1
|
Karam EA, Hassan ME, Elattal NA, Kansoh AL, Esawy MA. Cell immobilization for enhanced milk clotting enzyme production from Bacillus amyloliquefacien and cheese quality. Microb Cell Fact 2024; 23:283. [PMID: 39420351 PMCID: PMC11488252 DOI: 10.1186/s12934-024-02521-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Milk clotting enzymes, essential for milk coagulation in cheese production, are obtained from the stomach of young ruminants, an expensive and limited source. This study was accomplished by finding a suitable alternative. Bacterial isolates recovered from honey were screened for milk clotting enzyme activity. and further, by immobilization of the microorganisms to enhance stability and facilitate their repeated use. RESULT The most effective enzyme was produced by a microbe identified as Bacillus amyloliquefaciens based on 16 S rRNA sequencing. The cells were encapsulated in Ca2+ alginate beads. These beads retained complete enzyme production after being used five times. Glucose and Soybean were selected as the most favorable carbon and nitrogen sources, respectively. The optimum temperature for activity was 35 ℃ for both free and immobilized cells but as the temperature was increased to 55 °C and above, the encapsulated form retained more activity than the free cells. The pH optimum shifted from 6.5 to 7 for the free cells to 7-7.5 for the immobilized cells. The immobilization process decreased the activation energy for enzyme production and activity, prolonged the enzyme half-life, and increased the deactivation energy. Enzyme produced by immobilized cells generated a more compact cheese. CONCLUSIONS The finding of this study was to identify a less expensive source of milk-clotting enzymes and confirm the success of cell immobilization in improving cell rigidity and stability. Also, immobilization of this B. amyloliquefaciens strain offers an enzyme source of value for industrial production of cheese.
Collapse
Affiliation(s)
- Eman A Karam
- Microbial Chemistry Department, National Research Centre, Dokki, Cairo, Egypt
| | - Mohamed E Hassan
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries and Drug Research Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Nouran A Elattal
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries and Drug Research Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Amany L Kansoh
- Microbial Chemistry Department, National Research Centre, Dokki, Cairo, Egypt
| | - Mona A Esawy
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries and Drug Research Institute, National Research Centre, Dokki, Cairo, 12622, Egypt.
| |
Collapse
|
2
|
Dai N, Yang X, Pan P, Zhang G, Sheng K, Wang J, Liang X, Wang Y. Bacillus paralicheniformis, an acetate-producing probiotic, alleviates ulcerative colitis via protecting the intestinal barrier and regulating the NLRP3 inflammasome. Microbiol Res 2024; 287:127856. [PMID: 39079268 DOI: 10.1016/j.micres.2024.127856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024]
Abstract
Ulcerative colitis (UC) presents a challenging scenario in digestive health, characterized by recurrent inflammation that is often hard to manage. Bacteria capable of producing short-chain fatty acids (SCFAs) play a pivotal role in mitigating UC symptoms, rendering them promising candidates for probiotic therapy. In this investigation, we assessed the impact of Bacillus paralicheniformis HMPM220325 on dextran sodium sulfate (DSS)-induced UC in mice. Genomic analysis of the strain revealed the presence of protease genes associated with acetate and butyrate synthesis, with acetic acid detected in its fermentation broth. Administration of B. paralicheniformis HMPM220325 to UC mice ameliorated pathological manifestations of the condition and restored intestinal barrier function. Furthermore, B. paralicheniformis HMPM220325 suppressed the activation of the NLRP3 inflammasome signaling pathway and modulated the composition of the intestinal microbiota. These findings shed significant light on the potential of B. paralicheniformis as a probiotic candidate, offering a novel avenue for the prevention and therapeutic intervention of colitis.
Collapse
Affiliation(s)
- Nini Dai
- School of Life Sciences, Anhui University, Hefei, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China; Anhui Province Joint Construction Discipline Key Laboratory of Nanobody Technology, Hefei, China
| | - Xinting Yang
- School of Life Sciences, Anhui University, Hefei, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China; Anhui Province Joint Construction Discipline Key Laboratory of Nanobody Technology, Hefei, China
| | - Peilong Pan
- School of Life Sciences, Anhui University, Hefei, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China; Anhui Province Joint Construction Discipline Key Laboratory of Nanobody Technology, Hefei, China
| | - Guanghui Zhang
- School of Life Sciences, Anhui University, Hefei, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China; Anhui Province Joint Construction Discipline Key Laboratory of Nanobody Technology, Hefei, China
| | - Kangliang Sheng
- School of Life Sciences, Anhui University, Hefei, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China; Anhui Province Joint Construction Discipline Key Laboratory of Nanobody Technology, Hefei, China
| | - Jingmin Wang
- School of Life Sciences, Anhui University, Hefei, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China; Anhui Province Joint Construction Discipline Key Laboratory of Nanobody Technology, Hefei, China
| | - Xiao Liang
- School of Life Sciences, Anhui University, Hefei, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China; Anhui Province Joint Construction Discipline Key Laboratory of Nanobody Technology, Hefei, China.
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China; Anhui Province Joint Construction Discipline Key Laboratory of Nanobody Technology, Hefei, China.
| |
Collapse
|
3
|
Liu X, Jiang N, Wang X, Yan H, Guan L, Kong L, Chen J, Zhang H, Ma H. Weissella cibaria Relieves Gut Inflammation Caused by Escherichia coli through Inflammation Modulation and Gut Microbiota Regulation. Foods 2024; 13:1133. [PMID: 38611436 PMCID: PMC11011356 DOI: 10.3390/foods13071133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
The emergence of multi-drug-resistant (MDR) pathogens has considerably challenged the development of new drugs. Probiotics that inhibit MDR pathogens offer advantages over chemical antibiotics and drugs due to their increased safety and fewer side effects. This study reported that Weissella cibaria P-8 isolated from pickles showed excellent antibacterial activity against intestinal pathogens, particularly the antibacterial activity against MDR Escherichia coli B2 was the highest. This study showed that the survival rates of W. cibaria P-8 at pH 2.0 and 0.3% bile salt concentration were 72% and 71.56%, respectively, and it still had antibacterial activity under pepsin, trypsin, protease K, and catalase hydrolysis. Moreover, W. cibaria P-8 inhibits the expression of inflammatory factors interleukin-1β, tumor necrosis factor-α, and interleukin-6, upregulates the interleukin-10 level, and increases total antioxidant capacity and superoxide dismutase enzyme activity in serum. W. cibaria P-8 also efficiently repairs intestinal damage caused by E. coli infection. The gut microbiota analysis demonstrated that W. cibaria P-8 colonizes the intestine and increases the abundance of some beneficial intestinal microorganisms, particularly Prevotella. In conclusion, W. cibaria P-8 alleviated MDR E. coli-induced intestinal inflammation by regulating inflammatory cytokine and enzyme activity and rebalancing the gut microbiota, which could provide the foundation for subsequent clinical analyses and probiotic product development.
Collapse
Affiliation(s)
- Xiaoyu Liu
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; (X.L.); (N.J.); (X.W.); (H.Y.); (L.G.)
- The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Nan Jiang
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; (X.L.); (N.J.); (X.W.); (H.Y.); (L.G.)
- The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Xinyue Wang
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; (X.L.); (N.J.); (X.W.); (H.Y.); (L.G.)
- The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Haowen Yan
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; (X.L.); (N.J.); (X.W.); (H.Y.); (L.G.)
- The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Lili Guan
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; (X.L.); (N.J.); (X.W.); (H.Y.); (L.G.)
- The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Lingcong Kong
- College of Veterinary Medicine, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China (J.C.)
- The Key Laboratory of New Veterinary Drug Research, Development of Jilin Province, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Jingrui Chen
- College of Veterinary Medicine, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China (J.C.)
| | - Haipeng Zhang
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; (X.L.); (N.J.); (X.W.); (H.Y.); (L.G.)
- The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
| | - Hongxia Ma
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China; (X.L.); (N.J.); (X.W.); (H.Y.); (L.G.)
- The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China
- College of Veterinary Medicine, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, China (J.C.)
| |
Collapse
|
4
|
Liang X, Dai N, Yang F, Zhu H, Zhang G, Wang Y. Molecular identification and safety assessment of the potential probiotic strain Bacillus paralicheniformis HMPM220325 isolated from artisanal fruit dairy products. Food Funct 2024; 15:747-765. [PMID: 38117188 DOI: 10.1039/d3fo04625g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Bacillus probiotics exhibit considerable economic potential owing to their heightened resilience to external stressors and relatively lower costs related to production and preservation. Although Bacillus paralicheniformis has been acknowledged as a plant-promoting bacterium for a long time, understanding its potential as a probiotic is still in its nascent stages. In this study, the safety and probiotic characteristics of a strain of HMPM220325, isolated from artisanal fruit dairy products, were examined through whole-genome sequencing and phenotypic analysis. The whole genome of HMPM220325 was analyzed for antimicrobial resistance genes, pathogenicity factors, and genes associated with probiotic traits including stress resistance, spore formation, gut adhesion, competitive exclusion of pathogens, bacteriocin expression, and carbohydrate metabolism related to prebiotic utilization. Also, wet lab experiments were conducted for the characterization of probiotics. The identification of the organism as B. paralicheniformis was verified. Its safety was assessed through in silico analysis, the haemolytic activity test, and the acute oral toxicity test. B. paralicheniformis HMPM220325 demonstrated its ability to survive in the pH range of 4-10 and bile salt concentrations of 0-0.9% (w/v), tolerate temperatures between 20 and 60 °C, and exhibit a robust antioxidant capacity. Moreover, B. paralicheniformis HMPM220325 demonstrated a moderate level of hydrophobicity, had the ability to form biofilms, achieved a self-aggregation rate of 51.77 ± 1.01% within 6 hours, and successfully colonized the mouse intestine for a duration of up to 17 days. Additionally, the genome of B. paralicheniformis HMPM220325 contains three gene clusters associated with the biosynthesis of bacteriocins and exhibits co-aggregation with Staphylococcus aureus, Pseudomonas aeruginosa, and Salmonella enterica serovar Typhimurium. The findings of the genomic analysis align with those obtained from the experimental investigation, thereby substantiating the potential of B. paralicheniformis HMPM220325 as a probiotic suitable for incorporation in dairy functional foods and feed applications.
Collapse
Affiliation(s)
- Xiao Liang
- School of Life Sciences, Anhui University, Hefei, China.
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
| | - Nini Dai
- School of Life Sciences, Anhui University, Hefei, China.
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
| | - Fan Yang
- School of Life Sciences, Anhui University, Hefei, China.
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
| | - Haimei Zhu
- School of Life Sciences, Anhui University, Hefei, China.
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
| | - Guanghui Zhang
- School of Life Sciences, Anhui University, Hefei, China.
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei, China.
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, China
| |
Collapse
|
5
|
Bin Hafeez A, Pełka K, Worobo R, Szweda P. In Silico Safety Assessment of Bacillus Isolated from Polish Bee Pollen and Bee Bread as Novel Probiotic Candidates. Int J Mol Sci 2024; 25:666. [PMID: 38203838 PMCID: PMC10780176 DOI: 10.3390/ijms25010666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Bacillus species isolated from Polish bee pollen (BP) and bee bread (BB) were characterized for in silico probiotic and safety attributes. A probiogenomics approach was used, and in-depth genomic analysis was performed using a wide array of bioinformatics tools to investigate the presence of virulence and antibiotic resistance properties, mobile genetic elements, and secondary metabolites. Functional annotation and Carbohydrate-Active enZYmes (CAZYme) profiling revealed the presence of genes and a repertoire of probiotics properties promoting enzymes. The isolates BB10.1, BP20.15 (isolated from bee bread), and PY2.3 (isolated from bee pollen) genome mining revealed the presence of several genes encoding acid, heat, cold, and other stress tolerance mechanisms, adhesion proteins required to survive and colonize harsh gastrointestinal environments, enzymes involved in the metabolism of dietary molecules, antioxidant activity, and genes associated with the synthesis of vitamins. In addition, genes responsible for the production of biogenic amines (BAs) and D-/L-lactate, hemolytic activity, and other toxic compounds were also analyzed. Pan-genome analyses were performed with 180 Bacillus subtilis and 204 Bacillus velezensis genomes to mine for any novel genes present in the genomes of our isolates. Moreover, all three isolates also consisted of gene clusters encoding secondary metabolites.
Collapse
Affiliation(s)
- Ahmer Bin Hafeez
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland; (A.B.H.); (K.P.)
| | - Karolina Pełka
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland; (A.B.H.); (K.P.)
| | - Randy Worobo
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA;
| | - Piotr Szweda
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland; (A.B.H.); (K.P.)
| |
Collapse
|
6
|
Honey's Antioxidant and Antimicrobial Properties: A Bibliometric Study. Antioxidants (Basel) 2023; 12:antiox12020414. [PMID: 36829972 PMCID: PMC9952334 DOI: 10.3390/antiox12020414] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023] Open
Abstract
Research attention has been drawn to honey's nutritional status and beneficial properties for human health. This study aimed to provide a bibliometric analysis of honey's antioxidant and antimicrobial properties. The research advancements within this field from 2001 to 2022 were addressed using the Scopus database, R, and VOSviewer. Of the 383 results, articles (273) and reviews (81) were the most common document types, while the annual growth rate of published manuscripts reached 17.5%. The most relevant topics about honey's antimicrobial and antioxidant properties were related to the agricultural and biological sciences, biochemistry, and pharmacology. According to a keyword analysis, the most frequent terms in titles, abstracts, and keywords were honey, antimicrobial, antioxidant, bee, propolis, phenolic compounds, wound, antibacterial, anti-inflammatory, and polyphenols. A trend topic analysis showed that the research agenda mainly encompassed antioxidants, pathogens, and anti-infection and chemical agents. In a co-occurrence analysis, antioxidants, anti-infection agents, and chemistry were connected to honey research. The initial research focus of this domain was primarily on honey's anti-inflammatory and antineoplastic activity, wound healing, and antibacterial agents. The research agenda was enriched in the subsequent years by pathogens, propolis, oxidative stress, and flavonoids. It was possible to pinpoint past trends and ongoing developments and provide a valuable insight into the field of honey research.
Collapse
|
7
|
Enhancing the Activity of Carboxymethyl Cellulase Enzyme Using Highly Stable Selenium Nanoparticles Biosynthesized by Bacillus paralicheniformis Y4. Molecules 2022; 27:molecules27144585. [PMID: 35889450 PMCID: PMC9324468 DOI: 10.3390/molecules27144585] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/03/2022] [Accepted: 07/13/2022] [Indexed: 02/01/2023] Open
Abstract
The inorganic selenium is absorbed and utilized inefficiently, and the range between toxicity and demand is narrow, so the application is strictly limited. Selenium nanoparticles have higher bioactivity and biosafety properties, including increased antioxidant and anticancer properties. Thus, producing and applying eco-friendly, non-toxic selenium nanoparticles in feed additives is crucial. Bacillus paralicheniformis Y4 was investigated for its potential ability to produce selenium nanoparticles and the activity of carboxymethyl cellulases. The selenium nanoparticles were characterized using zeta potential analyses, Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM). Additionally, evaluations of the anti-α-glucosidase activity and the antioxidant activity of the selenium nanoparticles and the ethyl acetate extracts of Y4 were conducted. B. paralicheniformis Y4 exhibited high selenite tolerance of 400 mM and the selenium nanoparticles had an average particle size of 80 nm with a zeta potential value of −35.8 mV at a pH of 7.0, suggesting that the particles are relatively stable against aggregation. After 72 h of incubation with 5 mM selenite, B. paralicheniformis Y4 was able to reduce it by 76.4%, yielding red spherical bio-derived selenium nanoparticles and increasing the carboxymethyl cellulase activity by 1.49 times to 8.96 U/mL. For the first time, this study reports that the carboxymethyl cellulase activity of Bacillus paralicheniforis was greatly enhanced by selenite. The results also indicated that B. paralicheniformis Y4 could be capable of ecologically removing selenite from contaminated sites and has great potential for producing selenium nanoparticles as feed additives to enhance the added value of agricultural products.
Collapse
|
8
|
Obata F, Murota H, Shibata S, Ozuru R, Fujii J. Investigation of Bacteria from Spoiled Bottled Salad Dressing Leading to Gas Explosion. Yonago Acta Med 2022; 65:207-214. [DOI: 10.33160/yam.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/06/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Fumiko Obata
- Division of Bacteriology, Department of Microbiology and Immunology, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Hiromi Murota
- Division of Clinical Laboratory, Tottori University Hospital, Yonago 683-8504, Japan
| | - Satoshi Shibata
- Division of Bacteriology, Department of Microbiology and Immunology, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Ryo Ozuru
- Fukuoka University, Fukuoka 814-0180, Japan
| | - Jun Fujii
- Division of Bacteriology, Department of Microbiology and Immunology, School of Medicine, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| |
Collapse
|
9
|
In vitro screening for potential probiotic properties of Ligilactobacillus salivarius isolated from cattle calves. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|