledge, the present study is the first report of cholesterol biotransformation by representatives of Trichoderma and Mucor genera.
Collapse
Affiliation(s)
- Victoria Giorgi
- Laboratorio de Biocatálisis y Biotransformaciones, Departamento de Química Orgánica y, Departamento de Biociencias, Facultad de Química, Universidad de la República (UdelaR), CP 11800, Montevideo, Uruguay.
| | - Michel Chaves
- LaBioChem, Institute of Chemistry, University of Campinas, Campinas, SP, 13084-971, Brazil
| | - Pilar Menéndez
- Laboratorio de Biocatálisis y Biotransformaciones, Departamento de Química Orgánica y, Departamento de Biociencias, Facultad de Química, Universidad de la República (UdelaR), CP 11800, Montevideo, Uruguay.,Laboratorio de Farmacognosia y Productos Naturales, Departamento de Química Orgánica, Facultad de Química, Universidad de la República (UdelaR), CP 11800, Montevideo, Uruguay
| | - Carlos García Carnelli
- Laboratorio de Biocatálisis y Biotransformaciones, Departamento de Química Orgánica y, Departamento de Biociencias, Facultad de Química, Universidad de la República (UdelaR), CP 11800, Montevideo, Uruguay.,Laboratorio de Farmacognosia y Productos Naturales, Departamento de Química Orgánica, Facultad de Química, Universidad de la República (UdelaR), CP 11800, Montevideo, Uruguay
| |
Collapse
|
13
|
Abstract
The human β-site amyloid cleaving enzyme (BACE1) has been considered as an effective drug target for treatment of Alzheimer’s disease (AD). In this study, Urechis unicinctus (U. unicinctus), which is a Far East specialty food known as innkeeper worm, ethanol extract was studied by bioassay-directed fractionation and isolation to examine its potential β-site amyloid cleaving enzyme inhibitory and antimicrobial activity. The following compounds were characterized: hecogenin, cholest-4-en-3-one, cholesta-4,6-dien-3-ol, and hurgadacin. These compounds were identified by their mass spectrometry, 1H, and 13C NMR spectral data, comparing those data with NIST/EPA/NIH Mass spectral database (NIST11) and published values. Hecogenin and cholest-4-en-3-one showed significant inhibitory activity against BACE1 with EC50 values of 116.3 and 390.6 µM, respectively. Cholesta-4,6-dien-3-ol and hurgadacin showed broad spectrum antimicrobial activity, particularly strongly against Escherichia coli (E. coli), Salmonella enterica (S. enterica), Pasteurella multocida (P. multocida), and Physalospora piricola (P. piricola), with minimal inhibitory concentration (MIC) ranging from 0.46 to 0.94 mg/mL. This is the first report regarding those four known compounds that were isolated from U. unicinctus and their anti-BACE1 and antimicrobial activity, highlighting the fact that known natural compounds may be a critical source of new medicine leads. These findings provide scientific evidence for potential application of those bioactive compounds for the development of AD drugs and antimicrobial agents.
Collapse
|
14
|
Qin HM, Zhu Z, Ma Z, Xu P, Guo Q, Li S, Wang JW, Mao S, Liu F, Lu F. Rational design of cholesterol oxidase for efficient bioresolution of cholestane skeleton substrates. Sci Rep 2017; 7:16375. [PMID: 29180806 PMCID: PMC5703901 DOI: 10.1038/s41598-017-16768-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/16/2017] [Indexed: 11/15/2022] Open
Abstract
Cholesterol oxidase catalyzes the oxidation and isomerization of the cholestane substrates leading to the addition of a hydroxyl group at the C3 position. Rational engineering of the cholesterol oxidase from Pimelobacter simplex (PsChO) was performed. Mutagenesis of V64 and F70 improved the catalytic activities toward cholestane substrates. Molecular dynamics simulations, together with structure-activity relationship analysis, revealed that both V64C and F70V increased the binding free energy between PsChO mutants and cholesterol. F70V and V64C mutations might cause the movement of loops L56-P77, K45-P49 and L350-E354 at active site. They enlarged the substrate-binding cavity and relieved the steric interference with substrates facilitating recognition of C17 hydrophobic substrates with long side chain substrates.
Collapse
Affiliation(s)
- Hui-Min Qin
- State Key Laboratory of Food Nutrition and Safety, Tianjin, P.R. China.,Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, P.R. China.,Tianjin Key Laboratory of Industrial Microbiology, Tianjin, P.R. China.,College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Zhangliang Zhu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Zheng Ma
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Panpan Xu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Qianqian Guo
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Songtao Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Jian-Wen Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Shuhong Mao
- State Key Laboratory of Food Nutrition and Safety, Tianjin, P.R. China.,Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, P.R. China.,Tianjin Key Laboratory of Industrial Microbiology, Tianjin, P.R. China.,College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Fufeng Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin, P.R. China. .,Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, P.R. China. .,Tianjin Key Laboratory of Industrial Microbiology, Tianjin, P.R. China. .,College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China. .,National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, P.R. China.
| | - Fuping Lu
- State Key Laboratory of Food Nutrition and Safety, Tianjin, P.R. China. .,Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, P.R. China. .,Tianjin Key Laboratory of Industrial Microbiology, Tianjin, P.R. China. .,College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China. .,National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, P.R. China.
| |
Collapse
|
15
|
Biocatalyst-mediated production of 11,15-dihydroxy derivatives of androst-1,4-dien-3,17-dione. J Biosci Bioeng 2017; 123:692-697. [PMID: 28215508 DOI: 10.1016/j.jbiosc.2017.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 01/12/2023]
Abstract
Hydroxylation of steroids at various positions is a powerful tool for the production of valuable pharmaceutical ingredients and precursors. Our paper reported the synchronous dihydroxylation of an efficient strain, i.e., Colletotrichum lini AS3.4486, at two points. C. lini AS3.4486 was selected from 10 strains; this strain can catalyze the dihydroxylation of androst-1,4-dien-3,17-dione at C-11α and C-15α positions. Transformation of ADD(I) by C. lini AS3.4486 produced metabolites II-IV. The structures of these compounds were elucidated by liquid chromatography-mass spectrometry (LC-MS), Fourier Transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), and X-ray as 15-hydroxyandrost-1,4-dien-3,17-dione (15α-OH-ADD; II), 11,15-dihydroxyandrost-1,4-dien-3,17-dione (11,15-diOH-ADD; III), and 15,17β-dihy-droxyandrost-1,4-dien-3-one (15-OH-BD; BD is the abbreviation of boldenone; IV). III, as a novel compound, was reported for the first time. The course of conversion and mechanism about dihydroxylation reaction was also investigated. On the basis of time course analysis of hydroxylation, I underwent regioselective hydroxylation at 15 position and was subsequently converted to III and IV. Enzyme inhibition analysis showed that 11- and 15-hydroxylations were catalyzed by different hydroxylases. The effect of substrate concentration on I transformation was also determined. Results showed that the optimum concentration of I was 20 g/L, and the yield of III was up to 18.8 g/L.
Collapse
|
16
|
Dovbnya D, Khomutov S, Kollerov V, Donova MV. Obtaining of 11α-Hydroxyandrost-4-ene-3,17-dione from Natural Sterols. Methods Mol Biol 2017; 1645:259-269. [PMID: 28710634 DOI: 10.1007/978-1-4939-7183-1_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Two-step one-pot microbial transformation enables obtaining of valuable steroids that are difficult to produce chemically. Here we describe a method for obtaining 11α-hydroxyandrost-4-ene-3,17-dione (11α-HAD) from cheap and available natural sterols (phytosterols or cholesterol).11α-HAD is a primary adrenal steroid in mammals and also a key precursor in the syntheses of halogenated corticoids. Conventional routes for its obtaining are based on chemical synthesis, or microbial hydroxylation of androst-4-ene-3,17-dione (AD). AD in turn is produced primarily with microbial biotransformation of natural sterols by some actinobacteria.Consequent bioconversions of sterols using two microbial strains in one bioreactor vessel without separation and purification of AD provides high yield of 11α-HAD. At the first fermentation step, phytosterol is converted to AD with Mycobacterium neoaurum NRRL 3805B, or relative strains, to yield about 70% (mol/mol). At the second step, AD is almost fully (98%) hydroxylated at the position 11α with Aspergillus ochraceus VKM F-830, or other suitable organisms, in the same bioreactor. At the average, 30% (w/w) of the high-purity crystalline 11α-HAD can be obtained.The method can be exploited for production of 11α-HAD for practical use.
Collapse
Affiliation(s)
- Dmitry Dovbnya
- G.K. Skryabin Institute of Biochemistry & Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Russia
- Pharmins Ltd, Pushchino, Russia
| | - Sergey Khomutov
- G.K. Skryabin Institute of Biochemistry & Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Russia
| | - Vyacheslav Kollerov
- G.K. Skryabin Institute of Biochemistry & Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Russia
| | - Marina V Donova
- G.K. Skryabin Institute of Biochemistry & Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Russia.
| |
Collapse
|
17
|
Shao M, Zhang X, Rao Z, Xu M, Yang T, Li H, Xu Z. Enhanced Production of Androst-1,4-Diene-3,17-Dione by Mycobacterium neoaurum JC-12 Using Three-Stage Fermentation Strategy. PLoS One 2015; 10:e0137658. [PMID: 26352898 PMCID: PMC4564235 DOI: 10.1371/journal.pone.0137658] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 08/19/2015] [Indexed: 11/30/2022] Open
Abstract
To improve the androst-1,4-diene-3,17-dione (ADD) production from phytosterol by Mycobacterium neoaurum JC-12, fructose was firstly found favorable as the initial carbon source to increase the biomass and eliminate the lag phase of M. neoaurum JC-12 in the phytosterol transformation process. Based on this phenomenon, two-stage fermentation by using fructose as the initial carbon source and feeding glucose to maintain strain metabolism was designed. By applying this strategy, the fermentation duration was decreased from 168 h to 120 h with the ADD productivity increased from 0.071 g/(L·h) to 0.108 g/(L·h). Further, three-stage fermentation by adding phytosterol to improve ADD production at the end of the two-stage fermentation was carried out and the final ADD production reached 18.6 g/L, which is the highest reported ADD production using phytosterol as substrate. Thus, this strategy provides a possible way in enhancing the ADD production in pharmaceutical industry.
Collapse
Affiliation(s)
- Minglong Shao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, 214122, P. R. China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, 214122, P. R. China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, 214122, P. R. China
- * E-mail:
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, 214122, P. R. China
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, 214122, P. R. China
| | - Hui Li
- Laboratory of Pharmaceutical Engineering, School of Pharmaceutical Science, Jiangnan University, Wuxi, Jiangsu Province, 214122, P. R. China
| | - Zhenghong Xu
- Laboratory of Pharmaceutical Engineering, School of Pharmaceutical Science, Jiangnan University, Wuxi, Jiangsu Province, 214122, P. R. China
| |
Collapse
|
18
|
Li W, Ge F, Zhang Q, Ren Y, Yuan J, He J, Li W, Chen G, Zhang G, Zhuang Y, Xu L. Identification of gene expression profiles in the actinomycete Gordonia neofelifaecis grown with different steroids. Genome 2015; 57:345-53. [PMID: 25264805 DOI: 10.1139/gen-2014-0030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gordonia neofelifaecis NRRL B-59395 was initially isolated from the fresh feces of a clouded leopard based on its ability to degrade cholesterol. The transcriptome profiles of G. neofelifaecis NRRL B-59395 grown with cholesterol, androstenedione (AD), and pyruvic acid were compared by RNA-Seq. The sterol catabolic genes are highly conserved in G. neofelifaecis, Rhodococcus jostii RHA1, and Mycobacterium tuberculosis. The RNA-Seq results indicated that the genes involved in the sterol side chain cleavage were exclusively induced by cholesterol, while the genes involved in the degradation of rings A/B and C/D were up-regulated by both cholesterol and AD. It appears that the induction mechanisms for the genes responsible for side chain cleavage and those for degradation of rings are different. There are approximately 21 genes encoding transporter proteins that are differentially expressed in cholesterol or AD compared with pyruvic acid. The genes camABCD and camM encode two systems that take up cholate, and they have been shown to be cholesterol- and AD-inducible. The potential biological functions of other differentially expressed genes are also discussed. These results will promote the functional characterization of the sterol catabolic genes and also provide important clues in understanding the mechanisms of their gene expression, and they may help us understand the mechanism underlying microbial cholesterol catabolism.
Collapse
Affiliation(s)
- Wenjing Li
- College of life Sciences, Sichuan Normal University, Chengdu 610101, P.R. China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Quan Y, Wang L, Liu Y, Cong J, Xie S, Wu X. Optimization of Fermentation Medium for Glycyrrhizin Biotransformation to Monoglucuronyl-glycyrrhetinic Acid by Plackett-Burman and Box-Behnken Design. KOREAN CHEMICAL ENGINEERING RESEARCH 2015. [DOI: 10.9713/kcer.2015.53.3.321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Wu K, Li W, Song J, Li T. Production, Purification, and Identification of Cholest-4-en-3-one Produced by Cholesterol Oxidase from Rhodococcus sp. in Aqueous/Organic Biphasic System. BIOCHEMISTRY INSIGHTS 2015; 8:1-8. [PMID: 25733914 PMCID: PMC4334050 DOI: 10.4137/bci.s21580] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/21/2015] [Accepted: 01/22/2015] [Indexed: 11/05/2022]
Abstract
Cholest-4-en-3-one has positive uses against obesity, liver disease, and keratinization. It can be applied in the synthesis of steroid drugs as well. Most related studies are focused on preparation of cholest-4-en-3-one by using whole cells as catalysts, but production of high-quality cholest-4-en-3-one directly from cholesterol oxidase (COD) using an aqueous/organic two-phase system has been rarely explored. This study set up an enzymatic reaction system to produce cholest-4-en-3-one. We developed and optimized the enzymatic reaction system using COD from COX5-6 (a strain of Rhodococcus) instead of whole-cell biocatalyst. This not only simplifies and accelerates the production but also benefits the subsequent separation and purification process. Through extraction, washing, evaporation, column chromatography, and recrystallization, we got cholest-4-en-3-one with purity of 99.78%, which was identified by nuclear magnetic resonance, mass spectroscopy, and infrared spectroscopy. In addition, this optimized process of cholest-4-en-3-one production and purification can be easily scaled up for industrial production, which can largely decrease the cost and guarantee the purity of the product.
Collapse
Affiliation(s)
- Ke Wu
- College of Life Science, Sichuan Normal University, Chengdu, Sichuan, China
| | - Wei Li
- College of Life Science, Sichuan Normal University, Chengdu, Sichuan, China
| | - Jianrui Song
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA. ; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Tao Li
- College of Life Science, Sichuan Normal University, Chengdu, Sichuan, China
| |
Collapse
|
21
|
Accumulation of androstadiene-dione by overexpression of heterologous 3-ketosteroid Δ1-dehydrogenase in Mycobacterium neoaurum NwIB-01. World J Microbiol Biotechnol 2014; 30:1947-54. [PMID: 24510385 DOI: 10.1007/s11274-014-1614-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 01/20/2014] [Indexed: 10/25/2022]
Abstract
Mycobacterium neoaurum NwIB-01 exhibits powerful ability to cleave the side chain of soybean phytosterols to accumulate 4-androstene-3,17-dione (AD) and 1,4-androstadiene-3,17-dione (ADD). The difficulty in separation of AD from ADD is one of the key bottlenecks to the microbial transformation of phytosterols in the industry. To enhance ADD quantity in products, 3-ketosteroid Δ(1)-dehydrogenase genes (kstD M and kstD(A)) were obtained from M. neoaurum NwIB-01 and Arthrobacter simplex respectively. Using replicating vector pMV261, kstD(M) and kstD(A) were overexpressed in M. neoaurum NwIB-01. For foreign gene stable expression, the integration vector pMV306 was used for kstD M/kstD(A) overexpression and the relevant sequences of promoter and kanamycin antibiotic resistance gene sequences were amplified by PCR to verify plasmid integrity. The resultant plasmid and mutant strain were verified and the kstD augmentation mutants were good ADD-producing strains. The ADD producing capacity of NwIB-04 and NwIB-05 was 0.1401 and 0.1740 g/l (cultured in shake bottles with 0.4 g/l phytosterols), and the molar ratio of ADD in products was 98.34 and 98.60%, respectively. This study on the manipulation of the main kstDM gene in Mycobacterium sp. provides a feasible way to achieve excellent phytosterol-transformation strains with high product purity.
Collapse
|
22
|
Stompor M, Potaniec B, Szumny A, Zieliński P, Żołnierczyk AK, Anioł M. Microbial synthesis of dihydrochalcones using Rhodococcus and Gordonia species. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2013.09.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
Swizdor A, Panek A, Milecka-Tronina N, Kołek T. Biotransformations utilizing β-oxidation cycle reactions in the synthesis of natural compounds and medicines. Int J Mol Sci 2012; 13:16514-43. [PMID: 23443116 PMCID: PMC3546705 DOI: 10.3390/ijms131216514] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/19/2012] [Accepted: 11/21/2012] [Indexed: 12/28/2022] Open
Abstract
β-Oxidation cycle reactions, which are key stages in the metabolism of fatty acids in eucaryotic cells and in processes with a significant role in the degradation of acids used by microbes as a carbon source, have also found application in biotransformations. One of the major advantages of biotransformations based on the β-oxidation cycle is the possibility to transform a substrate in a series of reactions catalyzed by a number of enzymes. It allows the use of sterols as a substrate base in the production of natural steroid compounds and their analogues. This route also leads to biologically active compounds of therapeutic significance. Transformations of natural substrates via β-oxidation are the core part of the synthetic routes of natural flavors used as food additives. Stereoselectivity of the enzymes catalyzing the stages of dehydrogenation and addition of a water molecule to the double bond also finds application in the synthesis of chiral biologically active compounds, including medicines. Recent advances in genetic, metabolic engineering, methods for the enhancement of bioprocess productivity and the selectivity of target reactions are also described.
Collapse
Affiliation(s)
- Alina Swizdor
- Department of Chemistry, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland.
| | | | | | | |
Collapse
|
24
|
Drzyzga O. The strengths and weaknesses of Gordonia: a review of an emerging genus with increasing biotechnological potential. Crit Rev Microbiol 2012; 38:300-16. [PMID: 22551505 DOI: 10.3109/1040841x.2012.668134] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This review about the genus Gordonia provides a current overview of recent research on a young genus that was introduced in the year 1997 ( Stackebrandt et al., 1997 ). This emerging genus has attracted increasing environmental, industrial, biotechnological and medical interest during the last few years, in particular due to the capabilities of its members to degrade, transform, and synthesize organic compounds as well as to the pathogenic effects that have been described in many case studies. The number of publications about Gordonia has increased significantly after the year 2004 (the year of the first Gordonia review published by Arenskötter et al.) describing 13 new validly published species (type strains), many newly described physiological and metabolic capabilities, new patent applications and many new case reports of bacterial infections. Members of the genus Gordonia are widely distributed in nature and it is therefore important to unravel the species richness and metabolic potential of gordoniae in future studies to demonstrate their environmental impact especially on the degradation of persistent organic compounds and their ecological participation in the carbon cycle of organic material in soil and water. This review summarizes mainly the current state of importance and potential of the members of this genus for the environmental and biotechnological industry ("the strengthsâ) and briefly its pathogenic impact to humans ("the weaknessesâ).
Collapse
Affiliation(s)
- Oliver Drzyzga
- Department of Biochemistry and Molecular Biology I, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|
25
|
Yang L, Zhu J, Song L, Shi X, Li X, Yu R. Three sesquiterpene compounds biosynthesised from artemisinic acid using suspension-cultured cells of Averrhoa carambola (Oxalidaceae). Nat Prod Res 2011; 26:1388-94. [DOI: 10.1080/14786419.2011.589055] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Li Yang
- a Department of Natural Product Chemistry , Jinan University , Guangzhou 510632 , P.R. China
| | - Jianhua Zhu
- a Department of Natural Product Chemistry , Jinan University , Guangzhou 510632 , P.R. China
| | - Liyan Song
- b Department of Pharmacology , Jinan University , Guangzhou 510632 , P.R. China
| | - Xiaojian Shi
- a Department of Natural Product Chemistry , Jinan University , Guangzhou 510632 , P.R. China
| | - Xingyi Li
- a Department of Natural Product Chemistry , Jinan University , Guangzhou 510632 , P.R. China
| | - Rongmin Yu
- a Department of Natural Product Chemistry , Jinan University , Guangzhou 510632 , P.R. China
| |
Collapse
|
26
|
Ahire JJ, Bhat AA, Thakare JM, Pawar PB, Zope DG, Jain RM, Chaudhari BL. Cholesterol assimilation and biotransformation by Lactobacillus helveticus. Biotechnol Lett 2011; 34:103-7. [PMID: 21898131 DOI: 10.1007/s10529-011-0733-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Accepted: 08/24/2011] [Indexed: 11/25/2022]
Abstract
Lactobacillus helveticus, grown at 37°C in MRS medium supplemented with 3 mM cholesterol, assimilated all the cholesterol in 42 h having 68 U mg(-1) of intracellular cholesterol oxidase activity. The strain transformed 1 g cholesterol to 0.05 g of androsta-1, 4-diene-3, 17-dione and 0.04 g of androst-4-ene-3, 17 dione within 48 h at 37°C with extracellular cholesterol oxidase activity at 12 U mg(-1) and intracellular oxidase at 0.5 U mg(-1).
Collapse
Affiliation(s)
- Jayesh J Ahire
- Department of Microbiology, School of Life Sciences, North Maharashtra University, P. Box-80, Jalgaon, 425 001, Maharashtra, India
| | | | | | | | | | | | | |
Collapse
|
27
|
Draft genome sequence of Gordonia neofelifaecis NRRL B-59395, a cholesterol-degrading actinomycete. J Bacteriol 2011; 193:5045-6. [PMID: 21742880 DOI: 10.1128/jb.05531-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report a draft sequence of the genome of Gordonia neofelifaecis NRRL B-59395, a cholesterol-degrading actinomycete isolated from fresh feces of a clouded leopard (Neofelis nebulosa). As predicted, the reported genome contains several gene clusters for cholesterol degradation. This is the second available genome sequence of the family Gordoniaceae.
Collapse
|