1
|
Jia Y, Lu J, Zhang J, Jin Y, Ren L, Xu H, Zhao M, Ma Z. Algicidal mechanism and algicidal active metabolites of Alteromonas abrolhosensis against harmful dinoflagellates Karenia mikimotoi. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137815. [PMID: 40048794 DOI: 10.1016/j.jhazmat.2025.137815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/03/2025] [Accepted: 02/28/2025] [Indexed: 04/16/2025]
Abstract
Harmful algal blooms (HABs) are a global environmental concern, posing significant threats to marine ecosystems and human health. Algicidal bacteria offer a promising biological approach for mitigating HABs. Herein, the mechanism of an algicidal bacterium Alteromonas abrolhosensis JY-JZ1 against Karenia mikimotoi was investigated and algicidal metabolites from the strain JY-JZ1 were analyzed. The significant decrease in maximum quantum yield (Fv/Fm), relative electron transport rate (rETR), maximum relative electron transport rate (rETRmax) and apparent photosynthetic efficiency (α) indicated destruction of photosynthetic system. Biochemical analyses showed that the JY-JZ1 supernatant induced reactive oxygen species (ROS) overproduction and malondialdehyde (MDA) accumulation in K. mikimotoi. Contents of superoxide dismutase (SOD) and glutathione (GSH) increased responding to JY-JZ1 supernatant treatments. Optical microscope observation and propidium iodide (PI) staining confirmed the destruction of the cell membrane structure. Gene expression analysis showed that the extracellular metabolites of JY-JZ1 altered gene expression associated with photosynthesis, respiration, and cell wall integrity in K. mikimotoi. The metabolites of strain JY-JZ1 for 8 h and 24 h were harvested and analysed. Among the metabolites, 3-hydroxy-kynurenine, 10-undecenoic acid, 10-hydroxy-2-decenoic acid, 3-hydroxymandelic acid and catechol were first proved to exhibit algicidal activity against K. mikimotoi. This study provides the first report of these metabolites as novel algicidal substances. These results demonstrated that A. abrolhosensis JY-JZ1 exhibits significant potential for controlling HABs and offers multiple algicidal active compounds with promising application prospects.
Collapse
Affiliation(s)
- Yang Jia
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Jiazhan Lu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Jingxia Zhang
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Yuyang Jin
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Lei Ren
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hanqing Xu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou 325035, China; Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Minjiang University, Fuzhou 350108, China.
| | - Min Zhao
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China.
| | - Zengling Ma
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
2
|
Fernando BM, Lefler FW, Kennedy A, Berthold DE, May LR, Laughinghouse HD, Indest KJ. Algaecidal effects of tryptoline, tryptamine, and other microbial metabolites on target and non-target freshwater cyanobacteria and freshwater indicator organisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117918. [PMID: 39986060 DOI: 10.1016/j.ecoenv.2025.117918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/06/2025] [Accepted: 02/16/2025] [Indexed: 02/24/2025]
Abstract
Cyanobacterial harmful algal blooms (cyanoHABs) are a growing global concern due to their negative impacts on freshwater lakes and river ecosystems. HABs impact local and regional economies by restricting fisheries resources, recreational and commercial waterways, and threatening drinking water sources. To control HABs, researchers are developing short- and long-term mitigation strategies by exploiting natural, bacterial-derived products as targeted chemical control reagents to reduce the severity of HABs. In this study, we characterized the cyanocidal and ecotoxicological properties of tryptoline, tryptamine, isatin and other commercially available, bacterially derived compounds against both lab-adapted and field collected freshwater cyanobacterial strains that collectively include genera from Microcystis, Umezakia, Raphidiopsis, Dolichospermum, Planktothrix, Vulcanococcus, Anabaena and Synechocystis. Initially, chemicals were assessed for their ability to control cyanobacteria by screening them on cyanobacteria lawn plates. Those chemicals that created zones of clearing underwent further testing through liquid assay studies, where biomass was monitored using chlorophyll extractions. Results indicate that tryptoline was the most effective chemical at all concentrations tested leading to a 52 % reduction in algal biomass and this was independent of initial algal biomass, whereas tryptamine reduced algal biomass by 25 % and was most effective at low to medium algal cell densities. In addition, tryptoline was more toxic to the cyanobacteria strains in both the single and repeated exposures compared to tryptamine due to its increased resistance to degradation compared to tryptamine which had degraded 27.9 % after 72 h. The acute and chronic toxicity studies using the standard non-target zooplankton Ceriodaphnia dubia and fish Pimephales promelas resulted in hazard values for tryptoline that indicate it could be difficult to achieve an acceptable margin of safety to avoid non-target species effects when using this chemical in a cyanoHAB treatment. In contrast, tryptamine was at least 2 times less toxic to both non-target species than trypoline (e.g., Pimephales promelas 96-hour LC50 for tryptamine was 26.97 mg/L compared to had an 96-hour LC50 of 2.9 mg/L for tryptoline). Results from these studies collectively provide further data on the feasibility of bacterial-derived algaecides with regards to multi-treatment regimens and optimal cyanobacterial bloom densities. These studies also provide relevant non-target species testing and safety factors for those chemicals demonstrating the most effective algaecide activity.
Collapse
Affiliation(s)
- Brianna M Fernando
- US Army Engineer Research Development Center, Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA
| | - Forrest W Lefler
- Agronomy Department, Fort Lauderdale Research and Education Center, University of Florida - Institute of Food and Agricultural Sciences, 3205 College Avenue, Davie, FL, USA; Oak Ridge Institute for Science and Education, Oak Ridge, TN 37831, USA
| | - Alan Kennedy
- US Army Engineer Research Development Center, Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA
| | - David E Berthold
- Agronomy Department, Fort Lauderdale Research and Education Center, University of Florida - Institute of Food and Agricultural Sciences, 3205 College Avenue, Davie, FL, USA
| | - Lauren R May
- US Army Engineer Research Development Center, Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA
| | - H Dail Laughinghouse
- Agronomy Department, Fort Lauderdale Research and Education Center, University of Florida - Institute of Food and Agricultural Sciences, 3205 College Avenue, Davie, FL, USA
| | - Karl J Indest
- US Army Engineer Research Development Center, Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA.
| |
Collapse
|
3
|
Chen Y, Xiong F, Zhu Y, Zhai D, Liu H, Zhang L, Xia M. A Bacillus subtilis strain with efficient algaecide of Microcystis aeruginosa and degradation of microcystins. Front Microbiol 2024; 15:1430097. [PMID: 39678917 PMCID: PMC11638172 DOI: 10.3389/fmicb.2024.1430097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 11/04/2024] [Indexed: 12/17/2024] Open
Abstract
Global concerns over harmful cyanobacterial blooms brought on by eutrophication are now widespread. Aquatic ecological restoration techniques that use algicidal bacteria to control toxic algae show promise. A Bacillus subtilis S4 (S4) strain with strong Microcystis aeruginosa algicidal activity and the capacity to degrade microcystins (MCs) were successfully isolated and evaluated in this study. The dynamics of internal and extracellular MC concentration as well as the physiological response and morphological properties of M. aeruginosa were investigated in the M. aeruginosa/bacteria co-culture system. The findings demonstrated that when S4 density grew from 1 × 106 cells/ml to 1 × 108 cells/ml, the release of M. aeruginosa lysis and MCs was boosted; however, MCs dropped by approximately 90% within 18 h, regardless of bacterial density. Comparing the bacterial cell incubation system to the control and bacterial cell-free filtrate systems, the assessment of extracellular and intracellular MCs revealed a 95% reduction in MCs. The findings showed that 89% of MCs were decreased by bacterial cells, while 98% of M. aeruginosa cells were algaecided by bacterial metabolites. Sustainable eradication of M. aeruginosa and MCs has been accomplished by the combined efforts of the S4 strain and its metabolites. By secreting algicidal chemicals that are resistant to proteases, acid, base, and heat, the S4 strain indirectly acts as an algaecide. The S4 strain possesses a strong ability to break down MCs and a very effective and stable algaecide function, indicating that it can potentially treat eutrophic water with hazardous algae.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, China
| | - Fei Xiong
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, China
| | - Ying Zhu
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, China
| | - Dongdong Zhai
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, China
| | - Hongyan Liu
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, China
| | - Lin Zhang
- Yangtze River Fisheries Research Institute Chinese Academy of Fishery Sciences, Wuhan, China
| | - Ming Xia
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, China
| |
Collapse
|
4
|
Zhang S, Sha Y, Tang Y, Li L, Wang F, Dong J, Li X, Gao Y, Gao X, Yuan H, Zhang J. Laboratory-Simulated Inhibitory Effects of the Floating-Bed Plants on Microcystis aeruginosa and Their Microbial Communities' Responses to Microcystins. Microorganisms 2024; 12:2035. [PMID: 39458344 PMCID: PMC11510027 DOI: 10.3390/microorganisms12102035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Three common floating bed plants, Eichhornia crassipes, Pistia stratiotes, and Ipomoea aquatica, were selected in the present study to investigate their inhibitory effects on toxic Microcystis aeruginosa. The results showed that all three types of floating-bed plants could considerably inhibit the growth of M. aeruginosa and effectively remove the microcystins (MCs) from water systems, among which, E. crassipes and P. stratiotes were more effective in resisting M. aeruginosa, and the removal rate of the intracellular MCs could be up to 100%. In addition, the roots and leaves of the three plants were enriched with a large number of MCs and demonstrated significant antioxidant responses, as evidenced by the increase in the content of catalase (CAT), glutathione peroxidase (GSH-PX), superoxide dismutase (SOD), and malondialdehyde (MDA) in the roots, stems, and leaves of the plants. Furthermore, this study also showed that Proteobacteria, Bacteroidota, Myxococcota, Verrucomicrobiota, and Actinobacteriota dominated the root microorganisms of the three plants. Moreover, a variety of MC-degrading bacteria, including Sphingomonas, Acinetobacter, Novosphingobium, and Pseudomonas, were found at the genus level, which further provides important basic data for the regulation of eutrophic water bodies and the removal of MCs.
Collapse
Affiliation(s)
- Shuwen Zhang
- College of Fisheries, Henan Normal University, Jianshe Road, Xinxiang 453007, China; (S.Z.)
- Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang 474450, China
| | - Yuanpu Sha
- College of Fisheries, Henan Normal University, Jianshe Road, Xinxiang 453007, China; (S.Z.)
- Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang 474450, China
| | - Yuanyuan Tang
- College of Fisheries, Henan Normal University, Jianshe Road, Xinxiang 453007, China; (S.Z.)
- Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang 474450, China
| | - Longjie Li
- College of Fisheries, Henan Normal University, Jianshe Road, Xinxiang 453007, China; (S.Z.)
- Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang 474450, China
| | - Feihu Wang
- College of Fisheries, Henan Normal University, Jianshe Road, Xinxiang 453007, China; (S.Z.)
- Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang 474450, China
| | - Jing Dong
- College of Fisheries, Henan Normal University, Jianshe Road, Xinxiang 453007, China; (S.Z.)
- Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang 474450, China
| | - Xuejun Li
- College of Fisheries, Henan Normal University, Jianshe Road, Xinxiang 453007, China; (S.Z.)
- Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang 474450, China
| | - Yunni Gao
- College of Fisheries, Henan Normal University, Jianshe Road, Xinxiang 453007, China; (S.Z.)
- Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang 474450, China
| | - Xiaofei Gao
- College of Fisheries, Henan Normal University, Jianshe Road, Xinxiang 453007, China; (S.Z.)
- Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang 474450, China
| | - Huatao Yuan
- College of Fisheries, Henan Normal University, Jianshe Road, Xinxiang 453007, China; (S.Z.)
- Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang 474450, China
| | - Jingxiao Zhang
- College of Fisheries, Henan Normal University, Jianshe Road, Xinxiang 453007, China; (S.Z.)
- Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang 474450, China
| |
Collapse
|
5
|
Zhang Y, Wang X, Sun Y. A newly identified algicidal bacterium of Pseudomonas fragi YB2: Algicidal compounds and effects. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135490. [PMID: 39141946 DOI: 10.1016/j.jhazmat.2024.135490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/03/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
Harmful algal bloom (HAB) is an unresolved existing problem worldwide. Here, we reported a novel algicidal bacterium, Pseudomonas fragi YB2, capable of lysing multiple algal species. To Chlorella vulgaris, YB2 exhibited a maximum algicidal rate of 95.02 % at 120 h. The uniqueness of YB2 lies in its ability to self-produce three algicidal compounds: 2-methyl-1, 3-cyclohexanedione (2-MECHD), N-phenyl-2-naphthylamine, and cyclo (Pro-Leu). The algicidal properties of 2-MECHD have not been previously reported. YB2 significantly affected the chloroplast and mitochondrion, thus decreasing in chlorophyll a by 4.74 times for 120 h and succinate dehydrogenase activity by 103 times for 36 h. These physiological damages disrupted reactive oxygen species and Ca2+ homeostasis at the cellular level, increasing cytosolic superoxide dismutase (23 %), catalase (35 %), and Ca2+ influx. Additionally, the disruption of Ca2+ homeostasis rarely reported in algicidal bacteria-algae interaction was observed using the non-invasive micro-test technology. We proposed a putative algicidal mechanism based on the algicidal outcomes and physiological algicidal effects and explored the potential of YB2 through an algicidal simulation test. Overall, this study is the first to report the algicidal bacterium P. fragi and identify a novel algicidal compound, 2-MECHD, providing new insights and a potent microbial resource for the biocontrol of HAB.
Collapse
Affiliation(s)
- Yini Zhang
- School of Environment, Northeast Normal University, Changchun 130117, Jilin, PR China.
| | - Xiaoyu Wang
- School of Environment, Northeast Normal University, Changchun 130117, Jilin, PR China.
| | - Yu Sun
- School of Environment, Northeast Normal University, Changchun 130117, Jilin, PR China.
| |
Collapse
|
6
|
Wu L, Zhou X, Zhu Y, Wang J, Yue C, Xu Y, Tian S, Wei X, Li S, Yang X, Wu Z, Yang M. Pseudomonas ZY-1 and Bacillus FY-1 protecting the rice seedlings from the harm of Pseudomonas aeruginosa via indirect seawead lysis. BMC Microbiol 2024; 24:375. [PMID: 39342144 PMCID: PMC11437986 DOI: 10.1186/s12866-024-03509-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024] Open
Abstract
The local ecosystems, fishery and human health are all threatened by water blooms, so effectively controlling water blooms has become an urgent and challenging issue. Biological control of water blooms is given priority due to its low cost, high efficiency and environmental friendliness. In this study, Pseudomonas ZY-1 and Bacillus FY-1, two highly-effective algicidal bacteria strains which are able to indirectly lyse algae by separating and screening from the vigorous water body in the paddy alga of Northeast China were obtained. The two bacterial strains have stronger ability to lyse alga in the bacterial liquid concentration of 106 CFU/ml, and the alga-lysing rate on 7 d reached 84.03% and 83.11% respectively. The active substance secreted by ZY-1 is not sensitive to the changes of temperature and pH value, while as FY-1 cell-free filtrate is not stable in high temperature above 50 ℃ and pH of 5, it requires the sun light to have the algaecidal effect. The cell-free filtrates of strains ZY-1 and FY-1 had the best lysis effect on Microcystis aeruginosa cells, and the chlorophyll a content of algae decreased to 0.13 ± 0.02 mg/L and 0.14 ± 0.03 mg/L respectively and the Fv/Fm of Microcystis aeruginosa decreased by 97.22% after 7 days. The algaecidal process of ZY-1 and FY-1 may be that the cell-free filtrate inhibits the photosynthesis of Microcystis aeruginosa, and meanwhile it avoids the regeneration and repair of photosynthesis of algal cells by affecting the gene expression and damaging the repair system of algal cells, so the membrane lipid peroxidation is exacerbated and then the membrane of algal cells is broken, the algal cells can't do normal life activities, and finally the algal cell would be killed. The rice seedlings in the algal liquid treatment group are short and show root dysplasia, few roots and brown roots. After treated with cell-free filtrate of ZY-1 and FY-1, the oxidative damage of the rice is obviously reduced, and the harm from Microcystis aeruginosa is reduced, which has the repair effect to the roots of rice seedlings and its aboveground growth. The cell-free filtrate of FY-1 works better than ZY-1. The bacteria strains of ZY-1 and FY-1 have the indirect algaecide trait, which makes them the potential environmentally-friendly algaecidal bacteria and they show broad application in the agricultural production and the control of water blooms.
Collapse
Affiliation(s)
- Lei Wu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Xueying Zhou
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Yuan Zhu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Jianing Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Chengcai Yue
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Yufeng Xu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Shiqi Tian
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Xiaoshuang Wei
- Faculty of Agronomy, Jilin Agricultural University, Changchun, Jilin, China
| | - Siyuan Li
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Xue Yang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Zhihai Wu
- Faculty of Agronomy, Jilin Agricultural University, Changchun, Jilin, China
| | - Meiying Yang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China.
| |
Collapse
|
7
|
Wang L, Yi Z, Zhang P, Xiong Z, Zhang G, Zhang W. Comprehensive strategies for microcystin degradation: A review of the physical, chemical, and biological methods and genetic engineering. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121707. [PMID: 38968883 DOI: 10.1016/j.jenvman.2024.121707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/02/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Addressing the threat of harmful cyanobacterial blooms (CyanoHABs) and their associated microcystins (MCs) is crucial for global drinking water safety. In this review, we comprehensively analyze and compares the physical, chemical, and biological methods and genetic engineering for MCs degradation in aquatic environments. Physical methods, such as UV treatments and photocatalytic reactions, have a high efficiency in breaking down MCs, with the potential for further enhancement in performance and reduction of hazardous byproducts. Chemical treatments using chlorine dioxide and potassium permanganate can reduce MC levels but require careful dosage management to avoid toxic by-products and protect aquatic ecosystems. Biological methods, including microbial degradation and phytoremediation techniques, show promise for the biodegradation of MCs, offering reduced environmental impact and increased sustainability. Genetic engineering, such as immobilization of microcystinase A (MlrA) in Escherichia coli and its expression in Synechocystis sp., has proven effective in decomposing MCs such as MC-LR. However, challenges related to specific environmental conditions such as temperature variations, pH levels, presence of other contaminants, nutrient availability, oxygen levels, and light exposure, as well as scalability of biological systems, necessitate further exploration. We provide a comprehensive evaluation of MCs degradation techniques, delving into their practicality, assessing the environmental impacts, and scrutinizing their efficiency to offer crucial insights into the multifaceted nature of these methods in various environmental contexts. The integration of various methodologies to enhance degradation efficiency is vital in the field of water safety, underscoring the need for ongoing innovation.
Collapse
Affiliation(s)
- Long Wang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, People's Republic of China.
| | - Zhuoran Yi
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, People's Republic of China.
| | - Peng Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, People's Republic of China.
| | - Zhu Xiong
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, People's Republic of China.
| | - Gaosheng Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, People's Republic of China.
| | - Wei Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
8
|
Li D, Chen X, Wang Y, Huang W, Wang Y, Zhao X, Song X, Cao X. Panoptic elucidation of algicidal mechanism of Raoultella sp. S1 against the Microcystis aeruginosa by TMT quantitative proteomics. CHEMOSPHERE 2024; 352:141287. [PMID: 38272139 DOI: 10.1016/j.chemosphere.2024.141287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/24/2023] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Harmful algal blooms (HABs) due to eutrophication are becoming a serious ecological disaster worldwide, threatening human health and the optimal balance of aquatic ecosystems. The traditional approaches to eradicate HABs yield several drawbacks in practical application, while microbial algicidal technology is garnering mounting recognition due to its high efficiency, eco-friendliness, and low cost. In our previous study, we isolated a bacterium strain Raoultella sp. S1 from eutrophic water with high efficiency of algicidal properties. This study further investigated the flocculation and inactivation efficiency of S1 on Microcystis aeruginosa at different eutrophic stages by customizing the algal cell densities. The supernatant extract of S1 strain exhibited remarkable flocculation and inactivation effects against low (1 × 106 cell/mL)and medium (2.7 × 106 cell/mL)concentrations of algal cells, but unexceptional for higher densities. The results further revealed that algal cells at low and medium counts manifested a more apparent antioxidant defense response, while the photosynthetic efficiency and relative electron transport rate were considerably reduced within 24 h. TEM observations confirmed the disruption of thylakoid membranes and cell structure of algal cells by algicidal substances. Moreover, TMT proteomics revealed alterations in protein metabolic pathways of algal cells during the flocculation and lysis stages at the molecular biological level. This signified that the disruption of the photosynthetic system is the core algicidal mechanism of S1 supernatant. In contrast, the photosynthetic metabolic pathways in the HABs were significantly upregulated, increasing the energy supply for the NADPH dehydrogenation process and the upregulation of ATPases in oxidative phosphorylation. Insufficient energy provided by NADPH resulted in a dwindled electron transport rate, stagnation of carbon fixation in dark reactions, and blockage of light energy conversion into chemical energy. Nonetheless, carbohydrate metabolism (gluconeogenesis and glycolysis) proteins were down-regulated and hampered DNA replication and repair. This study aided in unveiling the bacterial management of eutrophication by Raoultella sp. S1 and further arrayed the proteomic mechanism of algal apoptosis.
Collapse
Affiliation(s)
- Dongpeng Li
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xi Chen
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yifei Wang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Wei Huang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yuhui Wang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xiaoxiang Zhao
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xinshan Song
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xin Cao
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
9
|
Wijesooriya MM, Masakorala K, Widana Gamage SMK. A novel cyanolytic bacterium, Pseudomonas fluorescens BG-E as a potential biological control agent for freshwater bloom-forming cyanobacteria Pseudanabaena spp. JOURNAL OF PHYCOLOGY 2023; 59:570-589. [PMID: 36971784 DOI: 10.1111/jpy.13333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/23/2023] [Accepted: 02/09/2023] [Indexed: 06/15/2023]
Abstract
The majority of bacterial antagonists identified to date are active against Microcystis. Therefore, this study aimed to isolate and characterize novel cyanolytic bacterial strains antagonistic against bloom-forming filamentous cyanobacteria. The bacterial strain BG-E isolated from the Bandagiriya Wewa in Sri Lanka was identified as Pseudomonas fluorescens (MZ007859) based on the 16S rRNA gene sequencing. BG-E showed 82% and 73% cyanolytic activity (CA) against Pseudanabaena sp. LW2 (MW288948) and Pseudanabaena lonchoides LW1 (MW288940), respectively, after 10 days of inoculation. The light microscopic images affirmed the complete disintegration in the filamentous structures of the tested Pseudanabaena species. The bacterial cell density of 15% v/v showed the CA with 95% and 89% cell lysis, respectively, in P. lonchoides and Pseudanabaena sp. LW2. Moreover, the results showed that >50% CA could be achieved by 0.100 and 1.00 (OD730 ) cell densities for these same species. The highest CA of the cell-free supernatant of BG-E against P. lonchoides and bacterial culture against Pseudanabaena sp. LW2 illustrated the species-specific mode of action of BG-E. Although BG-E efficiently lysed the tested cyanobacterial species, the results of the MC-biodegradation assay confirmed its inability to degrade MC-LR cyanotoxin. Further, the BG-E strain lacks the mlrABCD gene cluster which is known to be responsible for the enzymatic degradation of MCs. The overall findings highlighted the applicability of P. fluorescens BG-E as a biological controlling agent to terminate blooms of freshwater filamentous cyanobacteria genus Pseudanabaena. The incorporation of cyanotoxin-degrading heterotrophic bacteria is recommended as a means of controlling toxic Pseudanabaena blooms.
Collapse
Affiliation(s)
| | - Kanaji Masakorala
- Department of Botany, Faculty of Science, University of Ruhuna, Matara, 81000, Sri Lanka
| | | |
Collapse
|
10
|
Zhang H, Xie Y, Zhang R, Zhang Z, Hu X, Cheng Y, Geng R, Ma Z, Li R. Discovery of a High-Efficient Algicidal Bacterium against Microcystis aeruginosa Based on Examinations toward Culture Strains and Natural Bloom Samples. Toxins (Basel) 2023; 15:toxins15030220. [PMID: 36977111 PMCID: PMC10058357 DOI: 10.3390/toxins15030220] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/06/2023] [Accepted: 03/11/2023] [Indexed: 03/15/2023] Open
Abstract
Harmful cyanobacterial blooms occur worldwide and pose a great threat to aquatic ecosystems and public health. The application of algicidal bacteria represents an eco-friendly strategy for controlling harmful cyanobacterial blooms; thus, searching for a high efficiency of algicidal bacteria has been becoming an important and continuous task in science. Herein, we identified a bacterial strain coded Streptomyces sp. HY with a highly algicidal activity, and investigated its algicidal efficiency and mechanism against Microcystis aeruginosa. The strain HY displayed high algicidal activity toward Microcystis aeruginosa cells, with a removal rate of 93.04% within 2 days via indirect attack. Streptomyces sp. HY also showed the ability to lyse several genera of cyanobacterial strains, including Dolichospermum, Pseudanabaena, Anabaena, and Synechocystis, whereas it showed a minor impact on the green alga Scenedesmus obliquus, demonstrating its selectivity specially for targeting cyanobacteria. Its algicidal mechanism involved damages to the photosynthesis system, morphological injury of algal cells, oxidative stress, and dysfunction of the DNA repair system. Furthermore, HY treatment reduced the expression levels of genes (mcyB and mcyD) related to microcystin biosynthesis and decreased the total content of microcystin-leucine-arginine by 79.18%. Collectively, these findings suggested that the algicidal bacteria HY is a promising candidate for harmful cyanobacterial bloom control.
Collapse
Affiliation(s)
- He Zhang
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yan Xie
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Rongzhen Zhang
- Wenzhou Shanxi Hydro-junction Management Center, Wenzhou 325035, China
| | - Zhongliang Zhang
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Xinglong Hu
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Yao Cheng
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Ruozhen Geng
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Zengling Ma
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Renhui Li
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
- Institute for Eco-Environmental Research of Sanyang Wetland, Wenzhou University, Wenzhou 325035, China
- Correspondence:
| |
Collapse
|
11
|
Hou X, Yan Y, Wang Y, Jiang T, Zhang X, Dai X, Igarashi Y, Luo F, Yang C. An insight into algicidal characteristics of Bacillus altitudinis G3 from dysfunctional photosystem and overproduction of reactive oxygen species. CHEMOSPHERE 2023; 310:136767. [PMID: 36241112 DOI: 10.1016/j.chemosphere.2022.136767] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/20/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Cyanobacterial blooms negatively affect aquatic ecosystems and human health. Algicidal bacteria can efficiently kill bloom-causing cyanobacteria. Bacillus altitudinis G3 isolated from Dianchi Lake shows high algicidal activity against Microcystis aeruginosa. In this study, we investigated its algicidal characteristics including attack mode, photosynthesis responses, and source and the contribution of reactive oxygen species (ROS). The results showed that G3 efficiently and specifically killed M. aeruginosa mainly by releasing both thermolabile and thermostable algicidal substances, which exhibited the highest algicidal activity (99.8%, 72 h) in bacterial mid-logarithmic growth phase. The algicidal ratio under full-light conditions (99.5%, 60 h) was significantly higher than under dark conditions (<20%, P < 0.001). G3 filtrate caused photosystem dysfunction by decreasing photosynthetic efficiency, as indicated by significantly decreased Fv/Fm and PIABS (P < 0.001) values. It also inhibited photosynthetic electron transfer as indicated by significantly decreased rETR (P < 0.001), especially QA- downstream, as revealed by significantly decreased φEo and ψo, and increased Mo (P < 0.001). These results indicated that the algicidal activity of G3 filtrate is light-dependent, and the cyanobacterial photosystem is an important target. Cyanobacterial ROS and malondialdehyde contents greatly increased by 37.1% and 208% at 36 h, respectively. ROS levels decreased by 49.2% (9 h) when diuron (3-(3-4-dichlorophenyl)-1,1-dimethylurea) partially blocked photosynthetic electron transport from QA to QB. Therefore, excessive ROS were produced from disrupted photosynthesis, especially the inhibited electron transport area in QA- downstream, and caused severe lipid peroxidation with significantly increased MDA content and oxidative stress in cyanobacteria. The ROS scavenger N-acetyl-l-cysteine significantly decreased both cyanobacterial ROS levels (34%) and algicidal ratio (52%, P < 0.05) at 39 h. Thus, excessive ROS production due to G3 filtrate administration significantly contributed to its algicidal effect. G3 could be an excellent algicide to control M. aeruginosa blooms in waters under suitable light conditions.
Collapse
Affiliation(s)
- Xiping Hou
- Chongqing Key Lab of Bio-resource Development for Bioenergy, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Yaoyao Yan
- Chongqing Key Lab of Bio-resource Development for Bioenergy, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Yuqin Wang
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Tao Jiang
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Xiaohui Zhang
- Chongqing Key Lab of Bio-resource Development for Bioenergy, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Xianzhu Dai
- Chongqing Key Lab of Bio-resource Development for Bioenergy, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Yasuo Igarashi
- Chongqing Key Lab of Bio-resource Development for Bioenergy, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Feng Luo
- Chongqing Key Lab of Bio-resource Development for Bioenergy, College of Resources and Environment, Southwest University, Chongqing, 400715, China.
| | - Caiyun Yang
- Chongqing Key Lab of Bio-resource Development for Bioenergy, College of Resources and Environment, Southwest University, Chongqing, 400715, China; Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
12
|
Ren S, Jin Y, Ma J, Zheng N, Zhang J, Peng X, Xie B. Isolation and characterization of algicidal bacteria from freshwater aquatic environments in China. Front Microbiol 2023; 14:1156291. [PMID: 36970679 PMCID: PMC10033687 DOI: 10.3389/fmicb.2023.1156291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/17/2023] [Indexed: 03/29/2023] Open
Abstract
Algicidal bacteria can inhibit the growth of algae or lyse algal cells, thus playing roles in shaping aquatic microbial communities and maintaining the functions of aquatic ecosystems. Nevertheless, our understanding of their diversities and distributions remains limited. In this study, we collected water samples from 17 freshwater sites in 14 cities in China and screened a total of 77 algicidal bacterial strains using several prokaryotic cyanobacteria and eukaryotic algae as target strains. According to their target-specificities, these strains were classified into three subgroups, cyanobacterial algicidal bacteria, algal algicidal bacteria, and broad-target algicidal bacteria, each displaying distinctive compositions and geographical distribution patterns. They are assigned to Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes bacterial phyla, of which Pseudomonas and Bacillus are the most abundant gram-negative and gram-positive genus, respectively. A number of bacterial strains, such as Inhella inkyongensis and Massilia eburnean, are suggested as new algicidal bacteria. The diverse taxonomies, algal-inhibiting abilities and distributions of these isolates have suggested that there are rich algicidal bacterial resources in these aquatic environments. Our results provide new microbial resources for algal-bacterial interaction studies, and shed new insights into how algicidal bacteria can be used in the control of harmful algal blooms, as well as in algal biotechnology.
Collapse
|
13
|
Zhang B, Hu S, Sun S, Fang T, Yu Y, Sun X, Xu N. Transcriptomic analysis provides insights into the algicidal mechanism of cocamidopropyl betaine against the red tide microalgae Skeletonema costatum. MARINE ENVIRONMENTAL RESEARCH 2023; 183:105838. [PMID: 36525828 DOI: 10.1016/j.marenvres.2022.105838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
This study investigated the effect of the surfactant cocamidopropyl betaine (CAB) on the growth of red tide microalgae Skeletonema costatum. It was found that CAB caused cell lysis in a time- and dose-dependent manner and significantly inhibited the growth of S. costatum. Additionally, the transcriptomic approach was coupled with physiological analysis to elucidate the inhibitory mechanism of CAB on S. costatum. Among the 30726 genes identified, 17720 and 20583 genes were differentially expressed after treatment for 3 h and 6 h, respectively, which revealed that CAB redirected metabolic pathways, of which the expressions of genes related to the proteasome, ABC transporters, and amino acid-related metabolism were significantly upregulated, while genes involved in photosynthesis, biofilm and cell wall synthesis, mitogen-activated protein kinase (MAPK) cascades and antioxidant system were downregulated. The results above corresponded to the decreasing antioxidant enzymes activities, protein and photosynthetic pigments contents, as well as the increasing malondialdehyde (MDA) content. Our study presented herein shed light on the algicidal mechanism of CAB at the transcriptome level and was useful to red tide control, and marine environmental protection.
Collapse
Affiliation(s)
- Bo Zhang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Shanshan Hu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Siqi Sun
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Tian Fang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Yanyan Yu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Xue Sun
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Nianjun Xu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
14
|
Ko SR, Le VV, Srivastava A, Kang M, Oh HM, Ahn CY. Algicidal activity of a novel bacterium, Qipengyuania sp. 3-20A1M, against harmful Margalefidinium polykrikoides: Effects of its active compound. MARINE POLLUTION BULLETIN 2023; 186:114397. [PMID: 36493515 DOI: 10.1016/j.marpolbul.2022.114397] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 11/14/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Margalefidinium polykrikoides causes significant economic losses in the aquaculture industry by red tide formation. Algicidal bacteria have attracted research interests as a potential bloom control approach without secondary pollution. Qipengyuania sp. 3-20A1M, isolated from surface seawater, exerted an algicidal effect on M. polykrikoides. However, it exhibited a significantly lower algicidal activity toward other microalgae. It reduced photosynthetic efficiency of M. polykrikoides and induced lipid peroxidation and cell disruption. The growth inhibition of M. polykrikoides reached 64.9 % after 24 h of co-culturing, and expression of photosynthesis-related genes was suppressed. It killed M. polykrikoides indirectly by secreting algicidal compounds. The algicide was purified and identified as pyrrole-2-carboxylic acid. After 24 h of treatment with pyrrole-2-carboxylic acid (20 μg/mL), 60.8 % of the M. polykrikoides cells were destroyed. Overall, our results demonstrated the potential utility of Qipengyuania sp. 3-20A1M and its algicidal compound in controlling M. polykrikoides blooms in the marine ecosystem.
Collapse
Affiliation(s)
- So-Ra Ko
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ve Van Le
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Ankita Srivastava
- Department of Botany, Siddharth University, Kapilvastu, Siddharth Nagar, 272202, Uttar Pradesh, India
| | - Mingyeong Kang
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Hee-Mock Oh
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Chi-Yong Ahn
- Cell Factory Research Centre, Korea Research Institute of Bioscience & Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea.
| |
Collapse
|
15
|
Zhang X, Yang X, Huang Y, Hu J, Wu D, Yang N, Wang H. 2-Hydroxychalcone as a Novel Natural Photosynthesis Inhibitor against Bloom-Forming Cyanobacteria. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15069-15079. [PMID: 36444958 DOI: 10.1021/acs.jafc.2c06665] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The control of harmful cyanobacterial blooms has been becoming a global challenge. The development of eco-friendly algicides with strong specificity is urgently needed. The photosynthetic apparatus is a promising target site for algicides to minimize the possible harmful effects on animals and humans. In this study, biologically derived 2-hydroxychalcone efficiently inhibited the growth of bloom-forming M. aeruginosa by selectively interfering with photosynthesis. 2-Hydroxychalcone targeting Photosystem II (PSII) inhibited electron transfer between the primary and secondary electron acceptors (QA and QB) and the binding of plastoquinone (PQ) molecules to the QB binding pocket at the acceptor side of PSII, as revealed by polyphasic chlorophyll (Chl) a fluorescence induction and QA- reoxidation kinetics. Molecular docking for 2-hydroxychalcone to D1 protein and the proteomic responses of M. aeruginosa suggested that 2-hydroxychalcone formed a stable monodentate ligand with the nonheme iron in D1 protein, provoking significant modulation of PSII proteins. The unique binding mode of 2-hydroxychalcone with PSII differentiated it from classical PSII inhibitors. Furthermore, 2-hydroxychalcone down-regulated the expression of microcystin (MC) synthesis-related genes to restrain MC synthesis and release. These results indicated the potential application of 2-hydroxychalcone as an algicide or a template scaffold for designing novel derivatives with superior algicidal activity.
Collapse
Affiliation(s)
- Xin Zhang
- College of Life Sciences, South-Central Minzu University, Wuhan, Hubei430074, China
| | - Xu Yang
- College of Life Sciences, South-Central Minzu University, Wuhan, Hubei430074, China
| | - Yichen Huang
- College of Life Sciences, South-Central Minzu University, Wuhan, Hubei430074, China
| | - Jinlu Hu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi710072, China
| | - Diao Wu
- College of Life Sciences, South-Central Minzu University, Wuhan, Hubei430074, China
| | - Niu Yang
- College of Life Sciences, South-Central Minzu University, Wuhan, Hubei430074, China
| | - Haiying Wang
- College of Life Sciences, South-Central Minzu University, Wuhan, Hubei430074, China
| |
Collapse
|
16
|
Mankiewicz-Boczek J, Morón-López J, Serwecińska L, Font-Nájera A, Gałęzowska G, Jurczak T, Kokociński M, Wolska L. Algicidal activity of Morganella morganii against axenic and environmental strains of Microcystis aeruginosa: Compound combination effects. CHEMOSPHERE 2022; 309:136609. [PMID: 36195129 DOI: 10.1016/j.chemosphere.2022.136609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Cyanobacterial harmful algal blooms (cyanoHABs) are a global problem with serious consequences for public health and many sectors of the economy. The use of algicidal bacteria as natural antagonists to control bloom-forming cyanobacteria is a topic of growing interest. However, there are still unresolved questions that need to be addressed to better understand their mode of action and to implement effective mitigation strategies. In this study, thirteen bacterial strains isolated from both scums and concentrated bloom samples exhibited algicidal activity on three Microcystis aeruginosa strains with different characteristics: the axenic microcystin (MC)-producing strain M. aeruginosa PCC7820 (MaPCC7820), and two environmental (non-axenic) M. aeruginosa strains isolated from two different water bodies in Poland, one MC-producer (MaSU) and another non-MC-producer (MaPN). The bacterial strain SU7S0818 exerted the highest average algicidal effect on the three cyanobacterial strains. This strain was identified as Morganella morganii (99.51% similarity) by the 16S rRNA gene analyses; hence, this is the first study that demonstrates the algicidal properties of these ubiquitous bacteria. Microscopic cell counting and qPCR analyses showed that M. morganii SU7S0818 removed 91%, 96%, and 98.5% of MaPCC7820, MaSU and MaPN cells after 6 days of co-culture, respectively. Interestingly, the ultra-high-performance liquid chromatography-tandem mass spectrometer (UHPLC-MS/MS) analyses showed that this bacterium was involved on the release of several substances with algicidal potential. It was remarkable how the profile of some compounds evolved over time, as in the case of cadaverine, tyramine, cyclo[Pro-Gly] and cyclo[Pro-Val]. These dynamic changes could be attributed to the action of M. morganii SU7S0818 and the presence of associated bacteria with environmental cyanobacterial strains. Therefore, this study sheds light on how algicidal bacteria may adapt their action on cyanobacterial cells by releasing a combination of compounds, which is a crucial insight to exploit them as effective biological tools in the control of cyanoHABs.
Collapse
Affiliation(s)
- J Mankiewicz-Boczek
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, 3 Tylna, 90-364, Łódź, Poland.
| | - J Morón-López
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, 3 Tylna, 90-364, Łódź, Poland.
| | - L Serwecińska
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, 3 Tylna, 90-364, Łódź, Poland.
| | - A Font-Nájera
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, 3 Tylna, 90-364, Łódź, Poland.
| | - G Gałęzowska
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Debowa Str. 23A, 80-204, Gdańsk, Poland.
| | - T Jurczak
- UNESCO Chair on Ecohydrology and Applied Ecology, University of Lodz, 12/16 Banacha, 90-237, Łódź, Poland.
| | - M Kokociński
- Department of Hydrobiology, Adam Mickiewicz University, 6 Uniwersytetu Poznańskiego, 61-614, Poznań, Poland.
| | - L Wolska
- Department of Environmental Toxicology, Faculty of Health Sciences, Medical University of Gdansk, Debowa Str. 23A, 80-204, Gdańsk, Poland.
| |
Collapse
|
17
|
Mankiewicz-Boczek J, Font-Nájera A. Temporal and functional interrelationships between bacterioplankton communities and the development of a toxigenic Microcystis bloom in a lowland European reservoir. Sci Rep 2022; 12:19332. [PMID: 36369518 PMCID: PMC9652341 DOI: 10.1038/s41598-022-23671-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022] Open
Abstract
The cyanobacteria-associated microbiome is constantly reshaped by bloom development. However, the synergistic-antagonistic nature of the relationships between Microcystis and its microbiome still remains unclear. Therefore, temporal changes of bacterioplankton communities and their functional potential through different developing stages of a Microcystis toxigenic bloom were investigated, considering bacterioplankton assemblages as particle-attached (PAB) and free-living (FLB) bacteria. 16S rRNA sequencing revealed that PAB were represented by Proteobacteria and Cyanobacteria, while FLB by Proteobacteria and Actinobacteria. Network and ordination analyses indicated that PAB inter-relationships were more complex-numerous connections between taxa with stronger correlations, than FLB-rather influenced by physico-chemical parameters. PAB in pre-summer was diverse with Proteobacteria containing potential taxa involved in nitrogen-transforming processes. In mid-summer, PAB presented a mix-bloom dominated by Snowella, Aphanizomenon, and Microcystis, which were succeeded by toxigenic Microcystis in post-summer. Both periods were associated to potential taxa with parasitic/predatory lifestyles against cyanobacteria. In post-summer, Sutterellaceae were recognized as poor water quality indicators, and their strong association with Microcystis could have represented an increased threat for that period. Microcystis was a major factor significantly reducing PAB diversity and evenness, suggesting that it negatively influenced bacterioplankton assemblages, probably also altering the overall community functional potential.
Collapse
Affiliation(s)
- Joanna Mankiewicz-Boczek
- grid.460361.60000 0004 4673 0316European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Tylna 3, 90-364 Łódź, Poland
| | - Arnoldo Font-Nájera
- grid.460361.60000 0004 4673 0316European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Tylna 3, 90-364 Łódź, Poland
| |
Collapse
|
18
|
Transcriptome Analysis Reveals the Algicidal Mechanism of Brevibacillus laterosporus against Microcystis aeruginosa through Multiple Metabolic Pathways. Toxins (Basel) 2022; 14:toxins14070492. [PMID: 35878230 PMCID: PMC9320710 DOI: 10.3390/toxins14070492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
It is widely accepted that eutrophication has played an important role in the formation of harmful cyanobacterial blooms in recent decades, which impacts water quality and ecological environment and causes huge economic losses. Algicidal bacteria have a promising application prospect in controlling cyanobacterial blooms in aquaculture water. Here, the process of the algicidal bacterium Brevibacillus laterosporus strain Bl-zj acting on Microcystis aeruginosa was explored using transcriptome analysis to elucidate the algicidal mechanism. The results of the co-culture of bacterium and alga showed a strong alga-lysing effect of B. laterosporus against M. aeruginosa with an extreme morphology deformation of the algal cells. A total of 2744 differentially expressed genes of B. laterosporus were identified, which were mainly involved in the metabolism of amino acid, carbohydrate, and lipid. In the co-cultured group, the expression of genes mainly enriched in valine, leucine and isoleucine degradation, and fatty acid degradation were significantly increased. However, the expression of the genes related to ribosome were mainly inhibited. Transcriptome analysis showed that B. laterosporus obtained ATP and energy by the degradation of valine, leucine, isoleucine, and fatty acids, and destroyed algal cells by efflux pump transporters, secretion of hydrolytic enzymes, antibiotics, proteases, and other secondary metabolites, resulting in algal death and achieving the algicidal effect.
Collapse
|
19
|
The Effect of Algicidal and Denitrifying Bacteria on the Vertical Distribution of Cyanobacteria and Nutrients. WATER 2022. [DOI: 10.3390/w14132129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Algicidal bacteria combined with the ability of aerobic denitrification is considered to be a promising way to control harmful cyanobacterial bloom and remove nitrogen. However, the effect of these bacteria on the vertical distribution of colonial cyanobacteria and nutrients remained unknown. In this study, two algicidal and denitrifying bacteria were respectively co-cultured with the colonial Microcystis aeruginosa to construct the microcosm systems, and then the cyanobacteria number, the ratio of bacterial to cyanobacterial abundance, the content of dissolved nitrogen, phosphorus and organic carbon in different water layers were investigated. The results showed that the distribution difference of Microcystis among the vertical water layers was further enlarged due to the short-term influence of algicidal bacteria Brevundimonas diminuta and Pseudomonas stutzeri. The number of Microcystis in the lower layer was further reduced by the inhibitory effect of the algicidal bacteria. However, there was a dramatic increase in the number of Microcystis in the upper layer, even when the ratio of algicidal bacteria to cyanobacteria increased significantly. B. diminuta and P. stutzeri both greatly promoted the removal of dissolved total nitrogen in the upper and middle layers of cyanobacteria blooming water, but they also boosted the release of dissolved phosphorus in all layers. These results enable us to better understand the possible limitations of algicidal bacteria in their application to control cyanobacteria blooms.
Collapse
|
20
|
Kong Y, Wang Y, Miao L, Mo S, Li J, Zheng X. Recent Advances in the Research on the Anticyanobacterial Effects and Biodegradation Mechanisms of Microcystis aeruginosa with Microorganisms. Microorganisms 2022; 10:microorganisms10061136. [PMID: 35744654 PMCID: PMC9229865 DOI: 10.3390/microorganisms10061136] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/28/2022] [Accepted: 05/29/2022] [Indexed: 02/04/2023] Open
Abstract
Harmful algal blooms (HABs) have attracted great attention around the world due to the numerous negative effects such as algal organic matters and cyanobacterial toxins in drinking water treatments. As an economic and environmentally friendly technology, microorganisms have been widely used for pollution control and remediation, especially in the inhibition/biodegradation of the toxic cyanobacterium Microcystis aeruginosa in eutrophic water; moreover, some certain anticyanobacterial microorganisms can degrade microcystins at the same time. Therefore, this review aims to provide information regarding the current status of M. aeruginosa inhibition/biodegradation microorganisms and the acute toxicities of anticyanobacterial substances secreted by microorganisms. Based on the available literature, the anticyanobacterial modes and mechanisms, as well as the in situ application of anticyanobacterial microorganisms are elucidated in this review. This review aims to enhance understanding the anticyanobacterial microorganisms and provides a rational approach towards the future applications.
Collapse
Affiliation(s)
- Yun Kong
- College of Resources and Environment, Yangtze University, Wuhan 430100, China;
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China; (S.M.); (J.L.); (X.Z.)
- Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou 310058, China
- Correspondence: ; Tel./Fax: +86-27-69111182
| | - Yue Wang
- College of Resources and Environment, Yangtze University, Wuhan 430100, China;
| | - Lihong Miao
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China;
| | - Shuhong Mo
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China; (S.M.); (J.L.); (X.Z.)
| | - Jiake Li
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China; (S.M.); (J.L.); (X.Z.)
| | - Xing Zheng
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China; (S.M.); (J.L.); (X.Z.)
| |
Collapse
|
21
|
Zhao N, Yi L, Ren S, Yin Q, Xiang W, Zhang X, Xie B. Algicidal interaction between
Paenibacillus polymyxa
MEZ6
and microalgae. J Appl Microbiol 2022; 133:646-655. [DOI: 10.1111/jam.15592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 04/12/2022] [Accepted: 04/16/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Na Zhao
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology Central China Normal University Wuhan, 430079 China
| | - Li Yi
- State Key Laboratory of Biocatalysis and Enzyme Engineering School of Life Sciences Hubei University, 430062 China
| | - Sanguo Ren
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology Central China Normal University Wuhan, 430079 China
| | - Qin Yin
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology Central China Normal University Wuhan, 430079 China
| | - Wei Xiang
- School of Basic Medicine Guizhou University of Traditional Chinese Medicine Guizhou, 550025 China
| | - Xu Zhang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology Central China Normal University Wuhan, 430079 China
| | - Bo Xie
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology Central China Normal University Wuhan, 430079 China
| |
Collapse
|
22
|
Coyne KJ, Wang Y, Johnson G. Algicidal Bacteria: A Review of Current Knowledge and Applications to Control Harmful Algal Blooms. Front Microbiol 2022; 13:871177. [PMID: 35464927 PMCID: PMC9022068 DOI: 10.3389/fmicb.2022.871177] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/01/2022] [Indexed: 12/19/2022] Open
Abstract
Interactions between bacteria and phytoplankton in aqueous ecosystems are both complex and dynamic, with associations that range from mutualism to parasitism. This review focuses on algicidal interactions, in which bacteria are capable of controlling algal growth through physical association or the production of algicidal compounds. While there is some evidence for bacterial control of algal growth in the field, our understanding of these interactions is largely based on laboratory culture experiments. Here, the range of these algicidal interactions is discussed, including specificity of bacterial control, mechanisms for activity, and insights into the chemical and biochemical analysis of these interactions. The development of algicidal bacteria or compounds derived from bacteria for control of harmful algal blooms is reviewed with a focus on environmentally friendly or sustainable methods of application. Potential avenues for future research and further development and application of bacterial algicides for the control of algal blooms are presented.
Collapse
Affiliation(s)
- Kathryn J. Coyne
- College of Earth, Ocean, and Environment, University of Delaware, Lewes, DE, United States
| | | | | |
Collapse
|
23
|
Wu D, Yang C, Zhang X, Hou X, Zhang S, Dai X, Zhang X, Igarashi Y, Luo F. Algicidal effect of tryptoline against Microcystis aeruginosa: Excess reactive oxygen species production mediated by photosynthesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150719. [PMID: 34606873 DOI: 10.1016/j.scitotenv.2021.150719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 05/26/2023]
Abstract
Cyanobacterial blooms significantly decrease water quality and can damage ecosystems and, as such, require efficient control methods. Algicidal bacteria and their associated substances are promising tools for controlling cyanobacterial blooms; however, their specific algicidal mechanisms remain unclear. Therefore, the current study sought to investigate the algicidal mechanism of tryptoline (1,2,3,4-tetrahydro-9 h-pyrido[3,4-b]indole) against Microcystis aeruginosa, with a specific focus on the contribution made by reactive oxygen species (ROS), the underlying mechanisms of ROS increase, as well as the photosystem response. Results show that the algicidal ratio of tryptoline significantly and positively correlates with algal ROS. Moreover, 93.79% of the algicidal ratio variation is attributed to ROS in the tryptoline group, while only 47.75% can be attributed to ROS in the tryptoline + N-acetyl-L-cysteine (NAC) group, where ROS are partially scavenged by NAC. In the presence of tryptoline, algicidal effect and ROS levels were significantly enhanced in the presence of light as compared to those in the dark (P < 0.001). Hence, the increase in ROS production attributed to tryptoline is primarily affected by the presence of light and photosynthesis. Additionally, tryptoline significantly reduces Fv/Fm, PIABS, ETo/RC, and the expression of psaB and psbA genes related to photosynthesis, while increasing Vj and DIo/RC (P < 0.05). These results suggest that tryptoline hinders algal photosynthesis by significantly decreasing photosynthetic efficiency and carbon assimilation, inhibiting photochemical electron transfer, and increasing closed reaction centers and energy loss. Moreover, following partial blockade of the photosynthetic electron transfer from QA to QB by diuron (3-(3-4-dichlorophenyl)-1,1-dimethylurea), the ROS of algae exposed to tryptoline is significantly decreased. Thus, tryptoline inhibits electron transfer downstream of QA, which increase the number of escaping electron and thereby increase ROS generation. Collectively, this study describes the algicidal mechanism of tryptoline against M. aeruginosa and highlights the critical factors associated with induction of algicidal activity.
Collapse
Affiliation(s)
- Donghao Wu
- Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Caiyun Yang
- Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Xian Zhang
- Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Xiping Hou
- Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Siqi Zhang
- State Cultivation Base of Eco-agriculture for Southwest Mountainous Land, Department of Environmental Sciences and Engineering, College of Resource and Environment, Southwest University, Chongqing 400716, China
| | - Xianzhu Dai
- Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Xiaohui Zhang
- Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Yasuo Igarashi
- Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Feng Luo
- Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
24
|
Liu J, Liu K, Zhao Z, Wang Z, Wang F, Xin Y, Qu J, Song F, Li Z. The LuxS/AI-2 Quorum-Sensing System Regulates the Algicidal Activity of Shewanella xiamenensis Lzh-2. Front Microbiol 2022; 12:814929. [PMID: 35154040 PMCID: PMC8831721 DOI: 10.3389/fmicb.2021.814929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
Cyanobacterial blooming is an increasing environmental issue all over the world. Algicidal bacteria are potential tools for the control of algal blooms. The algicidal activity in many bacteria exhibits quorum-sensing (QS) dynamics and the regulatory mechanism of this activity in these bacteria is unclear. In this study, combining genomic sequencing and genome editing, we have identified that the primary quorum-sensing system in the isolated algicidal strain Shewanella xiamenensis Lzh-2 is the LuxS/AI-2 signaling pathway. Disruption of the QS system through recombination deletion of the LuxS gene led to a loss of algicides production and algicidal activity. Restoration of the LuxS gene in the deletion mutant compensated the QS system and recovered the algicidal activity. Consequently, we proved that Lzh-2 regulates the algicidal activity through LuxS/AI-2 quorum-sensing system.
Collapse
Affiliation(s)
- Jian Liu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Kaiquan Liu
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Zhe Zhao
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Zheng Wang
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Fengchao Wang
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Yuxiu Xin
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Jie Qu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Feng Song
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
- *Correspondence: Feng Song,
| | - Zhenghua Li
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
- Zhenghua Li,
| |
Collapse
|
25
|
Benegas GRS, Bernal SPF, de Oliveira VM, Passarini MRZ. Antimicrobial activity against Microcystis aeruginosa and degradation of microcystin-LR by bacteria isolated from Antarctica. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:52381-52391. [PMID: 34009576 DOI: 10.1007/s11356-021-14458-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
Cyanobacteria massive proliferations are common in freshwater bodies worldwide, causing adverse effects on aquatic ecosystems and public health. Numerous species develop blooms. Most of them correspond to the toxic microcystin-producing cyanobacterium Microcystis aeruginosa. Microorganisms recovered from Antarctic environment can be considered an unexploited source of antimicrobial compounds. Data about their activity against cyanobacteria are scant or inexistent. This study aimed to evaluate the capacity of Antarctic bacteria to inhibit the proliferation of M. aeruginosa BCPUSP232 and to degrade microcystin-LR (MC-LR). Cell-free extracts of seventy-six bacterial strains were initially tested for antimicrobial activity. Unidentified (UN) strains 62 and ES7 and Psychromonas arctica were able to effectively lyse M. aeruginosa. Eight strains showed MIC ranging from 0.55 to 3.00 mg mL-1, with ES7 showing the best antimicrobial activity. Arthrobacter sp. 443 and UN 383 were the most efficient in degrading MC-LR, with 24.87 and 23.85% degradation, respectively. To our knowledge, this is the first report of antimicrobial and MC-LR degradation activities by Antarctic bacteria, opening up perspectives for their future application as an alternative or supporting approach to help mitigate cyanobacterial blooms.
Collapse
Affiliation(s)
- Gabriela Rocío Sosa Benegas
- Laboratório de Biotecnologia Ambiental, UNILA - Universidade Federal da Integração Latino-Americana, Av. Tarquínio Joslin dos Santos, 1000 - Jd Universitário, Foz do Iguaçu, PR, 85870-650, Brazil
- ITAIPU BINACIONAL - Estación de acuicultura - Laboratorios ecológicos de la División de Embalse MARR.CE, Supercarretera Itaipu, Km 16.5, Hernandarias, Paraguay
| | - Suzan Prado Fernandes Bernal
- Laboratório de Biotecnologia Ambiental, UNILA - Universidade Federal da Integração Latino-Americana, Av. Tarquínio Joslin dos Santos, 1000 - Jd Universitário, Foz do Iguaçu, PR, 85870-650, Brazil
| | - Valéria Maia de Oliveira
- CPQBA/UNICAMP - Divisão de Recursos Microbianos, Rua Alexandre Caselatto 999, Vila Betel, CP 6171, Campinas, SP, 13083-970, Brazil
| | - Michel Rodrigo Zambrano Passarini
- Laboratório de Biotecnologia Ambiental, UNILA - Universidade Federal da Integração Latino-Americana, Av. Tarquínio Joslin dos Santos, 1000 - Jd Universitário, Foz do Iguaçu, PR, 85870-650, Brazil.
| |
Collapse
|
26
|
Sukenik A, Kaplan A. Cyanobacterial Harmful Algal Blooms in Aquatic Ecosystems: A Comprehensive Outlook on Current and Emerging Mitigation and Control Approaches. Microorganisms 2021; 9:1472. [PMID: 34361909 PMCID: PMC8306311 DOI: 10.3390/microorganisms9071472] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 12/31/2022] Open
Abstract
An intensification of toxic cyanobacteria blooms has occurred over the last three decades, severely affecting coastal and lake water quality in many parts of the world. Extensive research is being conducted in an attempt to gain a better understanding of the driving forces that alter the ecological balance in water bodies and of the biological role of the secondary metabolites, toxins included, produced by the cyanobacteria. In the long-term, such knowledge may help to develop the needed procedures to restore the phytoplankton community to the pre-toxic blooms era. In the short-term, the mission of the scientific community is to develop novel approaches to mitigate the blooms and thereby restore the ability of affected communities to enjoy coastal and lake waters. Here, we critically review some of the recently proposed, currently leading, and potentially emerging mitigation approaches in-lake novel methodologies and applications relevant to drinking-water treatment.
Collapse
Affiliation(s)
- Assaf Sukenik
- The Yigal Allon Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, P.O. Box 447, Migdal 14950, Israel
| | - Aaron Kaplan
- Department of Plant and Environmental Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 9190401, Israel;
| |
Collapse
|