1
|
Lestari SD, Hatmanti A, Hidayati NV, Kurnia A, Afianti NF, Kristanti RA, Endrotjahjo E, Manik H. Biodegradation of low-density polyethylene (LDPE) plastic by actinomycetes isolated from Balikpapan coastal sediment, Indonesia. MARINE POLLUTION BULLETIN 2025; 217:118015. [PMID: 40378715 DOI: 10.1016/j.marpolbul.2025.118015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 05/19/2025]
Abstract
Polyethylene plastics are a persistent pollutant due to their distribution, availability, and serious impacts on coastal ecosystems. This study evaluated the degradation mechanism during the 60-day incubation period of LDPE film using the best actinomycetes action isolated from Balikpapan coastal sediment, Indonesia. Their colonies have unique morphological characteristics and potentially utilize LDPE plastic as carbon sources. The weight loss was recorded in isolates NACTB22-4; NACTB22-8; NACTB22-9; and consortium were 0,3522 ± 0,0440 %; 0,2565 ± 0,1019 %; 0,3486 ± 0,1552 %; and 0,5075 ± 0,0304 %, respectively. Actinomycetes colonization was evident in morphology surface changes of LDPE film analyzed using a Scanning Electron Microscope (SEM) and transmittance values changes in their functional group using Fourier Transform Infrared (FT-IR).
Collapse
Affiliation(s)
- Sinda Dewi Lestari
- Aquatic Resources Management Department, Faculty of Fisheries and Marine Science, Jenderal Soedirman University, Purwokerto, Indonesia
| | - Ariani Hatmanti
- Research Center for Oceanography, National Research and Innovation Agency, Jakarta, Indonesia.
| | - Nuning Vita Hidayati
- Aquatic Resources Management Department, Faculty of Fisheries and Marine Science, Jenderal Soedirman University, Purwokerto, Indonesia
| | - Ahmad Kurnia
- Aquatic Resources Management Department, Faculty of Fisheries and Marine Science, Jenderal Soedirman University, Purwokerto, Indonesia
| | - Nur Fitriah Afianti
- Research Center for Oceanography, National Research and Innovation Agency, Jakarta, Indonesia
| | - Risky Ayu Kristanti
- Research Center for Oceanography, National Research and Innovation Agency, Jakarta, Indonesia
| | - Edy Endrotjahjo
- Research Center for Oceanography, National Research and Innovation Agency, Jakarta, Indonesia
| | - Helena Manik
- Research Center for Oceanography, National Research and Innovation Agency, Jakarta, Indonesia
| |
Collapse
|
2
|
Fei L, Hafeez R, Zhang J, Fu S, Xu Y, Hao L. Investigation of the mechanisms involved in the biocontrol activities of natural products from a marine soil bacterium against rice blast. PEST MANAGEMENT SCIENCE 2025; 81:3122-3135. [PMID: 39895525 PMCID: PMC12074626 DOI: 10.1002/ps.8684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/31/2024] [Accepted: 01/12/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Rice blast, caused by Pyricularia oryzae, is a devastating fungal disease threatening global rice production. Overreliance on chemical fungicides has raised environmental concerns and led to resistant strains, necessitating the development of sustainable alternatives. This study integrated marine microbiology and natural antifungal compounds to create eco-friendly alternatives to chemical fungicides for disease management. RESULTS We identified Pseudomonas aeruginosa R64 with broad-spectrum antimicrobial activity from mangrove soil in the Mai Po Nature Reserve. The R64 fermentation extract (RFE) exhibited multifaceted inhibition of P. oryzae, suppressing mycelial growth, conidiation, conidial germination and appressorial formation, while disturbing cell wall and membrane function. It also attenuated virulence by impairing appressorial penetration and invasive growth. Further chemical analysis identified phenazines and quinolines as the primary compounds in RFE, corroborated by PCR detection of corresponding phenazine biosynthetic gene clusters. Comparative bioassays with two main bioactive components of RFE, phenazine-1-carboxamide (PCN) and phenazine-1-carboxylic acid (PCA), against P. oryzae implicated PCN as the principal antifungal effector. RFE and PCN had higher efficacy than tricyclazole in P. oryzae growth inhibition, but were less effective than isoprothiolane. Furthermore, RFE and PCN displayed lower acute ecotoxicity to an environmental indicator organism than isoprothiolane, suggesting their potential as sustainable biopesticides for rice blast management. CONCLUSION Natural products from mangrove soil bacterium P. aeruginosa R64 inhibited key developmental and infection processes of P. oryzae, effectively reducing rice blast development. The promising disease inhibition and low ecotoxicity of mangrove-associated bacteria highlight their untapped potential for innovative, eco-friendly fungicide mining for sustainable agriculture. © 2025 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Liwang Fei
- Shenzhen Key Laboratory of Marine Bioresource & Eco‐Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and OceanographyShenzhen UniversityShenzhenChina
- College of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhenChina
- Center for Plant Environmental Sensing, College of Life Sciences and OceanographyShenzhen UniversityShenzhenChina
| | - Rahila Hafeez
- Shenzhen Key Laboratory of Marine Bioresource & Eco‐Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and OceanographyShenzhen UniversityShenzhenChina
- Center for Plant Environmental Sensing, College of Life Sciences and OceanographyShenzhen UniversityShenzhenChina
| | - Junliang Zhang
- School of PharmacyShanghai Jiao Tong UniversityShanghaiChina
| | - Shiquan Fu
- Shenzhen Key Laboratory of Marine Bioresource & Eco‐Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and OceanographyShenzhen UniversityShenzhenChina
| | - Ying Xu
- Shenzhen Key Laboratory of Marine Bioresource & Eco‐Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and OceanographyShenzhen UniversityShenzhenChina
| | - Lingyun Hao
- Shenzhen Key Laboratory of Marine Bioresource & Eco‐Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and OceanographyShenzhen UniversityShenzhenChina
- Center for Plant Environmental Sensing, College of Life Sciences and OceanographyShenzhen UniversityShenzhenChina
| |
Collapse
|
3
|
Ali BA, Allam RM, Hasanin MS, Hassabo AA. Biosynthesis of selenium nanoparticles as a potential therapeutic agent in breast cancer: G2/M arrest and apoptosis induction. Toxicol Rep 2024; 13:101792. [PMID: 39554610 PMCID: PMC11565031 DOI: 10.1016/j.toxrep.2024.101792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/19/2024] Open
Abstract
The drawbacks and adverse reactions of conventional breast cancer (BC) medications have prompted researchers to seek novel therapeutic approaches. This study aimed to study the impact of biosynthesized selenium nanoparticles by yeast on breast cancer (MCF-7) cells and to find potential underlying mechanisms. Therefore, marine yeast isolates were screened for their ability to biosynthesis selenium nanoparticles (SeNPs). The most potent isolate was identified as Candida pseudojiufengensis based on 18 S rRNA gene sequencing. Incubation of cell-free extract with 0.8 mM of SeO2 for 48 h at 40°C in pH of 7.0 were optimal conditions for the biosynthesis of SeNPs. The biosynthesized SeNPs were characterized by UV-Vis spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), and dynamic light scattering (DLS) measurements including average particle size distribution and average zeta potential. The results showed that the biosynthesized SeNPs displayed a maximum absorbance peak in the UV-Vis spectrum at 560 nm due to surface plasmon resonance. TEM image elevated spherical shape particles with an average size of 12 nm. SRB assay, flow cytometry, and other biochemical methods were employed to assess SeNPs anti-proliferative effects on MCF-7 cells. SeNPs showed superior anticancer efficacy against MCF-7 cells compared to colon (HCT-116) and liver (HepG2) cancer cells, as evidenced by lower IC50 values (19.59 µg/ml) against 36.36 µg/ml and 27.81 ±1.4 µg/ml, respectively. However, SeNPs demonstrated no cytotoxic effects against HSF cells. Moreover, treatment with SeNPs induces G2/M arrest along with triggering apoptosis in MCF-7 cells. Furthermore, MCF-7 cells treated with SeNPs showed increased oxidative stress, as indicated by observable rises in LPO and 8-OHDG, accompanied by considerable exhaustion in antioxidant enzyme activity. These findings demonstrated that Se nanoparticles synthesized from yeast have therapeutic promise in BC treatment.
Collapse
Affiliation(s)
- Basant A. Ali
- Microbial Chemistry Department, Biotechology Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Rasha Mosa Allam
- Pharmacology Department, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Mohamed S. Hasanin
- Cellulose and Paper Department, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Amany A. Hassabo
- Microbial Chemistry Department, Biotechology Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt
| |
Collapse
|
4
|
Prioux C, Ferrier-Pages C, Deter J, Tignat-Perrier R, Guilbert A, Ballesta L, Allemand D, van de Water JAJM. Insights into the occurrence of phylosymbiosis and co-phylogeny in the holobionts of octocorals from the Mediterranean Sea and Red Sea. Anim Microbiome 2024; 6:62. [PMID: 39497183 PMCID: PMC11533408 DOI: 10.1186/s42523-024-00351-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/24/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Corals are the foundational species of coral reefs and coralligenous ecosystems. Their success has been linked to symbioses with microorganisms, and a coral host and its symbionts are therefore considered a single entity, called the holobiont. This suggests that there may be evolutionary links between corals and their microbiomes. While there is evidence of phylosymbiosis in scleractinian hexacorals, little is known about the holobionts of Alcyonacean octocorals. RESULTS 16S rRNA gene amplicon sequencing revealed differences in the diversity and composition of bacterial communities associated with octocorals collected from the mesophotic zones of the Mediterranean and Red Seas. The low diversity and consistent dominance of Endozoicomonadaceae and/or Spirochaetaceae in the bacterial communities of Mediterranean octocorals suggest that these corals may have a shared evolutionary history with their microbiota. Phylosymbiotic signals were indeed detected and cophylogeny in associations between several bacterial strains, particularly those belonging to Endozoicomonadaceae or Spirochaetaceae, and coral species were identified. Conversely, phylosymbiotic patterns were not evident in Red Sea octocorals, likely due to the high bacterial taxonomic diversity in their microbiota, but cophylogeny in associations between certain coral and bacterial species was observed. Noteworthy were the associations with Endozoicomonadaceae, suggesting a plausible evolutionary link that warrants further investigations to uncover potential underlying patterns. CONCLUSIONS Overall, our findings emphasize the importance of Endozoicomonadaceae and Spirochaetaceae in coral symbiosis and the significance of exploring host-microbiome interactions in mesophotic ecosystems for a comprehensive understanding of coral-microbiome evolutionary history.
Collapse
Affiliation(s)
- C Prioux
- Unité de Recherche Sur La Biologie des Coraux Précieux CSM - CHANEL, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, MC, Principality of Monaco
- Coral Ecophysiology Team, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, MC, Principality of Monaco
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, MC, Principality of Monaco
| | - C Ferrier-Pages
- Coral Ecophysiology Team, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, MC, Principality of Monaco.
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, MC, Principality of Monaco.
| | - J Deter
- Andromède Océanologie, 7 place Cassan-Carnon plage, 34130, Mauguio, France
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Place Eugène Bataillon, 34095, Montpellier, France
| | - R Tignat-Perrier
- Unité de Recherche Sur La Biologie des Coraux Précieux CSM - CHANEL, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, MC, Principality of Monaco
- Coral Ecophysiology Team, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, MC, Principality of Monaco
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, MC, Principality of Monaco
| | - A Guilbert
- Andromède Océanologie, 7 place Cassan-Carnon plage, 34130, Mauguio, France
| | - L Ballesta
- Andromède Océanologie, 7 place Cassan-Carnon plage, 34130, Mauguio, France
| | - D Allemand
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, MC, Principality of Monaco
| | - J A J M van de Water
- Unité de Recherche Sur La Biologie des Coraux Précieux CSM - CHANEL, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, MC, Principality of Monaco.
- Coral Ecophysiology Team, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, MC, Principality of Monaco.
- Department of Estuarine Delta Systems, Royal Netherlands Institute for Sea Research, Korringaweg 7, 4401 NT, Yerseke, The Netherlands.
| |
Collapse
|
5
|
Patel ZZ, Joshi H, Puvar A, Pandit R, Joshi C, Joshi M, Tipre DR. A study into the diversity of coral-associated bacteria using culture-dependent and culture-independent approaches in coral Dipsastraea favus from the Gulf of Kutch. MARINE POLLUTION BULLETIN 2024; 201:116172. [PMID: 38394797 DOI: 10.1016/j.marpolbul.2024.116172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/03/2023] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
Corals harbour ~25 % of the marine diversity referring to biodiversity hotspots in marine ecosystems. Global efforts to find ways to restore the coral reef ecosystem from various threats can be complemented by studying coral-associated bacteria. Coral-associated bacteria are vital components of overall coral wellbeing. We explored the bacterial diversity associated with coral Dipsastraea favus (D. favus) collected from the Gulf of Kutch, India, using both culture-dependent and metagenomic approaches. In both approaches, phylum Proteobacteria, Firmicutes, and Actinobacteria predominated, comprising the genera Vibrio, Bacillus, Shewanella, Pseudoalteromonas, Exiguobacterium and Streptomyces. Moreover, the majority of culturable isolates showed multiple antibiotic resistance index ≥0.2. In this study, specific bacterial diversity associated with coral sp. D. favus and its possible role in managing coral health was established. Almost 43 strains from the samples were successfully cultured, creating a base for exploring these microbes for their potential use in coral conservation methods.
Collapse
Affiliation(s)
- Zarna Z Patel
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad 380009, India; Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, Gandhinagar 382011, India
| | - Himanshu Joshi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, Gandhinagar 382011, India
| | - Apurvasinh Puvar
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, Gandhinagar 382011, India
| | - Ramesh Pandit
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, Gandhinagar 382011, India
| | - Chaitanya Joshi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, Gandhinagar 382011, India
| | - Madhvi Joshi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology (DST), Government of Gujarat, Gandhinagar 382011, India.
| | - Devayani R Tipre
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad 380009, India.
| |
Collapse
|
6
|
Magalhães EA, de Jesus HE, Pereira PHF, Gomes AS, Santos HFD. Beach sand plastispheres are hotspots for antibiotic resistance genes and potentially pathogenic bacteria even in beaches with good water quality. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123237. [PMID: 38159625 DOI: 10.1016/j.envpol.2023.123237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 12/06/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Massive amounts of microplastics are transported daily from the oceans and rivers onto beaches. The ocean plastisphere is a hotspot and a vector for antibiotic resistance genes (ARGs) and potentially pathogenic bacteria. However, very little is known about the plastisphere in beach sand. Thus, to describe whether the microplastics from beach sand represent a risk to human health, we evaluated the bacteriome and abundance of ARGs on microplastic and sand sampled at the drift line and supralittoral zones of four beaches of poor and good water quality. The bacteriome was evaluated by sequencing of 16S rRNA gene, and the ARGs and bacterial abundances were evaluated by high-throughput real-time PCR. The results revealed that the microplastic harbored a bacterial community that is more abundant and distinct from that of beach sand, as well as a greater abundance of potential human and marine pathogens, especially the microplastics deposited closer to seawater. Microplastics also harbored a greater number and abundance of ARGs. All antibiotic classes evaluated were found in the microplastic samples, but not in the beach sand ones. Additionally, 16 ARGs were found on the microplastic alone, including genes related to multidrug resistance (blaKPC, blaCTX-M, tetM, mdtE and acrB_1), genes that have the potential to rapidly and horizontally spread (blaKPC, blaCTX-M, and tetM), and the gene that confers resistance to antibiotics that are typically regarded as the ultimate line of defense against severe multi-resistant bacterial infections (blaKPC). Lastly, microplastic harbored a similar bacterial community and ARGs regardless of beach water quality. Our findings suggest that the accumulation of microplastics in beach sand worldwide may constitute a potential threat to human health, even in beaches where the water quality is deemed satisfactory. This phenomenon may facilitate the emergence and dissemination of bacteria that are resistant to multiple drugs.
Collapse
Affiliation(s)
- Emily Amorim Magalhães
- Department of Marine Biology, Fluminense Federal University - UFF. St. Professor Marcos Waldemar de Freitas Reis, Niterói, RJ, 24210-201, Brazil
| | - Hugo Emiliano de Jesus
- Department of Marine Biology, Fluminense Federal University - UFF. St. Professor Marcos Waldemar de Freitas Reis, Niterói, RJ, 24210-201, Brazil
| | - Pedro Henrique Freitas Pereira
- Department of Marine Biology, Fluminense Federal University - UFF. St. Professor Marcos Waldemar de Freitas Reis, Niterói, RJ, 24210-201, Brazil
| | - Abílio Soares Gomes
- Department of Marine Biology, Fluminense Federal University - UFF. St. Professor Marcos Waldemar de Freitas Reis, Niterói, RJ, 24210-201, Brazil
| | - Henrique Fragoso Dos Santos
- Department of Marine Biology, Fluminense Federal University - UFF. St. Professor Marcos Waldemar de Freitas Reis, Niterói, RJ, 24210-201, Brazil.
| |
Collapse
|
7
|
Ashraf N, Anas A, Sukumaran V, Gopinath G, Idrees Babu KK, Dinesh Kumar PK. Recent advancements in coral health, microbiome interactions and climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163085. [PMID: 36996987 DOI: 10.1016/j.scitotenv.2023.163085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 05/13/2023]
Abstract
Corals are the visible indicators of the disasters induced by global climate change and anthropogenic activities and have become a highly vulnerable ecosystem on the verge of extinction. Multiple stressors could act individually or synergistically which results in small to large scale tissue degradation, reduced coral covers, and makes the corals vulnerable to various diseases. The coralline diseases are like the Chicken pox in humans because they spread hastily throughout the coral ecosystem and can devastate the coral cover formed over centuries in an abbreviated time. The extinction of the entire reef ecosystem will alter the ocean and earth's amalgam of biogeochemical cycles causing a threat to the entire planet. The current manuscript provides an overview of the recent advancement in coral health, microbiome interactions and climate change. Culture dependent and independent approaches in studying the microbiome of corals, the diseases caused by microorganisms, and the reservoirs of coral pathogens are also discussed. Finally, we discuss the possibilities of protecting the coral reefs from diseases through microbiome transplantation and the capabilities of remote sensing in monitoring their health status.
Collapse
Affiliation(s)
- Nizam Ashraf
- CSIR - National Institute of Oceanography, Regional Centre, Kochi 682018, India
| | - Abdulaziz Anas
- CSIR - National Institute of Oceanography, Regional Centre, Kochi 682018, India.
| | - Vrinda Sukumaran
- CSIR - National Institute of Oceanography, Regional Centre, Kochi 682018, India
| | - Girish Gopinath
- Department of Climate Variability and Aquatic Ecosystems, Kerala University of Fisheries and Ocean Studies (KUFOS), Puduvypu Campus, Kochi 682 508, India
| | - K K Idrees Babu
- Department of Science and Technology, Kavaratti, Lakshadweep 682555, India
| | - P K Dinesh Kumar
- CSIR - National Institute of Oceanography, Regional Centre, Kochi 682018, India
| |
Collapse
|
8
|
Bioactivity of bacteria associated with Red Sea nudibranchs and whole genome sequence of Nocardiopsis dassonvillei RACA-4. Mar Genomics 2023; 67:101004. [PMID: 36521348 DOI: 10.1016/j.margen.2022.101004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/09/2022] [Accepted: 11/12/2022] [Indexed: 12/14/2022]
Abstract
Microorganisms associated with marine invertebrates consider an important source of bioactive products. This study aimed to screen for antimicrobial and anticancer activity of crude extracts of bacteria associated with Red sea nudibranchs and molecular identification of the bioactive isolates using 16Sr RNA sequencing, in addition to whole-genome sequencing of one of the most bioactive bacteria. This study showed that bacteria associated with Red sea nudibranchs are highly bioactive and 16Sr RNA sequencing results showed that two isolates belonged to Firmicutes, and two isolates belonged to Proteobacteria, and Actinobacteria. The whole genome sequence data of the isolated Nocardiopsis RACA4 isolate has an estimated genome length of 6,721,839 bp and the taxonomy showed it belongs to the bacteria Nocardiopsis dassonvillei. The De novo assembly of RACA-4 paired reads using Unicycler v0.4.8 initially yielded 97 contigs with an N50 value of 214,568 bp and L50 value of 10, The resulting assembly was further mapped to the reference genome Nocardiopsis dassonvillei strain NCTC10488 using RagTag software v.2.1.0 and a final genome assembly resulted in 39 contigs and N50 value of 6,726,007 and L50 of 1. Genome mining using anti-smash showed around 9.1% of the genome occupied with genes related to secondary metabolites biosynthesis. A wide variety of secondary metabolites belonging to Polyketides, Terpenes, and nonribosomal peptides were predicted with high degree of similarity to known compounds. Non-characterized clusters were also found which suggest new natural compounds discovered by further studies.
Collapse
|
9
|
Sedeek AM, Ismail MM, Elsayed TR, Ramadan MA. Recent methods for discovering novel bioactive metabolites, specifically antimicrobial agents, from marine-associated microorganisms. Lett Appl Microbiol 2022; 75:511-525. [PMID: 35485872 DOI: 10.1111/lam.13728] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/08/2022] [Accepted: 04/19/2022] [Indexed: 12/01/2022]
Abstract
Marine microorganisms are a promising source for novel natural compounds with many medical and biotechnological applications. Here we demonstrate limitations and recent strategies for investigating the marine microbial community for novel bioactive metabolites, specifically those of antimicrobial potential. These strategies include culture-dependent methods such as modifying the standard culture media, including changing the gelling agent, dissolving vehicle, media supplementation, and preparation to access a broader range of bacterial diversity from marine samples. Furthermore, we discuss strategies like in situ cultivation, dilution-to-extinction cultivation, and long-term incubation. We are presenting recent applications of culture-independent methods such as genome mining, proteomics profiling, and the application of metagenomics as a novel strategy for structure confirmation in the discovery of the marine microorganism for novel antimicrobial metabolites. We present this review as a simple guide and a helpful resource for those who seek to enter the challenging field of applied marine microbiology.
Collapse
Affiliation(s)
- Abdelrahman M Sedeek
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University, Ismaillia, 41522, Egypt
| | - Maha M Ismail
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Tarek R Elsayed
- Department of Agricultural Microbiology, Faculty of Agriculture, Cairo University, Egypt, Giza, 12613, Egypt
| | - Mohamed A Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
10
|
Fang SY, Chen SY, Chen YY, Kuo TJ, Wen ZH, Chen YH, Hwang TL, Sung PJ. Natural Indoles From the Bacterium Pseudovibrio denitrificans P81 Isolated From a Marine Sponge, Aaptos Species. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211033735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A new natural indole, vibrindole B (1), together with known analogs, vibrindole A (2), trisindoline (3), norharmane (4), and 3-(hydroxyacetyl)indole (5), produced by the bacterium Pseudovibrio denitrificans P81, were isolated from a sponge, Aaptos species. The structures of indoles 1 to 5 were established by spectroscopic methods. The proposed biosynthetic pathway of 1 to 5 is also discussed, starting from tryptophan. Moreover, indoles 1 to 3 were found to exhibit cytotoxicity toward T24 tumor cells with IC50 values of 1.71 ± 0.11, 4.53 ± 0.14, and 2.26 ± 0.26 µM, respectively.
Collapse
Affiliation(s)
- Shu-Yen Fang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Sheng-Yuan Chen
- Department of Internal Medicine, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - You-Ying Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan
| | - Tsu-Jen Kuo
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yu-Hsin Chen
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Research Center for Chinese Herbal Medicine, Graduate Institute of Healthy Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Department of Anaesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Ping-Jyun Sung
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
- Ph.D. Program in Pharmaceutical Biotechnology, Fu Jen Catholic University, New Taipei, Taiwan
| |
Collapse
|
11
|
Silva DP, Villela HDM, Santos HF, Duarte GAS, Ribeiro JR, Ghizelini AM, Vilela CLS, Rosado PM, Fazolato CS, Santoro EP, Carmo FL, Ximenes DS, Soriano AU, Rachid CTCC, Vega Thurber RL, Peixoto RS. Multi-domain probiotic consortium as an alternative to chemical remediation of oil spills at coral reefs and adjacent sites. MICROBIOME 2021; 9:118. [PMID: 34020712 PMCID: PMC8138999 DOI: 10.1186/s40168-021-01041-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/22/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND Beginning in the last century, coral reefs have suffered the consequences of anthropogenic activities, including oil contamination. Chemical remediation methods, such as dispersants, can cause substantial harm to corals and reduce their resilience to stressors. To evaluate the impacts of oil contamination and find potential alternative solutions to chemical dispersants, we conducted a mesocosm experiment with the fire coral Millepora alcicornis, which is sensitive to environmental changes. We exposed M. alcicornis to a realistic oil-spill scenario in which we applied an innovative multi-domain bioremediator consortium (bacteria, filamentous fungi, and yeast) and a chemical dispersant (Corexit® 9500, one of the most widely used dispersants), to assess the effects on host health and host-associated microbial communities. RESULTS The selected multi-domain microbial consortium helped to mitigate the impacts of the oil, substantially degrading the polycyclic aromatic and n-alkane fractions and maintaining the physiological integrity of the corals. Exposure to Corexit 9500 negatively impacted the host physiology and altered the coral-associated microbial community. After exposure, the abundances of certain bacterial genera such as Rugeria and Roseovarius increased, as previously reported in stressed or diseased corals. We also identified several bioindicators of Corexit 9500 in the microbiome. The impact of Corexit 9500 on the coral health and microbial community was far greater than oil alone, killing corals after only 4 days of exposure in the flow-through system. In the treatments with Corexit 9500, the action of the bioremediator consortium could not be observed directly because of the extreme toxicity of the dispersant to M. alcicornis and its associated microbiome. CONCLUSIONS Our results emphasize the importance of investigating the host-associated microbiome in order to detect and mitigate the effects of oil contamination on corals and the potential role of microbial mitigation and bioindicators as conservation tools. Chemical dispersants were far more damaging to corals and their associated microbiome than oil, and should not be used close to coral reefs. This study can aid in decision-making to minimize the negative effects of oil and dispersants on coral reefs. Video abstract.
Collapse
Affiliation(s)
- Denise P Silva
- LEMM, Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Helena D M Villela
- LEMM, Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Henrique F Santos
- Department of Marine Biology, Fluminense Federal University (UFF), Niterói, Brazil
| | - Gustavo A S Duarte
- LEMM, Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - José Roberto Ribeiro
- LEMM, Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Angela M Ghizelini
- LEMM, Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Caren L S Vilela
- LEMM, Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Phillipe M Rosado
- LEMM, Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Carolline S Fazolato
- LEMM, Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Erika P Santoro
- LEMM, Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Flavia L Carmo
- LEMM, Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Dalton S Ximenes
- Processes Laboratory, Leopoldo Américo Miguez de Mello Research Center (CENPES), Petrobras, Rio de Janeiro, Brazil
| | - Adriana U Soriano
- Environmental Treatments, Wastes and Water Resources, Leopoldo Américo Miguez de Mello Research Center (CENPES), Petrobras, Rio de Janeiro, Brazil
| | - Caio T C C Rachid
- LABEM, Paulo de Góes Institute of Microbiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Rebecca L Vega Thurber
- Department of Microbiology, Oregon State University, Nash Hall 226, OSU, Corvallis, OR, 97331, USA.
| | - Raquel S Peixoto
- LEMM, Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
- Division of Biological and Environmental Science and Engineering (BESE), Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
12
|
Isolation of endophytic fungi with antimicrobial activity from medicinal plant Zanthoxylum simulans Hance. Folia Microbiol (Praha) 2021; 66:385-397. [PMID: 33544301 DOI: 10.1007/s12223-021-00854-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/14/2021] [Indexed: 10/22/2022]
Abstract
Fungal endophytes have been found to exist in many plant species and appear to be important to their plant hosts. However, the diversity and biological activities of these fungi remain largely unknown. Zanthoxylum simulans Hance, a popular natural spice and medicinal plant, commonly known as Szechuan pepper or Chinese-pepper, grows on Kinmen Island, Taiwan. In this study, leaf and stem samples of Z. simulans, collected in summer and winter, were screened for antimicrobial and anti-inflammatory metabolite-producing endophytic fungi. A total of 113 endophytic strains were isolated and cultured from Z. simulans, among which 23 were found to possess antimicrobial activity, belonging to six fungal genera: Penicillium (26.09%, 6), Colletotrichum (21.74%, 5), Diaporthe (21.74%, 5), Daldinia (17.39%, 4), Alternaria (8.70%, 2), and Didymella (4.34%, 1). We also found that the number of species with antimicrobial activity and their compositions differed between summer and winter. Our study demonstrated that Z. simulans might contain large and diverse communities of endophytic fungi, and its community composition varies seasonally. In addition, fungal endophytes produce antimicrobial agents, which may protect their hosts against pathogens and could be a potential source of natural antibiotics.
Collapse
|
13
|
Duan Y, Petzold M, Saleem‐Batcha R, Teufel R. Bacterial Tropone Natural Products and Derivatives: Overview of their Biosynthesis, Bioactivities, Ecological Role and Biotechnological Potential. Chembiochem 2020; 21:2384-2407. [PMID: 32239689 PMCID: PMC7497051 DOI: 10.1002/cbic.201900786] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/02/2020] [Indexed: 12/05/2022]
Abstract
Tropone natural products are non-benzene aromatic compounds of significant ecological and pharmaceutical interest. Herein, we highlight current knowledge on bacterial tropones and their derivatives such as tropolones, tropodithietic acid, and roseobacticides. Their unusual biosynthesis depends on a universal CoA-bound precursor featuring a seven-membered carbon ring as backbone, which is generated by a side reaction of the phenylacetic acid catabolic pathway. Enzymes encoded by separate gene clusters then further modify this key intermediate by oxidation, CoA-release, or incorporation of sulfur among other reactions. Tropones play important roles in the terrestrial and marine environment where they act as antibiotics, algaecides, or quorum sensing signals, while their bacterial producers are often involved in symbiotic interactions with plants and marine invertebrates (e. g., algae, corals, sponges, or mollusks). Because of their potent bioactivities and of slowly developing bacterial resistance, tropones and their derivatives hold great promise for biomedical or biotechnological applications, for instance as antibiotics in (shell)fish aquaculture.
Collapse
Affiliation(s)
- Ying Duan
- Faculty of BiologyUniversity of Freiburg79104FreiburgGermany
| | - Melanie Petzold
- Faculty of BiologyUniversity of Freiburg79104FreiburgGermany
| | | | - Robin Teufel
- Faculty of BiologyUniversity of Freiburg79104FreiburgGermany
| |
Collapse
|
14
|
Kaewkrajay C, Chanmethakul T, Limtong S. Assessment of Diversity of Culturable Marine Yeasts Associated with Corals and Zoanthids in the Gulf of Thailand, South China Sea. Microorganisms 2020; 8:microorganisms8040474. [PMID: 32225058 PMCID: PMC7232451 DOI: 10.3390/microorganisms8040474] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 11/18/2022] Open
Abstract
Marine yeasts can occur in a wide range of habitats, including in marine invertebrates, in which they may play important roles; however, investigation of marine yeasts in marine invertebrates is scarce. Therefore, this study aims to explore the diversity of yeasts associated with corals and zoanthids in the Gulf of Thailand. Thirty-three coral and seven zoanthid samples were collected at two sampling sites near Mu and Khram islands. Fifty yeast strains were able to be isolated from 25 of the 40 samples collected. Identification based on sequence analyses of the D1/D2 domain of the large subunit rRNA gene revealed a higher number of strains in the phylum Basidiomycota (68%) than in the phylum Ascomycota. The ascomycetous yeasts comprised nine known species from four genera (Candida, Meyerozyma, Kodamaea, and Wickerhamomyces), whereas the basidiomycetous yeasts comprised 10 known species from eight genera (Vishniacozyma, Filobasidium, Naganishia, Papiliotrema, Sterigmatomyces, Cystobasidium, Rhodotorula, and Rhodosporidiobolus) and one potentially new species. The species with the highest occurrence was Rhodotorula mucilaginosa. Using principal coordinate analysis (PCoA) ordination, no marked differences were found in the yeast communities from the two sampling sites. The estimation of the expected richness of species was higher than the actual richness of species observed.
Collapse
Affiliation(s)
- Chutima Kaewkrajay
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
- Division of Microbiology, Faculty of Science and Technology, Phranakhon Si Ayutthaya Rajabhat University, Phranakhon Si Ayutthaya 13000, Thailand
| | - Thanongsak Chanmethakul
- Program in Science, Faculty of Science and Technology, Phuket Rajabhat University, Phuket 83000, Thailand;
| | - Savitree Limtong
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
- Correspondence:
| |
Collapse
|
15
|
Antimicrobial activity of bacteria from marine sponge Suberea mollis and bioactive metabolites of Vibrio sp. EA348. Saudi J Biol Sci 2020; 27:1139-1147. [PMID: 32256176 PMCID: PMC7105658 DOI: 10.1016/j.sjbs.2020.02.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/27/2020] [Accepted: 02/01/2020] [Indexed: 11/22/2022] Open
Abstract
Discovery of potential bioactive metabolites from sponge-associated bacteria have gained attraction in recent years. The current study explores the potential of sponge (Suberea mollis) associated bacteria against bacterial and fungal pathogens. Sponge samples were collected from Red sea in Obhur region, Jeddah, Saudi Arabia. Of 29 isolated bacteria belong to four different classes i.e. Firmicutes (62%), γ-Proteobacteria (21%), α-Proteobacteria (10%) and Actinobacteria (7%). Among them nineteen (65%) bacterial strains showed antagonistic activity against oomycetes and only 3 (10%) bacterial strains were active against human pathogenic bacteria tested. Most bioactive genera include Bacillus (55%), Pseudovibrio (13%) and Ruegeria (10%). Enzyme production (protease, lipase, amylase, cellualse) was identified in 12 (41%) bacterial strains where potential strains belonging to γ-Proteobacteria and Firmicutes groups. Production of antimicrobial metabolites and hydrolysates in these bacteria suggest their potential role in sponge against pathogens. Further bioactive metabolites from selected strain of Vibrio sp. EA348 were identified using LC-MS and GC–MS analyses. We identified many active metabolites including antibiotics such as Amifloxacin and fosfomycin. Plant growth hormones including Indoleacetic acid and Gibberellin A3 and volatile organic compound such as methyl jasmonate were also detected in this strain. Our results highlighted the importance of marine bacteria inhabiting sponges as potential source of antimicrobial compounds and plant growth hormones of pharmaceutical and agricultural significance.
Collapse
|
16
|
Rajasabapathy R, Ghadi SC, Manikandan B, Mohandass C, Surendran A, Dastager SG, Meena RM, James RA. Antimicrobial profiling of coral reef and sponge associated bacteria from southeast coast of India. Microb Pathog 2020; 141:103972. [PMID: 31923557 DOI: 10.1016/j.micpath.2020.103972] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 12/13/2019] [Accepted: 01/06/2020] [Indexed: 12/20/2022]
Abstract
Culturable bacteria associated with marine sponges and coral mucus (collected from Gulf of Mannar and Palk Bay) were screened for their prospective antimicrobial compounds against 9 bacterial pathogens (Bacillus megaterium, B. cereus, Salmonella typhimurium, Staphylococcus aureus, Proteus vulgaris, Klebsillla pneumoniae, Escherichia coli, Pseudomonas aeruginosa and Acinetobacter baumannii) and a fungal pathogen (Candida albicans). Of the 263 bacterial isolates obtained during this study, 52 isolates displayed antimicrobial activity against one or more pathogens. 16S rRNA gene sequencing revealed that these 52 strains affiliated to 14 genera from three phyla Proteobacteria, Firmicutes and Actinobacteria. Sponge associated bacterial strains F-04, I-23, I-33 and G-03 inhibited the growth of all the bacterial pathogens tested in this study and significantly the former 2 strains inhibited the growth of fungal pathogen also. Majority of the potential strains (88.4% out of 52 strains) inhibited the growth of Bacillus cereus. Interestingly, an actinomycete strain F-04 (isolated from sponge Orina sagittaria) inhibited the growth of methicillin resistant Staphylococcus aureus. In total, 10 volatile organic compounds were determined from the ethyl acetate and hexane extract of the strain F-04 using GC-MS. Overall, marine bacteria isolated during this study demonstrate the potential for the development of broad spectrum antibiotics.
Collapse
Affiliation(s)
- Raju Rajasabapathy
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620024, Tamilnadu, India; Department of Biotechnology, Goa University, Taleigao Plateau, 403 206, Goa, India.
| | - Sanjeev C Ghadi
- Department of Biotechnology, Goa University, Taleigao Plateau, 403 206, Goa, India
| | - Balakrishnan Manikandan
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, 403004, Goa, India
| | - Chellandi Mohandass
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, 403004, Goa, India; CSIR-National Institute of Oceanography, Regional Centre, Lokhandwala Road, Four Bungalows, Andheri (West), Mumbai, 400 053, India
| | - Akhila Surendran
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, 403004, Goa, India; Department of Marine Microbiology, Kerala University of Fisheries and Ocean Studies, Kerala, 682506, India
| | - Syed G Dastager
- NCIM Resource Center, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Ram M Meena
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, 403004, Goa, India
| | - Rathinam Arthur James
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, 620024, Tamilnadu, India.
| |
Collapse
|
17
|
Kitamura R, Miura N, Okada K, Motone K, Takagi T, Ueda M, Kataoka M. Design of novel primer sets for easy detection of Ruegeria species from seawater. Biosci Biotechnol Biochem 2019; 84:854-864. [PMID: 31814534 DOI: 10.1080/09168451.2019.1700776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Some coral-associated bacteria show protective roles for corals against pathogens. However, the distribution of coral-protecting bacteria in seawater is not well known. In addition, compared with the methods for investigating coral pathogens, few methods have been developed to detect coral-protecting bacteria. Here we prepared a simple method for detecting Ruegeria spp., some strains of which inhibit growth of the coral pathogen Vibrio coralliilyticus. We successfully obtained two Ruegeria-targeting primer sets through in silico and in vitro screening. The primer sets r38F-r30R and r445F-r446R, in addition to the newly designed universal primer set U357'F-U515'R, were evaluated in vitro using environmental DNA extracted from seawater collected in Osaka. These methods and primers should contribute to revealing the distribution of Ruegeria spp. in marine environments.
Collapse
Affiliation(s)
- Ruriko Kitamura
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Natsuko Miura
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Keiko Okada
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| | - Keisuke Motone
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan.,Japan Society for the Promotion of Science, Kyoto, Japan
| | - Toshiyuki Takagi
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| | - Mitsuyoshi Ueda
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Michihiko Kataoka
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| |
Collapse
|
18
|
Akbar N, Siddiqui R, Sagathevan KA, Khan NA. Gut bacteria of animals/pests living in polluted environments are a potential source of antibacterials. Appl Microbiol Biotechnol 2019; 103:3955-3964. [PMID: 30941460 DOI: 10.1007/s00253-019-09783-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 12/23/2022]
Abstract
The morbidity and mortality associated with bacterial infections have remained significant despite chemotherapeutic advances. With the emergence of drug-resistant bacterial strains, the situation has become a serious threat to the public health. Thus, there is an urgent need to identify novel antibacterials. The majority of antibiotics available in the market are produced by bacteria isolated from soil. However, the low-hanging fruit has been picked; hence, there is a need to mine bacteria from unusual sources. With this in mind, it is important to note that animals and pests such as cockroaches, snake, crocodiles, and water monitor lizard come across pathogenic bacteria regularly, yet flourish in contaminated environments. These species must have developed methods to defend themselves to counter pathogens. Although the immune system is known to possess antiinfective properties, gut bacteria of animals/pests may also offer a potential source of novel antibacterial agents, and it is the subject of this study. This paper discusses our current knowledge of bacteria isolated from land and marine animals with antibacterial properties and to propose untapped sources for the isolation of bacteria to mine potentially novel antibiotic molecules.
Collapse
Affiliation(s)
- Noor Akbar
- Department of Biological Sciences, School of Science and Technology, Sunway University, 47500, Petaling Jaya, Selangor, Malaysia
| | - Ruqaiyyah Siddiqui
- Department of Biological Sciences, School of Science and Technology, Sunway University, 47500, Petaling Jaya, Selangor, Malaysia
| | - K A Sagathevan
- Department of Biological Sciences, School of Science and Technology, Sunway University, 47500, Petaling Jaya, Selangor, Malaysia
| | - Naveed Ahmed Khan
- Department of Biological Sciences, School of Science and Technology, Sunway University, 47500, Petaling Jaya, Selangor, Malaysia.
| |
Collapse
|
19
|
Abstract
Corals comprise a biomineralizing cnidarian, dinoflagellate algal symbionts, and associated microbiome of prokaryotes and viruses. Ongoing efforts to conserve coral reefs by identifying the major stress response pathways and thereby laying the foundation to select resistant genotypes rely on a robust genomic foundation. Here we generated and analyzed a high quality long-read based ~886 Mbp nuclear genome assembly and transcriptome data from the dominant rice coral, Montipora capitata from Hawai’i. Our work provides insights into the architecture of coral genomes and shows how they differ in size and gene inventory, putatively due to population size variation. We describe a recent example of foreign gene acquisition via a bacterial gene transfer agent and illustrate the major pathways of stress response that can be used to predict regulatory components of the transcriptional networks in M. capitata. These genomic resources provide insights into the adaptive potential of these sessile, long-lived species in both natural and human influenced environments and facilitate functional and population genomic studies aimed at Hawaiian reef restoration and conservation.
Collapse
|
20
|
Genome Analysis of the Marine Bacterium Labrenzia sp. Strain 011, a Potential Protective Agent of Mollusks. DATA 2019. [DOI: 10.3390/data4010033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The marine bacterium Labrenzia sp. strain 011 was isolated from the coastal sediment of Kronsgaard, Germany. The Labrenzia species are suggested to be protective agents of mollusks. Labrenzia sp. strain 011 produces specialized metabolites, which showed activity against a range of microorganisms, thereunder strong inhibitory effects against Pseudoroseovarius crassostreae DSM 16,950 (genus Roseovarius), the causative agent of oyster disease. The genome of Labrenzia sp. strain 011 was sequenced and assembled into 65 contigs, has a size of 5.1 Mbp, and a G+C content of 61.6%. A comparative genome analysis defined Labrenzia sp. strain 011 as a distinct new species within the genus Labrenzia, whereby 44% of the genome was contributed to the Labrenzia core genome. The genomic data provided here is expected to contribute to a deeper understanding of the mollusk-protective role of Labrenzia spp.
Collapse
|
21
|
Kuo J, Yang YT, Lu MC, Wong TY, Sung PJ, Huang YS. Antimicrobial activity and diversity of bacteria associated with Taiwanese marine sponge Theonella swinhoei. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-018-1414-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
22
|
Heidarian S, Mohammadipanah F, Maghsoudlou A, Dashti Y, Challis GL. Anti-microfouling Activity of Glycomyces sediminimaris UTMC 2460 on Dominant Fouling Bacteria of Iran Marine Habitats. Front Microbiol 2019; 9:3148. [PMID: 30687240 PMCID: PMC6333643 DOI: 10.3389/fmicb.2018.03148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 12/04/2018] [Indexed: 12/17/2022] Open
Abstract
Discovery of environmentally safe anti-fouling agent is currently of considerable interest, due to the continuous impact of biofoulers on the marine habitats and the adverse effects of biocides on the environment. This study reports the anti-adhesion effect of marine living Actinobacteria against fouling strains isolated from submerged panels in marine environments of Iran. The extract of Glycomyces sediminimaris UTMC 2460 affected the biofilm formation of Kocuria sp. and Mesorhizobium sp., as the dominant fouling agents in this ecosystem, up to 93.2% and 71.4%, respectively. The metabolic activity of the fouler bacteria was reduced by the extract up to 17 and 9%, respectively. This indicated the bactericidal potency of the extract on cells in the biofilm state that enables the compound to be effective even once the biofilms are established in addition to the inhibition of biofilm initiation. Moreover, extra polymeric substance (EPS) production by fouling bacteria was reduced by 60-70%. The absence of activities against fouling bacteria in suspension and also the absence of toxic effect on Artemia salina showed the harmless ecological effect of the anti-microfouling extract on the prokaryotic and eukaryotic microflora of the studied Iran marine ecosystem. Metabolic profiling of G. sediminimaris UTMC 2460 revealed the presence of compounds with molecular formulae matching those of known anti-fouling diketopiperazines as major components of the extract. These results suggest that the extract of Glycomyces sediminimaris UTMC 2460 could be used as a potentially eco-friendly viable candidate in comparison to the synthetic common commercial anti-microfouling material to prevent the fouling process in marine habitats of Iran.
Collapse
Affiliation(s)
- Sheida Heidarian
- Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Mohammadipanah
- Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Abdolvahab Maghsoudlou
- Ocean Science Research Center, Iranian National Institute for Oceanography and Atmospheric Science, Tehran, Iran
| | - Yousef Dashti
- Department of Chemistry, University of Warwick, Coventry, United Kingdom
| | - Gregory L. Challis
- Department of Chemistry, University of Warwick, Coventry, United Kingdom
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, United Kingdom
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
23
|
Versluis D, Nijsse B, Naim MA, Koehorst JJ, Wiese J, Imhoff JF, Schaap PJ, van Passel MWJ, Smidt H, Sipkema D. Comparative Genomics Highlights Symbiotic Capacities and High Metabolic Flexibility of the Marine Genus Pseudovibrio. Genome Biol Evol 2018; 10:125-142. [PMID: 29319806 PMCID: PMC5765558 DOI: 10.1093/gbe/evx271] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2017] [Indexed: 12/19/2022] Open
Abstract
Pseudovibrio is a marine bacterial genus members of which are predominantly isolated from sessile marine animals, and particularly sponges. It has been hypothesized that Pseudovibrio spp. form mutualistic relationships with their hosts. Here, we studied Pseudovibrio phylogeny and genetic adaptations that may play a role in host colonization by comparative genomics of 31 Pseudovibrio strains, including 25 sponge isolates. All genomes were highly similar in terms of encoded core metabolic pathways, albeit with substantial differences in overall gene content. Based on gene composition, Pseudovibrio spp. clustered by geographic region, indicating geographic speciation. Furthermore, the fact that isolates from the Mediterranean Sea clustered by sponge species suggested host-specific adaptation or colonization. Genome analyses suggest that Pseudovibrio hongkongensis UST20140214-015BT is only distantly related to other Pseudovibrio spp., thereby challenging its status as typical Pseudovibrio member. All Pseudovibrio genomes were found to encode numerous proteins with SEL1 and tetratricopeptide repeats, which have been suggested to play a role in host colonization. For evasion of the host immune system, Pseudovibrio spp. may depend on type III, IV, and VI secretion systems that can inject effector molecules into eukaryotic cells. Furthermore, Pseudovibrio genomes carry on average seven secondary metabolite biosynthesis clusters, reinforcing the role of Pseudovibrio spp. as potential producers of novel bioactive compounds. Tropodithietic acid, bacteriocin, and terpene biosynthesis clusters were highly conserved within the genus, suggesting an essential role in survival, for example through growth inhibition of bacterial competitors. Taken together, these results support the hypothesis that Pseudovibrio spp. have mutualistic relations with sponges.
Collapse
Affiliation(s)
- Dennis Versluis
- Laboratory of Microbiology, Wageningen University & Research, The Netherlands
| | - Bart Nijsse
- Laboratory of Microbiology, Wageningen University & Research, The Netherlands.,Laboratory of Systems and Synthetic Biology, Wageningen University & Research, The Netherlands
| | - Mohd Azrul Naim
- Laboratory of Microbiology, Wageningen University & Research, The Netherlands
| | - Jasper J Koehorst
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, The Netherlands
| | - Jutta Wiese
- Marine Microbiology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Johannes F Imhoff
- Marine Microbiology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, The Netherlands
| | - Mark W J van Passel
- Laboratory of Microbiology, Wageningen University & Research, The Netherlands.,National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, The Netherlands
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University & Research, The Netherlands
| |
Collapse
|
24
|
Choudhary A, Naughton LM, Dobson ADW, Rai DK. High-performance liquid chromatography/electrospray ionisation mass spectrometric characterisation of metabolites produced by Pseudovibrio sp. W64, a marine sponge derived bacterium isolated from Irish waters. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:1737-1745. [PMID: 29971859 DOI: 10.1002/rcm.8226] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/22/2018] [Accepted: 06/24/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE In recent years, metabolites produced by Pseudovibrio species have gained scientific attention due to their potent antimicrobial activity. Recently, we also have assessed the antibacterial activities of Pseudovibrio sp. W64 isolates against Staphylococcus aureus, where only the dominant tropodithietic acid (TDA) was identified. However, characterisation of other metabolites is necessary as these metabolites may also serve as potent antimicrobial agents. METHODS Liquid chromatography/tandem mass spectrometry (LC/MS/MS), aided by accurate mass measurements, was employed to screen and characterise a range of metabolites produced by Pseudovibrio sp. W64 via assessment of ethyl acetate fractions generated from bacterial cultures. RESULTS Thirteen metabolites unique to the bacterial culture were detected and their chemical structures were assigned by MS/MS and accurate mass measurements. Among the thirteen metabolites, a methyl ester of TDA, a number of cholic acid derivatives, and amino diols and triols were characterised. CONCLUSIONS Pseudovibrio sp. W64 produces methylated TDA in addition to TDA, and metabolises lipids and amino acids in the cell-culture medium. To the best of our knowledge, this is the first report of methylated TDA, cholic acid and its various analogs, and sphinganine being detected in this Pseudovibrio strain. The data generated may help to better understand the biochemical processes and metabolism of bacterial strains towards discovery of antimicrobial agents from marine sources.
Collapse
Affiliation(s)
- Alka Choudhary
- Department of Food Biosciences, Teagasc Food Research Centre Ashtown, Dublin, D15 KN3K, Ireland
| | - Lynn M Naughton
- School of Microbiology, University College Cork, Western Road, Cork, T12 YN60, Ireland
| | - Alan D W Dobson
- School of Microbiology, University College Cork, Western Road, Cork, T12 YN60, Ireland
- Environmental Research Institute, University College Cork, Lee Road, Cork, T23 XE10, Ireland
| | - Dilip K Rai
- Department of Food Biosciences, Teagasc Food Research Centre Ashtown, Dublin, D15 KN3K, Ireland
| |
Collapse
|
25
|
Amiri Moghaddam J, Dávila-Céspedes A, Kehraus S, Crüsemann M, Köse M, Müller CE, König GM. Cyclopropane-Containing Fatty Acids from the Marine Bacterium Labrenzia sp. 011 with Antimicrobial and GPR84 Activity. Mar Drugs 2018; 16:md16100369. [PMID: 30297608 PMCID: PMC6213206 DOI: 10.3390/md16100369] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/01/2018] [Accepted: 10/03/2018] [Indexed: 11/23/2022] Open
Abstract
Bacteria of the family Rhodobacteraceae are widespread in marine environments and known to colonize surfaces, such as those of e.g., oysters and shells. The marine bacterium Labrenzia sp. 011 is here investigated and it was found to produce two cyclopropane-containing medium-chain fatty acids (1, 2), which inhibit the growth of a range of bacteria and fungi, most effectively that of a causative agent of Roseovarius oyster disease (ROD), Pseudoroseovarius crassostreae DSM 16950. Additionally, compound 2 acts as a potent partial, β-arrestin-biased agonist at the medium-chain fatty acid-activated orphan G-protein coupled receptor GPR84, which is highly expressed on immune cells. The genome of Labrenzia sp. 011 was sequenced and bioinformatically compared with those of other Labrenzia spp. This analysis revealed several cyclopropane fatty acid synthases (CFAS) conserved in all Labrenzia strains analyzed and a putative gene cluster encoding for two distinct CFASs is proposed as the biosynthetic origin of 1 and 2.
Collapse
Affiliation(s)
| | | | - Stefan Kehraus
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany.
| | - Max Crüsemann
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany.
| | - Meryem Köse
- Pharmaceutical Institute, Pharmaceutical Chemistry I, An der Immenburg 4, D-53121 Bonn, Germany.
| | - Christa E Müller
- Pharmaceutical Institute, Pharmaceutical Chemistry I, An der Immenburg 4, D-53121 Bonn, Germany.
| | - Gabriele Maria König
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany.
| |
Collapse
|
26
|
Helal HS, Hanora A, Khattab RA, Hamouda H, Zedan H. Mining of Egypt's Red Sea invertebrates for potential bioactive producers. Biotechnol Lett 2018; 40:1519-1530. [PMID: 30120645 DOI: 10.1007/s10529-018-2600-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 08/08/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVE The objective of this work was to isolate bacteria from Red Sea invertebrates, determine their antimicrobial activity, and screen for the biosynthetic gene clusters [polyketides (PKs) and nonribosomal peptides (NRPs)] which could be involved in the production of bioactive secondary metabolites. RESULT Eleven different samples of marine invertebrates' were collected from Egypt's Red Sea (El-Tor-Sharm El-Sheikh and Hurghada) by scuba diving, and a total 80 isolates of the associated microorganisms were obtained from the cultivation on six different cultural medium. Seven isolates of them showed an antimicrobial activity against five pathogenic reference strains, while the most active antimicrobial agent was isolate number HFF-8 which was 99% identical to Bacillus amyloliquefaciens. HFF-8's extract showed positive results against Gram negative bacteria, Gram positive bacteria and yeast. Moreover, the isolates gave positive bands when screened for the presence of PK synthase (PKS) I and II and NRP synthetase (NRPS) I and II biosynthetic genes, those biosynthetic fragments when cloned and sequenced were primitively predicted as biosynthetic fragments for kirromycin and leinamycin production by NaPDoS program with 56 and 55%, respectively. CONCLUSION The Red Sea can provide a sustainable solution to combat bacterial resistance. The contribution of this work is that B. amyloliquefaciens was isolated from Heteroxenia fuscescens, Red Sea, Egypt. Moreover, the bacterial extract showed a broad spectrum with a potent antimicrobial activity.
Collapse
Affiliation(s)
- Hala S Helal
- Microbiology and Public Health Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt.,National Organization for Drug Control and Research, Giza, Egypt
| | - Amro Hanora
- Microbiology and Immunology Department, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.
| | - Rania Abdelmonem Khattab
- Microbiology and Immunology Department, Faculty of Pharmacy, Cairo University, Kasr Al-Aini, Cairo, 11562, Egypt
| | - Hayam Hamouda
- National Organization for Drug Control and Research, Giza, Egypt
| | - Hamdallah Zedan
- Microbiology and Immunology Department, Faculty of Pharmacy, Cairo University, Kasr Al-Aini, Cairo, 11562, Egypt
| |
Collapse
|
27
|
Diversity and antagonistic potential of bacteria isolated from marine grass Halodule uninervis. 3 Biotech 2018; 8:48. [PMID: 29354359 DOI: 10.1007/s13205-017-1066-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/26/2017] [Indexed: 10/18/2022] Open
Abstract
The aim of this study was to isolate bacteria from sea grass, Halodule uninervis collected from the coastal area of Jeddah, Saudi Arabia and to screen them for antifungal and enzymatic activities. We have isolated 162 rhizo and endophytic bacteria from soil, roots, and leaves of the sea grass. Antifungal screening of isolated bacteria revealed 19 strains (11.7%) capable to inhibit growth of four pathogenic fungi, Pythium ultimum, Phytophthora capsici, pyricularia oryzae, and Rhizoctonia solani in an in vitro assay. Taxonomic and phylogenetic analyses on the basis of 16S rRNA gene sequence revealed 97-99.9% sequence identity to recognized species. Bacillus, Staphylococcus, Jeotgalicoccus, and Planococcus, within the Phylum Firmicutes, Kocuria, Arthrobacter, Ornithinimicrobium and Corynebacterium (Actinobacteria), Sulfitobacter, Roseivivax, Ruegeria (α-Proteobacteria), Moraxella, and Vibrio (γ-Proteobacteria), were isolated. Strains belong to Phylum Firmicutes remain dominant antagonistic bacteria in this study. Further hydrolytic enzyme production was determined for these antagonistic bacteria. Our results demonstrated that the sea grass represents an important source of diverse antagonistic bacteria capable of producing antifungal metabolite.
Collapse
|
28
|
Ahila NK, Prakash S, Manikandan B, Ravindran J, Prabhu NM, Kannapiran E. Bio-prospecting of coral (Porites lutea) mucus associated bacteria, Palk Bay reefs, Southeast coast of India. Microb Pathog 2017; 113:113-123. [PMID: 29038057 DOI: 10.1016/j.micpath.2017.09.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 12/27/2022]
Abstract
Coral mucus is one of the key localization in the coral holobiont, as this serves as an energy rich substrate for a wide range of abundant, diverse and multifunctional microbiota. However, very little is known about the functional role of bacterial communities in their associations with corals. In the present study, a total of 48 isolates were obtained from Porites lutea wherein the genus of Bacillus sp. and Vibrio sp. were predominant. Bio-prospecting the coral mucus revealed the existence of (10.42%) antagonistic bacteria against the tested bacterial pathogens. Molecular taxonomy (16S rRNA) proved the identity of these antagonistic bacteria belong to Enterobacter cloacae (CM1), Bacillus subtilis (CM2), Bacillus sp. (CM11) and Bacillus marisflavi (CM12). The secondary screening emphasized that the ethyl acetate extract of B. subtilis showed strong antagonistic effect, followed by the chloroform extract of E. cloacae and ethyl acetate extract of B. marisflavi. The antagonistic activity was statistically confirmed by Principal Component Analysis and Hierarchical Cluster Analysis. The privileged coral mucus associated bacterial (CMAB) solvent extracts inhibited the bacterial pathogens at 100 μg/ml (MIC) and ceased the growth at 200 μg/ml (MBC). The hemolytic and brine shrimp lethality assays disclosed the non-toxic nature of solvent extracts of CMAB. Altogether, the present investigation brought out the diversity of bacteria associated with the mucus of P. lutea. In addition, bio-prospecting corroborated the CMAB as the potential source of pharmacologically important bioactive compounds against a wide range of bacterial pathogens.
Collapse
Affiliation(s)
- N K Ahila
- Department of Animal Health and Management, Science Campus, Alagappa University, Karaikudi, 630 004, Tamil Nadu, India
| | - S Prakash
- Department of Biotechnology, Sri Kaliswari College (Autonomous), Sivakasi, Virudhunagar, 626 123, Tamil Nadu, India
| | - B Manikandan
- CSIR-National Institute of Oceanography, Biological Oceanography Division, Dona Paula, Goa, India
| | - J Ravindran
- CSIR-Central Electrochemical Research Institute, Corrosion Testing Centre, Mandapam Camp, 623519, Tamil Nadu, India
| | - N M Prabhu
- Department of Animal Health and Management, Science Campus, Alagappa University, Karaikudi, 630 004, Tamil Nadu, India
| | - E Kannapiran
- Department of Zoology, Directorate of Distance Education, Alagappa University, Karaikudi, 630004, Tamil Nadu, India.
| |
Collapse
|
29
|
Lin CH, Chuang CH, Twan WH, Chiou SF, Wong TY, Liu JK, Kao CY, Kuo J. Seasonal changes in bacterial communities associated with healthy and diseasedPoritescoral in southern Taiwan. Can J Microbiol 2016; 62:1021-1033. [DOI: 10.1139/cjm-2016-0100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We compared the bacterial communities associated with healthy scleractinian coral Porites sp. with those associated with coral infected with pink spot syndrome harvested during summer and winter from waters off the coast of southern Taiwan. Members of the bacterial community associated with the coral were characterized by means of denaturing gradient gel electrophoresis (DGGE) of a short region of the 16S rRNA gene and clone library analysis. Of 5 different areas of the 16S rRNA gene, we demonstrated that the V3 hypervariable region is most suited to represent the coral-associated bacterial community. The DNA sequences of 26 distinct bands extracted from DGGE gels and 269 sequences of the 16S rRNA gene from clone libraries were determined. We found that the communities present in diseased coral were more heterogeneous than the bacterial communities of uninfected coral. In addition, bacterial communities associated with coral harvested in the summer were more diverse than those associated with coral collected in winter, regardless of the health status of the coral. Our study suggested that the compositions of coral-associated bacteria communities are complex, and the population of bacteria varies greatly between seasons and in coral of differing health status.
Collapse
Affiliation(s)
- Chorng-Horng Lin
- Department of Bioresources, DaYeh University, Chang-Hua 51591, Taiwan
| | - Chih-Hsiang Chuang
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 94450, Taiwan
| | - Wen-Hung Twan
- Department of Planning and Research, National Museum of Marine Biology and Aquarium, Pingtung 94450, Taiwan
- Department of Life Sciences, National Taitung University, Taitung 95002, Taiwan
| | - Shu-Fen Chiou
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Tit-Yee Wong
- Department of Biology, University of Memphis, Memphis, TN 38152, USA
| | - Jong-Kang Liu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Chyuan-yao Kao
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 94450, Taiwan
| | - Jimmy Kuo
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 94450, Taiwan
- Department of Planning and Research, National Museum of Marine Biology and Aquarium, Pingtung 94450, Taiwan
| |
Collapse
|
30
|
Raina JB, Tapiolas D, Motti CA, Foret S, Seemann T, Tebben J, Willis BL, Bourne DG. Isolation of an antimicrobial compound produced by bacteria associated with reef-building corals. PeerJ 2016; 4:e2275. [PMID: 27602265 PMCID: PMC4994080 DOI: 10.7717/peerj.2275] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 07/19/2016] [Indexed: 12/28/2022] Open
Abstract
Bacterial communities associated with healthy corals produce antimicrobial compounds that inhibit the colonization and growth of invasive microbes and potential pathogens. To date, however, bacteria-derived antimicrobial molecules have not been identified in reef-building corals. Here, we report the isolation of an antimicrobial compound produced by Pseudovibrio sp. P12, a common and abundant coral-associated bacterium. This strain was capable of metabolizing dimethylsulfoniopropionate (DMSP), a sulfur molecule produced in high concentrations by reef-building corals and playing a role in structuring their bacterial communities. Bioassay-guided fractionation coupled with nuclear magnetic resonance (NMR) and mass spectrometry (MS), identified the antimicrobial as tropodithietic acid (TDA), a sulfur-containing compound likely derived from DMSP catabolism. TDA was produced in large quantities by Pseudovibrio sp., and prevented the growth of two previously identified coral pathogens, Vibrio coralliilyticus and V. owensii, at very low concentrations (0.5 μg/mL) in agar diffusion assays. Genome sequencing of Pseudovibrio sp. P12 identified gene homologs likely involved in the metabolism of DMSP and production of TDA. These results provide additional evidence for the integral role of DMSP in structuring coral-associated bacterial communities and underline the potential of these DMSP-metabolizing microbes to contribute to coral disease prevention.
Collapse
Affiliation(s)
- Jean-Baptiste Raina
- Climate Change Cluster (C3), University of Technology Sydney, Sydney, NSW, Australia; Australian Institute of Marine Science, Townsville, QLD, Australia; Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia; Marine Biology and Aquaculture, College of Science and Engineering, James Cook University of North Queensland, Townsville, QLD, Australia; AIMS@JCU, James Cook University, Townsville, QLD, Australia
| | - Dianne Tapiolas
- Australian Institute of Marine Science , Townsville, QLD , Australia
| | - Cherie A Motti
- Australian Institute of Marine Science , Townsville, QLD , Australia
| | - Sylvain Foret
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia; Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Torsten Seemann
- Victorian Life Sciences Computation Initiative, University of Melbourne , Melbourne, Victoria , Australia
| | - Jan Tebben
- Section Chemical Ecology, Alfred Wegener Institute, Bremerhaven, Germany; University of New South Wales, Sydney, NSW, Australia
| | - Bette L Willis
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia; Marine Biology and Aquaculture, College of Science and Engineering, James Cook University of North Queensland, Townsville, QLD, Australia
| | - David G Bourne
- Australian Institute of Marine Science, Townsville, QLD, Australia; Marine Biology and Aquaculture, College of Science and Engineering, James Cook University of North Queensland, Townsville, QLD, Australia
| |
Collapse
|
31
|
Offret C, Desriac F, Le Chevalier P, Mounier J, Jégou C, Fleury Y. Spotlight on Antimicrobial Metabolites from the Marine Bacteria Pseudoalteromonas: Chemodiversity and Ecological Significance. Mar Drugs 2016; 14:E129. [PMID: 27399731 PMCID: PMC4962019 DOI: 10.3390/md14070129] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 06/27/2016] [Accepted: 06/29/2016] [Indexed: 12/17/2022] Open
Abstract
This review is dedicated to the antimicrobial metabolite-producing Pseudoalteromonas strains. The genus Pseudoalteromonas hosts 41 species, among which 16 are antimicrobial metabolite producers. To date, a total of 69 antimicrobial compounds belonging to 18 different families have been documented. They are classified into alkaloids, polyketides, and peptides. Finally as Pseudoalteromonas strains are frequently associated with macroorganisms, we can discuss the ecological significance of antimicrobial Pseudoalteromonas as part of the resident microbiota.
Collapse
Affiliation(s)
- Clément Offret
- Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne LUBEM EA3882, Université de Brest, Technopole Brest-Iroise, 29280 Plouzané, France.
| | - Florie Desriac
- Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne LUBEM EA3882, Université de Brest, Technopole Brest-Iroise, 29280 Plouzané, France.
| | - Patrick Le Chevalier
- Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne LUBEM EA3882, Université de Brest, Technopole Brest-Iroise, 29280 Plouzané, France.
| | - Jérôme Mounier
- Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne LUBEM EA3882, Université de Brest, Technopole Brest-Iroise, 29280 Plouzané, France.
| | - Camille Jégou
- Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne LUBEM EA3882, Université de Brest, Technopole Brest-Iroise, 29280 Plouzané, France.
| | - Yannick Fleury
- Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne LUBEM EA3882, Université de Brest, Technopole Brest-Iroise, 29280 Plouzané, France.
| |
Collapse
|
32
|
Abstract
The tissue, skeleton, and secreted mucus of corals supports a highly dynamic and diverse community of microbes, which play a major role in the health status of corals such as the provision of essential nutrients or the metabolism of waste products. However, members of the Vibrio genus are prominent as causative agents of disease in corals. The aim of this chapter is to review our understanding of the spectrum of disease effects displayed by coral-associated vibrios, with a particular emphasis on the few species where detailed studies of pathogenicity have been conducted. The role of Vibrio shilonii in seasonal bleaching of Oculina patagonica and the development of the coral probiotic hypothesis is reviewed, pointing to unanswered questions about this phenomenon. Detailed consideration is given to studies of V. coralliilyticus and related pathogens and changes in the dominance of vibrios associated with coral bleaching. Other Vibrio-associated disease syndromes discussed include yellow band/blotch disease and tissue necrosis in temperate gorgonian corals. The review includes analysis of the role of enzymes, resistance to oxidative stress, and quorum sensing in virulence of coral-associated vibrios. The review concludes that we should probably regard most-possibly all-vibrios as "opportunistic" pathogens which, under certain environmental conditions, are capable of overwhelming the defense mechanisms of appropriate hosts, leading to rapid growth and tissue destruction.
Collapse
|
33
|
Graça AP, Viana F, Bondoso J, Correia MI, Gomes L, Humanes M, Reis A, Xavier JR, Gaspar H, Lage OM. The antimicrobial activity of heterotrophic bacteria isolated from the marine sponge Erylus deficiens (Astrophorida, Geodiidae). Front Microbiol 2015; 6:389. [PMID: 25999928 PMCID: PMC4423441 DOI: 10.3389/fmicb.2015.00389] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/15/2015] [Indexed: 11/22/2022] Open
Abstract
Interest in the study of marine sponges and their associated microbiome has increased both for ecological reasons and for their great biotechnological potential. In this work, heterotrophic bacteria associated with three specimens of the marine sponge Erylus deficiens, were isolated in pure culture, phylogenetically identified and screened for antimicrobial activity. The isolation of bacteria after an enrichment treatment in heterotrophic medium revealed diversity in bacterial composition with only Pseudoalteromonas being shared by two specimens. Of the 83 selected isolates, 58% belong to Proteobacteria, 23% to Actinobacteria and 19% to Firmicutes. Diffusion agar assays for bioactivity screening against four bacterial strains and one yeast, revealed that a high number of the isolated bacteria (68.7%) were active, particularly against Candida albicans and Vibrio anguillarum. Pseudoalteromonas, Microbacterium, and Proteus were the most bioactive genera. After this preliminary screening, the bioactive strains were further evaluated in liquid assays against C. albicans, Bacillus subtilis and Escherichia coli. Filtered culture medium and acetone extracts from three and 5 days-old cultures were assayed. High antifungal activity against C. albicans in both aqueous and acetone extracts as well as absence of activity against B. subtilis were confirmed. Higher levels of activity were obtained with the aqueous extracts when compared to the acetone extracts and differences were also observed between the 3 and 5 day-old extracts. Furthermore, a low number of active strains was observed against E. coli. Potential presence of type-I polyketide synthases (PKS-I) and non-ribosomal peptide synthetases (NRPSs) genes were detected in 17 and 30 isolates, respectively. The high levels of bioactivity and the likely presence of associated genes suggest that Erylus deficiens bacteria are potential sources of novel marine bioactive compounds.
Collapse
Affiliation(s)
- Ana Patrícia Graça
- Department of Biology, Faculty of Sciences, University of Porto Porto, Portugal ; Centre of Marine and Environmental Research (CIIMAR) Porto, Portugal
| | - Flávia Viana
- Department of Biology, Faculty of Sciences, University of Porto Porto, Portugal ; Centro de Química e Bioquímica e Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa Lisboa, Portugal
| | - Joana Bondoso
- Department of Biology, Faculty of Sciences, University of Porto Porto, Portugal ; Centre of Marine and Environmental Research (CIIMAR) Porto, Portugal
| | - Maria Inês Correia
- Department of Biology, Faculty of Sciences, University of Porto Porto, Portugal
| | - Luis Gomes
- Department of Biology, Faculty of Sciences, University of Porto Porto, Portugal
| | - Madalena Humanes
- Centro de Química e Bioquímica e Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa Lisboa, Portugal
| | - Alberto Reis
- Bioenergy Unit, National Laboratory for Energy and Geology I.P. Lisboa, Portugal
| | - Joana R Xavier
- Department of Biology and Centre for Geobiology, University of Bergen Bergen, Norway
| | - Helena Gaspar
- Centro de Química e Bioquímica e Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa Lisboa, Portugal
| | - Olga M Lage
- Department of Biology, Faculty of Sciences, University of Porto Porto, Portugal ; Centre of Marine and Environmental Research (CIIMAR) Porto, Portugal
| |
Collapse
|
34
|
Sardar RK, Kavita K, Jha B. Lipopolysaccharide of Marinobacter litoralis inhibits swarming motility and biofilm formation in Pseudomonas aeruginosa PA01. Carbohydr Polym 2015; 123:468-75. [PMID: 25843881 DOI: 10.1016/j.carbpol.2015.01.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 01/12/2015] [Accepted: 01/15/2015] [Indexed: 12/12/2022]
Abstract
The lipopolysaccharide (LPS) was isolated from a marine bacterium identified as Marinobacter litoralis BK09 using 16S rRNA gene sequence similarity analysis. The GCMS analysis showed that the LPS contained 3-hydroxy-dodecanoic acid (C12:0 3OH) (49%), dodecanoic acid (C12:0) (24%) and decanoic acid (C10:0) (19%) as major fatty acids, and the polysaccharide constituents were fucose (53.79%), xylose (28.04%) and mannose (18.15%). The LPS almost completely inhibited swarming motility in Pseudomonas aeruginosa PA01. It also reduced biofilm formation by 50% with no adverse effect on cell growth. The production of virulence factor such as pyocyanin pigment was reduced (∼40%) by the LPS. The LPS did not show any limulus amoebocyte lysate (LAL) gelation activity. The repression of swarming motility, pyocyanin production and biofilm formation by the LPS suggests its potential application against P. aeruginosa infection. This is the first report on characterization and application of LPS from M. litoralis.
Collapse
Affiliation(s)
- Raj Kumar Sardar
- Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India; Academy of Scientific and Innovative Research, CSIR, New Delhi, India
| | - Kumari Kavita
- Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India; Academy of Scientific and Innovative Research, CSIR, New Delhi, India
| | - Bhavanath Jha
- Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India; Academy of Scientific and Innovative Research, CSIR, New Delhi, India.
| |
Collapse
|
35
|
Characterisation of non-autoinducing tropodithietic Acid (TDA) production from marine sponge Pseudovibrio species. Mar Drugs 2014; 12:5960-78. [PMID: 25513851 PMCID: PMC4278212 DOI: 10.3390/md12125960] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/05/2014] [Accepted: 11/12/2014] [Indexed: 12/15/2022] Open
Abstract
The search for new antimicrobial compounds has gained added momentum in recent years, paralleled by the exponential rise in resistance to most known classes of current antibiotics. While modifications of existing drugs have brought some limited clinical success, there remains a critical need for new classes of antimicrobial compound to which key clinical pathogens will be naive. This has provided the context and impetus to marine biodiscovery programmes that seek to isolate and characterize new activities from the aquatic ecosystem. One new antibiotic to emerge from these initiatives is the antibacterial compound tropodithietic acid (TDA). The aim of this study was to provide insight into the bioactivity of and the factors governing the production of TDA in marine Pseudovibrio isolates from a collection of marine sponges. The TDA produced by these Pseudovibrio isolates exhibited potent antimicrobial activity against a broad spectrum of clinical pathogens, while TDA tolerance was frequent in non-TDA producing marine isolates. Comparative genomics analysis suggested a high degree of conservation among the tda biosynthetic clusters while expression studies revealed coordinated regulation of TDA synthesis upon transition from log to stationary phase growth, which was not induced by TDA itself or by the presence of the C10-acyl homoserine lactone quorum sensing signal molecule.
Collapse
|
36
|
Graça AP, Bondoso J, Gaspar H, Xavier JR, Monteiro MC, de la Cruz M, Oves-Costales D, Vicente F, Lage OM. Antimicrobial activity of heterotrophic bacterial communities from the marine sponge Erylus discophorus (Astrophorida, Geodiidae). PLoS One 2013; 8:e78992. [PMID: 24236081 PMCID: PMC3827338 DOI: 10.1371/journal.pone.0078992] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/25/2013] [Indexed: 12/17/2022] Open
Abstract
Heterotrophic bacteria associated with two specimens of the marine sponge Erylus discophorus were screened for their capacity to produce bioactive compounds against a panel of human pathogens (Staphylococcus aureus wild type and methicillin-resistant S. aureus (MRSA), Bacillus subtilis, Pseudomonas aeruginosa, Acinetobacter baumanii, Candida albicans and Aspergillus fumigatus), fish pathogen (Aliivibrio fischeri) and environmentally relevant bacteria (Vibrio harveyi). The sponges were collected in Berlengas Islands, Portugal. Of the 212 isolated heterotrophic bacteria belonging to Alpha- and Gammaproteobacteria, Actinobacteria and Firmicutes, 31% produced antimicrobial metabolites. Bioactivity was found against both Gram positive and Gram negative and clinically and environmentally relevant target microorganisms. Bioactivity was found mainly against B. subtilis and some bioactivity against S. aureus MRSA, V. harveyi and A. fisheri. No antifungal activity was detected. The three most bioactive genera were Pseudovibrio (47.0%), Vibrio (22.7%) and Bacillus (7.6%). Other less bioactive genera were Labrenzia, Acinetobacter, Microbulbifer, Pseudomonas, Gordonia, Microbacterium, Micrococcus and Mycobacterium, Paenibacillus and Staphylococcus. The search of polyketide I synthases (PKS-I) and nonribosomal peptide synthetases (NRPSs) genes in 59 of the bioactive bacteria suggested the presence of PKS-I in 12 strains, NRPS in 3 strains and both genes in 3 strains. Our results show the potential of the bacterial community associated with Erylus discophorus sponges as producers of bioactive compounds.
Collapse
Affiliation(s)
- Ana Patrícia Graça
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIMAR/CIIMAR), Porto, Portugal
| | - Joana Bondoso
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIMAR/CIIMAR), Porto, Portugal
| | - Helena Gaspar
- Centro de Química e Bioquímica e Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa Campo Grande, Lisboa, Portugal
| | - Joana R. Xavier
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores – Departamento de Biologia da Universidade dos Açores, Ponta Delgada, Portugal
- CEAB, Centre d'Estudis Avançats de Blanes, (CSIC), Blanes (Girona), Spain
| | - Maria Cândida Monteiro
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico de Ciencias de la Salud, Armilla, Granada, Spain
| | - Mercedes de la Cruz
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico de Ciencias de la Salud, Armilla, Granada, Spain
| | - Daniel Oves-Costales
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico de Ciencias de la Salud, Armilla, Granada, Spain
| | - Francisca Vicente
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico de Ciencias de la Salud, Armilla, Granada, Spain
| | - Olga Maria Lage
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIMAR/CIIMAR), Porto, Portugal
- * E-mail:
| |
Collapse
|
37
|
Porporato EMD, Lo Giudice A, Michaud L, De Domenico E, Spanò N. Diversity and antibacterial activity of the bacterial communities associated with two Mediterranean sea pens, Pennatula phosphorea and Pteroeides spinosum (Anthozoa: Octocorallia). MICROBIAL ECOLOGY 2013; 66:701-714. [PMID: 23817604 DOI: 10.1007/s00248-013-0260-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 06/17/2013] [Indexed: 06/02/2023]
Abstract
A description of the bacterial communities associated with the Mediterranean pennatulids (sea pens) Pennatula phosphorea and Pteroeides spinosum from the Straits of Messina (Italy) is reported. The automated ribosomal intergenic spacer analysis showed a marked difference between coral (tissues and mucus) and non-coral (underlying sediment and surrounding water) habitats. The diversity of the coral-associated communities was more deeply analysed by sequencing the 16S rRNA genes of bacterial clones. P. phosphorea and P. spinosum harbour distinct bacterial communities, indicating the occurrence of species-specific coral-associated bacteria. In addition, only few phylotypes were shared between mucus and tissues of the same pennatulid species, suggesting that there might be a sort of microhabitat partitioning between the associated microbial communities. The predominance of Alphaproteobacteria was observed for the communities associated with both tissues and mucus of P. phosphorea (84 and 58.2 % of total sequences, respectively). Conversely, the bacterial community in the mucus layer of P. spinosum was dominated by Alphaproteobacteria (74.2 %) as opposed to the tissue library that was dominated by the Gammaproteobacteria and Mollicutes (40.6 and 35.4 %, respectively). The antibacterial activity of 78 bacterial isolates against indicator organisms was assayed. Active isolates (15.4 %), which predominantly affiliated to Vibrio spp., were mainly obtained from coral mucus. Results from the present study enlarge our knowledge on the composition and antibacterial activity of coral-associated bacterial communities.
Collapse
Affiliation(s)
- E M D Porporato
- Department of Biological and Environmental Sciences (DISBA), University of Messina, Viale F. Stagno d'Alcontrès 31, 98166, Messina, Italy
| | | | | | | | | |
Collapse
|
38
|
ElAhwany AMD, Ghozlan HA, ElSharif HA, Sabry SA. Phylogenetic diversity and antimicrobial activity of marine bacteria associated with the soft coral Sarcophyton glaucum. J Basic Microbiol 2013; 55:2-10. [PMID: 23996153 DOI: 10.1002/jobm.201300195] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 07/07/2013] [Indexed: 11/11/2022]
Abstract
Coral reefs are the most biodiverse and biologically productive of all marine ecosystems. Corals harbor diverse and abundant prokaryotic groups. However, little is known about the diversity of coral-associated microorganisms. We used molecular techniques to identify and compare the culturable bacterial assemblages associated with the soft coral Sarcophyton glaucum from the Red sea. Different media were utilized for microbial isolation, and the phylogeny of the culturable bacteria associated with the coral was analyzed based on 16S rDNA sequencing. The coral associated bacteria were found to be representatives within the Gammaproteobacteria, Actinobacteria, and Firmicutes. Antimicrobial activities of twenty bacterial isolates were tested against four pathogenic bacteria (Staphylococcus aureus, Klebsiella pneumonia, Pseudomonas aeruginosa, Vibrio fluvialis) and three fungi (Penicillium sp., Aspergillus niger, Candida albicans). A relatively high proportion of bacterial strains displayed distinct antibacterial and antifungal activities, suggesting that soft coral-associated microorganisms may aid their host in protection against marine pathogens. Members of genera Bacillus and Pseudomonas had the highest proportion of antimicrobial activity which supported the hypothesis that they might play a protective role in the coral hosts.
Collapse
Affiliation(s)
- Amani M D ElAhwany
- Faculty of Science, Department of Botany and Microbiology, Alexandria University, Alexandria, Egypt
| | | | | | | |
Collapse
|
39
|
Dobretsov S, Abed RMM, Teplitski M. Mini-review: Inhibition of biofouling by marine microorganisms. BIOFOULING 2013; 29:423-41. [PMID: 23574279 DOI: 10.1080/08927014.2013.776042] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Any natural or artificial substratum exposed to seawater is quickly fouled by marine microorganisms and later by macrofouling species. Microfouling organisms on the surface of a substratum form heterogenic biofilms, which are composed of multiple species of heterotrophic bacteria, cyanobacteria, diatoms, protozoa and fungi. Biofilms on artificial structures create serious problems for industries worldwide, with effects including an increase in drag force and metal corrosion as well as a reduction in heat transfer efficiency. Additionally, microorganisms produce chemical compounds that may induce or inhibit settlement and growth of other fouling organisms. Since the last review by the first author on inhibition of biofouling by marine microbes in 2006, significant progress has been made in the field. Several antimicrobial, antialgal and antilarval compounds have been isolated from heterotrophic marine bacteria, cyanobacteria and fungi. Some of these compounds have multiple bioactivities. Microorganisms are able to disrupt biofilms by inhibition of bacterial signalling and production of enzymes that degrade bacterial signals and polymers. Epibiotic microorganisms associated with marine algae and invertebrates have a high antifouling (AF) potential, which can be used to solve biofouling problems in industry. However, more information about the production of AF compounds by marine microorganisms in situ and their mechanisms of action needs to be obtained. This review focuses on the AF activity of marine heterotrophic bacteria, cyanobacteria and fungi and covers publications from 2006 up to the end of 2012.
Collapse
Affiliation(s)
- Sergey Dobretsov
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman.
| | | | | |
Collapse
|