1
|
Yan B, Ge R, Yu M, Yin X, Zhao M, Zhang Y, Fan J. Efficacy, physicochemical and processing properties of oat peptides prepared via ultrasonication-assisted organic acid hydrolysis. Int J Biol Macromol 2025; 305:141181. [PMID: 39971056 DOI: 10.1016/j.ijbiomac.2025.141181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/24/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
Currently, the low efficiency and pollution issues associated with biological and chemical methods for the preparation of functional peptides continue to pose challenges, restricting the large-scale production and utilization of functional peptides. This study has found that the ultrasound-assisted organic acid-surfactant system is an efficient and green method for the preparation of functional peptides. The probe ultrasonication-assisted tartaric acid system successfully degraded oat globulins into peptides with a degree of hydrolysis (DH) of 22.8 %. The addition of glyceryl monostearate increased the instantaneous burst rate of the bubble (with a D-value of 16 %), thereby elevating the DH to as high as 36 %. The resulting oat peptide particles exhibited high hydrophobicity, and consequently demonstrated strong foaming capacity (99.6 %), oil holding capacity (399.4 %), emulsifying ability (Emulsifying activity index = 50.5 m2/g, stability index = 108 min), and hydroxyl radical scavenging capacity of 98.9 % (at a concentration of 5 mg/mL), holding great promise for application in the field of food processing. These findings deepen our understanding of the enhanced ultrasonic hydrolysis ability of surfactants and pave a new way to produce functional peptides.
Collapse
Affiliation(s)
- Bing Yan
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing 100083, China
| | - Rui Ge
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing 100083, China
| | - Mengru Yu
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing 100083, China
| | - Xiaoyu Yin
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing 100083, China
| | - Mengting Zhao
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing 100083, China
| | - Yanyan Zhang
- Food Science and Engineering College, Beijing University of Agriculture, Beijing 102206, China
| | - Junfeng Fan
- College of Biological Sciences and Technology, Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
2
|
Alshehri WA, Alhothifi SA, Khalel AF, Alqahtani FS, Hadrich B, Sayari A. Production optimization of a thermostable alkaline and detergent biocompatible protease by Bacillus paramycoides WSA for the green detergent industry. Sci Rep 2025; 15:13205. [PMID: 40240496 PMCID: PMC12003834 DOI: 10.1038/s41598-025-98094-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 04/09/2025] [Indexed: 04/18/2025] Open
Abstract
Industrial applications are evolving to replace chemical catalysts with eco-friendly solutions. This work enhances extracellular protease production from a newly isolated proteolytic Bacillus paramycoides WSA using Response Surface Methodology (RSM). The used quadratic model demonstrated a good fit with R2 = 80.59%, R2Adj = 57.94%, a high degree of significance (p = 0.017 < 0.05), and a low RMSE = 0.030 U/mL. Maximum protease activity of 1.346 ± 0.060 U/mL was obtained after 8 h-cultivation at 45 °C and pH 7. The protease activity is maximal at 45 °C and pH 10. It maintains 75% of its activity after 10 min of incubation at 80 °C. Furthermore, the enzyme was found to be stable in an alkaline environment, retaining 89% of its activity after 1 h incubation at pH 12. Several metal ions, surfactants, and inhibitors increased protease performance. Indeed, 110% and 140% protease activity was measured in the presence of 5 mM CoCl2 and CaCl2, respectively. Similarly, 105%, 128%, 135%, 144%, and 160% protease activity were measured in the presence of 0.5% of Tween 20, EDTA, Sodium azide, uric acid, and SDS, respectively. Interestingly, the enzyme activity was enhanced (138%) after 1 h of incubation with 1% Reem detergent. Furthermore, this protease (10 U/mL), in combination with 0.7% detergent, could clean bloodstained fabric after 10 min incubation at 45 °C. Our results suggest that this thermostable, alkaline, and detergent-biocompatible protease could be a promising additive for eco-friendly use in detergent industries.
Collapse
Affiliation(s)
- Wafa A Alshehri
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, 23890, Saudi Arabia
| | - Sarah A Alhothifi
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, 23890, Saudi Arabia
| | - Ashjan F Khalel
- Department of Biology, University College of Aldarb, Jazan University, Jazan, Saudi Arabia
| | - Fatimah S Alqahtani
- Department of Biology, Faculty of Sciences, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Bilel Hadrich
- Department of Chemical Engineering, College of Engineering, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11432, Saudi Arabia
| | - Adel Sayari
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, 23890, Saudi Arabia.
| |
Collapse
|
3
|
Fu Y, Rao Y, Liao Y, Zhang Q, Ma X, Cai D, Chen S. Protein engineering, expression optimization, and application of alkaline protease from Alkalihalobacillus clausii FYX. Int J Biol Macromol 2025; 307:141891. [PMID: 40064254 DOI: 10.1016/j.ijbiomac.2025.141891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/25/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025]
Abstract
Alkaline protease has been commercially used in the areas of detergents, food and agriculture, and improving the performance and production of alkaline protease serves as an important role in promoting its market expansion. Here, an alkaline protease AE0 from Alkalihalobacillus clausii FYX was firstly characterized in Bacillus licheniformis DW2△aprE, the optimal temperature and pH of AE0 were 60 °C and 10.5, the Km and Kcat values for casein were 17.25 mg/mL and 60.51 s-1, respectively, as well as the specific activity was 21,365.93 U/mg. Subsequently, six mutants (G113I, H118D, T141Y, S151A, N167S and Q185S) were obtained through semi-rational design, and G113I exhibited the most optimal performance with a specific activity of 28,150.64 U/mg. Furthermore, the double mutant AE0DM1 and triple mutant AE0MM2 were attained, and their specific activities reached 31,026.32 U/mg and 31,868.56 U/mg, respectively. Concurrently, through the evaluation of thermal stability and measurement of reaction kinetic parameters, G113I was advantageous for enhancing the thermal stability of AE0, while H118D and N167S were more beneficial for enhancing the catalytic efficiency. In addition, the enzyme activity of AE0MM2 produced by strain DW2△aprE/RC0-AE0MM2 was increased by 178.5 % through promoter engineering, reached 36,685.33 U/mL, which also showed the wonderful performance on enzymatic hydrolysis of soybean meal to enhance its utilization rate. Taken together, this work provided an alkaline protease with improved thermal stability and catalytic efficiency, as well as an efficient expression system of alkaline protease for industrial application.
Collapse
Affiliation(s)
- Yuxi Fu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Yi Rao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Yongqing Liao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Qing Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Xin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China.
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China.
| |
Collapse
|
4
|
Yuan Y, Zhao G, Lu J, Wang L, Shi Y, Zhang J. Enhancing the Thermostability of Bacillus licheniformis Alkaline Protease 2709 by Computation-Based Rational Design. Molecules 2025; 30:1160. [PMID: 40076384 PMCID: PMC11901772 DOI: 10.3390/molecules30051160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/16/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
The alkaline protease from Bacillus licheniformis strain 2709 (AprE 2709) is widely used in Chinese industries but faces stability challenges under high-temperature conditions. This study employed molecular modeling and mutagenesis to identify Asn residues at positions 61, 160, and 211 as key sites affecting the stability of AprE 2709. By leveraging the additive and cooperative effects of mutations, the mutant enzyme AprE 2709 (N61G/N160G/N211G) was engineered, exhibiting enhanced thermostability and catalytic activity. The mutant demonstrated a 2.89-fold increase in half-life at 60 °C and a 1.56-fold improvement in catalytic efficiency compared to the wild-type enzyme. Structural analysis revealed that the improved thermostability was due to altered electrostatic interactions and strengthened hydrophobic contacts. Targeting Asn residues prone to deamidation presents a promising strategy for improving protein heat tolerance. These findings not only enhance our understanding of enzyme stability but also lay a foundation for future research aimed at optimizing alkaline proteases for diverse industrial applications, particularly in high-temperature processes.
Collapse
Affiliation(s)
- Yuan Yuan
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China; (Y.Y.); (G.Z.)
| | - Guowei Zhao
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China; (Y.Y.); (G.Z.)
| | - Jing Lu
- College of Life Sciences, Shanxi University, Taiyuan 030006, China;
| | - Lei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering, Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China;
| | - Yawei Shi
- College of Life Sciences, Shanxi University, Taiyuan 030006, China;
- Shanxi Province Detergent Alkaline Protease Industrialization Key Technology and Application Engineering Research Center, Taiyuan 030006, China
| | - Jian Zhang
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China; (Y.Y.); (G.Z.)
- Shanxi Province Detergent Alkaline Protease Industrialization Key Technology and Application Engineering Research Center, Taiyuan 030006, China
| |
Collapse
|
5
|
Sarkar G, Prem Anand K, Jayasri MA, Suthindhiran K. Process optimization and extraction of alkaline protease from halotolerant Streptomyces sp. VITGS3 and its use as a contact lens cleaner. J Genet Eng Biotechnol 2025; 23:100459. [PMID: 40074433 PMCID: PMC11787585 DOI: 10.1016/j.jgeb.2025.100459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/04/2025] [Accepted: 01/09/2025] [Indexed: 03/14/2025]
Abstract
Marine halotolerant actinobacteria are robust microbes poorly explored and barely cultivable in nature. They are a trove of various secondary metabolites and enzymes, especially the alkaline proteases withstanding higher temperatures, pH, and salinity, making them an ideal source with versatile commercial and therapeutic values. This study focuses on extracting and optimizing alkaline protease production from Streptomyces sp. VITGS3 isolated from Puthuvypeen, Kerala. The protease production was optimized by Response Surface Methodology (RSM) using the Box-Behnken model, which used rice bran, wheat bran, skim milk, and casein as substrates. The maximum protease was produced (357 U/mL) using wheat bran (5.5 % w/v) as substrate at pH 9 and incubated at 45 °C for 9 days. The Michaelis-Menten model's enzyme kinetics exhibited a Km value of 1.42 µM, a Vmax of 201.64 µM·min-1, V0 of 5.59 µM·min-1, and Kcat 70013.89 min-1 suggesting a higher affinity of the enzyme for the substrate (1 % w/v casein). In addition, the protease was inhibited by the phenylmethylsulphonyl fluoride (PMSF), suggesting it belongs to the serine protease family. Finally, the application studies as contact lens cleaners showcased that the isolated protease effectively degraded the protein deposits present in the artificial tear solution without affecting the light transmittance. This is a milestone in the implication of protease on therapeutic applications and further studies on protein specificity, sustained releases, and combination strategies, resulting in crucial challenges in long-term studies, cross-reactivity, storage, and cost-effectiveness.
Collapse
Affiliation(s)
- Gargi Sarkar
- Marine Biotechnology and Bioproducts Laboratory, Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - K Prem Anand
- Marine Biotechnology and Bioproducts Laboratory, Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - M A Jayasri
- Marine Biotechnology and Bioproducts Laboratory, Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - K Suthindhiran
- Marine Biotechnology and Bioproducts Laboratory, Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
6
|
Liu R, Wei Y, Lu J, Yin D, Liang Y, Li J, Xiao J, Mo Z, Yi H, Zhang H, Shen N, Zhang B. Heterologous expression, enzymatic properties, product analysis and molecular docking of assimilative nitrite reductase (NiR) in Bacillus velezensis GXMZU-B1 derived from mariculture. Int J Biol Macromol 2025; 291:139047. [PMID: 39708852 DOI: 10.1016/j.ijbiomac.2024.139047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/04/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
High concentrations of nitrite stress aquatic animals, leading to significant fish and shrimp deaths as well as environmental pollution. Reducing nitrite levels in high-density aquaculture is crucial for both aquaculture safety and environmental protection. Nitrite reductase (NiR) can rapidly reduce nitrite in water, offering potential applications in aquaculture and water treatment. In this study, a novel NiR gene (nasD) was isolated from Bacillus velezensis GXMZU-B1, a highly effective nitrite-degrading bacterium, and expressed heterologously in Escherichia coli. The recombinant NASD was purified using Ni-NTA affinity chromatography, and its physicochemical properties and reaction products were analyzed. The enzyme showed optimal activity at 30°C and pH 6.5. Metal ions such as Fe3+, Zn2+, and Ba2+ enhanced enzyme activity, whereas Cu2+, K+, Mg2+, and Mn2+ reduced it. The best electron donors was NADPH. NASD converts nitrite (NO2-) into ammonium (NH4+), making it environmentally friendly and potentially valuable for aquaculture and water pollution control. Bioinformatics analysis indicated that the enzyme is stable, with a conserved sequence and a Pyr_redox_2 domain. Using NADPH as a coenzyme, AlphaFold3 modeling and molecular docking with nitrite identified 14 potential catalytic sites. These findings highlight the potential of recombinant NASD as a promising candidate for nitrite degradation in aquaculture.
Collapse
Affiliation(s)
- Rui Liu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, Guangxi 530006, China
| | - Yuling Wei
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, Guangxi 530006, China
| | - Junming Lu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, Guangxi 530006, China
| | - Doudou Yin
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, Guangxi 530006, China
| | - Ying Liang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, Guangxi 530006, China
| | - Jiling Li
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, Guangxi 530006, China
| | - Junfeng Xiao
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, Guangxi 530006, China
| | - Zuqin Mo
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, Guangxi 530006, China
| | - Han Yi
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, Guangxi 530006, China
| | - Hongyan Zhang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, Guangxi 530006, China
| | - Naikun Shen
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, Guangxi 530006, China.
| | - Bin Zhang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi 530021, China.
| |
Collapse
|
7
|
Jamal GA, Jahangirian E, Hamblin MR, Mirzaei H, Tarrahimofrad H, Alikowsarzadeh N. Proteases, a powerful biochemical tool in the service of medicine, clinical and pharmaceutical. Prep Biochem Biotechnol 2025; 55:1-25. [PMID: 38909284 DOI: 10.1080/10826068.2024.2364234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Proteases, enzymes that hydrolyze peptide bonds, have various applications in medicine, clinical applications, and pharmaceutical development. They are used in cancer treatment, wound debridement, contact lens cleaning, prion degradation, biofilm removal, and fibrinolytic agents. Proteases are also crucial in cardiovascular disease treatment, emphasizing the need for safe, affordable, and effective fibrinolytic drugs. Proteolytic enzymes and protease biosensors are increasingly used in diagnostic and therapeutic applications. Advanced technologies, such as nanomaterials-based sensors, are being developed to enhance the sensitivity, specificity, and versatility of protease biosensors. These biosensors are becoming effective tools for disease detection due to their precision and rapidity. They can detect extracellular and intracellular proteases, as well as fluorescence-based methods for real-time and label-free detection of virus-related proteases. The active utilization of proteolytic enzymatic biosensors is expected to expand significantly in biomedical research, in-vitro model systems, and drug development. We focused on journal articles and books published in English between 1982 and 2024 for this study.
Collapse
Affiliation(s)
- Ghadir A Jamal
- Faculty of Allied Health Sciences, Kuwait University, Kuwait City, Kuwait
| | - Ehsan Jahangirian
- Department of Molecular, Zist Tashkhis Farda Company (tBioDx), Tehran, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Faculty of Health Science, Laser Research Center, University of Johannesburg, Doornfontein, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Neda Alikowsarzadeh
- Molecular and Life Science Department, Han University of Applied Science, Arnhem, Nederland
| |
Collapse
|
8
|
Tayabali AF, Dirieh Y, Groulx E, Elfarawi N, Di Fruscio S, Melanson K, Moteshareie H, Al-Gafari M, Navarro M, Bernatchez S, Demissie Z, Anoop V. Survival and virulence of Acinetobacter baumannii in microbial mixtures. BMC Microbiol 2024; 24:324. [PMID: 39243004 PMCID: PMC11378493 DOI: 10.1186/s12866-024-03471-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/20/2024] [Indexed: 09/09/2024] Open
Abstract
Acinetobacter species such as A. venetianus and A. guillouiae have been studied for various biotechnology applications, including bioremediation of recalcitrant and harmful environmental contaminants, as well as bioengineering of enzymes and diagnostic materials. Bacteria used in biotechnology are often combined with other microorganisms in mixtures to formulate efficacious commercial products. However, if the mixture contained a closely related Acinetobacter pathogen such as A. baumannii (Ab), it remains unclear whether the survival and virulence of Ab would be masked or augmented. This uncertainty poses a challenge in ensuring the safety of such biotechnology products, since Ab is one of the most significant pathogens for both hospital and community -acquired infections. This research aimed to investigate the growth and virulence of Ab within a mixture of 11 bacterial species formulated as a mock microbial mixture (MM). Growth challenges with environmental stressors (i.e., temperature, pH, sodium, iron, and antibiotics) revealed that Ab could thrive under diverse conditions except in the presence of ciprofloxacin. When cultured alone, Ab exhibited significantly more growth in the presence of almost all the environmental stressors than when it was co-incubated with the MM. During the exposure of A549 lung epithelial cells to the MM, Ab growth was stimulated compared to that in standard mammalian culture media. Cytotoxicity caused by Ab was suppressed in the presence of the MM. Lymphocytes were significantly reduced in mice exposed to Ab with or without MM via intravenous injection. The levels of the splenic cytokines IL-1α, IL-1β, MCP-1, and MIP-1α were significantly reduced 24 h after exposure to Ab + MM. This study demonstrated that the presence of the MM marginally but significantly reduced the growth and virulence of Ab, which has implications for the safety of mixtures of microorganisms for biotechnological applications. Furthermore, these findings expand our understanding of the virulence of Ab during host-pathogen interactions.
Collapse
Affiliation(s)
- Azam F Tayabali
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada.
| | - Yasmine Dirieh
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Emma Groulx
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Nusaybah Elfarawi
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Sabrina Di Fruscio
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Kristina Melanson
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Houman Moteshareie
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Mustafa Al-Gafari
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Martha Navarro
- Scientific Services Division, Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Stéphane Bernatchez
- Biotechnology Sections 1 and 2, New Substances Assessment and Control Bureau, Safe Environments Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Zerihun Demissie
- Biotechnology Sections 1 and 2, New Substances Assessment and Control Bureau, Safe Environments Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Valar Anoop
- Biotechnology Sections 1 and 2, New Substances Assessment and Control Bureau, Safe Environments Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| |
Collapse
|
9
|
Fernandes LMG, Carvalho-Silva JD, Ferreira-Santos P, Porto ALF, Converti A, Cunha MNCD, Porto TS. Valorization of agro-industrial residues using Aspergillus heteromorphus URM0269 for protease production: Characterization and purification. Int J Biol Macromol 2024; 273:133199. [PMID: 38885866 DOI: 10.1016/j.ijbiomac.2024.133199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
This study aimed to produce, characterize and purify a protease from Aspergillus heteromorphus URM0269. After production by solid fermentation of wheat bran performed according to a central composite design, protease was characterized in terms of biochemical, kinetic, and thermodynamic parameters for further purification by chromatography. Proteolytic activity achieved a maximum value of 57.43 U/mL using 7.8 g of wheat bran with 40 % moisture. Protease displayed high stability in the pH and temperature ranges of 5.0-10.0 and 20-30 °C, respectively, and acted optimally at pH 7.0 and 50 °C. The enzyme, characterized as a serine protease, followed Michaelis-Menten kinetics with a maximum reaction rate of 140.0 U/mL and Michaelis constant of 11.6 mg/mL. Thermodynamic activation parameters, namely activation Gibbs free energy (69.79 kJ/mol), enthalpy (5.86 kJ/mol), and entropy (-214.39 J/mol.K) of the hydrolysis reaction, corroborated with kinetic modeling showing high affinity for azocasein. However, thermodynamic parameters suggested a reversible mechanism of unfolding. Purification by chromatography yielded a protease purification factor of 7.2, and SDS-PAGE revealed one protein band with a molecular mass of 14.7 kDa. Circular dichroism demonstrated a secondary structure made up of 45.6 % α-helices. These results show the great potential of this protease for future use in the industrial area.
Collapse
Affiliation(s)
- Lígia Maria Gonçalves Fernandes
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco, Dois Irmãos, Recife, PE 52171-900, Brazil
| | - Jônatas de Carvalho-Silva
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco, Dois Irmãos, Recife, PE 52171-900, Brazil
| | - Pedro Ferreira-Santos
- Department of Chemical Engineering, Faculty of Science, University of Vigo, As Lagoas, Ourense 32004, Spain; Instituto de Agroecoloxía e Alimentación (IAA), University of Vigo (Campus Auga), As Lagoas, Ourense 32004, Spain
| | - Ana Lúcia Figueiredo Porto
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco, Dois Irmãos, Recife, PE 52171-900, Brazil
| | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering, Pole of Chemical Engineering, Genoa University, via Opera Pia 15, Genoa 16145, Italy
| | - Márcia Nieves Carneiro da Cunha
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco, Dois Irmãos, Recife, PE 52171-900, Brazil
| | - Tatiana Souza Porto
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco, Dois Irmãos, Recife, PE 52171-900, Brazil.
| |
Collapse
|
10
|
Shestakova A, Fatkulin A, Surkova D, Osmolovskiy A, Popova E. First Insight into the Degradome of Aspergillus ochraceus: Novel Secreted Peptidases and Their Inhibitors. Int J Mol Sci 2024; 25:7121. [PMID: 39000228 PMCID: PMC11241649 DOI: 10.3390/ijms25137121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024] Open
Abstract
Aspergillus fungi constitute a pivotal element within ecosystems, serving as both contributors of biologically active compounds and harboring the potential to cause various diseases across living organisms. The organism's proteolytic enzyme complex, termed the degradome, acts as an intermediary in its dynamic interaction with the surrounding environment. Using techniques such as genome and transcriptome sequencing, alongside protein prediction methodologies, we identified putative extracellular peptidases within Aspergillus ochraceus VKM-F4104D. Following manual annotation procedures, a total of 11 aspartic, 2 cysteine, 2 glutamic, 21 serine, 1 threonine, and 21 metallopeptidases were attributed to the extracellular degradome of A. ochraceus VKM-F4104D. Among them are enzymes with promising applications in biotechnology, potential targets and agents for antifungal therapy, and microbial antagonism factors. Thus, additional functionalities of the extracellular degradome, extending beyond mere protein substrate digestion for nutritional purposes, were demonstrated.
Collapse
Affiliation(s)
- Anna Shestakova
- Department of Microbiology, Lomonosov MSU, Moscow 119234, Russia; (A.S.); (A.O.)
| | - Artem Fatkulin
- Laboratory of Molecular Physiology, HSE University, Moscow 101000, Russia
| | - Daria Surkova
- Department of Microbiology, Lomonosov MSU, Moscow 119234, Russia; (A.S.); (A.O.)
| | | | - Elizaveta Popova
- Department of Microbiology, Lomonosov MSU, Moscow 119234, Russia; (A.S.); (A.O.)
| |
Collapse
|
11
|
Khadka DB, Pahadi T, Aryal S, Karki DB. Partial purification and characterization of protease extracted from kinema. Heliyon 2024; 10:e27173. [PMID: 38463843 PMCID: PMC10923713 DOI: 10.1016/j.heliyon.2024.e27173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/12/2024] Open
Abstract
Proteases are large group of highly demanded enzymes having huge application in food and pharmaceutical industries. Numerous sources, including plants, microorganisms, and animals, can be used to obtain protease. Due to its affordability and safety consideration, fermented foods have recently attracted more attention as a source of microbial protease. The present study aimed to extract protease from kinema, partially purify the extracted protease following dialysis after precipitation with ammonium sulfate, and determine general characteristics of protease. The kinema having highest proteolysis activity after three days of control fermentation (Temperature 30±2 °C, RH 66 ± 2%) was taken for the study. About 2.45 fold of purification with overall recovery of 63.21% was achieved after precipitation with ammonium sulfate at 30-70% saturation level followed by dialysis of crude extracted protease. The dialysed kinema protease had specific activity of 7.90 U/mg. The enzyme remained actively functional across a wider pH (5-9) and temperature (40-60 °C) range. SDS-PAGE and Zymogram confirmed the presence of three major active bands respectively of 29.04 kDa, 36.09 kDa and 46.35 kDa in the kinema protease extract. The enzyme kinetics data on casein, fitted to Mechaelis Mentens' plots showed the protease had Vmax of 1.001 U/ml with corresponding Km value of 0.825 mg/ml. Metal ions such as iron, mercury and aluminium showed the inhibition effect whereas presence of sodium, zinc, and calcium shows the activation effect on protease performance. The enzyme was active over various natural substrates; showing maximal activity on casein, and subsequent to bovine serum albumin, gelatin, hemoglobin and whey protein respectively. Furthermore, molecular weight distribution of the protease extract and activity inhibition with ethylenediaminetetraacetic acid and phenylmethylsulfonyl fluoride, suggesting the protease from kinema could be a metal dependent serine protease or mixture of them.
Collapse
Affiliation(s)
- Dambar Bahadur Khadka
- Central Department of Food Technology, Tribhuvan University, Dharan, Nepal
- Central Campus of Technology, Tribhuvan University, Dharan, Nepal
| | - Tikaram Pahadi
- Central Campus of Technology, Tribhuvan University, Dharan, Nepal
| | - Sunil Aryal
- Central Department of Food Technology, Tribhuvan University, Dharan, Nepal
| | - Dhan Bahadur Karki
- Central Department of Food Technology, Tribhuvan University, Dharan, Nepal
| |
Collapse
|
12
|
Nouri N, Sadeghi L, Marefat A. Production of alkaline protease by Aspergillus niger in a new combinational paper waste culture medium. J Biosci Bioeng 2024; 137:173-178. [PMID: 38242758 DOI: 10.1016/j.jbiosc.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/13/2023] [Accepted: 12/15/2023] [Indexed: 01/21/2024]
Abstract
Enzymes derived from microbial sources have gained increasing popularity in industrial applications over the past decades. Despite the high production cost, alkaline proteases have wide applications in industries such as tanneries, food production, and detergents. In recent years, there has been a shift towards utilizing natural carbon sources for cultivating microorganisms and extracting proteases in order to reduce production costs. This study aimed to investigate the biochemical and kinetic properties of protease enzymes obtained from Aspergillus niger cultivated in a paper waste medium and compare with the enzyme produced in a basal medium. Glucose is a more favorable carbon source compared to cellulose, so paper waste was pretreated with cellulose-degrading bacteria to convert cellulose into smaller carbohydrates. After the growth of A. niger in basal and combinational media, the enzymatic properties were compared between the extracted enzymes by using casein as substrate. The results demonstrated that A. niger could produce protease enzymes in the paper waste medium similar to the basal medium with more than 5-fold cost saving. The specific activity of the enzymes isolated from the basal and paper waste media was calculated to be 184.95 ± 10.56 U ml-1 and 169.88 ± 11.05 U ml-1, respectively. Carbon sources did not affect the optimum pH and temperature of the protease enzyme, which were found to be 8 and 37 °C, respectively. This study provides valuable insights into the production of alkaline protease from A. niger using a combinational medium (paper waste pretreated by cellulose-degrading bacteria), offering a cost-effective approach for industrial applications.
Collapse
Affiliation(s)
- Negin Nouri
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Leila Sadeghi
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Arezu Marefat
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
13
|
Ji A, Zheng X, Yang W, Chen M, Ma A, Liu Y, Wei X. Transcriptome analysis reveals the underlying mechanism for over-accumulation of alkaline protease in Bacillus licheniformis. J Appl Microbiol 2024; 135:lxad319. [PMID: 38159929 DOI: 10.1093/jambio/lxad319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/18/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
AIMS Bacillus licheniformis AQ is an industrial strain with high production of alkaline protease (AprE), which has great industrial application value. However, how to regulate the production of AprE in the process of industrial fermentation is still not completely clear. Therefore, it is important to understand the metabolic process of AprE production in the industrial fermentation medium. METHODS AND RESULTS In this study, transcriptome sequencing of the whole fermentation course was performed to explore the synthesis and regulation mechanism of AprE in B. licheniformis AQ. During the fermentation process, the AprE got continuously accumulated, reaching a peak of 42 020 U/mL at the fermentation endpoint (48 h). Meanwhile, the highly expressed genes were observed. Compared with the fermentation endpoint, there were 61 genes in the intersection of differentially expressed genes, functioning as catabolic processes, peptidases and inhibitors, chaperones, and folding catalysts. Furthermore, the protein-protein interactions network of AprE was constructed. CONCLUSION This study provides important transcriptome information for B. licheniformis AQ and potential molecular targets for further improving the production of AprE.
Collapse
Affiliation(s)
- Anying Ji
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xianliang Zheng
- AngelYeast Co., Ltd, Yichang 443003, China
- Hubei Provincial Key Laboratory of Yeast Function, Yichang 443003, China
- National Key Laboratory of Agricultural Microbiology, Yichang 443003, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Wei Yang
- GeneMind Biosciences Company Limited, Shenzhen 518001, China
| | - Ming Chen
- AngelYeast Co., Ltd, Yichang 443003, China
- Hubei Provincial Key Laboratory of Yeast Function, Yichang 443003, China
- National Key Laboratory of Agricultural Microbiology, Yichang 443003, China
| | - Aimin Ma
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongfeng Liu
- GeneMind Biosciences Company Limited, Shenzhen 518001, China
| | - Xuetuan Wei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
14
|
Yao H, Liu S, Liu T, Ren D, Zhou Z, Yang Q, Mao J. Microbial-derived salt-tolerant proteases and their applications in high-salt traditional soybean fermented foods: a review. BIORESOUR BIOPROCESS 2023; 10:82. [PMID: 38647906 PMCID: PMC10992980 DOI: 10.1186/s40643-023-00704-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/31/2023] [Indexed: 04/25/2024] Open
Abstract
Different microorganisms can produce different proteases, which can adapt to different industrial requirements such as pH, temperature, and pressure. Salt-tolerant proteases (STPs) from microorganisms exhibit higher salt tolerance, wider adaptability, and more efficient catalytic ability under extreme conditions compared to conventional proteases. These unique enzymes hold great promise for applications in various industries including food, medicine, environmental protection, agriculture, detergents, dyes, and others. Scientific studies on microbial-derived STPs have been widely reported, but there has been little systematic review of microbial-derived STPs and their application in high-salt conventional soybean fermentable foods. This review presents the STP-producing microbial species and their selection methods, and summarizes and analyzes the salt tolerance mechanisms of the microorganisms. It also outlines various techniques for the isolation and purification of STPs from microorganisms and discusses the salt tolerance mechanisms of STPs. Furthermore, this review demonstrates the contribution of modern biotechnology in the screening of novel microbial-derived STPs and their improvement in salt tolerance. It highlights the potential applications and commercial value of salt-tolerant microorganisms and STPs in high-salt traditional soy fermented foods. The review ends with concluding remarks on the challenges and future directions for microbial-derived STPs. This review provides valuable insights into the separation, purification, performance enhancement, and application of microbial-derived STPs in traditional fermented foods.
Collapse
Affiliation(s)
- Hongli Yao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Department of Biology and Food Engineering, Bozhou University, Bozhou, 236800, Anhui, China
| | - Shuangping Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, Guangdong, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China
| | - Tiantian Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China
| | - Dongliang Ren
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zhilei Zhou
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, Guangdong, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China
| | - Qilin Yang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Jian Mao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, Guangdong, China.
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China.
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China.
| |
Collapse
|
15
|
Mousavi Ghahfarrokhi SS, Mahdigholi FS, Amin M. Collateral beauty in the damages: an overview of cosmetics and therapeutic applications of microbial proteases. Arch Microbiol 2023; 205:375. [PMID: 37935975 DOI: 10.1007/s00203-023-03713-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 11/09/2023]
Abstract
Microbial proteases are enzymes secreted by a variety of microorganisms, including bacteria and fungi, and have attracted significant attention due to their versatile applications in the food and pharmaceutical industries. In addition, certain proteases have been used in the development of skin health products and cosmetics. This article provides a review of microbial proteases in terms of their classification, sources, properties, and applications. Moreover, different pharmacological and molecular investigations have been reviewed. Various biological activities of microbial proteases, such as Arazyme, collagenase, elastin, and Nattokinase, which are involved in the digestion of dietary proteins, as well as their potential anti-inflammatory, anti-cancer, antithrombotic, and immunomodulatory effects have been included. Furthermore, their ability to control infections and treat various disorders has been discussed. Finally, this review highlights the potential applications and future perspectives of microbial proteases in biotechnology and biomedicine, and proposes further studies to develop new perspectives for disease control and health-promoting strategies using microbial resources.
Collapse
Affiliation(s)
- Seyed Sadeq Mousavi Ghahfarrokhi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Pharmaceutical Microbiology Group, Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Fateme Sadat Mahdigholi
- Department of Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Amin
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
- Pharmaceutical Microbiology Group, Pharmaceutical Quality Assurance Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
- Room No. 1-221, Faculty of Pharmacy, 16th Azar Street, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Shettar SS, Bagewadi ZK, Kolvekar HN, Yunus Khan T, Shamsudeen SM. Optimization of subtilisin production from Bacillus subtilis strain ZK3 and biological and molecular characterization of synthesized subtilisin capped nanoparticles. Saudi J Biol Sci 2023; 30:103807. [PMID: 37744003 PMCID: PMC10514557 DOI: 10.1016/j.sjbs.2023.103807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/22/2023] [Accepted: 09/01/2023] [Indexed: 09/26/2023] Open
Abstract
The increase and dissemination of multi-drug resistant bacteria have presented a major healthcare challenge, making bacterial infections a significant concern. The present research contributes towards the production of bioactive subtilisin from a marine soil isolate Bacillus subtilis strain ZK3. Custard apple seed powder (raw carbon) and mustard oil cake (raw nitrogen) sources showed a pronounced effect on subtilisin production. A 7.67-fold enhancement in the production was evidenced after optimization with central composite design-response surface methodology. Subtilisin capped silver (AgNP) and zinc oxide (ZnONP) nanoparticles were synthesized and characterized by UV-Visible spectroscopy. Subtilisin and its respective nanoparticles revealed significant biological properties such as, antibacterial activity against all tested pathogenic strains with potential against Escherichia coli and Pseudomonas aeruginosa. Prospective antioxidant behavior of subtilisin, AgNP and ZnONP was evidenced through radical scavenging assays with ABTS and DPPH. Subtilisin, AgNP and ZnONP revealed cytotoxic effect against cancerous breast cell lines MCF-7 with IC50of 83.48, 3.62 and 7.57 µg/mL respectively. Characterizations of nanoparticles were carried out by Fourier transform infrared spectroscopy, scanning electron microscopy with energy dispersive X-ray, X-ray diffraction, thermogravimetric analysis and atomic force microscopy analysis to elucidate the structure, surface and thermostability properties. The study proposes the potential therapeutic applications of subtilisin and its nanoparticles, a way forward for further exploration in the field of healthcare.
Collapse
Affiliation(s)
- Shreya S. Shettar
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Zabin K. Bagewadi
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Harsh N. Kolvekar
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - T.M. Yunus Khan
- Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Shaik Mohamed Shamsudeen
- Department of Diagnostic Dental Science and Oral Biology, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia
| |
Collapse
|
17
|
Wang S, Xue Y, Zhang P, Yan Q, Li Y, Jiang Z. CRISPR/Cas9 System-Mediated Multi-copy Expression of an Alkaline Serine Protease in Aspergillus niger for the Production of XOD-Inhibitory Peptides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15194-15203. [PMID: 37807677 DOI: 10.1021/acs.jafc.3c04138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
CRISPR/Cas9 system-mediated multi-copy expression of an alkaline serine protease (AoproS8) from Aspergillus oryzae was successfully built in Aspergillus niger. Furthermore, AoproS8 was continuously knocked in the glaA, amyA, and aamy gene loci in A. niger to construct multi-copy expression strains. The yield of the AoproS8 3.0 strain was 2.1 times higher than that of the AoproS8 1.0 strain. Then, a high protease activity of 11,023.2 U/mL with a protein concentration of 10.8 mg/mL was obtained through fed-batch fermentation in a 5 L fermenter. This is the first report on the high-level expression of alkaline serine proteases in A. niger. AoproS8 showed optimal activity at pH 9.0 and 40 °C. It was used for the production of xanthine oxidase (XOD)-inhibitory peptides from eight food processing protein by-products. Among them, the duck hemoglobin hydrolysates showed the highest XOD-inhibitory activity with an IC50 value of 2.39 mg/mL. Thus, our work provides a useful way for efficient expression of proteases in A. niger and high-value utilization of protein by-products.
Collapse
Affiliation(s)
- Shounan Wang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yibin Xue
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Peng Zhang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Qiaojuan Yan
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Yanxiao Li
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Zhengqiang Jiang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe City 462000, Henan Province, China
| |
Collapse
|
18
|
El-Metwally MM, Abdel-Fattah GM, Al-Otibi FO, Khatieb DK, Helmy YA, Mohammed YM, Saber WI. Application of artificial neural networks for enhancing Aspergillus flavipes lipase synthesis for green biodiesel production. Heliyon 2023; 9:e20063. [PMID: 37809880 PMCID: PMC10559816 DOI: 10.1016/j.heliyon.2023.e20063] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/25/2023] [Accepted: 09/10/2023] [Indexed: 10/10/2023] Open
Abstract
Biodiesel is a sustainable, and renewable alternative to fossil fuels that can be produced from various biological sources with the aid of lipases. This study developed a simple and novel fungal system for lipase biosynthesis to be used for catalyzing the oily residuals into biodiesel, employing the artificial neural network (ANN), and semi-solid-state fermentation (SSSF). Nigella sativa was selected among agro-industrial oily residuals as a substrate for lipase biosynthesis by Aspergillus flavipes MH47297. The effect of cultural humidity (X1), the surfactant; Brij 35 (X2), and inoculum density (X3) on lipase biosynthesis were researched based on the matrix of Box-Behnken design (BBD). The ANN together with a new fungal candidate and SSSF were then applied for the first time to model the biosynthesis process of lipase. The optimum predicted cultural conditions varied according to the model. The optimum predicted conditions were estimated separately by BBD (X1 = 5.8 ml water/g, X2 = 46.6 μl/g, and X3 = 62156610 spore/g) and ANN (X1 = 5.4 ml water/g, X2 = 54.2 μl/g, and X3 = 100000000 spore/g) models. Based on the modeling process, the response of lipase was calculated to be 214.95 (BBD) and 217.72 U (ANN), which revealed high consistency with the experimental lipase yield (209.13 ± 3.27 U for BBD, and 218 ± 2.01 U for ANN). Despite both models showing high accuracy, ANN was more accurate and surpassed the BBD model. Gas chromatography analysis showed that lipase successfully converted corn oil to biodiesel (29.5 mg/l).
Collapse
Affiliation(s)
- Mohammad M. El-Metwally
- Botany and Microbiology Department, Faculty of Science, Damanhour University, Damanhour, 22511, Egypt
| | | | - Fatimah O. Al-Otibi
- Botany and Microbiology Department, Faculty of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | | | - Yosra A. Helmy
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food, and Environment, University of Kentucky, Lexington, 40546, Kentucky, USA
| | - Youssef M.M. Mohammed
- Botany and Microbiology Department, Faculty of Science, Damanhour University, Damanhour, 22511, Egypt
| | - WesamEldin I.A. Saber
- Microbial Activity Unit, Microbiology Department, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza, 12619, Egypt
| |
Collapse
|
19
|
Miao H, Xiang X, Han N, Wu Q, Huang Z. Improving the Thermostability of Serine Protease PB92 from Bacillus alcalophilus via Site-Directed Mutagenesis Based on Semi-Rational Design. Foods 2023; 12:3081. [PMID: 37628080 PMCID: PMC10453622 DOI: 10.3390/foods12163081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Proteases have been widely employed in many industrial processes. In this work, we aimed to improve the thermostability of the serine protease PB92 from Bacillus alcalophilus to meet the high-temperature requirements of biotechnological treatments. Eight mutation sites (N18, S97-S101, E110, and R143) were identified, and 21 mutants were constructed from B-factor comparison and multiple sequence alignment and expressed via Bacillus subtilis. Among them, fifteen mutants exhibited increased half-life (t1/2) values at 65 °C (1.13-31.61 times greater than that of the wild type). Based on the composite score of enzyme activity and thermostability, six complex mutants were implemented. The t1/2 values of these six complex mutants were 2.12-10.05 times greater than that of the wild type at 65 °C. In addition, structural analysis revealed that the increased thermal stability of complex mutants may be related to the formation of additional hydrophobic interactions due to increased hydrophobicity and the decreased flexibility of the structure. In brief, the thermal stability of the complex mutants N18L/R143L/S97A, N18L/R143L/S99L, and N18L/R143L/G100A was increased 4-fold, which reveals application potential in industry.
Collapse
Affiliation(s)
- Huabiao Miao
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming 650500, China
- School of Life Science, Yunnan Normal University, Kunming 650500, China
| | - Xia Xiang
- School of Life Science, Yunnan Normal University, Kunming 650500, China
| | - Nanyu Han
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming 650500, China
- School of Life Science, Yunnan Normal University, Kunming 650500, China
| | - Qian Wu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming 650500, China
- School of Life Science, Yunnan Normal University, Kunming 650500, China
| | - Zunxi Huang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming 650500, China
- School of Life Science, Yunnan Normal University, Kunming 650500, China
| |
Collapse
|
20
|
Silveira MAV, Batista Dos Santos SM, Okamoto DN, de Melo IS, Juliano MA, Ribeiro Chagas J, Vasconcellos SP. Atlantic Forest's and Caatinga's semiarid soils and their potential as a source for halothermotolerant actinomycetes and proteolytic enzymes. ENVIRONMENTAL TECHNOLOGY 2023; 44:1566-1578. [PMID: 34783646 DOI: 10.1080/09593330.2021.2008015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Actinomycetes are versatile about their metabolism, displaying high capacity to produce bioactive metabolites. Enzymes from actinomycetes represent new opportunities for industrial applications. However, proteases from actinomycetes are poorly described by literature. Thereby, to verify proteolytic potential of actinomycetes, the present study aimed the investigation of bacterial isolates from Caatinga and Atlantic Forest rhizosphere. Fluorescence resonance energy transfer (FRET) peptide libraries were adopted for the evaluations, since they are faster and more qualitative methods, if compared with others described by most reports. A total of 52 microorganisms were inoculated in different culture media (PMB, potato dextrose agar, brain heart infusion agar, Starch Casein Agar and Reasoner's 2A agar), temperatures (12, 20, 30, 37, 45 and 60°C), and saline conditions (0-4 M NaCl), during 7 days. The actinomycetes named as AC 01, 02 and 52 were selected and showed enzymatic abilities under the peptide probes Abz-KLRSSKQ-EDDnp and Abz-KLYSSKQ-EDDnp, achieving enhanced performance at 30 °C. Biochemical parameters were established, showing a predominance of alkaline proteases with activity under saline conditions. Secreted proteases hydrolysed preferentially polar uncharged residues (Y and N) and positively charged groups (R). Phenylmethylsulfonyl fluoride and ethylenediaminetetraacetic acid inhibited the proteins, a characteristic of serine (AC 01 e 02) and metalloproteases (AC 52). All selected strains belonged to Streptomyces genera. In summary, actinomycete strains with halophilic proteolytic abilities were selected, which improve possibilities for their use in detergent formulations, food processing, waste management and industrial bioconversion. It is important to highlight that this is the first report using FRET libraries for proteolytic screening from Caatinga and Atlantic Forest actinobacteria.
Collapse
Affiliation(s)
- Marghuel A Vieira Silveira
- Laboratory of Biochemistry, Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Saara M Batista Dos Santos
- Laboratory of Biochemistry and Enzymology, Institute of Pharmacology and Molecular Biology, Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
| | - Débora Noma Okamoto
- Laboratory of Health and Environment Sciences, Department of Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, Brazil
| | - Itamar Soares de Melo
- Laboratory of Environment Microbiology, Brazilian Agricultural Research Corporation, EMBRAPA Environment, Jaguariúna, Brazil
| | - Maria A Juliano
- Laboratory of Biochemistry and Enzymology, Institute of Pharmacology and Molecular Biology, Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
| | - Jair Ribeiro Chagas
- Laboratory of Biochemistry and Enzymology, Institute of Pharmacology and Molecular Biology, Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
| | - Suzan P Vasconcellos
- Laboratory of Health and Environment Sciences, Department of Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, Brazil
| |
Collapse
|
21
|
Pawar KS, Singh PN, Singh SK. Fungal alkaline proteases and their potential applications in different industries. Front Microbiol 2023; 14:1138401. [PMID: 37065163 PMCID: PMC10098022 DOI: 10.3389/fmicb.2023.1138401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/09/2023] [Indexed: 04/03/2023] Open
Abstract
The consumption of various enzymes in industrial applications around the world has increased immensely. Nowadays, industries are more focused on incorporating microbial enzymes in multiple processes to avoid the hazardous effects of chemicals. Among these commercially exploited enzymes, proteases are the most abundantly used enzymes in different industries. Numerous bacterial alkaline proteases have been studied widely and are commercially available; however, fungi exhibit a broader variety of proteases than bacteria. Additionally, since fungi are often recognized as generally regarded as safe (GRAS), using them as enzyme producers is safer than using bacteria. Fungal alkaline proteases are appealing models for industrial use because of their distinct spectrum of action and enormous diversity in terms of being active under alkaline range of pH. Unlike bacteria, fungi are less studied for alkaline protease production. Moreover, group of fungi growing at alkaline pH has remained unexplored for their capability for the production of commercially valuable products that are stable at alkaline pH. The current review focuses on the detailed classification of proteases, the production of alkaline proteases from different fungi by fermentation (submerged and solid–state), and their potential applications in detergent, leather, food, pharmaceutical industries along with their important role in silk degumming, waste management and silver recovery processes. Furthermore, the promising role of alkali–tolerant and alkaliphilic fungi in enzyme production has been discussed briefly. This will highlight the need for more research on fungi growing at alkaline pH and their biotechnological potential.
Collapse
|
22
|
Liya SM, Umesh M, Nag A, Chinnathambi A, Alharbi SA, Jhanani GK, Shanmugam S, Brindhadevi K. Optimized production of keratinolytic proteases from Bacillus tropicus LS27 and its application as a sustainable alternative for dehairing, destaining and metal recovery. ENVIRONMENTAL RESEARCH 2023; 221:115283. [PMID: 36639016 DOI: 10.1016/j.envres.2023.115283] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/02/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
The present study describes the isolation and characterization of Bacillus tropicus LS27 capable of keratinolytic protease production from Russell Market, Shivajinagar, Bangalore, Karnataka, with its diverse application. The ability of this strain to hydrolyze chicken feathers and skim milk was used to assess its keratinolytic and proteolytic properties. The strain identification was done using biochemical and molecular characterization using the 16S rRNA sequencing method. Further a sequential and systematic optimization of the factors affecting the keratinase production was done by initially sorting out the most influential factors (NaCl concentration, pH, inoculum level and incubation period in this study) through one factor at a time approach followed by central composite design based response surface methodology to enhance the keratinase production. Under optimized levels of NaCl (0.55 g/L), pH (7.35), inoculum level (5%) and incubation period (84 h), the keratinase production was enhanced from 41.62 U/mL to 401.67 ± 9.23 U/mL (9.65 fold increase) that corresponds to a feather degradation of 32.67 ± 1.36% was achieved. With regard to the cost effectiveness of application studies, the crude enzyme extracted from the optimized medium was tested for its potential dehairing, destaining and metal recovery properties. Complete dehairing was achieved within 48 h of treatment with crude enzyme without any visible damage to the collagen layer of goat skin. In destaining studies, combination of crude enzyme and detergent solution [1 mL detergent solution (5 mg/mL) and 1 mL crude enzyme] was found to be most effective in removing blood stains from cotton cloth. Silver recovery from used X-ray films was achieved within 6 min of treatment with crude enzyme maintained at 40 °C.
Collapse
Affiliation(s)
- Stanly Merin Liya
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, Karnataka, India
| | - Mridul Umesh
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, Karnataka, India.
| | - Anish Nag
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, Karnataka, India
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - G K Jhanani
- Center for Transdisciplinary Research (CFTR), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Sabarathinam Shanmugam
- Chair of Biosystems Engineering, Institute of Forestry and Engineering, Estonian University of Life Sciences, Kreutzwaldi 56, 51014, Tartu, Estonia
| | - Kathirvel Brindhadevi
- University Centre for Research & Development, Department of Chemistry, Chandigarh University, Mohali, India.
| |
Collapse
|
23
|
Two-Step Purification and Partial Characterization of Keratinolytic Proteases from Feather Meal Bioconversion by Bacillus sp. P45. Processes (Basel) 2023. [DOI: 10.3390/pr11030803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
This study aimed to purify and partially characterize a keratinolytic protease produced by Bacillus sp. P45 through bioconversion of feather meal. Crude protease extract was purified using a sequence of an aqueous two-phase system (ATPS) in large volume systems (10, 50, and 500 g) to increase obtaining purified enzyme, followed by a diafiltration (DF) step. Purified protease was characterized in terms of protein profile analysis by SDS-PAGE, optimum temperature and pH, thermal deactivation kinetics at different temperatures and pH, and performance in the presence of several salts (NaCl, CaCl2, MnCl2, CaO, C8H5KO4, MgSO4, CuSO4, ZnSO4, and FeCl3) and organic solvents (acetone, ethanol, methanol, acetic acid, diethyl ether, and formaldehyde). ATPS with high capacities resulted in purer protease extract without compromising purity and yields, reaching a purification factor up to 2.6-fold and 6.7-fold in first and second ATPS, respectively, and 4.0-fold in the DF process. Recoveries were up to 79% in both ATPS and reached 84.3% after the DF step. The electrophoretic analysis demonstrated a 25–28 kDa band related to keratinolytic protease. The purified protease’s optimum temperature and pH were 55 °C and 7.5, respectively. The deactivation energy (Ed) value was 118.0 kJ/mol, while D (decimal reduction time) and z (temperature interval required to reduce the D value in one log cycle) values ranged from 6.7 to 237.3 min and from 13.6 to 18.8 °C, respectively. Salts such as CaCl2, CaO, C8H5KO4, and MgSO4 increased the protease activity, while all organic solvents caused its decrease. The results are useful for future studies about ATPS scale-up for enzyme purification and protease application in different industrial processes.
Collapse
|
24
|
Zhou W, Zeng S, Yu J, Xiang J, Zhang F, Takriff MS, Ding G, Ma Z, Zhou X. Complete genome sequence of Bacillus Licheniformis NWMCC0046, a candidate for the laundry industry. J Basic Microbiol 2023; 63:223-234. [PMID: 36538731 DOI: 10.1002/jobm.202200528] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/14/2022] [Accepted: 10/29/2022] [Indexed: 12/24/2022]
Abstract
In this study, selected properties of protease and the complete genome sequence of Bacillus licheniformis NWMCC0046 were investigated, to discover laundry applications and other potential probiotic properties of this strain. Partial characterization of B. licheniformis NWMCC0046 showed that its protease has good activity both in alkaline environments and at low temperatures. Also, the protease is compatible with commercial detergents and can be used as a detergent additive for effective stain removal at low temperatures. The complete genome sequence of B. licheniformis NWMCC0046 is comprised of a 4,321,565 bp linear chromosome with a G + C content of 46.78% and no plasmids. It had 4504 protein-encoding genes, 81 transfer RNA (tRNA) genes, and 24 ribosomal RNA (rRNA) genes. Genomic analysis revealed genes involved in exocellular enzyme production and probiotic properties. In addition, genomic sequence analysis revealed specific genes encoding carbohydrate metabolism pathways, resistance, and cold adaptation capacity. Overall, protease properties show its potential as a detergent additive enzyme. The complete genome sequence information of B. licheniformis NWMCC0046 was obtained, and functional prediction revealed its numerous probiotic properties.
Collapse
Affiliation(s)
- Wei Zhou
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Songyu Zeng
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Jinfeng Yu
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Jun Xiang
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Fumei Zhang
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Mohd S Takriff
- Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Gongtao Ding
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Zhongren Ma
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Xueyan Zhou
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China.,Life Science and Engineering College, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
25
|
Yang L, Fan W, Xu Y. Chameleon-like microbes promote microecological differentiation of Daqu. Food Microbiol 2023; 109:104144. [DOI: 10.1016/j.fm.2022.104144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/31/2022] [Accepted: 09/12/2022] [Indexed: 11/28/2022]
|
26
|
From bitter to delicious: properties and uses of microbial aminopeptidases. World J Microbiol Biotechnol 2023; 39:72. [PMID: 36625962 DOI: 10.1007/s11274-022-03501-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/14/2022] [Indexed: 01/11/2023]
Abstract
Protein hydrolysates are easily digested and utilized by humans and animals, and are less likely to cause allergies. Protein hydrolysis caused by endopeptidases often leads to the exposure of hydrophobic amino acids at the ends of peptides, which consequently causes bitter taste. Microbial aminopeptidases remove the exposed hydrophobic amino acids at the ends of aminopeptides, which improves taste, allowing for easier production. This processe is attacking significant attention from industry and laboratories. Aminopeptidases selectively hydrolyze peptide bonds from the N-terminal of proteins or peptides to produce free amino acids. Aminopeptidases can be classified into leucine, lysine, methionine and proline aminopeptidases by hydrolyzed N-terminal residues; metallo-, serine- and cysteine- aminopeptidases by the reaction mechanisms; dipeptide and triphoptide enzymes by the released number of amino acid residues at the end of hydrolyzed peptides; or acidic, neutral and basic aminopeptidases by their optimal hydrolysis pH. Commercial aminopeptidases are generally produced by microbial fermentation, and are mainly applied in the debittering of protein hydrolysates, the deep hydrolysis of protein, and the production of condiments, cheese, and bioactive peptides, as well as for disease detection in the medical industry.
Collapse
|
27
|
Fan J, Gao A, Zhan C, Jin Y. Degradation of soybean meal proteins by wheat malt endopeptidase and the antioxidant capacity of the enzymolytic products. Front Nutr 2023; 10:1138664. [PMID: 36937341 PMCID: PMC10020175 DOI: 10.3389/fnut.2023.1138664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
This study investigated the hydrolysis effect of the endopeptidase from wheat malt on the soybean meal proteins. The results indicated that the endopeptidase broke the peptide bonds of soybean meal proteins and converted the alcohol- and alkali-soluble proteins into water-soluble and salt-soluble proteins. In addition, wheat malt endopeptidase did not break the disulfide bonds between proteins but affected the conformation of disulfide bonds between substrate protein molecules, which were changed from the gauche-gauche-trans (g-g-t) vibrational mode to the trans-gauche-trans (t-g-t) vibrational mode. Wheat malt endopeptidase exhibited the highest enzymatic activity at 2 h of enzymatic digestion, demonstrating the fastest hydrolytic rate of soybean meal proteins. Compared with the samples before enzymatic hydrolysis, the total alcohol- and alkali-soluble proteins were decreased by 11.89% but the water- and salt-soluble proteins were increased by 11.99%, indicating the hydrolytic effect of endopeptidase. The corresponding water-soluble proteins had molecular weights of 66.4-97.2, 29-44.3, and 20.1 kDa, while the salt-soluble proteins had molecular weights of 44.3-66.4, 29-44.3, and 20.1 kDa, respectively. The degree of enzymatic hydrolysis of soybean meal reached the maximum at 8 h. The newly created proteins exhibited significantly antioxidant properties, which were inversely related to the molecular weight. Proteins with molecular weight <3 kDa had the highest antioxidant performance with an antioxidant capacity of 1.72 ± 0.03 mM, hydroxyl radical scavenging rate of 98.04%, and ABTS [2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)] radical scavenging capacity of 0.44 ± 0.04 mM.
Collapse
Affiliation(s)
- Jingxiao Fan
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Aiying Gao
- Food Inspection Department, Institute for Food and Drug Control (Taian Fiber Inspection Institute), Tai'an, China
| | - Chao Zhan
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Yuhong Jin
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
- *Correspondence: Yuhong Jin
| |
Collapse
|
28
|
Converting the genomic knowledge base to build protein specific machine learning prediction models; a classification study on thermophilic serine protease. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01214-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Jiang C, Ye C, Liu Y, Huang K, Jiang X, Zou D, Li L, Han W, Wei X. Genetic engineering for enhanced production of a novel alkaline protease BSP-1 in Bacillus amyloliquefaciens. Front Bioeng Biotechnol 2022; 10:977215. [PMID: 36110310 PMCID: PMC9468883 DOI: 10.3389/fbioe.2022.977215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Alkaline protease has been widely applied in food, medicine, environmental protection and other industrial fields. However, the current activity and yield of alkaline protease cannot meet the demand. Therefore, it is important to identify new alkaline proteases with high activity. In this study, we cloned a potential alkaline protease gene bsp-1 from a Bacillus subtilis strain isolated in our laboratory. BSP-1 shows the highest sequence similarity to subtilisin NAT (S51909) from B. subtilis natto. Then, we expressed BSP-1 in Bacillus amyloliquefaciens BAX-9 and analyzed the protein expression level under a collection of promoters. The results show that the P43 promoter resulted in the highest transcription level, protein level and enzyme activity. Finally, we obtained a maximum activity of 524.12 U/mL using the P43 promoter after fermentation medium optimization. In conclusion, this study identified an alkaline protease gene bsp-1 from B. subtilis and provided a new method for high-efficiency alkaline protease expression in B. amyloliquefaciens.
Collapse
Affiliation(s)
- Cong Jiang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Changwen Ye
- Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou, China
| | - Yongfeng Liu
- GeneMind Biosciences Company Limited, Shenzhen, China
| | - Kuo Huang
- Zhengzhou Tobacco Research Institute of China National Tobacco Corporation, Zhengzhou, China
| | - Xuedeng Jiang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Dian Zou
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Lu Li
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Wenyuan Han
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xuetuan Wei
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Xuetuan Wei,
| |
Collapse
|
30
|
Chen H, Wu J, Huang X, Feng X, Ji H, Zhao L, Wang J. Overexpression of Bacillus circulans alkaline protease in Bacillus subtilis and its potential application for recovery of protein from soybean dregs. Front Microbiol 2022; 13:968439. [PMID: 36090104 PMCID: PMC9459226 DOI: 10.3389/fmicb.2022.968439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Proteases are important for decomposition of proteins to generate peptides or amino acids and have a broad range of applications in different industries. Herein, a gene encoding an alkaline protease (AprBcp) from Bacillus circulans R1 was cloned and bioinformatics analyzed. In addition, a series of strategies were applied to achieve high-level expression of AprBcp in Bacillus subtilis. The maximum activity of AprBcp reached 165,870 U/ml after 60 h fed-batch cultivation in 50 l bioreactor. The purified recombinant AprBcp exhibited maximum activity at 60°C and pH 10.0, and remained stable in the range from pH 8.0 to 11.0 and 30 to 45°C. Metal ions Ca2+, Mn2+, and Mg2+ could improve the stability of AprBcp. Furthermore, the recombinant AprBcp displayed great potential application on the recovery of protein from soybean dregs. The results of this study will provide an effective method to prepare AprBcp in B. subtilis and its potential application on utilization of soybean dregs.
Collapse
Affiliation(s)
- Hao Chen
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, China
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China
| | - Jie Wu
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, China
| | - Xiaodan Huang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China
| | - Xuzhong Feng
- Shenzhen Shanggutang Food Development Co., Ltd.,Shenzhen, China
| | - Hongwu Ji
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China
| | - Liangzhong Zhao
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, China
- *Correspondence: Liangzhong Zhao,
| | - Jianrong Wang
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, China
- Shenzhen Raink Ecology and Environment Co., Ltd.,Shenzhen, China
- Jianrong Wang,
| |
Collapse
|
31
|
Chen W, Li L, Ye C, Zhao Z, Huang K, Zou D, Wei X. Efficient production of extracellular alkaline protease in Bacillus amyloliquefaciens by host strain construction. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Naeem M, Manzoor S, Abid MUH, Tareen MBK, Asad M, Mushtaq S, Ehsan N, Amna D, Xu B, Hazafa A. Fungal Proteases as Emerging Biocatalysts to Meet the Current Challenges and Recent Developments in Biomedical Therapies: An Updated Review. J Fungi (Basel) 2022; 8:109. [PMID: 35205863 PMCID: PMC8875690 DOI: 10.3390/jof8020109] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 02/07/2023] Open
Abstract
With the increasing world population, demand for industrialization has also increased to fulfill humans' living standards. Fungi are considered a source of essential constituents to produce the biocatalytic enzymes, including amylases, proteases, lipases, and cellulases that contain broad-spectrum industrial and emerging applications. The present review discussed the origin, nature, mechanism of action, emerging aspects of genetic engineering for designing novel proteases, genome editing of fungal strains through CRISPR technology, present challenges and future recommendations of fungal proteases. The emerging evidence revealed that fungal proteases show a protective role to many environmental exposures and discovered that an imbalance of protease inhibitors and proteases in the epithelial barriers leads to the protection of chronic eosinophilic airway inflammation. Moreover, mitoproteases recently were found to execute intense proteolytic processes that are crucial for mitochondrial integrity and homeostasis function, including mitochondrial biogenesis, protein synthesis, and apoptosis. The emerging evidence revealed that CRISPR/Cas9 technology had been successfully developed in various filamentous fungi and higher fungi for editing of specific genes. In addition to medical importance, fungal proteases are extensively used in different industries such as foods to prepare butter, fruits, juices, and cheese, and to increase their shelf life. It is concluded that hydrolysis of proteins in industries is one of the most significant applications of fungal enzymes that led to massive usage of proteomics.
Collapse
Affiliation(s)
- Muhammad Naeem
- College of Life Science, Hebei Normal University, Shijiazhuang 050025, China;
| | - Saba Manzoor
- Department of Zoology, University of Sialkot, Sialkot 51310, Pakistan;
| | | | | | - Mirza Asad
- Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan;
| | - Sajida Mushtaq
- Department of Zoology, Government College Women University, Sialkot 51040, Pakistan;
| | - Nazia Ehsan
- Department of Zoology, Wildlife and Fisheries, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan;
| | - Dua Amna
- Institute of Food Science & Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University (BNU-HKBU) United International College, Zhuhai 519087, China
| | - Abu Hazafa
- Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan;
| |
Collapse
|
33
|
Chung D, Yu WJ, Lim JY, Kang NS, Kwon YM, Choi G, Bae SS, Cho K, Lee DS. Characterization of the Proteolytic Activity of a Halophilic Aspergillus reticulatus Strain SK1-1 Isolated from a Solar Saltern. Microorganisms 2021; 10:29. [PMID: 35056479 PMCID: PMC8781784 DOI: 10.3390/microorganisms10010029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 01/24/2023] Open
Abstract
Salterns are hypersaline environments that are inhabited by diverse halophilic microorganisms, including fungi. In this study, we isolated a fungal strain SK1-1 from a saltern in the Republic of Korea, which was identified as Asperillus reticulatus. This is the first reported saline-environment-derived A. reticulatus that belongs to the Aspergillus penicillioides clade and encompasses xerophilic fungi. SK1-1 was halophilic, obligately requiring NaCl for growth, with a maximum radial growth of 6%-9% (w/v) NaCl. To facilitate the biotechnological application of halophilic fungi, we screened the SK1-1 strain for proteolytic activity. Proteases have widespread applications in food processing, detergents, textiles, and waste treatment, and halophilic proteases can enable protein degradation in high salt environments. We assessed the proteolytic activity of the extracellular crude enzyme of SK1-1 using azocasein as a substrate. The crude protease exhibited maximum activity at 40-50 °C, pH 9.5-10.5, and in the absence of NaCl. It was also able to retain up to 69% of its maximum activity until 7% NaCl. Protease inhibitor assays showed complete inhibition of the proteolytic activity of crude enzymes by Pefabloc® SC. Our data suggest that the halophilic A. reticulatus strain SK1-1 produces an extracellular alkaline serine protease.
Collapse
Affiliation(s)
- Dawoon Chung
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea; (D.C.); (W.-J.Y.); (J.-Y.L.); (Y.-M.K.); (G.C.); (S.-S.B.); (K.C.)
| | - Woon-Jong Yu
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea; (D.C.); (W.-J.Y.); (J.-Y.L.); (Y.-M.K.); (G.C.); (S.-S.B.); (K.C.)
| | - Ji-Yeon Lim
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea; (D.C.); (W.-J.Y.); (J.-Y.L.); (Y.-M.K.); (G.C.); (S.-S.B.); (K.C.)
| | - Nam-Seon Kang
- Department of Taxonomy and Systematics, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea;
| | - Yong-Min Kwon
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea; (D.C.); (W.-J.Y.); (J.-Y.L.); (Y.-M.K.); (G.C.); (S.-S.B.); (K.C.)
| | - Grace Choi
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea; (D.C.); (W.-J.Y.); (J.-Y.L.); (Y.-M.K.); (G.C.); (S.-S.B.); (K.C.)
| | - Seung-Sub Bae
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea; (D.C.); (W.-J.Y.); (J.-Y.L.); (Y.-M.K.); (G.C.); (S.-S.B.); (K.C.)
| | - Kichul Cho
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea; (D.C.); (W.-J.Y.); (J.-Y.L.); (Y.-M.K.); (G.C.); (S.-S.B.); (K.C.)
| | - Dae-Sung Lee
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea; (D.C.); (W.-J.Y.); (J.-Y.L.); (Y.-M.K.); (G.C.); (S.-S.B.); (K.C.)
| |
Collapse
|
34
|
Abstract
Proteases are ubiquitous enzymes, having significant physiological roles in both synthesis and degradation. The use of microbial proteases in food fermentation is an age-old process, which is today being successfully employed in other industries with the advent of ‘omics’ era and innovations in genetic and protein engineering approaches. Proteases have found application in industries besides food, like leather, textiles, detergent, waste management, agriculture, animal husbandry, cosmetics, and pharmaceutics. With the rising demands and applications, researchers are exploring various approaches to discover, redesign, or artificially synthesize enzymes with better applicability in the industrial processes. These enzymes offer a sustainable and environmentally safer option, besides possessing economic and commercial value. Various bacterial and fungal proteases are already holding a commercially pivotal role in the industry. The current review summarizes the characteristics and types of proteases, microbial source, their current and prospective applications in various industries, and future challenges. Promoting these biocatalysts will prove significant in betterment of the modern world.
Collapse
|