1
|
Duan X, Wang C, Yang X, Liu H, Lu X, Li C, Li P, Wang Z, Tian Y. Methylotrophic yeasts for chemicals production using methanol as substrate: Current status, challenges, and strategies. BIORESOURCE TECHNOLOGY 2025; 434:132815. [PMID: 40523413 DOI: 10.1016/j.biortech.2025.132815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2025] [Revised: 06/06/2025] [Accepted: 06/13/2025] [Indexed: 06/19/2025]
Abstract
Methanol, an inexpensive and renewable feedstock, has garnered significant attention in the green biomanufacturing industry. The bioconversion of methanol to chemicals offers a promising way to combat the food crisis and mitigate climate change. Methylotrophic yeasts, which are promising candidates, have a natural compartmentalized ability to utilize methanol, effectively reducing the toxic effects of methanol metabolism on cells. This review comprehensively summarizes the recent progress in the bioconversion of methanol for chemical production using methylotrophic yeasts. Furthermore, a series of feasible strategies are proposed to address the challenges of low utilization of methanol, cytotoxicity of methanol and its derivative formaldehyde, and oxidative stress. Finally, the future development directions of methylotrophic yeasts are outlined.
Collapse
Affiliation(s)
- Xiyu Duan
- College of Life Science, Hunan Normal University, Changsha 410081 Hunan, China
| | - Chong Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128 Hunan, China; Yuelushan Laboratory, Changsha 410128 Hunan, China
| | - Xiaona Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128 Hunan, China; Yuelushan Laboratory, Changsha 410128 Hunan, China
| | - Huhu Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128 Hunan, China; Yuelushan Laboratory, Changsha 410128 Hunan, China
| | - Xiangyang Lu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128 Hunan, China; Yuelushan Laboratory, Changsha 410128 Hunan, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410018 Hunan, China; Yuelushan Laboratory, Changsha 410128 Hunan, China
| | - Peiwang Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410018 Hunan, China; Yuelushan Laboratory, Changsha 410128 Hunan, China
| | - Zhi Wang
- College of Life Science, Hunan Normal University, Changsha 410081 Hunan, China.
| | - Yun Tian
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128 Hunan, China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410018 Hunan, China; Yuelushan Laboratory, Changsha 410128 Hunan, China; Institute of Agricultural Quality Standard and Testing, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000 Tibet, China.
| |
Collapse
|
2
|
García-Calvo L, Kummen C, Rustad S, Rønning SB, Fagerlund A. A toolkit for facilitating markerless integration of expression cassettes in Komagataella phaffii via CRISPR/Cas9. Microb Cell Fact 2025; 24:97. [PMID: 40319267 PMCID: PMC12049782 DOI: 10.1186/s12934-025-02716-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 04/08/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND The yeast Komagataella phaffii (formerly known as Pichia pastoris) has been widely used for functional expression of recombinant proteins, including plant and animal food proteins. CRISPR/Cas9 genome editing systems can be used for insertion of heterologous genes without the use of selection markers. The study aimed to create a convenient markerless knock-in method for integrating expression cassettes into the chromosome of K. phaffii using CRISPR/Cas9 technology. The approach was based on the hierarchical, modular, Golden Gate assembly employing the GoldenPiCS toolkit. Furthermore, the aim was to evaluate the system's efficiency and suitability for producing secreted recombinant food proteins. RESULTS Three Cas9/sgRNA plasmids were constructed, along with corresponding donor helper plasmids containing homology regions for chromosomal integration via homology-directed repair. The integration efficiency of an enhanced green fluorescent protein (eGFP) expression cassette was assessed at three genomic loci (04576, PFK1, and ROX1). The 04576 locus showed the highest integration efficiency, while ROX1 had the highest transformation efficiency. Whole genome sequencing revealed variable copy numbers of eGFP expression cassettes among clones, corresponding with increasing levels of fluorescence. Furthermore, the system's applicability for producing recombinant food proteins was validated by successfully expressing and secreting chicken ovalbumin. This constitutes the first report of CRISPR/Cas9 applied to produce recombinant chicken ovalbumin. CONCLUSIONS The adapted GoldenPiCS toolkit combined with CRISPR/Cas9 technology enabled efficient and precise genome integration in K. phaffii. This approach holds promise for expanding the production of high-value recombinant proteins. Future research should focus on optimizing integration sites and improving cloning procedures to enhance the system's efficiency and versatility.
Collapse
Affiliation(s)
- Laura García-Calvo
- Nofima - Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Charlotte Kummen
- Nofima - Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Solvor Rustad
- Nofima - Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Sissel Beate Rønning
- Nofima - Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Annette Fagerlund
- Nofima - Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway.
| |
Collapse
|
3
|
Khalifeh Soltani M, Arjmand S, Ranaei Siadat SO, Bagheri A, Marashi SH. Hansenula polymorpha methanol metabolism genes enhance recombinant protein production in Komagataella phaffi. AMB Express 2024; 14:88. [PMID: 39095661 PMCID: PMC11296995 DOI: 10.1186/s13568-024-01743-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024] Open
Abstract
Recombinant protein production in Komagataella phaffi (K. phaffi), a widely utilized host organism, can be optimized by enhancing the metabolic flux in the central carbon metabolism pathways. The methanol utilization pathway (MUT) during methanol-based growth plays a crucial role in providing precursors and energy for cell growth and development. This study investigated the impact of boosting the methanol dissimilation pathway, a branch of MUT that plays a vital role in detoxifying formaldehyde and providing energy in the form of NADH, in K. phaffi. This was achieved by integrating two orthologous genes from Hansenula polymorpha into the K. phaffi genome: formaldehyde dehydrogenase (HpFLD) and formate dehydrogenase (HpFMDH). The HpFLD and HpFMDH genes were isolated from the Hansenula polymorpha genome and inserted under the regulation of the pAOX1 promoter in the genome of recombinant K. phaffi that already contained a single copy of model protein genes (eGFP or EGII). The expression levels of these model proteins were assessed through protein activity assays and gene expression analysis. The findings revealed that while both orthologous genes positively influenced model protein production, HpFMDH exhibited a more pronounced upregulation in expression compared to HpFLD. Co-expression of both orthologous genes demonstrated synergistic effects, resulting in approximately a twofold increase in the levels of the model proteins detected. This study provides valuable insights into enhancing the production capacity of recombinant proteins in K. phaffi.
Collapse
Affiliation(s)
- Maryam Khalifeh Soltani
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Sareh Arjmand
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | | | - Abdolreza Bagheri
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Seyed Hassan Marashi
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
4
|
Li Y, Zhang W, Jiang Y, Devahastin S, Hu X, Song Z, Yi J. Inactivation mechanisms on pectin methylesterase by high pressure processing combined with its recombinant inhibitor. Food Chem 2024; 446:138806. [PMID: 38402767 DOI: 10.1016/j.foodchem.2024.138806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/18/2024] [Accepted: 02/18/2024] [Indexed: 02/27/2024]
Abstract
High pressure processing (HPP) juice often experiences cloud loss during storage, caused by the activity of pectin methylesterase (PME). The combination of HPP with natural pectin methylesterase inhibitor (PMEI) could improve juice stability. However, extracting natural PMEI is challenging. Gene recombination technology offers a solution by efficiently expressing recombinant PMEI from Escherichia coli and Pichia pastoris. Experimental and molecular dynamics simulation were conducted to investigate changes in activity, structure, and interaction of PME and recombinant PMEI during HPP. The results showed PME retained high residual activity, while PMEI demonstrated superior pressure resistance. Under HPP, PMEI's structure remained stable, while the N-terminus of PME's α-helix became unstable. Additionally, the helix at the junction with the PME/PMEI complex changed, thereby affecting its binding. Furthermore, PMEI competed with pectin for active sites on PME, elucidating. The potential mechanism of PME inactivation through the synergistic effects of HPP and PMEI.
Collapse
Affiliation(s)
- Yantong Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan Key Laboratory for Food Advanced Manufacturing, 650500, Kunming, China
| | - Wanzhen Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan Key Laboratory for Food Advanced Manufacturing, 650500, Kunming, China
| | - Yongli Jiang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan Key Laboratory for Food Advanced Manufacturing, 650500, Kunming, China
| | - Sakamon Devahastin
- International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Department of Food Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Tungkru, Bangkok 10140, Thailand
| | - Xiaosong Hu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zibo Song
- Yunnan Maoduoli Group Food Co., Ltd., 653100 Yuxi, Yunnan, China; Yunnan Provincial Key Laboratory of Applied Technology for Special Forest Fruits, 653100 Yuxi, Yunnan, China
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China; Yunnan Key Laboratory for Food Advanced Manufacturing, 650500, Kunming, China; Yunnan Maoduoli Group Food Co., Ltd., 653100 Yuxi, Yunnan, China.
| |
Collapse
|
5
|
Khlebodarova TM, Bogacheva NV, Zadorozhny AV, Bryanskaya AV, Vasilieva AR, Chesnokov DO, Pavlova EI, Peltek SE. Komagataella phaffii as a Platform for Heterologous Expression of Enzymes Used for Industry. Microorganisms 2024; 12:346. [PMID: 38399750 PMCID: PMC10892927 DOI: 10.3390/microorganisms12020346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
In the 1980s, Escherichia coli was the preferred host for heterologous protein expression owing to its capacity for rapid growth in complex media; well-studied genetics; rapid and direct transformation with foreign DNA; and easily scalable fermentation. Despite the relative ease of use of E. coli for achieving the high expression of many recombinant proteins, for some proteins, e.g., membrane proteins or proteins of eukaryotic origin, this approach can be rather ineffective. Another microorganism long-used and popular as an expression system is baker's yeast, Saccharomyces cerevisiae. In spite of a number of obvious advantages of these yeasts as host cells, there are some limitations on their use as expression systems, for example, inefficient secretion, misfolding, hyperglycosylation, and aberrant proteolytic processing of proteins. Over the past decade, nontraditional yeast species have been adapted to the role of alternative hosts for the production of recombinant proteins, e.g., Komagataella phaffii, Yarrowia lipolytica, and Schizosaccharomyces pombe. These yeast species' several physiological characteristics (that are different from those of S. cerevisiae), such as faster growth on cheap carbon sources and higher secretion capacity, make them practical alternative hosts for biotechnological purposes. Currently, the K. phaffii-based expression system is one of the most popular for the production of heterologous proteins. Along with the low secretion of endogenous proteins, K. phaffii efficiently produces and secretes heterologous proteins in high yields, thereby reducing the cost of purifying the latter. This review will discuss practical approaches and technological solutions for the efficient expression of recombinant proteins in K. phaffii, mainly based on the example of enzymes used for the feed industry.
Collapse
Affiliation(s)
- Tamara M. Khlebodarova
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Natalia V. Bogacheva
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Andrey V. Zadorozhny
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Alla V. Bryanskaya
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Asya R. Vasilieva
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Danil O. Chesnokov
- Sector of Genetics of Industrial Microorganisms of Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.O.C.); (E.I.P.)
| | - Elena I. Pavlova
- Sector of Genetics of Industrial Microorganisms of Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.O.C.); (E.I.P.)
| | - Sergey E. Peltek
- Kurchatov Genomic Center at Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (T.M.K.); (N.V.B.); (A.V.Z.); (A.V.B.); (A.R.V.)
- Laboratory Molecular Biotechnologies of the Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
6
|
Lai J, Song L, Zhou Y, Zong H, Zhuge B, Lu X. Fine-Tuned Gene Expression Elements from Hybrid Promoter Libraries in Pichia pastoris. ACS Synth Biol 2024; 13:310-318. [PMID: 38150419 DOI: 10.1021/acssynbio.3c00534] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
As a desirable microbial cell factory, Pichia pastoris has garnered extensive utilization in metabolic engineering. Nevertheless, the lack of fine-tuned gene expression components has significantly constrained the potential scope of applications. Here, a gradient strength promoter library was constructed by random hybridization and high-throughput screening. The hybrid promoter, phy47, performed best with 2.93-fold higher GFP expression levels than GAP. The broad applicability of the novel hybrid promoter variants in biotechnological production was further validated in the biosynthesis of pinene and rHuPH20 with higher titers. The upstream regulatory sequences (UASE and URSD) were identified and applied to promoters GAP and ENO1, resulting in a 34 and 43% increase and an 18 and 37% decrease in the expression level, respectively. Yeast one-hybrid analysis showed that transcription factor HAP2 activates the hybrid promoter through a direct interaction with the crucial regulatory region UASH. Furthermore, a short segment of tunable activation sequence (20 bp) was also screened, and artificial promoters were constructed in tandem with the addition of regulatory sequence, resulting in a 61% expansion of the expression range. This study provides a molecular tool and regulatory elements for further synthetic biology research in P. pastoris.
Collapse
Affiliation(s)
- Jie Lai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Lab of Industrial Microorganism & Research and Design Center for Polyols, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Lingang Song
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Lab of Industrial Microorganism & Research and Design Center for Polyols, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yuyu Zhou
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Lab of Industrial Microorganism & Research and Design Center for Polyols, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hong Zong
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Lab of Industrial Microorganism & Research and Design Center for Polyols, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Bin Zhuge
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Lab of Industrial Microorganism & Research and Design Center for Polyols, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xinyao Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Lab of Industrial Microorganism & Research and Design Center for Polyols, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
7
|
Wang X, Li Y, Jin Z, Liu X, Gao X, Guo S, Yu T. A novel CRISPR/Cas9 system with high genomic editing efficiency and recyclable auxotrophic selective marker for multiple-step metabolic rewriting in Pichia pastoris. Synth Syst Biotechnol 2023; 8:445-451. [PMID: 37448527 PMCID: PMC10336193 DOI: 10.1016/j.synbio.2023.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/29/2023] [Accepted: 06/08/2023] [Indexed: 07/15/2023] Open
Abstract
The methylotrophic budding yeast Pichia pastoris has been utilized to the production of a variety of heterologous recombinant proteins owing to the strong inducible alcohol oxidase promoter (pAOX1). However, it is difficult to use P. pastoris as the chassis cell factory for high-valuable metabolite biosynthesis due to the low homologous recombination (HR) efficiency and the limitation of handy selective markers, especially in the condition of multistep biosynthetic pathways. Hence, we developed a novel CRISPR/Cas9 system with highly editing efficiencies and recyclable auxotrophic selective marker (HiEE-ReSM) to facilitate cell factory in P. pastoris. Firstly, we improved the HR rates of P. pastoris through knocking out the non-homologous-end-joining gene (Δku70) and overexpressing HR-related proteins (RAD52 and RAD59), resulting in higher positive rate compared to the basal strain, achieved 97%. Then, we used the uracil biosynthetic genes PpURA3 as the reverse screening marker, which can improve the recycling efficiency of marker. Meanwhile, the HR rate is still 100% in uracil auxotrophic yeast. Specially, we improved the growth rate of uracil auxotrophic yeast strains by overexpressing the uracil transporter (scFUR4) to increase the uptake of exogenous uracil from medium. Meanwhile, we explored the optimal concentration of uracil (90 mg/L) for strain growth. In the end, the HiEE-ReSM system has been applied for the inositol production (250 mg/L) derived from methanol in P. pastoris. The systems will contribute to P. pastoris as an attractive cell factory for the complex compound biosynthesis through multistep metabolic pathway engineering and will be a useful tool to improve one carbon (C1) bio-utilization.
Collapse
Affiliation(s)
- Xiang Wang
- Center for Synthetic Biochemistry, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Li
- Center for Synthetic Biochemistry, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhehao Jin
- Center for Synthetic Biochemistry, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
| | - Xiangjian Liu
- Center for Synthetic Biochemistry, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
| | - Xiang Gao
- Center for Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology of CAS, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academic of Science, Shenzhen, 518055, China
| | - Shuyuan Guo
- Center for Synthetic Biochemistry, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
| | - Tao Yu
- Center for Synthetic Biochemistry, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
| |
Collapse
|
8
|
Utami N, Nurdiani D, Hariyatun H, Putro EW, Patria FP, Kusharyoto W. Full-length versus truncated α-factor secretory signal sequences for expression of recombinant human insulin precursor in yeast Pichia pastoris: a comparison. J Genet Eng Biotechnol 2023; 21:67. [PMID: 37212962 PMCID: PMC10203085 DOI: 10.1186/s43141-023-00521-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND Human insulin was the first FDA-approved biopharmaceutical drug produced through recombinant DNA technology. The previous studies successfully expressed recombinant human insulin precursors (HIP) in Pichia pastoris truncated and full-length α-factor recombinant clones. The matting α-factor (Matα), a signal secretion, direct the HIP protein into the culture media. This study aimed to compare the HIP expression from full-length and truncated α-factor secretory signals clones that grown in two types of media, buffered methanol complex medium (BMMY) and methanol basal salt medium (BSMM). RESULTS ImageJ analysis of the HIP's SDS-PAGE shows that the average HIP expression level of the recombinant P. pastoris truncated α-factor clone (CL4) was significantly higher compared to the full-length (HF7) when expressed in both media. Western blot analysis showed that the expressed protein was the HIP. The α-factor protein structure was predicted using the AlphaFold and visualized using UCSF ChimeraX to confirm the secretion ability for both clones. CONCLUSIONS CL4 clone, which utilized a truncated α-factor in the P. pastoris HIP expression cassette, significantly expressed HIP 8.97 times (in BMMY) and 1.17 times (in BSMM) higher than HF7 clone, which used a full-length α-factor secretory signal. This research confirmed that deletion of some regions of the secretory signal sequence significantly improved the efficiency of HIP protein expression in P. pastoris.
Collapse
Affiliation(s)
- Nuruliawaty Utami
- Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911, Indonesia.
| | - Dini Nurdiani
- Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911, Indonesia
| | - Hariyatun Hariyatun
- Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911, Indonesia
| | - Eko Wahyu Putro
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911, Indonesia
| | - Fadillah Putri Patria
- Laboratory Department, Indonesia International Institute for Life Sciences (i3L), Jakarta, Timur, 13210, Indonesia
| | - Wien Kusharyoto
- Research Center for Genetic Engineering, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911, Indonesia
| |
Collapse
|
9
|
Wang N, Peng H, Yang C, Guo W, Wang M, Li G, Liu D. Metabolic Engineering of Model Microorganisms for the Production of Xanthophyll. Microorganisms 2023; 11:1252. [PMID: 37317226 PMCID: PMC10223009 DOI: 10.3390/microorganisms11051252] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/19/2023] [Accepted: 05/06/2023] [Indexed: 06/16/2023] Open
Abstract
Xanthophyll is an oxidated version of carotenoid. It presents significant value to the pharmaceutical, food, and cosmetic industries due to its specific antioxidant activity and variety of colors. Chemical processing and conventional extraction from natural organisms are still the main sources of xanthophyll. However, the current industrial production model can no longer meet the demand for human health care, reducing petrochemical energy consumption and green sustainable development. With the swift development of genetic metabolic engineering, xanthophyll synthesis by the metabolic engineering of model microorganisms shows great application potential. At present, compared to carotenes such as lycopene and β-carotene, xanthophyll has a relatively low production in engineering microorganisms due to its stronger inherent antioxidation, relatively high polarity, and longer metabolic pathway. This review comprehensively summarized the progress in xanthophyll synthesis by the metabolic engineering of model microorganisms, described strategies to improve xanthophyll production in detail, and proposed the current challenges and future efforts needed to build commercialized xanthophyll-producing microorganisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dehu Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
10
|
Biodegradation of Free Gossypol by Helicoverpa armigera Carboxylesterase Expressed in Pichia pastoris. Toxins (Basel) 2022; 14:toxins14120816. [PMID: 36548713 PMCID: PMC9788223 DOI: 10.3390/toxins14120816] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Gossypol is a polyphenolic toxic secondary metabolite derived from cotton. Free gossypol in cotton meal is remarkably harmful to animals. Furthermore, microbial degradation of gossypol produces metabolites that reduce feed quality. We adopted an enzymatic method to degrade free gossypol safely and effectively. We cloned the gene cce001a encoding carboxylesterase (CarE) into pPICZαA and transformed it into Pichia pastoris GS115. The target protein was successfully obtained, and CarE CCE001a could effectively degrade free gossypol with a degradation rate of 89%. When esterase was added, the exposed toxic groups of gossypol reacted with different amino acids and amines to form bound gossypol, generating substances with (M + H) m/z ratios of 560.15, 600.25, and 713.46. The molecular formula was C27H28O13, C34H36N2O6, and C47H59N3O3. The observed instability of the hydroxyl groups caused the substitution and shedding of the group, forming a substance with m/z of 488.26 and molecular formula C31H36O5. These properties render the CarE CCE001a a valid candidate for the detoxification of cotton meal. Furthermore, the findings help elucidate the degradation process of gossypol in vitro.
Collapse
|
11
|
Dalvie NC, Naranjo CA, Rodriguez-Aponte SA, Johnston RS, Christopher Love J. Steric accessibility of the N-terminus improves the titer and quality of recombinant proteins secreted from Komagataella phaffii. Microb Cell Fact 2022; 21:180. [PMID: 36064410 PMCID: PMC9444097 DOI: 10.1186/s12934-022-01905-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Komagataella phaffii is a commonly used alternative host for manufacturing therapeutic proteins, in part because of its ability to secrete recombinant proteins into the extracellular space. Incorrect processing of secreted proteins by cells can, however, cause non-functional product-related variants, which are expensive to remove in purification and lower overall process yields. The secretion signal peptide, attached to the N-terminus of the recombinant protein, is a major determinant of the quality of the protein sequence and yield. In K. phaffii, the signal peptide from the Saccharomyces cerevisiae alpha mating factor often yields the highest secreted titer of recombinant proteins, but the quality of secreted protein can vary highly. RESULTS We determined that an aggregated product-related variant of the SARS-CoV-2 receptor binding domain is caused by N-terminal extension from incomplete cleavage of the signal peptide. We eliminated this variant and improved secreted protein titer up to 76% by extension of the N-terminus with a short, functional peptide moiety or with the EAEA residues from the native signal peptide. We then applied this strategy to three other recombinant subunit vaccine antigens and observed consistent elimination of the same aggregated product-related variant. Finally, we demonstrated that this benefit in quality and secreted titer can be achieved with addition of a single amino acid to the N-terminus of the recombinant protein. CONCLUSIONS Our observations suggest that steric hindrance of proteases in the Golgi that cleave the signal peptide can cause unwanted N-terminal extension and related product variants. We demonstrated that this phenomenon occurs for multiple recombinant proteins, and can be addressed by minimal modification of the N-terminus to improve steric accessibility. This strategy may enable consistent secretion of a broad range of recombinant proteins with the highly productive alpha mating factor secretion signal peptide.
Collapse
Affiliation(s)
- Neil C Dalvie
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Christopher A Naranjo
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sergio A Rodriguez-Aponte
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ryan S Johnston
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - J Christopher Love
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
12
|
Heterologous protein expression enhancement of Komagataella phaffii by ammonium formate induction based on transcriptomic analysis. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Naseri G, Prause K, Hamdo HH, Arenz C. Artificial Transcription Factors for Tuneable Gene Expression in Pichia pastoris. Front Bioeng Biotechnol 2021; 9:676900. [PMID: 34434924 PMCID: PMC8381338 DOI: 10.3389/fbioe.2021.676900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 06/30/2021] [Indexed: 11/13/2022] Open
Abstract
The non-conventional yeast Pichia pastoris (syn. Komagataella phaffii) has become a powerful eukaryotic expression platform for biopharmaceutical and biotechnological applications on both laboratory and industrial scales. Despite the fundamental role that artificial transcription factors (ATFs) play in the orthogonal control of gene expression in synthetic biology, a limited number of ATFs are available for P. pastoris. To establish orthogonal regulators for use in P. pastoris, we characterized ATFs derived from Arabidopsis TFs. The plant-derived ATFs contain the binding domain of TFs from the plant Arabidopsis thaliana, in combination with the activation domains of yeast GAL4 and plant EDLL and a synthetic promoter harboring the cognate cis-regulatory motifs. Chromosomally integrated ATFs and their binding sites (ATF/BSs) resulted in a wide spectrum of inducible transcriptional outputs in P. pastoris, ranging from as low as 1- to as high as ∼63-fold induction with only small growth defects. We demonstrated the application of ATF/BSs by generating P. pastoris cells that produce β-carotene. Notably, the productivity of β-carotene in P. pastoris was ∼4.8-fold higher than that in S. cerevisiae, reaching ∼59% of the β-carotene productivity obtained in a S. cerevisiae strain optimized for the production of the β-carotene precursor, farnesyl diphosphate, by rewiring the endogenous metabolic pathways using plant-derived ATF/BSs. Our data suggest that plant-derived regulators have a high degree of transferability from S. cerevisiae to P. pastoris. The plant-derived ATFs, together with their cognate binding sites, powerfully increase the repertoire of transcriptional regulatory modules for the tuning of protein expression levels required in metabolic engineering or synthetic biology in P. pastoris.
Collapse
Affiliation(s)
- Gita Naseri
- Institute of Biology, Humboldt Universität zu Berlin, Berlin, Germany
| | - Kevin Prause
- Institute of Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
| | - Housam Haj Hamdo
- Institute of Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
| | - Christoph Arenz
- Institute of Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
14
|
Yuan SF, Brooks SM, Nguyen AW, Lin WL, Johnston TG, Maynard JA, Nelson A, Alper HS. Bioproduced Proteins On Demand (Bio-POD) in hydrogels using Pichia pastoris. Bioact Mater 2021; 6:2390-2399. [PMID: 33553823 PMCID: PMC7846901 DOI: 10.1016/j.bioactmat.2021.01.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/23/2020] [Accepted: 01/14/2021] [Indexed: 12/20/2022] Open
Abstract
Traditional production of industrial and therapeutic proteins by eukaryotic cells typically requires large-scale fermentation capacity. As a result, these systems are not easily portable or reusable for on-demand protein production applications. In this study, we employ Bioproduced Proteins On Demand (Bio-POD), a F127-bisurethane methacrylate hydrogel-based technique that immobilizes engineered Pichia pastoris for preservable, on-demand production and secretion of medium- and high-molecular weight proteins (in this case, SEAP, α-amylase, and anti-HER2). The gel samples containing encapsulated-yeast demonstrated sustained protein production and exhibited productivity immediately after lyophilization and rehydration. The hydrogel platform described here is the first hydrogel immobilization using a P. pastoris system to produce recombinant proteins of this breadth. These results highlight the potential of this formulation to establish a cost-effective bioprocessing strategy for on-demand protein production.
Collapse
Affiliation(s)
- Shuo-Fu Yuan
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Sierra M. Brooks
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Annalee W. Nguyen
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Wen-Ling Lin
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Trevor G. Johnston
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, USA
| | - Jennifer A. Maynard
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Alshakim Nelson
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, USA
| | - Hal S. Alper
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
15
|
Alva TR, Riera M, Chartron JW. Translational landscape and protein biogenesis demands of the early secretory pathway in Komagataella phaffii. Microb Cell Fact 2021; 20:19. [PMID: 33472617 PMCID: PMC7816318 DOI: 10.1186/s12934-020-01489-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/29/2020] [Indexed: 11/24/2022] Open
Abstract
Background Eukaryotes use distinct networks of biogenesis factors to synthesize, fold, monitor, traffic, and secrete proteins. During heterologous expression, saturation of any of these networks may bottleneck titer and yield. To understand the flux through various routes into the early secretory pathway, we quantified the global and membrane-associated translatomes of Komagataella phaffii. Results By coupling Ribo-seq with long-read mRNA sequencing, we generated a new annotation of protein-encoding genes. By using Ribo-seq with subcellular fractionation, we quantified demands on co- and posttranslational translocation pathways. During exponential growth in rich media, protein components of the cell-wall represent the greatest number of nascent chains entering the ER. Transcripts encoding the transmembrane protein PMA1 sequester more ribosomes at the ER membrane than any others. Comparison to Saccharomyces cerevisiae reveals conservation in the resources allocated by gene ontology, but variation in the diversity of gene products entering the secretory pathway. Conclusion A subset of host proteins, particularly cell-wall components, impose the greatest biosynthetic demands in the early secretory pathway. These proteins are potential targets in strain engineering aimed at alleviating bottlenecks during heterologous protein production.
Collapse
Affiliation(s)
- Troy R Alva
- Department of Bioengineering, University of California, Riverside, 92521, United States of America.
| | - Melanie Riera
- Department of Bioengineering, University of California, Riverside, 92521, United States of America
| | - Justin W Chartron
- Department of Bioengineering, University of California, Riverside, 92521, United States of America.,Protabit LLC, 1010 E Union St Suite 110, Pasadena, California, 91106, United States of America
| |
Collapse
|
16
|
Al-Amoodi AS, Sakashita K, Ali AJ, Zhou R, Lee JM, Tehseen M, Li M, Belmonte JCI, Kusakabe T, Merzaban JS. Using Eukaryotic Expression Systems to Generate Human α1,3-Fucosyltransferases That Effectively Create Selectin-Binding Glycans on Stem Cells. Biochemistry 2020; 59:3757-3771. [PMID: 32901486 DOI: 10.1021/acs.biochem.0c00523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recruitment of circulating cells toward target sites is primarily dependent on selectin/ligand adhesive interactions. Glycosyltransferases are involved in the creation of selectin ligands on proteins and lipids. α1,3-Fucosylation is imperative for the creation of selectin ligands, and a number of fucosyltransferases (FTs) can modify terminal lactosamines on cells to create these ligands. One FT, fucosyltransferase VI (FTVI), adds a fucose in an α1,3 configuration to N-acetylglucosamine to generate sialyl Lewis X (sLex) epitopes on proteins of live cells and enhances their ability to bind E-selectin. Although a number of recombinant human FTVIs have been purified, apart from limited commercial enzymes, they were not characterized for their activity on live cells. Here we focused on establishing a robust method for producing FTVI that is active on living cells (hematopoietic cells and mesenchymal stromal cells). To this end, we used two expression systems, Bombyx mori (silkworm) and Pichia pastoris (yeast), to produce significant amounts of N-terminally tagged FTVI and demonstrated that these enzymes have superior activity when compared to currently available commercial enzymes that are produced from various expression systems. Overall, we outline a scheme for obtaining large amounts of highly active FTVI that can be used for the application of FTVI in enhancing the engraftment of cells lacking the sLex epitopes.
Collapse
Affiliation(s)
- Asma S Al-Amoodi
- Laboratory of Cell Migration and Signaling, Division of Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, 4700 KAUST, Thuwal, Jeddah 23955, Saudi Arabia
| | - Kosuke Sakashita
- Laboratory of Cell Migration and Signaling, Division of Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, 4700 KAUST, Thuwal, Jeddah 23955, Saudi Arabia
| | - Amal J Ali
- Laboratory of Cell Migration and Signaling, Division of Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, 4700 KAUST, Thuwal, Jeddah 23955, Saudi Arabia
| | - Ruoyu Zhou
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Jae Man Lee
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Muhammad Tehseen
- Laboratory of DNA Replication and Recombination, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, 4700 KAUST, Thuwal 23955, Saudi Arabia
| | - Mo Li
- Laboratory of Stem Cell and Regeneration, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Juan Carlos I Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Takahiro Kusakabe
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Jasmeen S Merzaban
- Laboratory of Cell Migration and Signaling, Division of Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, 4700 KAUST, Thuwal, Jeddah 23955, Saudi Arabia
| |
Collapse
|
17
|
Le HHM, Vang D, Amer N, Vue T, Yee C, Kaou H, Harrison JS, Xiao N, Lin-Cereghino J, Lin-Cereghino GP, Thor D. Enhancement of cell proliferation and motility of mammalian cells grown in co-culture with Pichia pastoris expressing recombinant human FGF-2. Protein Expr Purif 2020; 176:105724. [PMID: 32846209 DOI: 10.1016/j.pep.2020.105724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 11/25/2022]
Abstract
Many studies examining the biological function of recombinant proteins and their effects on the physiology of mammalian cells stipulate that the proteins be purified before being used as therapeutic agents. In this study, we explored the possibility of using unpurified recombinant proteins to treat mammalian cells. The recombinant protein was used directly from the expression source and the biological function was compared to purified commercially available, equivalent protein. The model for this purpose was recombinant FGF-2, expressed by Pichia pastoris, which was used to treat the murine fibroblast cell line, NIH/3T3. We generated a P. pastoris strain (yHL11) that constitutively secreted a biologically active recombinant FGF-2 protein containing an N-terminal c-myc epitope (Myc-FGF-2). Myc-FGF-2 was then used without purification either a) in the form of conditioned mammalian cell culture medium or b) during co-cultures of yHL11 with NIH/3T3 to induce higher proliferation and motility of NIH/3T3 cells. The effects of Myc-FGF-2 on cell physiology were comparable to commercially available FGF-2. To our knowledge, this is the first time the physiology of cultured mammalian cells had been successfully altered with a recombinant protein secreted by P. pastoris while the two species shared the same medium and culture conditions. Our data demonstrated the biological activity of unpurified recombinant FGF-2 on NIH/3T3 cells and provided a foundation for directly using unpurified recombinant proteins expressed by P. pastoris with mammalian cells, potentially as wound-healing therapeutics.
Collapse
Affiliation(s)
- Henry Hieu M Le
- Department of Biological Sciences, College of the Pacific, University of the Pacific, Stockton, CA, USA
| | - David Vang
- Department of Biomedical Science, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA, USA
| | - Nadia Amer
- Department of Biological Sciences, College of the Pacific, University of the Pacific, Stockton, CA, USA
| | - Tou Vue
- Department of Biological Sciences, College of the Pacific, University of the Pacific, Stockton, CA, USA
| | - Colwin Yee
- Department of Biological Sciences, College of the Pacific, University of the Pacific, Stockton, CA, USA
| | - Hyam Kaou
- Department of Biological Sciences, College of the Pacific, University of the Pacific, Stockton, CA, USA
| | - Joseph S Harrison
- Department of Chemistry, College of the Pacific, University of the Pacific, Stockton, CA, USA
| | - Nan Xiao
- Department of Biomedical Science, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA, USA
| | - Joan Lin-Cereghino
- Department of Biological Sciences, College of the Pacific, University of the Pacific, Stockton, CA, USA
| | - Geoff P Lin-Cereghino
- Department of Biological Sciences, College of the Pacific, University of the Pacific, Stockton, CA, USA
| | - Der Thor
- Department of Biomedical Science, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA, USA.
| |
Collapse
|
18
|
Huang H, Liang Q, Wang Y, Chen J, Kang Z. High-level constitutive expression of leech hyaluronidase with combined strategies in recombinant Pichia pastoris. Appl Microbiol Biotechnol 2020; 104:1621-1632. [DOI: 10.1007/s00253-019-10282-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/19/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023]
|
19
|
Ouephanit C, Boonvitthya N, Bozonnet S, Chulalaksananukul W. High-Level Heterologous Expression of Endo-1,4-β-Xylanase from Penicillium citrinum in Pichia pastoris X-33 Directed through Codon Optimization and Optimized Expression. Molecules 2019; 24:molecules24193515. [PMID: 31569777 PMCID: PMC6804294 DOI: 10.3390/molecules24193515] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 11/28/2022] Open
Abstract
Most common industrial xylanases are produced from filamentous fungi. In this study, the codon-optimized xynA gene encoding xylanase A from the fungus Penicilium citrinum was successfully synthesized and expressed in the yeast Pichia pastoris. The levels of secreted enzyme activity under the control of glyceraldehyde-3-phosphate dehydrogenase (PGAP) and alcohol oxidase 1 (PAOX1) promoters were compared. The Pc Xyn11A was produced as a soluble protein and the total xylanase activity under the control of PGAP and PAOX1 was 34- and 193-fold, respectively, higher than that produced by the native strain of P. citrinum. The Pc Xyn11A produced under the control of the PAOX1 reached a maximum activity of 676 U/mL when induced with 1% (v/v) methanol every 24 h for 5 days. The xylanase was purified by ion exchange chromatography and then characterized. The enzyme was optimally active at 55 °C and pH 5.0 but stable over a broad pH range (3.0–9.0), retaining more than 80% of the original activity after 24 h or after pre-incubation at 40 °C for 1 h. With birchwood xylan as a substrate, Pc Xyn11A showed a Km(app) of 2.8 mg/mL, and a kcat of 243 s−1. The high level of secretion of Pc Xyn11A and its stability over a wide range of pH and moderate temperatures could make it useful for a variety of biotechnological applications.
Collapse
Affiliation(s)
- Chanika Ouephanit
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
- Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
- Biofuels by Biocatalysts Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | | | - Sophie Bozonnet
- LISBP, Université de Toulouse, CNRS, INRA, INSA, 31077 Toulouse, France.
| | - Warawut Chulalaksananukul
- Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
- Biofuels by Biocatalysts Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
20
|
Werten MWT, Eggink G, Cohen Stuart MA, de Wolf FA. Production of protein-based polymers in Pichia pastoris. Biotechnol Adv 2019; 37:642-666. [PMID: 30902728 PMCID: PMC6624476 DOI: 10.1016/j.biotechadv.2019.03.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 02/03/2019] [Accepted: 03/17/2019] [Indexed: 01/09/2023]
Abstract
Materials science and genetic engineering have joined forces over the last three decades in the development of so-called protein-based polymers. These are proteins, typically with repetitive amino acid sequences, that have such physical properties that they can be used as functional materials. Well-known natural examples are collagen, silk, and elastin, but also artificial sequences have been devised. These proteins can be produced in a suitable host via recombinant DNA technology, and it is this inherent control over monomer sequence and molecular size that renders this class of polymers of particular interest to the fields of nanomaterials and biomedical research. Traditionally, Escherichia coli has been the main workhorse for the production of these polymers, but the methylotrophic yeast Pichia pastoris is finding increased use in view of the often high yields and potential bioprocessing benefits. We here provide an overview of protein-based polymers produced in P. pastoris. We summarize their physicochemical properties, briefly note possible applications, and detail their biosynthesis. Some challenges that may be faced when using P. pastoris for polymer production are identified: (i) low yields and poor process control in shake flask cultures; i.e., the need for bioreactors, (ii) proteolytic degradation, and (iii) self-assembly in vivo. Strategies to overcome these challenges are discussed, which we anticipate will be of interest also to readers involved in protein expression in P. pastoris in general.
Collapse
Affiliation(s)
- Marc W T Werten
- Wageningen Food & Biobased Research, NL-6708 WG Wageningen, The Netherlands.
| | - Gerrit Eggink
- Wageningen Food & Biobased Research, NL-6708 WG Wageningen, The Netherlands; Bioprocess Engineering, Wageningen University & Research, NL-6708 PB Wageningen, The Netherlands
| | - Martien A Cohen Stuart
- Physical Chemistry and Soft Matter, Wageningen University & Research, NL-6708 WE Wageningen, The Netherlands
| | - Frits A de Wolf
- Wageningen Food & Biobased Research, NL-6708 WG Wageningen, The Netherlands
| |
Collapse
|
21
|
Liu Q, Shi X, Song L, Liu H, Zhou X, Wang Q, Zhang Y, Cai M. CRISPR-Cas9-mediated genomic multiloci integration in Pichia pastoris. Microb Cell Fact 2019; 18:144. [PMID: 31434578 PMCID: PMC6704636 DOI: 10.1186/s12934-019-1194-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/14/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Pichia pastoris (syn. Komagataella phaffii) is a widely used generally recognized as safe host for heterologous expression of proteins in both industry and academia. Recently, it has been shown to be a potentially good chassis host for the production of high-value pharmaceuticals and chemicals. Nevertheless, limited availability of selective markers and low efficiency of homologous recombination make this process difficult and time-consuming, particularly in the case of multistep biosynthetic pathways. Therefore, it is crucial to develop an efficient and marker-free multiloci gene knock-in method in P. pastoris. RESULTS A non-homologous-end-joining defective strain (Δku70) was first constructed using the CRISPR-Cas9 based gene deficiency approach. It was then used as a parent strain for multiloci gene integration. Ten guide RNA (gRNA) targets were designed within 100 bp upstream of the promoters or downstream of terminator, and then tested using an eGFP reporter and confirmed as suitable single-locus integration sites. Three high-efficiency gRNA targets (PAOX1UP-g2, PTEF1UP-g1, and PFLD1UP-g1) were selected for double- and triple-locus co-integration. The integration efficiency ranged from 57.7 to 70% and 12.5 to 32.1% for double-locus and triple-locus integration, respectively. In addition, biosynthetic pathways of 6-methylsalicylic acid and 3-methylcatechol were successfully assembled using the developed method by one-step integration of functional genes. The desired products were obtained, which further established the effectiveness and applicability of the developed CRISPR-Cas9-mediated gene co-integration method in P. pastoris. CONCLUSIONS A CRISPR-Cas9-mediated multiloci gene integration method was developed with efficient gRNA targets in P. pastoris. Using this method, multiple gene cassettes can be simultaneously integrated into the genome without employing selective markers. The multiloci integration strategy is beneficial for pathway assembly of complicated pharmaceuticals and chemicals expressed in P. pastoris.
Collapse
Affiliation(s)
- Qi Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
| | - Xiaona Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
| | - Lili Song
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
| | - Haifeng Liu
- Chinare Resources Angde Biotech Pharmaceutical Co., Ltd., 78 E-jiao Street, Liaocheng, China
| | - Xiangshan Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
- Chinare Resources Angde Biotech Pharmaceutical Co., Ltd., 78 E-jiao Street, Liaocheng, China
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
- Shanghai Collaborative Innovation Center for Biomanufacturing, 130 Meilong Road, Shanghai, 200237 China
| | - Menghao Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
| |
Collapse
|
22
|
Gene expression engineering in fungi. Curr Opin Biotechnol 2019; 59:141-149. [PMID: 31154079 DOI: 10.1016/j.copbio.2019.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/27/2019] [Accepted: 04/24/2019] [Indexed: 02/03/2023]
Abstract
Fungi are a highly diverse group of microbial species that possess a plethora of biotechnologically useful metabolic and physiological properties. Important enablers for fungal biology studies and their biotechnological use are well-performing gene expression tools. Different types of gene expression tools exist; however, typically they are at best only functional in one or a few closely related species. This has hampered research and development of industrially relevant production systems. Here, we review operational principles and concepts of fungal gene expression tools. We present an overview on tools that utilize endogenous fungal promoters and modified hybrid expression systems composed of engineered promoters and transcription factors. Finally, we review synthetic expression tools that are functional across a broad range of fungal species.
Collapse
|
23
|
Klug D, Kehrer J, Frischknecht F, Singer M. A synthetic promoter for multi-stage expression to probe complementary functions of Plasmodium adhesins. J Cell Sci 2018; 131:jcs.210971. [PMID: 30237220 DOI: 10.1242/jcs.210971] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 09/10/2018] [Indexed: 11/20/2022] Open
Abstract
Gene expression of malaria parasites is mediated by the apicomplexan Apetala2 (ApiAP2) transcription factor family. Different ApiAP2s control gene expression at distinct stages in the complex life cycle of the parasite, ensuring timely expression of stage-specific genes. ApiAP2s recognize short cis-regulatory elements that are enriched in the upstream/promoter region of their target genes. This should, in principle, allow the generation of 'synthetic' promoters that drive gene expression at desired stages of the Plasmodium life cycle. Here we test this concept by combining cis-regulatory elements of two genes expressed successively within the mosquito part of the life cycle. Our tailored 'synthetic' promoters, named Spooki 1.0 and Spooki 2.0, activate gene expression in early and late mosquito stages, as shown by the expression of a fluorescent reporter. We used these promoters to address the specific functionality of two related adhesins that are exclusively expressed either during the early or late mosquito stage. By modifying the expression profile of both adhesins in absence of their counterpart we were able to test for complementary functions in gliding and invasion. We discuss the possible advantages and drawbacks of our approach.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Dennis Klug
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Jessica Kehrer
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Mirko Singer
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| |
Collapse
|
24
|
The yeast stands alone: the future of protein biologic production. Curr Opin Biotechnol 2018; 53:50-58. [DOI: 10.1016/j.copbio.2017.12.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 12/13/2022]
|
25
|
Dey T, Krishna Rao K, Khatun J, Rangarajan PN. The nuclear transcription factor Rtg1p functions as a cytosolic, post-transcriptional regulator in the methylotrophic yeast Pichia pastoris. J Biol Chem 2018; 293:16647-16660. [PMID: 30185617 DOI: 10.1074/jbc.ra118.004486] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 08/28/2018] [Indexed: 01/26/2023] Open
Abstract
Rtg1p and Rtg3p are two basic helix-loop-helix, retrograde transcription factors in the budding yeast Saccharomyces cerevisiae Both factors heterodimerize to activate the transcription of nuclear genes in response to mitochondrial dysfunction and glutamate auxotrophy, but are not well characterized in other yeasts. Here, we demonstrate that the Rtg1p/Rtg3p-mediated retrograde signaling pathway is absent in the methylotrophic yeast Pichia pastoris We observed that P. pastoris Rtg1p (PpRtg1p) heterodimerizes with S. cerevisiae Rtg3p and functions as a nuclear, retrograde transcription factor in S. cerevisiae, but not in P. pastoris. We noted that P. pastoris Rtg3p lacks a functional leucine zipper and interacts with neither S. cerevisiae Rtg1p (ScRtg1p) nor PpRtg1p. In the absence of an interaction with Rtg3p, PpRtg1p has apparently acquired a novel function as a cytosolic regulator of multiple P. pastoris metabolic pathways, including biosynthesis of glutamate dehydrogenase 2 and phosphoenolpyruvate carboxykinase required for the utilization of glutamate as the sole carbon source. PpRtg1p also had an essential role in methanol metabolism and regulated alcohol oxidase synthesis and was required for the metabolism of ethanol, acetate, and oleic acid, but not of glucose and glycerol. Although PpRtg1p could functionally complement ScRtg1p, ScRtg1p could not complement PpRtg1p, indicating that ScRtg1p is not a functional PpRtg1p homolog. Thus, PpRtg1p functions as a nuclear, retrograde transcription factor in S. cerevisiae and as a cytosolic, post-transcriptional regulator in P. pastoris We conclude that PpRtg1p is a key component of a signaling pathway that regulates multiple metabolic processes in P. pastoris.
Collapse
Affiliation(s)
- Trishna Dey
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 60012, India
| | - Kamisetty Krishna Rao
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 60012, India
| | - Jesminara Khatun
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 60012, India
| | - Pundi N Rangarajan
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 60012, India
| |
Collapse
|
26
|
Zhang Y, Huang H, Yao X, Du G, Chen J, Kang Z. High-yield secretory production of stable, active trypsin through engineering of the N-terminal peptide and self-degradation sites in Pichia pastoris. BIORESOURCE TECHNOLOGY 2018; 247:81-87. [PMID: 28946098 DOI: 10.1016/j.biortech.2017.08.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/31/2017] [Accepted: 08/02/2017] [Indexed: 06/07/2023]
Abstract
Streptomyces griseus trypsin (SGT) possesses enzymatic properties similar to mammalian trypsins and has great potential applications in the leather processing, bioethanol, detergent and pharmaceutical industry. Here, a new strategy was reported for improving its stable, active secretory production through engineering of its propeptide and self-degradation sites. By rationally introducing hydrophobic mutations into the N-terminus of SGT Exmt (R145I), replacing the propeptide with FPVDDDDK and engineering the α-factor signal peptide, trypsin production (amidase activity) was improved to 177.85±2.83U·mL-1 in a 3-L fermenter (a 3.75-fold increase). Subsequently, all of the residues involved in autolysis that were identified by mass spectrometry were mutated and the resulting proteins were evaluated. In particular, the variant tbcf (K101A) demonstrated high stability and production (227.65±6.51U·mL-1 and 185.71±5.68mg·L-1, respectively). The recombinant strain constructed here has great potential for large-scale production of active trypsin.
Collapse
Affiliation(s)
- Yunfeng Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Hao Huang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xinhui Yao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guocheng Du
- Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Zhen Kang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
27
|
Prielhofer R, Barrero JJ, Steuer S, Gassler T, Zahrl R, Baumann K, Sauer M, Mattanovich D, Gasser B, Marx H. GoldenPiCS: a Golden Gate-derived modular cloning system for applied synthetic biology in the yeast Pichia pastoris. BMC SYSTEMS BIOLOGY 2017; 11:123. [PMID: 29221460 PMCID: PMC5723102 DOI: 10.1186/s12918-017-0492-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 11/13/2017] [Indexed: 01/05/2023]
Abstract
BACKGROUND State-of-the-art strain engineering techniques for the host Pichia pastoris (syn. Komagataella spp.) include overexpression of homologous and heterologous genes, and deletion of host genes. For metabolic and cell engineering purposes the simultaneous overexpression of more than one gene would often be required. Very recently, Golden Gate based libraries were adapted to optimize single expression cassettes for recombinant proteins in P. pastoris. However, an efficient toolbox allowing the overexpression of multiple genes at once was not available for P. pastoris. METHODS With the GoldenPiCS system, we provide a flexible modular system for advanced strain engineering in P. pastoris based on Golden Gate cloning. For this purpose, we established a wide variety of standardized genetic parts (20 promoters of different strength, 10 transcription terminators, 4 genome integration loci, 4 resistance marker cassettes). RESULTS All genetic parts were characterized based on their expression strength measured by eGFP as reporter in up to four production-relevant conditions. The promoters, which are either constitutive or regulatable, cover a broad range of expression strengths in their active conditions (2-192% of the glyceraldehyde-3-phosphate dehydrogenase promoter P GAP ), while all transcription terminators and genome integration loci led to equally high expression strength. These modular genetic parts can be readily combined in versatile order, as exemplified for the simultaneous expression of Cas9 and one or more guide-RNA expression units. Importantly, for constructing multigene constructs (vectors with more than two expression units) it is not only essential to balance the expression of the individual genes, but also to avoid repetitive homologous sequences which were otherwise shown to trigger "loop-out" of vector DNA from the P. pastoris genome. CONCLUSIONS GoldenPiCS, a modular Golden Gate-derived P. pastoris cloning system, is very flexible and efficient and can be used for strain engineering of P. pastoris to accomplish pathway expression, protein production or other applications where the integration of various DNA products is required. It allows for the assembly of up to eight expression units on one plasmid with the ability to use different characterized promoters and terminators for each expression unit. GoldenPiCS vectors are available at Addgene.
Collapse
Affiliation(s)
- Roland Prielhofer
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria.,Austrian Centre of Industrial Biotechnology (acib), Vienna, Austria
| | - Juan J Barrero
- Austrian Centre of Industrial Biotechnology (acib), Vienna, Austria.,Present Address: Department of Chemical, Biological, and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Stefanie Steuer
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria.,Present Address: Novartis, Vienna, Austria
| | - Thomas Gassler
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria.,Austrian Centre of Industrial Biotechnology (acib), Vienna, Austria
| | - Richard Zahrl
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria.,Austrian Centre of Industrial Biotechnology (acib), Vienna, Austria
| | - Kristin Baumann
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria.,Austrian Centre of Industrial Biotechnology (acib), Vienna, Austria
| | - Michael Sauer
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria.,Austrian Centre of Industrial Biotechnology (acib), Vienna, Austria
| | - Diethard Mattanovich
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria.,Austrian Centre of Industrial Biotechnology (acib), Vienna, Austria
| | - Brigitte Gasser
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria. .,Austrian Centre of Industrial Biotechnology (acib), Vienna, Austria.
| | - Hans Marx
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| |
Collapse
|
28
|
Engineering strategies for enhanced production of protein and bio-products in Pichia pastoris: A review. Biotechnol Adv 2017; 36:182-195. [PMID: 29129652 DOI: 10.1016/j.biotechadv.2017.11.002] [Citation(s) in RCA: 245] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 10/16/2017] [Accepted: 11/06/2017] [Indexed: 11/24/2022]
Abstract
Pichia pastoris has been recognized as one of the most industrially important hosts for heterologous protein production. Despite its high protein productivity, the optimization of P. pastoris cultivation is still imperative due to strain- and product-specific challenges such as promoter strength, methanol utilization type and oxygen demand. To address the issues, strategies involving genetic and process engineering have been employed. Optimization of codon usage and gene dosage, as well as engineering of promoters, protein secretion pathways and methanol metabolic pathways have proved beneficial to innate protein expression levels. Large-scale production of proteins via high cell density fermentation additionally relies on the optimization of process parameters including methanol feed rate, induction temperature and specific growth rate. Recent progress related to the enhanced production of proteins in P. pastoris via various genetic engineering and cultivation strategies are reviewed. Insight into the regulation of the P. pastoris alcohol oxidase 1 (AOX1) promoter and the development of methanol-free systems are highlighted. Novel cultivation strategies such as mixed substrate feeding are discussed. Recent advances regarding substrate and product monitoring techniques are also summarized. Application of P. pastoris to the production of biodiesel and other value-added products via metabolic engineering are also reviewed. P. pastoris is becoming an indispensable platform through the use of these combined engineering strategies.
Collapse
|
29
|
Kang Z, Ding W, Gong X, Liu Q, Du G, Chen J. Recent advances in production of 5-aminolevulinic acid using biological strategies. World J Microbiol Biotechnol 2017; 33:200. [PMID: 29038905 DOI: 10.1007/s11274-017-2366-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/11/2017] [Indexed: 01/26/2023]
Abstract
5-Aminolevulinic acid (5-ALA) is the precursor for the biosynthesis of tetrapyrrole compounds and has broad applications in the medical and agricultural fields. Because of the disadvantages of chemical synthesis methods, microbial production of 5-ALA has drawn intensive attention and has been regarded as an alternative in the last years, especially with the rapid development of metabolic engineering and synthetic biology. In this mini-review, recent advances on the application and microbial production of 5-ALA using novel biological approaches (such as whole-cell enzymatic-transformation, metabolic pathway engineering and cell-free process) are described and discussed in detail. In addition, the challenges and prospects of synthetic biology are discussed.
Collapse
Affiliation(s)
- Zhen Kang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
- Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| | - Wenwen Ding
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xu Gong
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Qingtao Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| |
Collapse
|
30
|
Zhang J, Zhang Y, Li M. High-level secretion and characterization of cyclodextrin glycosyltransferase in recombinant Komagataella phaffii. J Biotechnol 2017; 259:126-134. [PMID: 28757288 DOI: 10.1016/j.jbiotec.2017.07.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 01/20/2023]
Abstract
Cyclodextrin glycosyltransferase (CGTase) catalyzes the conversion of starch into cyclodextrin (CD), which is widely applied in food, pharmaceutical, cosmetic, and agricultural industries. For efficient production of CD, high yield of CGTase with good characteristics is necessary. In this study, the cgt gene from Bacillus pseudalcaliphilus was expressed in Komagataella phaffii after codon optimization and expression vector selection. The β-CGTase activity in the transformant reached 3885.1UmL-1, which is the highest value reported so far, at 28°C, 6% inoculum ratio, and 1.5% methanol addition following 24h of incubation. The recombinant CGTase showed high specific activity at 80°C without any γ-CGTase activity, and had good stability in a wide pH and temperature range. These results demonstrate that the recombinant CGTase could have potential industrial applications.
Collapse
Affiliation(s)
- Jianguo Zhang
- Institute of Food Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Yan Zhang
- Institute of Food Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Mengla Li
- Institute of Food Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| |
Collapse
|
31
|
Moses T, Mehrshahi P, Smith AG, Goossens A. Synthetic biology approaches for the production of plant metabolites in unicellular organisms. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4057-4074. [PMID: 28449101 DOI: 10.1093/jxb/erx119] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Synthetic biology is the repurposing of biological systems for novel objectives and applications. Through the co-ordinated and balanced expression of genes, both native and those introduced from other organisms, resources within an industrial chassis can be siphoned for the commercial production of high-value commodities. This developing interdisciplinary field has the potential to revolutionize natural product discovery from higher plants, by providing a diverse array of tools, technologies, and strategies for exploring the large chemically complex space of plant natural products using unicellular organisms. In this review, we emphasize the key features that influence the generation of biorefineries and highlight technologies and strategic solutions that can be used to overcome engineering pitfalls with rational design. Also presented is a succinct guide to assist the selection of unicellular chassis most suited for the engineering and subsequent production of the desired natural product, in order to meet the global demand for plant natural products in a safe and sustainable manner.
Collapse
Affiliation(s)
- Tessa Moses
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Payam Mehrshahi
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Alison G Smith
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Alain Goossens
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| |
Collapse
|