1
|
Antonioli L, Fornai M, Pellegrini C, Pacher P, Haskó G. Adenosine signaling as target in cardiovascular pharmacology. Curr Opin Pharmacol 2023; 71:102393. [PMID: 37450948 PMCID: PMC10527223 DOI: 10.1016/j.coph.2023.102393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
Increasing evidence demonstrated the relevance of adenosine system in the onset and development of cardiovascular diseases, such as hypertension, myocardial infarct, ischemia, hypertension, heart failure, and atherosclerosis. In this regard, intense research efforts are being focused on the characterization of the pathophysiological significance of adenosine, acting at its membrane receptors named A1, A2A, A2B, and A3 receptors, in cardiovascular diseases. The present review article provides an integrated and comprehensive overview about current clinical and pre-clinical evidence about the role of adenosine in the pathophysiology of cardiovascular diseases. Particular attention has been focused on current scientific evidence about the pharmacological ligands acting on adenosine pathway as useful tools to manage cardiovascular diseases.
Collapse
Affiliation(s)
- Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy
| | - Matteo Fornai
- The Institution is Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Carolina Pellegrini
- The Institution is Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Pál Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD, 20892, USA
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
2
|
Adenosine and Adenosine Receptors: Advances in Atrial Fibrillation. Biomedicines 2022; 10:biomedicines10112963. [PMID: 36428533 PMCID: PMC9687155 DOI: 10.3390/biomedicines10112963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Atrial fibrillation (AF) is the most common arrhythmia in the world. Because the key to developing innovative therapies that limit the onset and the progression of AF is to fully understand the underlying molecular mechanisms of AF, the aim of the present narrative review is to report the most recent advances in the potential role of the adenosinergic system in the pathophysiology of AF. After a comprehensive approach describing adenosinergic system signaling and the mechanisms of the initiation and maintenance of AF, we address the interactions of the adenosinergic system's signaling with AF. Indeed, adenosine release can activate four G-coupled membrane receptors, named A1, A2A, A2B and A3. Activation of the A2A receptors can promote the occurrence of delayed depolarization, while activation of the A1 receptors can shorten the action potential's duration and induce the resting membrane's potential hyperpolarization, which promote pulmonary vein firing, stabilize the AF rotors and allow for functional reentry. Moreover, the A2B receptors have been associated with atrial fibrosis homeostasis. Finally, the adenosinergic system can modulate the autonomous nervous system and is associated with AF risk factors. A question remains regarding adenosine release and the adenosine receptors' activation and whether this would be a cause or consequence of AF.
Collapse
|
3
|
Franco R, Lillo A, Navarro G, Reyes-Resina I. The adenosine A 2A receptor is a therapeutic target in neurological, heart and oncogenic diseases. Expert Opin Ther Targets 2022; 26:791-800. [DOI: 10.1080/14728222.2022.2136570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Rafael Franco
- CiberNed, Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Molecular Neurobiology laboratory, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
- School of Chemistry, Universitat de Barcelona, Barcelona, Spain
| | - Alejandro Lillo
- CiberNed, Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Molecular Neuropharmacology laboratory, Department of Biochemistry and Physiology. School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
| | - Gemma Navarro
- CiberNed, Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Molecular Neuropharmacology laboratory, Department of Biochemistry and Physiology. School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
| | - Irene Reyes-Resina
- CiberNed, Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- School of Chemistry, Universitat de Barcelona, Barcelona, Spain
- Molecular Neuropharmacology laboratory, Department of Biochemistry and Physiology. School of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
4
|
Zhao M, Liu X, Bu X, Li Y, Wang M, Zhang B, Sun W, Li C. Application of plasma metabolome for monitoring the effect of rivaroxaban in patients with nonvalvular atrial fibrillation. PeerJ 2022; 10:e13853. [PMID: 35966924 PMCID: PMC9373988 DOI: 10.7717/peerj.13853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/16/2022] [Indexed: 01/18/2023] Open
Abstract
Rivaroxaban, an oral factor Xa inhibitor, has been used to treating a series of thromboembolic disorders in clinical practice. Measurement of the anticoagulant effect of rivaroxaban is important to avoid serious bleeding events, thus ensuring the safety and efficacy of drug administration. Metabolomics could help to predict differences in the responses among patients by profiling metabolites in biosamples. In this study, plasma metabolomes before and 3 hours after rivaroxaban intake in 150 nonvalvular atrial fibrillation (NVAF) patients and 100 age/gender-matched controls were analyzed by liquid chromatography coupled with mass spectrometry (LC-MS/MS). When compared with controls, a total of thirteen plasma metabolites were differentially expressed in the NVAF patients. Pathway analysis revealed that purine and lipid metabolism were dysregulated. A panel of three metabolites (17a-ethynylestradiol, tryptophyl-glutamate and adenosine) showed good predictive ability to distinguish nonvalvular atrial fibrillation with an area under the receiver operating characteristic curve (AUC) of 1 for the discovery phase and 1 for validation. Under rivaroxaban treatment, a total of seven metabolites changed, the lipid and glycosylphosphatidylinositol biosynthesis pathways were altered and the panel consisting of avocadene, prenyl glucoside and phosphatidylethanolamine showed predictive ability with an AUC of 0.86 for the discovery dataset and 0.82 for the validation. The study showed that plasma metabolomic analyses hold the potential to differentiate nonvalvular atrial fibrillation and can help to monitor the effect of rivaroxaban anticoagulation.
Collapse
Affiliation(s)
- Mindi Zhao
- Department of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoyan Liu
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xiaoxiao Bu
- Department of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yao Li
- Department of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Meng Wang
- Department of Clinical Laboratory, Baoding First Central Hospital, Baoding, Hebei, China
| | - Bo Zhang
- Department of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Sun
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Chuanbao Li
- Department of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Maille B, Fromonot J, Guiol C, Marlinge M, Baptiste F, Lim S, Colombani C, Chaptal MC, Chefrour M, Gastaldi M, Franceschi F, Deharo JC, Gariboldi V, Ruf J, Mottola G, Guieu R. A 2 Adenosine Receptor Subtypes Overproduction in Atria of Perioperative Atrial Fibrillation Patients Undergoing Cardiac Surgery: A Pilot Study. Front Cardiovasc Med 2021; 8:761164. [PMID: 34805317 PMCID: PMC8595247 DOI: 10.3389/fcvm.2021.761164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/01/2021] [Indexed: 01/01/2023] Open
Abstract
Objective: Although atrial fibrillation is a common cardiac arrhythmia in humans, the mechanism that leads to the onset of this condition is poorly elucidated. Adenosine is suspected to be implicated in the trigger of atrial fibrillation (AF) through the activation of its membrane receptors, mainly adenosine receptor (AR) subtypes A1R and A2R. In this study, we compared blood adenosine concentration (BAC), and A1R, A2AR, and A2BR production in right (RA) and left atrium (LA), and on peripheral blood mononuclear cells (PBMCs) in patients with underlying structural heart disease undergoing cardiac surgery with or without peri-operative AF (PeOpAF). Methods: The study group consisted of 39 patients (30 men and 9 women, mean age, range 65 [40–82] years) undergoing cardiac surgery and 20 healthy patients (8 women and 12 men; mean age, range 60 [39–72] years) as controls were included. Among patients, 15 exhibited PeOpAF. Results: Blood adenosine concentration was higher in patients with PeOpAF than others. A2AR and A2BR production was higher in PBMCs of patients compared with controls and was higher in PeOpAF patients than other patients. In LA and RA, the production of A2AR and A2BR was higher in patients with PeOpAF than in other patients. Both A2AR and A2BR production were higher in LA vs. RA. A1R production was unchanged in all situations. Finally, we observed a correlation between A1R, A2AR, and A2BR production evaluated on PBMCs and those evaluated in LA and RA. Conclusions: Perioperative AF was associated with high BAC and high A2AR and A2BR expression, especially in the LA, after cardiac surgery in patients with underlying structural heart disease. Whether these increases the favor in triggering the AF in this patient population needs further investigation.
Collapse
Affiliation(s)
- Baptiste Maille
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France.,Department of Cardiology, Timone University Hospital, Marseille, France
| | - Julien Fromonot
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France.,Laboratory of Biochemistry, Timone University Hospital, AP-HM, Marseille, France
| | - Claire Guiol
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
| | - Marion Marlinge
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France.,Laboratory of Biochemistry, Timone University Hospital, AP-HM, Marseille, France
| | - Florian Baptiste
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France.,Department of Cardiology, Timone University Hospital, Marseille, France.,Laboratory of Biochemistry, Timone University Hospital, AP-HM, Marseille, France
| | - Suzy Lim
- Laboratory of Biochemistry, Timone University Hospital, AP-HM, Marseille, France
| | - Charlotte Colombani
- Laboratory of Biochemistry, Timone University Hospital, AP-HM, Marseille, France
| | | | - Mohamed Chefrour
- Laboratory of Biochemistry, Timone University Hospital, AP-HM, Marseille, France
| | | | - Frederic Franceschi
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France.,Department of Cardiology, Timone University Hospital, Marseille, France
| | - Jean-Claude Deharo
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France.,Department of Cardiology, Timone University Hospital, Marseille, France
| | - Vlad Gariboldi
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France.,Department of Cardiac Surgery, Timone University Hospital, Marseille, France
| | - Jean Ruf
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
| | | | - Régis Guieu
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France.,Laboratory of Biochemistry, Timone University Hospital, AP-HM, Marseille, France
| |
Collapse
|
6
|
Guieu R, Brignole M, Deharo JC, Deharo P, Mottola G, Groppelli A, Paganelli F, Ruf J. Adenosine Receptor Reserve and Long-Term Potentiation: Unconventional Adaptive Mechanisms in Cardiovascular Diseases? Int J Mol Sci 2021; 22:ijms22147584. [PMID: 34299203 PMCID: PMC8303608 DOI: 10.3390/ijms22147584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
While the concept of a receptor reserve (spare receptors) is old, their presence on human cells as an adaptive mechanism in cardiovascular disease is a new suggestion. The presence of spare receptors is suspected when the activation of a weak fraction of receptors leads to maximal biological effects, in other words, when the half-maximal effective concentration (EC50) for a biological effect (cAMP production, for example) is lower than the affinity (KD) of the ligand for a receptor. Adenosine is an ATP derivative that strongly impacts the cardiovascular system via its four membrane receptors, named A1R, A2AR, A2BR, and A3R, with the A1R being more particularly involved in heart rhythm, while the A2AR controls vasodilation. After a general description of the tools necessary to explore the presence of spare receptors, this review focuses on the consequences of the presence of spare adenosine receptors in cardiovascular physiopathology. Finally, the role of the adenosinergic system in the long-term potentiation and its possible consequences on the physiopathology are also mentioned.
Collapse
Affiliation(s)
- Régis Guieu
- Center for CardioVascular and Nutrition Research, INSERM, INRAE, Aix-Marseille University, 13005 Marseille, France; (J.C.D.); (P.D.); (G.M.); (F.P.); (J.R.)
- Laboratory of Biochemistry, Assistance Publique des Hopitaux, 13005 Marseille, France
- Correspondence: ; Tel.: +33-491-385-650
| | - Michele Brignole
- IRCCS, Istituto Auxologico Italiano, Ospedale San Luca, 13000 Milan, Italy;
| | - Jean Claude Deharo
- Center for CardioVascular and Nutrition Research, INSERM, INRAE, Aix-Marseille University, 13005 Marseille, France; (J.C.D.); (P.D.); (G.M.); (F.P.); (J.R.)
- Department of Cardiology, CHU Timone, 13005 Marseille, France
| | - Pierre Deharo
- Center for CardioVascular and Nutrition Research, INSERM, INRAE, Aix-Marseille University, 13005 Marseille, France; (J.C.D.); (P.D.); (G.M.); (F.P.); (J.R.)
- Department of Cardiology, CHU Timone, 13005 Marseille, France
| | - Giovanna Mottola
- Center for CardioVascular and Nutrition Research, INSERM, INRAE, Aix-Marseille University, 13005 Marseille, France; (J.C.D.); (P.D.); (G.M.); (F.P.); (J.R.)
- Laboratory of Biochemistry, Assistance Publique des Hopitaux, 13005 Marseille, France
| | | | - Franck Paganelli
- Center for CardioVascular and Nutrition Research, INSERM, INRAE, Aix-Marseille University, 13005 Marseille, France; (J.C.D.); (P.D.); (G.M.); (F.P.); (J.R.)
- Department of Cardiovascular, Neural and Metabolic Sciences, Faint & Fall Programme, IRCCS Istituto Auxologico Italiano, San Luca Hospital, 13000 Milan, Italy
| | - Jean Ruf
- Center for CardioVascular and Nutrition Research, INSERM, INRAE, Aix-Marseille University, 13005 Marseille, France; (J.C.D.); (P.D.); (G.M.); (F.P.); (J.R.)
| |
Collapse
|
7
|
Brignole M, Groppelli A, Brambilla R, Caldara GL, Torresani E, Parati G, Solari D, Ungar A, Rafanelli M, Deharo JC, Marlinge M, Chefrour M, Guieu R. Plasma adenosine and neurally mediated syncope: ready for clinical use. Europace 2021; 22:847-853. [PMID: 32449908 DOI: 10.1093/europace/euaa070] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/18/2020] [Indexed: 11/12/2022] Open
Abstract
Either central or peripheral baroreceptor reflex abnormalities and/or alterations in neurohumoral mechanisms play a pivotal role in the genesis of neurally mediated syncope. Thus, improving our knowledge of the biochemical mechanisms underlying specific forms of neurally mediated syncope (more properly termed 'neurohumoral syncope') might allow the development of new therapies that are effective in this specific subgroup. A low-adenosine phenotype of neurohumoral syncope has recently been identified. Patients who suffer syncope without prodromes and have a normal heart display a purinergic profile which is the opposite of that observed in vasovagal syncope patients and is characterized by very low-adenosine plasma level values, low expression of A2A receptors and the predominance of the TC variant in the single nucleotide c.1364 C>T polymorphism of the A2A receptor gene. The typical mechanism of syncope is an idiopathic paroxysmal atrioventricular block or sinus bradycardia, most often followed by sinus arrest. Since patients with low plasma adenosine levels are highly susceptible to endogenous adenosine, chronic treatment of these patients with theophylline, a non-selective adenosine receptor antagonist, is expected to prevent syncopal recurrences. This hypothesis is supported by results from series of cases and from observational controlled studies.
Collapse
Affiliation(s)
- Michele Brignole
- Department of cardiovascualr, Neural and Metabolic Sciences, IRCCS Istituto Auxologico Italiano, Faint & Fall Programme, Ospedale San Luca, Piazzale Brescia 20, 20149 Milano, Italy.,Department of Cardiology, Arrhythmology Centre and Syncope Unit, Ospedali del Tigullio, Lavagna, Italy
| | - Antonella Groppelli
- Department of cardiovascualr, Neural and Metabolic Sciences, IRCCS Istituto Auxologico Italiano, Faint & Fall Programme, Ospedale San Luca, Piazzale Brescia 20, 20149 Milano, Italy
| | - Roberto Brambilla
- Department of cardiovascualr, Neural and Metabolic Sciences, IRCCS Istituto Auxologico Italiano, Faint & Fall Programme, Ospedale San Luca, Piazzale Brescia 20, 20149 Milano, Italy
| | - Gianluca L Caldara
- Department of cardiovascualr, Neural and Metabolic Sciences, IRCCS Istituto Auxologico Italiano, Faint & Fall Programme, Ospedale San Luca, Piazzale Brescia 20, 20149 Milano, Italy
| | - Erminio Torresani
- Department of cardiovascualr, Neural and Metabolic Sciences, IRCCS Istituto Auxologico Italiano, Faint & Fall Programme, Ospedale San Luca, Piazzale Brescia 20, 20149 Milano, Italy
| | - Gianfranco Parati
- Department of cardiovascualr, Neural and Metabolic Sciences, IRCCS Istituto Auxologico Italiano, Faint & Fall Programme, Ospedale San Luca, Piazzale Brescia 20, 20149 Milano, Italy.,Department of Medicine and Surgery, University of Milano Bicocca, Milan, Italy
| | - Diana Solari
- Department of Cardiology, Arrhythmology Centre and Syncope Unit, Ospedali del Tigullio, Lavagna, Italy
| | - Andrea Ungar
- Division of Geriatrics and Intensive Care Unit, Syncope Unit, University of Florence and Careggi Hospital, Florence, Italy
| | - Martina Rafanelli
- Division of Geriatrics and Intensive Care Unit, Syncope Unit, University of Florence and Careggi Hospital, Florence, Italy
| | | | - Marion Marlinge
- Laboratory of Biochemistry, Timone Hospital, Marseille, France
| | | | - Regis Guieu
- Laboratory of Biochemistry, Timone Hospital, Marseille, France.,C2VN INSERM, INRAE, Aix Marseille University, Marseille, France
| |
Collapse
|
8
|
Abstract
Either central or peripheral baroreceptor reflex abnormalities and/or alterations in neurohumoral mechanisms play a pivotal role in the genesis of neurally mediated syncope. Thus, improving our knowledge of the biochemical mechanisms underlying specific forms of neurally mediated syncope (more properly termed 'neurohumoral syncope') might allow the development of new therapies that are effective in this specific subgroup. A low-adenosine phenotype of neurohumoral syncope has recently been identified. Patients who suffer syncope without prodromes and have a normal heart display a purinergic profile which is the opposite of that observed in vasovagal syncope patients and is characterized by very lowadenosine plasma level values, low expression of A2A receptors and the predominance of the TC variant in the single nucleotide c.1364 C>T polymorphism of the A2A receptor gene. The typical mechanism of syncope is an idiopathic paroxysmal atrioventricular block or sinus bradycardia, most often followed by sinus arrest. Since patients with low plasma adenosine levels are highly susceptible to endogenous adenosine, chronic treatment of these patients with theophylline, a non-selective adenosine receptor antagonist, is expected to prevent syncopal recurrences. This hypothesis is supported by results from series of cases and from two controlled studies.
Collapse
Affiliation(s)
- Jean-Claude Deharo
- Department of Cardiology, Hôpital La Timone Adultes, and C2VN INSERM, INRAE, Aix Marseille University, Marseille, France -
| | - Michele Brignole
- Department of Cardiovascular, Neural and Metabolic Sciences, Faint & Fall Programme, IRCCS Istituto Auxologico Italiano, Ospedale San Luca, Milan, Italy
| | - Régis Guieu
- Laboratory of Biochemistry, Timone Hospital and C2VN INSERM, INRAE, Aix Marseille University, Marseille, France
| |
Collapse
|
9
|
Godoy-Marín H, Duroux R, Jacobson KA, Soler C, Colino-Lage H, Jiménez-Sábado V, Montiel J, Hove-Madsen L, Ciruela F. Adenosine A 2A Receptors Are Upregulated in Peripheral Blood Mononuclear Cells from Atrial Fibrillation Patients. Int J Mol Sci 2021; 22:ijms22073467. [PMID: 33801676 PMCID: PMC8036820 DOI: 10.3390/ijms22073467] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
Atrial fibrillation (AF) is the most common form of cardiac arrhythmia seen in clinical practice. While some clinical parameters may predict the transition from paroxysmal to persistent AF, the molecular mechanisms behind the AF perpetuation are poorly understood. Thus, oxidative stress, calcium overload and inflammation, among others, are believed to be involved in AF-induced atrial remodelling. Interestingly, adenosine and its receptors have also been related to AF development and perpetuation. Here, we investigated the expression of adenosine A2A receptor (A2AR) both in right atrium biopsies and peripheral blood mononuclear cells (PBMCs) from non-dilated sinus rhythm (ndSR), dilated sinus rhythm (dSR) and AF patients. In addition, plasma adenosine content and adenosine deaminase (ADA) activity in these subjects were also determined. Our results revealed increased A2AR expression in the right atrium from AF patients, as previously described. Interestingly, increased levels of adenosine content and reduced ADA activity in plasma from AF patients were detected. An increase was observed when A2AR expression was assessed in PBMCs from AF subjects. Importantly, a positive correlation (p = 0.001) between A2AR expression in the right atrium and PBMCs was observed. Overall, these results highlight the importance of the A2AR in AF and suggest that the evaluation of this receptor in PBMCs may be potentially be useful in monitoring disease severity and the efficacy of pharmacological treatments in AF patients.
Collapse
Affiliation(s)
- Héctor Godoy-Marín
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907 L’Hospitalet de Llobregat, Spain;
- Neuropharmacology & Pain Group, Neuroscience Program, Institut d’Investigació Biomèdica de Bellvitge, IDIBELL, 08907 L’Hospitalet de Llobregat, Spain;
| | - Romain Duroux
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (R.D.); (K.A.J.)
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (R.D.); (K.A.J.)
| | - Concepció Soler
- Neuropharmacology & Pain Group, Neuroscience Program, Institut d’Investigació Biomèdica de Bellvitge, IDIBELL, 08907 L’Hospitalet de Llobregat, Spain;
- Immunology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907 L’Hospitalet de Llobregat, Spain
| | - Hildegard Colino-Lage
- Barcelona Biomedical Research Institute, IIBB-CSIC, 08036 Barcelona, Spain;
- Biomedical Research Institute Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain;
| | - Veronica Jiménez-Sábado
- Biomedical Research Institute Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain;
- CIBERCV, 28029 Madrid, Spain
| | - José Montiel
- Department Cardiac Surgery, Hospital de la Santa Creu i Sant Pau, 08036 Barcelona, Spain;
| | - Leif Hove-Madsen
- Barcelona Biomedical Research Institute, IIBB-CSIC, 08036 Barcelona, Spain;
- Biomedical Research Institute Sant Pau, IIB Sant Pau, 08025 Barcelona, Spain;
- CIBERCV, 28029 Madrid, Spain
- Correspondence: (L.H.-M.); (F.C.)
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907 L’Hospitalet de Llobregat, Spain;
- Neuropharmacology & Pain Group, Neuroscience Program, Institut d’Investigació Biomèdica de Bellvitge, IDIBELL, 08907 L’Hospitalet de Llobregat, Spain;
- Correspondence: (L.H.-M.); (F.C.)
| |
Collapse
|
10
|
The Prevalence of Metabolic Syndrome According to Grip Strength in Teenagers. CHILDREN-BASEL 2021; 8:children8020108. [PMID: 33557385 PMCID: PMC7914943 DOI: 10.3390/children8020108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023]
Abstract
The prevalence of metabolic syndrome in adolescents is increasing. Recently, the relevance of grip strength as a factor of metabolic syndrome in this population has raised questions. This study investigated the prevalence of metabolic syndrome according to grip strength in children and adolescents using large-scale data from the Korean National Health and Nutrition Survey (KNHNS). From 2014 to 2018, 1527 boys and 1292 girls participated in the KNHNS. The participants were classified into three groups according to age: 10-12 years (early teenager, ET), 13-15 years (middle teenager, MT), and 16-18 years (late teenager, LT). The participants were classified as having metabolic syndrome if they fulfilled three of the adolescent metabolic syndrome criteria. The grip strength was divided into groups with high and low grip strength, respectively, and the cutoff value for the prevalence was calculated using receiver operating characteristic curve analysis. There were significant differences in waist circumference, high-density lipoprotein cholesterol, and triglyceride levels based on grip strength in the ET, MT, and LT groups. Therefore, the prevalence of metabolic syndrome was lower when grip strength was higher. The cut-off values of the relative grip strength (kg/body weight) to predict metabolic syndrome among boys were 0.349, 0.466, and 0.485 for the ET, MT, and LT groups, respectively. The corresponding cut-off values for girls were 0.373, 0.383, and 0.382, respectively. In conclusion, there is a non-linear relationship between grip strength and metabolic syndrome in adolescents.
Collapse
|
11
|
Mesirca P, Fedorov VV, Hund TJ, Torrente AG, Bidaud I, Mohler PJ, Mangoni ME. Pharmacologic Approach to Sinoatrial Node Dysfunction. Annu Rev Pharmacol Toxicol 2021; 61:757-778. [PMID: 33017571 PMCID: PMC7790915 DOI: 10.1146/annurev-pharmtox-031120-115815] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The spontaneous activity of the sinoatrial node initiates the heartbeat. Sino-atrial node dysfunction (SND) and sick sinoatrial (sick sinus) syndrome are caused by the heart's inability to generate a normal sinoatrial node action potential. In clinical practice, SND is generally considered an age-related pathology, secondary to degenerative fibrosis of the heart pacemaker tissue. However, other forms of SND exist, including idiopathic primary SND, which is genetic, and forms that are secondary to cardiovascular or systemic disease. The incidence of SND in the general population is expected to increase over the next half century, boosting the need to implant electronic pacemakers. During the last two decades, our knowledge of sino-atrial node physiology and of the pathophysiological mechanisms underlying SND has advanced considerably. This review summarizes the current knowledge about SND mechanisms and discusses the possibility of introducing new pharmacologic therapies for treating SND.
Collapse
Affiliation(s)
- Pietro Mesirca
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34096 Montpellier, France;
- LabEx Ion Channels Science and Therapeutics (ICST), 06560 Nice, France
| | - Vadim V Fedorov
- Frick Center for Heart Failure and Arrhythmia at the Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Wexner Medical Center, Columbus, Ohio 43210, USA
| | - Thomas J Hund
- Frick Center for Heart Failure and Arrhythmia at the Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | - Angelo G Torrente
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34096 Montpellier, France;
- LabEx Ion Channels Science and Therapeutics (ICST), 06560 Nice, France
| | - Isabelle Bidaud
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34096 Montpellier, France;
- LabEx Ion Channels Science and Therapeutics (ICST), 06560 Nice, France
| | - Peter J Mohler
- Frick Center for Heart Failure and Arrhythmia at the Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Wexner Medical Center, Columbus, Ohio 43210, USA
- Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| | - Matteo E Mangoni
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34096 Montpellier, France;
- LabEx Ion Channels Science and Therapeutics (ICST), 06560 Nice, France
| |
Collapse
|
12
|
Andelova K, Egan Benova T, Szeiffova Bacova B, Sykora M, Prado NJ, Diez ER, Hlivak P, Tribulova N. Cardiac Connexin-43 Hemichannels and Pannexin1 Channels: Provocative Antiarrhythmic Targets. Int J Mol Sci 2020; 22:ijms22010260. [PMID: 33383853 PMCID: PMC7795512 DOI: 10.3390/ijms22010260] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiac connexin-43 (Cx43) creates gap junction channels (GJCs) at intercellular contacts and hemi-channels (HCs) at the peri-junctional plasma membrane and sarcolemmal caveolae/rafts compartments. GJCs are fundamental for the direct cardiac cell-to-cell transmission of electrical and molecular signals which ensures synchronous myocardial contraction. The HCs and structurally similar pannexin1 (Panx1) channels are active in stressful conditions. These channels are essential for paracrine and autocrine communication through the release of ions and signaling molecules to the extracellular environment, or for uptake from it. The HCs and Panx1 channel-opening profoundly affects intracellular ionic homeostasis and redox status and facilitates via purinergic signaling pro-inflammatory and pro-fibrotic processes. These conditions promote cardiac arrhythmogenesis due to the impairment of the GJCs and selective ion channel function. Crosstalk between GJCs and HCs/Panx1 channels could be crucial in the development of arrhythmogenic substrates, including fibrosis. Despite the knowledge gap in the regulation of these channels, current evidence indicates that HCs and Panx1 channel activation can enhance the risk of cardiac arrhythmias. It is extremely challenging to target HCs and Panx1 channels by inhibitory agents to hamper development of cardiac rhythm disorders. Progress in this field may contribute to novel therapeutic approaches for patients prone to develop atrial or ventricular fibrillation.
Collapse
Affiliation(s)
- Katarina Andelova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 84104 Bratislava, Slovakia; (K.A.); (T.E.B.); (B.S.B.); (M.S.)
| | - Tamara Egan Benova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 84104 Bratislava, Slovakia; (K.A.); (T.E.B.); (B.S.B.); (M.S.)
| | - Barbara Szeiffova Bacova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 84104 Bratislava, Slovakia; (K.A.); (T.E.B.); (B.S.B.); (M.S.)
| | - Matus Sykora
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 84104 Bratislava, Slovakia; (K.A.); (T.E.B.); (B.S.B.); (M.S.)
| | - Natalia Jorgelina Prado
- Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas, M5500 Mendoza, Argentina; (N.J.P.); (E.R.D.)
| | - Emiliano Raul Diez
- Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas, M5500 Mendoza, Argentina; (N.J.P.); (E.R.D.)
| | - Peter Hlivak
- Department of Arrhythmias and Pacing, National Institute of Cardiovascular Diseases, Pod Krásnou Hôrkou 1, 83348 Bratislava, Slovakia;
| | - Narcis Tribulova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, 84104 Bratislava, Slovakia; (K.A.); (T.E.B.); (B.S.B.); (M.S.)
- Correspondence: ; Tel.: +421-2-32295-423
| |
Collapse
|
13
|
Adaptative mechanism of the equilibrative nucleoside transporter 1 (ENT-1) and blood adenosine levels in elite freedivers. Eur J Appl Physiol 2020; 121:279-285. [PMID: 33052430 DOI: 10.1007/s00421-020-04523-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 10/01/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE Long static or intense dynamic apnoea-like high-altitude exposure is inducing hypoxia. Adenosine is known to participate to the adaptive response to hypoxia leading to the control of heart rate, blood pressure and vasodilation. Extracellular adenosine level is controlled through the equilibrative nucleoside transporter 1 (ENT-1) and the enzyme adenosine deaminase (ADA). The aim of this study was to determine the control of adenosine blood level (ABL) via ENT-1 and ADA during apnoea-induced hypoxia in elite freedivers was similar to high-altitude adaptation. METHODS Ten freediver champions and ten controls were studied. Biological (e.g. ENT-1, ADA, ABL, PaO2, PaCO2 and pH) and cardiovascular (e.g. heart rate, arterial pressure) parameters were measured at rest and after a submaximal dry static apnoea. RESULTS In freedivers, ABL was higher than in control participants in basal condition and increased more in response to apnoea. Also, freedivers showed an ADA increased in response to apnoea. Finally, ENT-1 level and function were reduced for the free divers. CONCLUSION Our results suggest in freedivers the presence of an adaptive mechanism similar to the one observed in human exposed to chronic hypoxia induced by high-altitude environment.
Collapse
|
14
|
Adenosine and the Cardiovascular System: The Good and the Bad. J Clin Med 2020; 9:jcm9051366. [PMID: 32384746 PMCID: PMC7290927 DOI: 10.3390/jcm9051366] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 12/18/2022] Open
Abstract
Adenosine is a nucleoside that impacts the cardiovascular system via the activation of its membrane receptors, named A1R, A2AR, A2BR and A3R. Adenosine is released during hypoxia, ischemia, beta-adrenergic stimulation or inflammation and impacts heart rhythm and produces strong vasodilation in the systemic, coronary or pulmonary vascular system. This review summarizes the main role of adenosine on the cardiovascular system in several diseases and conditions. Adenosine release participates directly in the pathophysiology of atrial fibrillation and neurohumoral syncope. Adenosine has a key role in the adaptive response in pulmonary hypertension and heart failure, with the most relevant effects being slowing of heart rhythm, coronary vasodilation and decreasing blood pressure. In other conditions, such as altitude or apnea-induced hypoxia, obstructive sleep apnea, or systemic hypertension, the adenosinergic system activation appears in a context of an adaptive response. Due to its short half-life, adenosine allows very rapid adaptation of the cardiovascular system. Finally, the effects of adenosine on the cardiovascular system are sometimes beneficial and other times harmful. Future research should aim to develop modulating agents of adenosine receptors to slow down or conversely amplify the adenosinergic response according to the occurrence of different pathologic conditions.
Collapse
|
15
|
Boussuges A, Rives S, Marlinge M, Chaumet G, Vallée N, Guieu R, Gavarry O. Hyperoxia During Exercise: Impact on Adenosine Plasma Levels and Hemodynamic Data. Front Physiol 2020; 11:97. [PMID: 32116800 PMCID: PMC7026462 DOI: 10.3389/fphys.2020.00097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/27/2020] [Indexed: 11/26/2022] Open
Abstract
Introduction Adenosine is an ATP derivative that is strongly implicated in the cardiovascular adaptive response to exercise. In this study, we hypothesized that during exercise the hyperemia, commonly observed during exercise in air, was counteracted by the downregulation of the adenosinergic pathway during hyperoxic exposure. Methods Ten healthy volunteers performed two randomized sessions including gas exposure (Medical air or Oxygen) at rest and during exercise performed at 40% of maximal intensity, according to the individual fitness of the volunteers. Investigations included the measurement of adenosine plasma level (APL) and the recording of hemodynamic data [i.e., cardiac output (CO) and systemic vascular resistances (SVR) using pulsed Doppler and echocardiography]. Results Hyperoxia significantly decreased APL (from 0.58 ± 0.06 to 0.21 ± 0.05 μmol L–1, p < 0.001) heart rate and CO and increased SVR in healthy volunteers at rest. During exercise, an increase in APL was recorded in the two sessions when compared with measurements at rest (+0.4 ± 0.4 vs. +0.3 ± 0.2 μmol L–1 for medical air and oxygen exposures, respectively). APL was lower during the exercise performed under hyperoxia when compared with medical air exposure (0.5 ± 0.06 vs. 1.03 ± 0.2 μmol L–1, respectively p < 0.001). This result could contribute to the hemodynamic differences between the two conditions, such as the increase in SVR and the decrease in both heart rate and CO when exercises were performed during oxygen exposure as compared to medical air. Conclusion Hyperoxia decreased APLs in healthy volunteers at rest but did not eliminate the increase in APL and the decrease in SVR during low intensity exercise.
Collapse
Affiliation(s)
- Alain Boussuges
- ERRSO, Institut de Recherche Biomédicale des Armées (IRBA), Toulon, France.,Center for Cardiovascular and Nutrition Research (C2VN), Aix-Marseille Université, INSERM, INRA, Marseille, France
| | - Sarah Rives
- ERRSO, Institut de Recherche Biomédicale des Armées (IRBA), Toulon, France.,Center for Cardiovascular and Nutrition Research (C2VN), Aix-Marseille Université, INSERM, INRA, Marseille, France
| | - Marion Marlinge
- Center for Cardiovascular and Nutrition Research (C2VN), Aix-Marseille Université, INSERM, INRA, Marseille, France
| | | | - Nicolas Vallée
- ERRSO, Institut de Recherche Biomédicale des Armées (IRBA), Toulon, France
| | - Régis Guieu
- Center for Cardiovascular and Nutrition Research (C2VN), Aix-Marseille Université, INSERM, INRA, Marseille, France
| | - Olivier Gavarry
- Laboratoire Impact de l'Activité Physique sur la Santé, UFR STAPS, Université de Toulon, La Garde, France
| |
Collapse
|
16
|
Li N, Kalyanasundaram A, Hansen BJ, Artiga EJ, Sharma R, Abudulwahed SH, Helfrich KM, Rozenberg G, Wu PJ, Zakharkin S, Gyorke S, Janssen PM, Whitson BA, Mokadam NA, Biesiadecki BJ, Accornero F, Hummel JD, Mohler PJ, Dobrzynski H, Zhao J, Fedorov VV. Impaired neuronal sodium channels cause intranodal conduction failure and reentrant arrhythmias in human sinoatrial node. Nat Commun 2020; 11:512. [PMID: 31980605 PMCID: PMC6981137 DOI: 10.1038/s41467-019-14039-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 12/16/2019] [Indexed: 01/26/2023] Open
Abstract
Mechanisms for human sinoatrial node (SAN) dysfunction are poorly understood and whether human SAN excitability requires voltage-gated sodium channels (Nav) remains controversial. Here, we report that neuronal (n)Nav blockade and selective nNav1.6 blockade during high-resolution optical mapping in explanted human hearts depress intranodal SAN conduction, which worsens during autonomic stimulation and overdrive suppression to conduction failure. Partial cardiac (c)Nav blockade further impairs automaticity and intranodal conduction, leading to beat-to-beat variability and reentry. Multiple nNav transcripts are higher in SAN vs atria; heterogeneous alterations of several isoforms, specifically nNav1.6, are associated with heart failure and chronic alcohol consumption. In silico simulations of Nav distributions suggest that INa is essential for SAN conduction, especially in fibrotic failing hearts. Our results reveal that not only cNav but nNav are also integral for preventing disease-induced failure in human SAN intranodal conduction. Disease-impaired nNav may underlie patient-specific SAN dysfunctions and should be considered to treat arrhythmias. The role of of voltage-gated sodium channels (Nav) in pacemaking and conduction of the human sinoatrial node is unclear. Here, the authors investigate existence and function of neuronal and cardiac Nav in human sinoatrial nodes, and demonstrate their alterations in explanted human diseased hearts.
Collapse
Affiliation(s)
- Ning Li
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Bob and Corrine Frick Center for Heart Failure and Arrhythmia, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Anuradha Kalyanasundaram
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Bob and Corrine Frick Center for Heart Failure and Arrhythmia, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Brian J Hansen
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Bob and Corrine Frick Center for Heart Failure and Arrhythmia, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Esthela J Artiga
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Bob and Corrine Frick Center for Heart Failure and Arrhythmia, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Roshan Sharma
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Suhaib H Abudulwahed
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Bob and Corrine Frick Center for Heart Failure and Arrhythmia, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Katelynn M Helfrich
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Bob and Corrine Frick Center for Heart Failure and Arrhythmia, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Galina Rozenberg
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Bob and Corrine Frick Center for Heart Failure and Arrhythmia, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Pei-Jung Wu
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Bob and Corrine Frick Center for Heart Failure and Arrhythmia, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Stanislav Zakharkin
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Sandor Gyorke
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Bob and Corrine Frick Center for Heart Failure and Arrhythmia, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Paul Ml Janssen
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Bob and Corrine Frick Center for Heart Failure and Arrhythmia, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Bryan A Whitson
- Bob and Corrine Frick Center for Heart Failure and Arrhythmia, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Nahush A Mokadam
- Bob and Corrine Frick Center for Heart Failure and Arrhythmia, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Brandon J Biesiadecki
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Bob and Corrine Frick Center for Heart Failure and Arrhythmia, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Federica Accornero
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Bob and Corrine Frick Center for Heart Failure and Arrhythmia, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - John D Hummel
- Bob and Corrine Frick Center for Heart Failure and Arrhythmia, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Peter J Mohler
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Bob and Corrine Frick Center for Heart Failure and Arrhythmia, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Halina Dobrzynski
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, UK.,Department of Anatomy, Jagiellonian University Medical College, Cracow, Poland
| | - Jichao Zhao
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Vadim V Fedorov
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA. .,Bob and Corrine Frick Center for Heart Failure and Arrhythmia, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|