1
|
Liu L, Cai H, Yang H, Wang S, Li Y, Huang Y, Gao M, Zhang X, Zhang X, Wang H, Qiu G. Targeted metabolomics identified novel metabolites, predominantly phosphatidylcholines and docosahexaenoic acid-containing lipids, predictive of incident chronic kidney disease in middle-to-elderly-aged Chinese adults. Metabolism 2025; 163:156085. [PMID: 39608488 DOI: 10.1016/j.metabol.2024.156085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/29/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND Evidence is limited regarding the association of circulating metabolites with decline of kidney function, letting alone their value in prediction of development of chronic kidney disease (CKD). METHODS This study included 3802 participants aged 64.1 ± 7.4 years from the Dongfeng-Tongji cohort, among whom 3327 were CKD-free at baseline (estimated glomerular filtration rate [eGFR] > 60 ml/min per 1.73 m2). We measured baseline levels of 211 metabolites with liquid chromatography coupled with mass spectrometry, including 25 amino acids, 12 acyl-carnitines, 161 lipids, and 13 other metabolites. RESULTS The mean (SD) absolute annual change in eGFR was -0.14 ± 4.11 ml/min per 1.73 m2 per year, and a total of 472 participants who were free of CKD at baseline developed incident CKD during follow-up of 4.6 ± 0.2 years (14.2 %). We identified a total of 22 metabolites associated with annual eGFR change and survived Bonferroni correction for multiple testing, including seven metabolites associated with eGFR increase (six being docosahexaenoic acid [DHA]-containing lipids) and 15 associated with eGFR decline (nine being phosphatidylcholines [PCs]). Among them, eight metabolites obtained non-zero coefficients in least absolute shrinkage and selection operator (LASSO) regression on incident CKD, indicating predictive potential, including one amino acid (arginine), one acyl-carnitine (C2), one lysophosphatidylcholine (LPC 22:6), two PCs (32:1 and 34:3), one triacylglycerol (TAG 56:8 [22:6]) and two other metabolites (inosine, niacinamide), and the composite score of these eight metabolites showed an odds ratio (OR) of 8.79 (95 % confidence interval [CI]: 7.49, 10.32; P < 0.001) per SD increase in association with incident CKD. The addition of the metabolite score increased the c-statistic of the reference model of traditional risk factors (including baseline eGFR) by 0.065 (95 % CI: 0.046 to 0.084; P = 3.39 × 10-11) to 0.765 (0.742 to 0.788) in 1000 repetitions of 10-fold cross-validation, while the application of two advanced machine learning algorithms, random forest (RF), and extreme gradient boosting (XGBoost) models produced similar c-statistics, to 0.753 (0.729 to 0.777) and 0.778 (0.733 to 0.824) with increases of 0.074 (0.055 to 0.093; P = 4.11 × 10-14) and 0.073 (0.032 to 0.114; P = 4.00 × 10-4), respectively. CONCLUSIONS In this study, we identified 22 metabolites associated with longitudinal eGFR change, nine of which were PCs and six were DHA-containing lipids. We screened out a panel of eight metabolites which improved prediction for the development of CKD by 9 % beyond traditional risk factors including baseline eGFR. Our findings highlighted involvement of lipid metabolism in kidney function impairment, and provided novel predictors for CKD risk.
Collapse
Affiliation(s)
- Ling Liu
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hao Cai
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Handong Yang
- Department of Cardiovascular Disease, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan 442008, China
| | - Sihan Wang
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yingmei Li
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yacan Huang
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mingjing Gao
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaogang Zhang
- SClEX Application Support Center, Shanghai 200050, China
| | - Xiaomin Zhang
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hao Wang
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Gaokun Qiu
- Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
2
|
Nishida S, Ishima T, Iwami D, Nagai R, Aizawa K. Whole Blood Metabolomic Profiling of Mice with Tacrolimus-Induced Chronic Nephrotoxicity: NAD + Depletion with Salvage Pathway Impairment. Antioxidants (Basel) 2025; 14:62. [PMID: 39857396 PMCID: PMC11760425 DOI: 10.3390/antiox14010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/02/2025] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
Tacrolimus (TAC)-induced chronic nephrotoxicity (TAC nephrotoxicity) is a serious issue for long-term graft survival in kidney transplantation. However, the pathophysiology of TAC nephrotoxicity remains unclear. In this study, we analyzed whole blood samples from mice that developed TAC nephrotoxicity in order to discover its mechanism. Mice were divided into a TAC group and a control group (n = 5 per group). The TAC group received TAC subcutaneously (1 mg/kg/day for 28 days), while the control group received normal saline instead. After the administration period, whole blood was collected and metabolomic analysis was performed, revealing significant changes in 56 metabolites. The major metabolic changes were related to uremic toxins, vascular damage, and NAD+. NAD+ levels were significantly lower in the TAC group, and ADP-ribose, nicotinamide, and nicotinamide N-oxide, which are degradation products of NAD+, were significantly higher, suggesting impairment of the NAD+ salvage pathway. NAD+ deficiency suggests cellular aging and mitochondrial dysfunction, which may induce vascular damage and chronic kidney disease. Our study demonstrated a correlation between low NAD+ levels and the pathophysiology of TAC nephrotoxicity.
Collapse
Affiliation(s)
- Sho Nishida
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Shimotsuke 329-0498, Japan
- Division of Renal Surgery and Transplantation, Department of Urology, Jichi Medical University, Shimotsuke 329-0498, Japan
| | - Tamaki Ishima
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Shimotsuke 329-0498, Japan
| | - Daiki Iwami
- Division of Renal Surgery and Transplantation, Department of Urology, Jichi Medical University, Shimotsuke 329-0498, Japan
| | - Ryozo Nagai
- Jichi Medical University, Shimotsuke 329-0498, Japan
| | - Kenichi Aizawa
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Shimotsuke 329-0498, Japan
- Clinical Pharmacology Center, Jichi Medical University Hospital, Shimotsuke 329-0498, Japan
- Division of Translational Research, Clinical Research Center, Jichi Medical University Hospital, Shimotsuke 329-0498, Japan
| |
Collapse
|
3
|
Xie YH, Wang L, Li ML, Gong ZC, Du J. Role of myo-inositol in acute kidney injury induced by cisplatin. Toxicology 2023; 499:153653. [PMID: 37863467 DOI: 10.1016/j.tox.2023.153653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/09/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
There is an increasing evidence suggesting that myo-inositol (MI) may be a renoprotective factor. Our previous study revealed that decreased MI concentrations and increased excretion are often observed in animal models of renal injury and in patients with nephropathy. However, the role of MI supplementation in renal injury remains unclear. In this study, we aimed to explore the role of MI in cisplatin-induced acute kidney injury (AKI). We established a model of acute kidney injury caused by cisplatin (CDDP). Male Kunming mice were randomly divided into six groups: Sham (normal saline), CDDP (15 mg/kg), + MI (150 mg/kg), + MI (300 mg/kg), + MI (600 mg/kg) and MI (600 mg/kg). Human renal tubular epithelial cell line HK-2 cells were likewise separated into six groups at random: Control (normal saline), CDDP (20 µM), + MI (200 µM), + MI (400 µM), + MI (800 µM) and MI (800 µM). After the model was established, renal function indexes were subsequently detected, and experiments such as pathological staining analysis and protein expression analysis were performed. Our results showed that cisplatin administration led to AKI and apoptosis in mice and HK-2 cells, accompanied by markedly increased levels of MIOX, kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL), whereas exogenous MI significantly attenuated kidney injury and HK-2 cell damage induced by cisplatin both in vivo and in vitro by inhibiting excessive apoptosis. Overall, our findings demonstrate that exogenous MI can reduce excessive apoptosis, thus playing a protective role in cisplatin-induced AKI, indicating that exogenous MI may be used as an adjunctive treatment modality in cisplatin-induced AKI.
Collapse
Affiliation(s)
- Yu-Hong Xie
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ling Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming-Liang Li
- Department of Urology, The Third Hospital of Changsha, Changsha, Hunan, China
| | - Zhi-Cheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Du
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
4
|
Danilova EY, Maslova AO, Stavrianidi AN, Nosyrev AE, Maltseva LD, Morozova OL. CKD Urine Metabolomics: Modern Concepts and Approaches. PATHOPHYSIOLOGY 2023; 30:443-466. [PMID: 37873853 PMCID: PMC10594523 DOI: 10.3390/pathophysiology30040033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 10/25/2023] Open
Abstract
One of the primary challenges regarding chronic kidney disease (CKD) diagnosis is the absence of reliable methods to detect early-stage kidney damage. A metabolomic approach is expected to broaden the current diagnostic modalities by enabling timely detection and making the prognosis more accurate. Analysis performed on urine has several advantages, such as the ease of collection using noninvasive methods and its lower protein and lipid content compared with other bodily fluids. This review highlights current trends in applied analytical methods, major discoveries concerning pathways, and investigated populations in the context of urine metabolomic research for CKD over the past five years. Also, we are presenting approaches, instrument upgrades, and sample preparation modifications that have improved the analytical parameters of methods. The onset of CKD leads to alterations in metabolism that are apparent in the molecular composition of urine. Recent works highlight the prevalence of alterations in the metabolic pathways related to the tricarboxylic acid cycle and amino acids. Including diverse patient cohorts, using numerous analytical techniques with modifications and the appropriate annotation and explanation of the discovered biomarkers will help develop effective diagnostic models for different subtypes of renal injury with clinical applications.
Collapse
Affiliation(s)
- Elena Y. Danilova
- Molecular Theranostics Institute, Biomedical Science and Technology Park, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8 Trubetskaya ul, 119991 Moscow, Russia (A.E.N.)
- Department of Chemistry, M.V. Lomonosov Moscow State University, 1 Leninskiye Gory Str., 119991 Moscow, Russia
| | - Anna O. Maslova
- Molecular Theranostics Institute, Biomedical Science and Technology Park, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8 Trubetskaya ul, 119991 Moscow, Russia (A.E.N.)
| | - Andrey N. Stavrianidi
- Department of Chemistry, M.V. Lomonosov Moscow State University, 1 Leninskiye Gory Str., 119991 Moscow, Russia
| | - Alexander E. Nosyrev
- Molecular Theranostics Institute, Biomedical Science and Technology Park, I.M. Sechenov First Moscow State Medical University (Sechenov University), 8 Trubetskaya ul, 119991 Moscow, Russia (A.E.N.)
| | - Larisa D. Maltseva
- Department of Pathophysiology, Institute of Biodesign and Modeling of Complex System, I.M. Sechenov First Moscow State Medical University (Sechenov University), 13-1 Nikitsky Boulevard, 119019 Moscow, Russia; (L.D.M.)
| | - Olga L. Morozova
- Department of Pathophysiology, Institute of Biodesign and Modeling of Complex System, I.M. Sechenov First Moscow State Medical University (Sechenov University), 13-1 Nikitsky Boulevard, 119019 Moscow, Russia; (L.D.M.)
| |
Collapse
|
5
|
Humphries TLR, Vesey DA, Galloway GJ, Gobe GC, Francis RS. Identifying disease progression in chronic kidney disease using proton magnetic resonance spectroscopy. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2023; 134-135:52-64. [PMID: 37321758 DOI: 10.1016/j.pnmrs.2023.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/16/2023] [Accepted: 04/01/2023] [Indexed: 06/17/2023]
Abstract
Chronic kidney disease (CKD) affects approximately 10% of the world population, higher still in some developing countries, and can cause irreversible kidney damage eventually leading to kidney failure requiring dialysis or kidney transplantation. However, not all patients with CKD will progress to this stage, and it is difficult to distinguish between progressors and non-progressors at the time of diagnosis. Current clinical practice involves monitoring estimated glomerular filtration rate and proteinuria to assess CKD trajectory over time; however, there remains a need for novel, validated methods that differentiate CKD progressors and non-progressors. Nuclear magnetic resonance techniques, including magnetic resonance spectroscopy and magnetic resonance imaging, have the potential to improve our understanding of CKD progression. Herein, we review the application of magnetic resonance spectroscopy both in preclinical and clinical settings to improve the diagnosis and surveillance of patients with CKD.
Collapse
Affiliation(s)
- Tyrone L R Humphries
- Kidney Disease Research Collaborative, University of Queensland and Translational Research Institute, Brisbane, Queensland 4102, Australia; Department of Nephrology, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia.
| | - David A Vesey
- Kidney Disease Research Collaborative, University of Queensland and Translational Research Institute, Brisbane, Queensland 4102, Australia; Department of Nephrology, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| | - Graham J Galloway
- Kidney Disease Research Collaborative, University of Queensland and Translational Research Institute, Brisbane, Queensland 4102, Australia
| | - Glenda C Gobe
- Kidney Disease Research Collaborative, University of Queensland and Translational Research Institute, Brisbane, Queensland 4102, Australia
| | - Ross S Francis
- Kidney Disease Research Collaborative, University of Queensland and Translational Research Institute, Brisbane, Queensland 4102, Australia; Department of Nephrology, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| |
Collapse
|
6
|
Fonseca RID, Menezes LRA, Santana-Filho AP, Schiefer EM, Pecoits-Filho R, Stinghen AEM, Sassaki GL. Untargeted plasma 1H NMR-based metabolomic profiling in different stages of chronic kidney disease. J Pharm Biomed Anal 2023; 229:115339. [PMID: 36963247 DOI: 10.1016/j.jpba.2023.115339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/13/2023]
Abstract
Chronic kidney disease (CKD) is a serious public health issue affecting thousands of people worldwide. CKD diagnosis is usually made by Estimated Glomerular Filtration Rate (eGFR) and albuminuria, which limit the knowledge of the mechanisms behind CKD progression. The aim of the present study was to identify changes in the metabolomic profile that occur as CKD advances. In this sense, 77 plasma samples from patients with CDK were evaluated by 1D and 2D Nuclear Magnetic Resonance Spectroscopy (NMR). The NMR data showed significant changes in the metabolomic profile of CKD patients and the control group. Principal component analysis (PCA) clustered CKD and control patients into three distinct groups, control, stage 1 (G1)-stage 4 (G4) and stage 5 (G5). Lactate, glucose, acetate and creatinine were responsible for discriminating the control group from all the others CKD stages. Valine, alanine, glucose, creatinine, glutamate and lactate were responsible for the clustering of G1-G4 stages. G5 was discriminated by calcium ethylenediamine tetraacetic acid, magnesium ethylenediamine tetraacetic acid, creatinine, betaine/choline/trimethylamine N-oxide (TMAO), lactate and acetate. CKD G5 plasma pool which was submitted in MetaboAnalyst 4.0 platform (MetPA) analysis and showed 13 metabolic pathways involved in CKD physiopathology. Metabolic changes associated with glycolysis and gluconeogenesis allowed discriminating between CKD and control patients. The determination of involved molecules in TMAO generation in G5 suggests an important role in this uremic toxin linked to CKD and cardiovascular diseases. The aforementioned results propose the feasibility of metabolic assessment of CKD by NMR during treatment and disease progression.
Collapse
Affiliation(s)
| | | | | | - Elberth Manfron Schiefer
- Universidade Tecnológica Federal do Paraná, Av. Sete de Setembro, 3165, Curitiba 80230-901, Brazil
| | - Roberto Pecoits-Filho
- Center for Health and Biological Sciences, Pontifícia Universidade Católica do Paraná, Curitiba CEP 80215-901, Brazil
| | | | - Guilherme Lanzi Sassaki
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba 80050-540, Brazil.
| |
Collapse
|
7
|
Furcea DM, Agrigoroaie L, Mihai CT, Gardikiotis I, Dodi G, Stanciu GD, Solcan C, Beschea Chiriac SI, Guțu MM, Ștefănescu C. 18F-FDG PET/MRI Imaging in a Preclinical Rat Model of Cardiorenal Syndrome-An Exploratory Study. Int J Mol Sci 2022; 23:ijms232315409. [PMID: 36499736 PMCID: PMC9738874 DOI: 10.3390/ijms232315409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiorenal syndrome (CRS) denotes the bidirectional interaction of chronic kidney disease and heart failure with an adverse prognosis but with a limited understanding of its pathogenesis. This study correlates biochemical blood markers, histopathological and immunohistochemistry features, and 2-deoxy-2-fluoro-D-glucose positron emission tomography (18F-FDG PET) metabolic data in low-dose doxorubicin-induced heart failure, cardiorenal syndrome, and renocardiac syndrome induced on Wistar male rats. To our knowledge, this is the first study that investigates the underlying mechanisms for CRS progression in rats using 18F-FDG PET. Clinical, metabolic cage monitoring, biochemistry, histopathology, and immunohistochemistry combined with PET/MRI (magnetic resonance imaging) data acquisition at distinct points in the disease progression were employed for this study in order to elucidate the available evidence of organ crosstalk between the heart and kidneys. In our CRS model, we found that chronic treatment with low-dose doxorubicin followed by acute 5/6 nephrectomy incurred the highest mortality among the study groups, while the model for renocardiac syndrome resulted in moderate-to-high mortality. 18F-FDG PET imaging evidenced the doxorubicin cardiotoxicity with vascular alterations, normal kidney development damage, and impaired function. Given the fact that standard clinical markers were insensitive to early renal injury, we believe that the decreasing values of the 18F-FDG PET-derived renal marker across the groups and, compared with their age-matched controls, along with the uniform distribution seen in healthy developing rats, could have a potential diagnostic and prognostic yield in cardiorenal syndrome.
Collapse
Affiliation(s)
- Dan Mihai Furcea
- Department of Nuclear Medicine, Sf. Spiridon University Emergency Hospital, 700111 Iasi, Romania
- Advanced Research and Development Center for Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700454 Iasi, Romania
| | - Laurențiu Agrigoroaie
- Department of Nuclear Medicine, Sf. Spiridon University Emergency Hospital, 700111 Iasi, Romania
- Advanced Research and Development Center for Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700454 Iasi, Romania
| | - Cosmin-T. Mihai
- Advanced Research and Development Center for Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700454 Iasi, Romania
| | - Ioannis Gardikiotis
- Advanced Research and Development Center for Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700454 Iasi, Romania
| | - Gianina Dodi
- Advanced Research and Development Center for Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700454 Iasi, Romania
- Correspondence:
| | - Gabriela D. Stanciu
- Advanced Research and Development Center for Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700454 Iasi, Romania
| | - Carmen Solcan
- Faculty of Veterinary Medicine, Ion Ionescu de la Brad University of Agricultural Sciences and Veterinary Medicine, 700490 Iasi, Romania
| | - Sorin I. Beschea Chiriac
- Faculty of Veterinary Medicine, Ion Ionescu de la Brad University of Agricultural Sciences and Veterinary Medicine, 700490 Iasi, Romania
| | - Mihai Marius Guțu
- Department of Biophysics and Medical Physics—Nuclear Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania
| | - Cipriana Ștefănescu
- Department of Biophysics and Medical Physics—Nuclear Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania
| |
Collapse
|
8
|
Mineralocorticoid Receptor Pathway Is a Key Mediator of Carfilzomib-induced Nephrotoxicity: Preventive Role of Eplerenone. Hemasphere 2022; 6:e791. [PMID: 36285072 PMCID: PMC9584194 DOI: 10.1097/hs9.0000000000000791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 09/20/2022] [Indexed: 11/06/2022] Open
Abstract
Carfilzomib is an irreversible proteasome inhibitor indicated for relapsed/refractory multiple myeloma. Carfilzomib toxicity includes renal adverse effects (RAEs) of obscure pathobiology. Therefore, we investigated the mechanisms of nephrotoxicity developed by Carfilzomib. In a first experimental series, we used our previously established in vivo mouse models of Carfilzomib cardiotoxicity, that incorporated 2 and 4 doses of Carfilzomib, to identify whether Carfilzomib affects renal pathways. Hematology and biochemical analyses were performed, while kidneys underwent histological and molecular analyses. In a second and third experimental series, the 4 doses protocol was repeated for 24 hours urine collection and proteomic/metabolomic analyses. To test an experimental intervention, primary murine collecting duct tubular epithelial cells were treated with Carfilzomib and/or Eplerenone and Metformin. Finally, Eplerenone was orally co-administered with Carfilzomib daily (165 mg/kg) in the 4 doses protocol. We additionally used material from 7 patients to validate our findings and patients underwent biochemical analysis and assessment of renal mineralocorticoid receptor (MR) axis activation. In vivo screening showed that Carfilzomib-induced renal histological deficits and increased serum creatinine, urea, NGAL levels, and proteinuria only in the 4 doses protocol. Carfilzomib decreased diuresis, altered renal metabolism, and activated MR axis. This was consistent with the cytotoxicity found in primary murine collecting duct tubular epithelial cells, whereas Carfilzomib + Eplerenone co-administration abrogated Carfilzomib-related nephrotoxic effects in vitro and in vivo. Renal SGK-1, a marker of MR activation, increased in patients with Carfilzomib-related RAEs. Conclusively, Carfilzomib-induced renal MR/SGK-1 activation orchestrates RAEs and water retention both in vivo and in the clinical setting. MR blockade emerges as a potential therapeutic approach against Carfilzomib-related nephrotoxicity.
Collapse
|
9
|
NMR-Based Metabolomics to Decipher the Molecular Mechanisms in the Action of Gut-Modulating Foods. Foods 2022; 11:foods11172707. [PMID: 36076892 PMCID: PMC9455659 DOI: 10.3390/foods11172707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/24/2022] [Accepted: 09/02/2022] [Indexed: 12/01/2022] Open
Abstract
Metabolomics deals with uncovering and characterizing metabolites present in a biological system, and is a leading omics discipline as it provides the nearest link to the biological phenotype. Within food and nutrition, metabolomics applied to fecal samples and bio-fluids has become an important tool to obtain insight into how food and food components may exert gut-modulating effects. This review aims to highlight how nuclear magnetic resonance (NMR)-based metabolomics in food and nutrition science may help us get beyond where we are today in understanding foods’ inherent, or added, biofunctionalities in relation to gut health.
Collapse
|
10
|
Salminen AV, Clemens S, García-Borreguero D, Ghorayeb I, Li Y, Manconi M, Ondo W, Rye D, Siegel JM, Silvani A, Winkelman JW, Allen RP, Ferré S. Consensus guidelines on the construct validity of rodent models of restless legs syndrome. Dis Model Mech 2022; 15:dmm049615. [PMID: 35946581 PMCID: PMC9393041 DOI: 10.1242/dmm.049615] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/10/2022] [Indexed: 12/16/2022] Open
Abstract
Our understanding of the causes and natural course of restless legs syndrome (RLS) is incomplete. The lack of objective diagnostic biomarkers remains a challenge for clinical research and for the development of valid animal models. As a task force of preclinical and clinical scientists, we have previously defined face validity parameters for rodent models of RLS. In this article, we establish new guidelines for the construct validity of RLS rodent models. To do so, we first determined and agreed on the risk, and triggering factors and pathophysiological mechanisms that influence RLS expressivity. We then selected 20 items considered to have sufficient support in the literature, which we grouped by sex and genetic factors, iron-related mechanisms, electrophysiological mechanisms, dopaminergic mechanisms, exposure to medications active in the central nervous system, and others. These factors and biological mechanisms were then translated into rodent bioequivalents deemed to be most appropriate for a rodent model of RLS. We also identified parameters by which to assess and quantify these bioequivalents. Investigating these factors, both individually and in combination, will help to identify their specific roles in the expression of rodent RLS-like phenotypes, which should provide significant translational implications for the diagnosis and treatment of RLS.
Collapse
Affiliation(s)
- Aaro V. Salminen
- Institute of Neurogenomics, Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Institute of Human Genetics, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Stefan Clemens
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | | | - Imad Ghorayeb
- Département de Neurophysiologie Clinique, Pôle Neurosciences Cliniques, CHU de Bordeaux, 33076 Bordeaux, France
- Université de Bordeaux, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, 33076 Bordeaux, France
- CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, 33076 Bordeaux, France
| | - Yuqing Li
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mauro Manconi
- Sleep Medicine Unit, Regional Hospital of Lugano, Neurocenter of Southern Switzerland, 6900 Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
- Department of Neurology, University Hospital Inselspital, 3010 Bern, Switzerland
| | - William Ondo
- Houston Methodist Hospital Neurological Institute, Weill Cornell Medical School, Houston, TX 77070, USA
| | - David Rye
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jerome M. Siegel
- Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, CA 90095, USA
- Neurobiology Research, Veterans Administration Greater Los Angeles Healthcare System, North Hills, CA 91343, USA
| | - Alessandro Silvani
- Department of Biomedical and Neuromotor Sciences Alma Mater Studiorum, Università di Bologna, 48121 Ravenna Campus, Ravenna, Italy
| | - John W. Winkelman
- Departments of Psychiatry and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Richard P. Allen
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21224, USA
| | - Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | | |
Collapse
|
11
|
Zou J, Zhou X, Chen X, Ma Y, Yu R. Shenkang Injection for Treating Renal Fibrosis-Metabonomics and Regulation of E3 Ubiquitin Ligase Smurfs on TGF-β/Smads Signal Transduction. Front Pharmacol 2022; 13:849832. [PMID: 35721120 PMCID: PMC9201572 DOI: 10.3389/fphar.2022.849832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/25/2022] [Indexed: 12/31/2022] Open
Abstract
At present, TGF-β is the most critical fibrogenic factor known. Smad ubiquitin ligase Smurfs play an important role in the regulation of the TGF-/Smads signaling pathway, which is linked to metabolite changes in renal fibrosis. Previous studies have shown that Shenkang injection can prevent and treat chronic kidney disease through multiple channels of action. However, the precise relationship between Shenkang injection and the regulation of the TGF-/Smads signaling pathway in the treatment of chronic kidney disease is unknown. Here, we evaluated the pharmacological effects of Shenkang injection on ubiquitination and metabolic changes of the TGF-β/Smads signaling pathway in UUO mice using pathology-related indicators, immunoprecipitation, subcellular co-location, and metabonomics analysis. Our findings indicate that Shenkang injection can promote nuclear translocation of Smurf1 and Smurf2 to TGF- membrane receptors TR-I and Smad2 and ubiquitinated degradation of these proteins. Furthermore, the formation of TβR-I/TβR-II, TβR-I/Smad2, and TβR-I/Smad3 complexes was inhibited to negatively regulate the TGF-β/Smad signaling pathway induced renal tubular epithelial transdifferentiation (EMT). The EMT process is not very relevant in vivo, although it is clear that TGF-β induces EMT in cultured cells, which has been demonstrated by numerous teams around the world. However, this is not the case with the in vivo models of kidney fibrosis, especially UUO. In addition, Shenkang injection can improve amino acid metabolism, purine metabolism, and fatty acid metabolism disorders.
Collapse
Affiliation(s)
- Junju Zou
- Hunan Provincial Key Laboratory of Translational Research in TCM Prescriptions and Zheng, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaotao Zhou
- School of Basic Medicine, Chengdu University of Chinese Medicine, Chengdu, China
| | - Xian Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuerong Ma
- School of Basic Medicine, Chengdu University of Chinese Medicine, Chengdu, China
| | - Rong Yu
- Hunan Provincial Key Laboratory of Translational Research in TCM Prescriptions and Zheng, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
12
|
Almeida PP, de Moraes Thomasi BB, Menezes ÁC, Da Cruz BO, da Silva Costa N, Brito ML, D'Avila Pereira A, Castañon CR, Degani VAN, Magliano DC, Knauf C, Tavares-Gomes AL, Stockler-Pinto MB. 5/6 nephrectomy affects enteric glial cells and promotes impaired antioxidant defense in the colonic neuromuscular layer. Life Sci 2022; 298:120494. [PMID: 35339510 DOI: 10.1016/j.lfs.2022.120494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 10/18/2022]
Abstract
AIMS Chronic kidney disease (CKD) produces multiple repercussions in the gastrointestinal tract (GIT), such as alterations in motility, gut microbiota, intestinal permeability, and increased oxidative stress. However, despite enteric glial cells (EGC) having important neural and immune features in GIT physiology, their function in CKD remains unknown. The present study investigates colonic glial markers, inflammation, and antioxidant parameters in a CKD model. MAIN METHODS A 5/6 nephrectomized rat model was used to induce CKD in rats and Sham-operated animals as a control to suppress. Biochemical measures in plasma and neuromuscular layer such as glutathione peroxidase (GPx) and superoxide dismutase (SOD) activity were carried out. Kidney histopathology was evaluated. Colon morphology analysis and glial fibrillary acid protein (GFAP), connexin-43 (Cx43), nuclear factor-kappa B (NF-κB) p65, and GPx protein expression were performed. KEY FINDINGS The CKD group exhibited dilated tubules and tubulointerstitial fibrosis in the reminiscent kidney (p = 0.0002). CKD rats showed higher SOD activity (p = 0.004) in plasma, with no differences in neuromuscular layer (p = 0.9833). However, GPx activity was decreased in the CKD group in plasma (p = 0.013) and neuromuscular layer (p = 0.0338). Morphological analysis revealed alterations in colonic morphometry with inflammatory foci in the submucosal layer and neuromuscular layer straightness in CKD rats (p = 0.0291). In addition, GFAP, Cx43, NF-κBp65 protein expression were increased, and GPx decreased in the neuromuscular layer of the CKD group (p < 0.05). SIGNIFICANCE CKD animals present alterations in colonic cytoarchitecture and decreased layer thickness. Moreover, CKD affects the enteric glial network of the neuromuscular layer, associated with decreased antioxidant activity and inflammation.
Collapse
Affiliation(s)
- Patricia Pereira Almeida
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil.
| | | | - Ágatha Cristie Menezes
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Beatriz Oliveira Da Cruz
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Nathalia da Silva Costa
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Michele Lima Brito
- Nutrition Graduation, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | | | - Cecília Ribeiro Castañon
- Clinic and Animal Reproduction Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | | | - D'Angelo Carlo Magliano
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil; Morphology Department, Biomedical Institute, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Claude Knauf
- Institut de Recherche en Santé Digestive, Université Paul Sabatier (UPS), Toulouse, France
| | - Ana Lúcia Tavares-Gomes
- Neuroscience Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Milena Barcza Stockler-Pinto
- Cardiovascular Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil; Nutrition Sciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| |
Collapse
|
13
|
Oral Acid Load Down-Regulates Fibroblast Growth Factor 23. Nutrients 2022; 14:nu14051041. [PMID: 35268016 PMCID: PMC8912769 DOI: 10.3390/nu14051041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 11/30/2022] Open
Abstract
Increased dietary acid load has a negative impact on health, particularly when renal function is compromised. Fibroblast growth factor 23 (FGF23) is a bone-derived hormone that is elevated during renal failure. The relationship between metabolic acidosis and FGF23 remains unclear. To investigate the effect of dietary acid load on circulating levels of FGF23, rats with normal renal function and with a graded reduction in renal mass (1/2 Nx and 5/6 Nx) received oral NH4Cl for 1 month. Acid intake resulted in a consistent decrease of plasma FGF23 concentrations in all study groups when compared with their non-acidotic control: 239.3 ± 13.5 vs. 295.0 ± 15.8 pg/mL (intact), 346.4 ± 19.7 vs. 522.6 ± 29.3 pg/mL (1/2 Nx) and 988.0 ± 125.5 vs. 2549.4 ± 469.7 pg/mL (5/6 Nx). Acidosis also decreased plasma PTH in all groups, 96.5 ± 22.3 vs. 107.3 ± 19.1 pg/mL, 113.1 ± 17.3 vs. 185.8 ± 22.2 pg/mL and 504.9 ± 75.7 vs. 1255.4 ± 181.1 pg/mL. FGF23 showed a strong positive correlation with PTH (r = 0.877, p < 0.0001) and further studies demonstrated that acidosis did not influence plasma FGF23 concentrations in parathyroidectomized rats, 190.0 ± 31.6 vs. 215 ± 25.6 pg/mL. In conclusion, plasma concentrations of FGF23 are consistently decreased in rats with metabolic acidosis secondary to increased acid intake, both in animals with intact renal function and with decreased renal function. The in vivo effect of metabolic acidosis on FGF23 appears to be related to the simultaneous decrease in PTH.
Collapse
|
14
|
Pedersen S, Hansen JB, Maltesen RG, Szejniuk WM, Andreassen T, Falkmer U, Kristensen SR. Identifying metabolic alterations in newly diagnosed small cell lung cancer patients. Metabol Open 2021; 12:100127. [PMID: 34585134 PMCID: PMC8455369 DOI: 10.1016/j.metop.2021.100127] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Small cell lung cancer (SCLC) is a malignant disease with poor prognosis. At the time of diagnosis most patients are already in a metastatic stage. Current diagnosis is based on imaging, histopathology, and immunohistochemistry, but no blood-based biomarkers have yet proven to be clinically successful for diagnosis and screening. The precise mechanisms of SCLC are not fully understood, however, several genetic mutations, protein and metabolic aberrations have been described. We aim at identifying metabolite alterations related to SCLC and to expand our knowledge relating to this aggressive cancer. METHODS A total of 30 serum samples of patients with SCLC, collected at the time of diagnosis, and 25 samples of healthy controls were included in this study. The samples were analyzed with nuclear magnetic resonance spectroscopy. Multivariate, univariate and pathways analyses were performed. RESULTS Several metabolites were identified to be altered in the pre-treatment serum samples of small-cell lung cancer patients compared to healthy individuals. Metabolites involved in tricarboxylic acid cycle (succinate: fold change (FC) = 2.4, p = 0.068), lipid metabolism (LDL triglyceride: FC = 1.3, p = 0.001; LDL-1 triglyceride: FC = 1.3, p = 0.012; LDL-2 triglyceride: FC = 1.4, p = 0.009; LDL-6 triglyceride: FC = 1.5, p < 0.001; LDL-4 cholesterol: FC = 0.5, p = 0.007; HDL-3 free cholesterol: FC = 0.7, p = 0.002; HDL-4 cholesterol FC = 0.8, p < 0.001; HDL-4 apolipoprotein-A1: FC = 0.8, p = 0.005; HDL-4 apolipoprotein-A2: FC ≥ 0.7, p ≤ 0.001), amino acids (glutamic acid: FC = 1.7, p < 0.001; glutamine: FC = 0.9, p = 0.007, leucine: FC = 0.8, p < 0.001; isoleucine: FC = 0.8, p = 0.016; valine: FC = 0.9, p = 0.032; lysine: FC = 0.8, p = 0.004; methionine: FC = 0.8, p < 0.001; tyrosine: FC = 0.7, p = 0.002; creatine: FC = 0.9, p = 0.030), and ketone body metabolism (3-hydroxybutyric acid FC = 2.5, p < 0.001; acetone FC = 1.6, p < 0.001), among other, were found deranged in SCLC. CONCLUSIONS This study provides novel insight into the metabolic disturbances in pre-treatment SCLC patients, expanding our molecular understanding of this malignant disease.
Collapse
Affiliation(s)
- Shona Pedersen
- Department of Basic Medical Science, College of Medicine, Qatar University, QU Health, Doha, Qatar
| | | | - Raluca Georgiana Maltesen
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute of Medical Research, Westmead, 2145, Australia
| | - Weronika Maria Szejniuk
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Oncology, Aalborg University Hospital, Aalborg, Denmark
| | - Trygve Andreassen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ursula Falkmer
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Oncology, Aalborg University Hospital, Aalborg, Denmark
| | - Søren Risom Kristensen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
15
|
Huang HX, Shen LL, Huang HY, Zhao LH, Xu F, Zhang DM, Zhang XL, Chen T, Wang XQ, Xie Y, Su JB. Associations of Plasma Glucagon Levels with Estimated Glomerular Filtration Rate, Albuminuria and Diabetic Kidney Disease in Patients with Type 2 Diabetes Mellitus. Diabetes Metab J 2021; 45:868-879. [PMID: 33752319 PMCID: PMC8640146 DOI: 10.4093/dmj.2020.0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 07/30/2020] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is characterized by elevated fasting glucagon and impaired suppression of postprandial glucagon secretion, which may participate in diabetic complications. Therefore, we investigated the associations of plasma glucagon with estimated glomerular filtration rate (eGFR), albuminuria and diabetic kidney disease (DKD) in T2DM patients. METHODS Fasting glucagon and postchallenge glucagon (assessed by area under the glucagon curve [AUCgla]) levels were determined during oral glucose tolerance tests. Patients with an eGFR <60 mL/min/1.73 m2 and/or a urinary albumin-to-creatinine ratio (UACR) ≥30 mg/g who presented with diabetic retinopathy were identified as having DKD. RESULTS Of the 2,436 recruited patients, fasting glucagon was correlated with eGFR and UACR (r=-0.112 and r=0.157, respectively; P<0.001), and AUCgla was also correlated with eGFR and UACR (r=-0.267 and r=0.234, respectively; P<0.001). Moreover, 31.7% (n=771) presented with DKD; the prevalence of DKD was 27.3%, 27.6%, 32.5%, and 39.2% in the first (Q1), second (Q2), third (Q3), and fourth quartile (Q4) of fasting glucagon, respectively; and the corresponding prevalence for AUCgla was 25.9%, 22.7%, 33.7%, and 44.4%, respectively. Furthermore, after adjusting for other clinical covariates, the adjusted odds ratios (ORs; 95% confidence intervals) for DKD in Q2, Q3, and Q4 versus Q1 of fasting glucagon were 0.946 (0.697 to 1.284), 1.209 (0.895 to 1.634), and 1.521 (1.129 to 2.049), respectively; the corresponding ORs of AUCgla were 0.825 (0.611 to 1.114), 1.323 (0.989 to 1.769), and 2.066 (1.546 to 2.760), respectively. Additionally, when we restricted our analysis in patients with glycosylated hemoglobin <7.0% (n=471), we found fasting glucagon and AUCgla were still independently associated with DKD. CONCLUSION Both increased fasting and postchallenge glucagon levels were independently associated with DKD in T2DM patients.
Collapse
Affiliation(s)
- Hua-Xing Huang
- Department of General Medicine, First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Nephrology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China
| | - Liang-Lan Shen
- Department of Nephrology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China
| | - Hai-Yan Huang
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China
| | - Li-Hua Zhao
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China
| | - Feng Xu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China
| | - Dong-Mei Zhang
- Medical Research Center, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China
| | - Xiu-Lin Zhang
- Department of Clinical Laboratory, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China
| | - Tong Chen
- Department of Clinical Laboratory, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China
| | - Xue-Qin Wang
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China
| | - Yan Xie
- Department of General Medicine, First Affiliated Hospital of Soochow University, Suzhou, China
- Corresponding authors: Yan Xie https://orcid.org/0000-0001-8118-7484 Department of General Medicine, First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou 215006, China E-mail:
| | - Jian-Bin Su
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People’s Hospital of Nantong City, Nantong, China
- Corresponding authors: Yan Xie https://orcid.org/0000-0001-8118-7484 Department of General Medicine, First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou 215006, China E-mail:
| |
Collapse
|
16
|
Nielsen JE, Maltesen RG, Havelund JF, Færgeman NJ, Gotfredsen CH, Vestergård K, Kristensen SR, Pedersen S. Characterising Alzheimer's disease through integrative NMR- and LC-MS-based metabolomics. Metabol Open 2021; 12:100125. [PMID: 34622190 PMCID: PMC8479251 DOI: 10.1016/j.metop.2021.100125] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 12/14/2022] Open
Abstract
Background Alzheimer's Disease (AD) is a complex and multifactorial disease and novel approaches are needed to illuminate the underlying pathology. Metabolites comprise the end-product of genes, transcripts, and protein regulations and might reflect disease pathogenesis. Blood is a common biofluid used in metabolomics; however, since extracellular vesicles (EVs) hold cell-specific biological material and can cross the blood-brain barrier, their utilization as biological material warrants further investigation. We aimed to investigate blood- and EV-derived metabolites to add insigts to the pathological mechanisms of AD. Methods Blood samples were collected from 10 AD and 10 Mild Cognitive Impairment (MCI) patients, and 10 healthy controls. EVs were enriched from plasma using 100,000×g, 1 h, 4 °C with a wash. Metabolites from serum and EVs were measured using liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR) spectroscopy. Multivariate and univariate analyses were employed to identify altered metabolites in cognitively impaired individuals. Results While no significant EV-derived metabolites were found differentiating patients from healthy individuals, six serum metabolites were found important; valine (p = 0.001, fold change, FC = 0.8), histidine (p = 0.001, FC = 0.9), allopurinol riboside (p = 0.002, FC = 0.2), inosine (p = 0.002, FC = 0.3), 4-pyridoxic acid (p = 0.006, FC = 1.6), and guanosine (p = 0.004, FC = 0.3). Pathway analysis revealed branched-chain amino acids, purine and histidine metabolisms to be downregulated, and vitamin B6 metabolism upregulated in patients compared to controls. Conclusion Using a combination of LC-MS and NMR methodologies we identified several altered mechanisms possibly related to AD pathology. EVs require additional optimization prior to their possible utilization as a biological material for AD-related metabolomics studies.
Collapse
Key Words
- ACE, Addenbrooke's cognitive examination
- AD, Alzheimer's Disease
- AUC, Area under the curve
- Alzheimer
- Aβ, Amyloid-β
- BBB, Blood-brain barrier
- BCAA, Branched-chain amino acid
- Blood
- CNS, Central nervous system
- CSF, Cerebrospinal fluid
- CV, Cross-validation
- EVs, Extracellular vesicles
- Extracellular vesicles
- FAQ, Functional activities questionnaire
- FDR, False discovery rate
- MCI, Mild cognitive impairment
- MMSE, Mini-mental state examination
- Mass spectrometry
- Metabolites
- Nuclear magnetic resonance
- PCA, Principal component analysis
- ROC, Receiver operating characteristics
- p-tau, Phospho-tau
- sPLS-DA, Sparse partial least squared discriminant analysis
- t-tau, Total-tau
Collapse
Affiliation(s)
- Jonas Ellegaard Nielsen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Raluca Georgiana Maltesen
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute of Medical Research, Westmead, Australia.,Department of Anaesthesia and Intensive Care, Aalborg University Hospital, Aalborg, Denmark
| | - Jesper F Havelund
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Nils J Færgeman
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | | | | | - Søren Risom Kristensen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Shona Pedersen
- Department of Basic Medical Sciences, College of Medicine, Qatar University, Qatar Health, Doha, Qatar
| |
Collapse
|
17
|
Newman TM, Shively CA, Register TC, Appt SE, Yadav H, Colwell RR, Fanelli B, Dadlani M, Graubics K, Nguyen UT, Ramamoorthy S, Uberseder B, Clear KYJ, Wilson AS, Reeves KD, Chappell MC, Tooze JA, Cook KL. Diet, obesity, and the gut microbiome as determinants modulating metabolic outcomes in a non-human primate model. MICROBIOME 2021; 9:100. [PMID: 33952353 PMCID: PMC8101030 DOI: 10.1186/s40168-021-01069-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/01/2021] [Indexed: 05/17/2023]
Abstract
BACKGROUND The objective of this study was to increase understanding of the complex interactions between diet, obesity, and the gut microbiome of adult female non-human primates (NHPs). Subjects consumed either a Western (n=15) or Mediterranean (n=14) diet designed to represent human dietary patterns for 31 months. Body composition was determined using CT, fecal samples were collected, and shotgun metagenomic sequencing was performed. Gut microbiome results were grouped by diet and adiposity. RESULTS Diet was the main contributor to gut microbiome bacterial diversity. Adiposity within each diet was associated with subtle shifts in the proportional abundance of several taxa. Mediterranean diet-fed NHPs with lower body fat had a greater proportion of Lactobacillus animalis than their higher body fat counterparts. Higher body fat Western diet-fed NHPs had more Ruminococcus champaneliensis and less Bacteroides uniformis than their low body fat counterparts. Western diet-fed NHPs had significantly higher levels of Prevotella copri than Mediterranean diet NHPs. Western diet-fed subjects were stratified by P. copri abundance (P. copriHIGH versus P. copriLOW), which was not associated with adiposity. Overall, Western diet-fed animals in the P. copriHIGH group showed greater proportional abundance of B. ovatus, B. faecis, P. stercorea, P. brevis, and Faecalibacterium prausnitzii than those in the Western P. copriLOW group. Western diet P. copriLOW subjects had a greater proportion of Eubacterium siraeum. E. siraeum negatively correlated with P. copri proportional abundance regardless of dietary consumption. In the Western diet group, Shannon diversity was significantly higher in P. copriLOW when compared to P. copriHIGH subjects. Furthermore, gut E. siraeum abundance positively correlated with HDL plasma cholesterol indicating that those in the P. copriLOW population may represent a more metabolically healthy population. Untargeted metabolomics on urine and plasma from Western diet-fed P. copriHIGH and P. copriLOW subjects suggest early kidney dysfunction in Western diet-fed P. copriHIGH subjects. CONCLUSIONS In summary, the data indicate diet to be the major influencer of gut bacterial diversity. However, diet and adiposity must be considered together when analyzing changes in abundance of specific bacterial taxa. Interestingly, P. copri appears to mediate metabolic dysfunction in Western diet-fed NHPs. Video abstract.
Collapse
Affiliation(s)
- Tiffany M Newman
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Carol A Shively
- Department of Pathology, Section of Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Thomas C Register
- Department of Pathology, Section of Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Susan E Appt
- Department of Pathology, Section of Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Hariom Yadav
- Department of Neurosurgery and Brain Repair, USF Center for Microbiome Research University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | | | | | | | | | | | | | - Beth Uberseder
- Department of Pathology, Section of Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Kenysha Y J Clear
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Adam S Wilson
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Kimberly D Reeves
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Mark C Chappell
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Janet A Tooze
- Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Katherine L Cook
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
- Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
- Wake Forest School of Medicine, 575 N. Patterson Ave, Suite 340, Winston-Salem, NC, 27101, USA.
| |
Collapse
|
18
|
Hanifa MA, Skott M, Maltesen RG, Rasmussen BS, Nielsen S, Frøkiær J, Ring T, Wimmer R. Tissue, urine and serum NMR metabolomics dataset from a 5/6 nephrectomy rat model of chronic kidney disease. Data Brief 2020; 33:106567. [PMID: 33304964 PMCID: PMC7708935 DOI: 10.1016/j.dib.2020.106567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 01/05/2023] Open
Abstract
Serum, urine and tissue from a rat model of chronic kidney disease (CKD) were analysed using nuclear magnetic resonance (NMR) spectroscopy-based metabolomics methods, and compared with samples from sham operated rats. Both urine and serum were sampled at multiple timepoints, and the results have been reported elsewhere (https://doi.org/10.1007/s11306-019-1569-3[1]). The data could be useful to researchers working with human CKD or rat models of the disease. In addition, several different types of NMR spectra were recorded, including 1D NOESY, CPMG, and 2D J-resolved spectra, and the data could be useful for method comparison and algorithm development, both in terms of NMR spectroscopy and multivariate analysis.
Collapse
Affiliation(s)
- Munsoor A Hanifa
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark.,Department of Anaesthesia and Intensive Care Medicine, Aalborg University Hospital, 9000 Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, 9000 Aalborg, Denmark
| | - Martin Skott
- Department of Urology, Aarhus University Hospital, 8250 Aarhus N, Denmark
| | - Raluca G Maltesen
- Department of Anaesthesia and Intensive Care Medicine, Aalborg University Hospital, 9000 Aalborg, Denmark
| | - Bodil S Rasmussen
- Department of Anaesthesia and Intensive Care Medicine, Aalborg University Hospital, 9000 Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, 9000 Aalborg, Denmark
| | | | - Jørgen Frøkiær
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
| | - Troels Ring
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.,The Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh, Pittsburg, PA 15261, United States of America
| | - Reinhard Wimmer
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| |
Collapse
|
19
|
Onuh JO, Aliani M. Metabolomics profiling in hypertension and blood pressure regulation: a review. Clin Hypertens 2020; 26:23. [PMID: 33292736 PMCID: PMC7666763 DOI: 10.1186/s40885-020-00157-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/19/2020] [Indexed: 02/08/2023] Open
Abstract
Hypertension is a chronic health condition in which blood pressure is usually elevated beyond normal levels. It can progress with serious complications if left undetected and untreated. Incidence of hypertension is on the increase worldwide with debilitating consequences on the health systems of many countries. It is a multifactorial disorder that requires a multi-pronged approach to address it. One such approach is the use of metabolomics or metabolite profiling to understand its underlying cause and possibly control it. Changes in metabolites profiles have been used to accurately predict so many disease conditions in addition to identifying possible biomarkers and pathways associated in their pathogenicity. This will enable their early detection, diagnosis and treatment as well as likely complications that may arise and also assist in development of biomarkers for clinical uses. The objective of this review therefore is to present some of the current knowledge on the application of metabolomics profiling in hypertension and blood pressure control.
Collapse
Affiliation(s)
- John O Onuh
- Center for Molecular and Translational Medicine, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA, 30303, USA
| | - Michel Aliani
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada. .,St. Boniface Hospital Research Centre, 351 Tache Ave, Winnipeg, MB, R2H 2A6, Canada.
| |
Collapse
|
20
|
Lin YT, Salihovic S, Fall T, Hammar U, Ingelsson E, Ärnlöv J, Lind L, Sundström J. Global Plasma Metabolomics to Identify Potential Biomarkers of Blood Pressure Progression. Arterioscler Thromb Vasc Biol 2020; 40:e227-e237. [DOI: 10.1161/atvbaha.120.314356] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Objective:
The pathophysiology of hypertension remains incompletely understood. We investigated associations of circulating metabolites with longitudinal blood pressure (BP) changes in the Prospective Investigation of the Vasculature in Uppsala Seniors cohort and validated the findings in the Uppsala Longitudinal Study of Adult Men cohort.
Approach and Results:
Circulating metabolite levels were assessed with liquid- and gas-chromatography coupled to mass spectrometry among persons without BP-lowering medication at baseline. We studied associations of baseline levels of metabolites with changes in BP levels and the clinical BP stage between baseline and a follow-up examination 5 years later. In the discovery cohort, we investigated 504 individuals that contributed with 757 observations of paired BP measurements. The mean baseline systolic and diastolic BPs were 144 (19.7)/76 (9.7) mm Hg, and change in systolic and diastolic BPs were 3.7 (15.8)/−0.5 (8.6) mm Hg over 5 years. The metabolites associated with diastolic BP change were ceramide, triacylglycerol, total glycerolipids, oleic acid, and cholesterylester. No associations with longitudinal changes in systolic BP or BP stage were observed. Metabolites with similar structures to the 5 top findings in the discovery cohort were investigated in the validation cohort. Diacylglycerol (36:2) and monoacylglycerol (18:0), 2 glycerolipids, were associated with diastolic BP change in the validation cohort.
Conclusions:
Circulating baseline levels of ceramide, triacylglycerol, total glycerolipids, and oleic acid were positively associated with longitudinal diastolic BP change, whereas cholesterylester levels were inversely associated with longitudinal diastolic BP change. Two glycerolipids were validated in an independent cohort. These metabolites may point towards pathophysiological pathways of hypertension.
Collapse
Affiliation(s)
- Yi-Ting Lin
- From the Department of Medical Sciences, Uppsala University, Sweden (Y.-T.L., S.S., T.F., U.H., E.I., L.L., J.S.)
- Department of Family Medicine, Kaohsiung Medical University Hospital (Y.-T.L.), Kaohsiung Medical University, Taiwan
- Faculty of Medicine, College of Medicine (Y.-T.L.), Kaohsiung Medical University, Taiwan
| | - Samira Salihovic
- From the Department of Medical Sciences, Uppsala University, Sweden (Y.-T.L., S.S., T.F., U.H., E.I., L.L., J.S.)
- School of Medical Sciences (S.S.), Örebro University, Sweden
- School of Science and Technology (S.S.), Örebro University, Sweden
| | - Tove Fall
- From the Department of Medical Sciences, Uppsala University, Sweden (Y.-T.L., S.S., T.F., U.H., E.I., L.L., J.S.)
| | - Ulf Hammar
- From the Department of Medical Sciences, Uppsala University, Sweden (Y.-T.L., S.S., T.F., U.H., E.I., L.L., J.S.)
| | - Erik Ingelsson
- From the Department of Medical Sciences, Uppsala University, Sweden (Y.-T.L., S.S., T.F., U.H., E.I., L.L., J.S.)
- Division of Cardiovascular Medicine, Department of Medicine (E.I.), Stanford University School of Medicine, CA
- Stanford Cardiovascular Institute (E.I.), Stanford University School of Medicine, CA
- Stanford Diabetes Research Center (E.I.), Stanford University School of Medicine, CA
| | - Johan Ärnlöv
- Division of Family Medicine and Primary Care, Department of Neurobiology, Care Science and Society, Karolinska Institutet, Huddinge, Sweden (J.Ä.)
- School of Health and Social Studies, Dalarna University, Falun, Sweden (J.Ä.)
| | - Lars Lind
- From the Department of Medical Sciences, Uppsala University, Sweden (Y.-T.L., S.S., T.F., U.H., E.I., L.L., J.S.)
| | - Johan Sundström
- From the Department of Medical Sciences, Uppsala University, Sweden (Y.-T.L., S.S., T.F., U.H., E.I., L.L., J.S.)
- The George Institute for Global Health, University of New South Wales, Sydney, NSW, Australia (J.S.)
| |
Collapse
|
21
|
Wang S, Wu M, Qin L, Song Y, Peng A. DAXX mediates high phosphate-induced endothelial cell apoptosis in vitro through activating ERK signaling. PeerJ 2020; 8:e9203. [PMID: 32596036 PMCID: PMC7307556 DOI: 10.7717/peerj.9203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/24/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUD AND PURPOSE Hyperphosphatemia, which is a high inorganic phosphate (Pi) level in the serum, promotes endothelial cells dysfunction and is associated with cardiovascular diseases in patients with chronic kidney diseases (CKD). However, the underlying mechanism of high Pi-induced endothelia cell apoptosis remains unclear. METHODS Human umbilical vein endothelial cells (HUVECs) were treated with normal Pi (1.0 mM) and high Pi (3.0 mM), and then cell apoptosis, abnormal gene expression and potential signaling pathway involvement in simulated hyperphosphatemia were examined using flow cytometry, quantitative PCR (qPCR) and western blot analysis. A two-step 5/6 nephrectomy was carried out to induce CKD and biochemical measurements were taken. RESULTS The rat model of CKD revealed that hyperphosphatemia is correlated with an increased death-domain associated protein (DAXX) expression in endothelial cells. In vitro, high Pi increased the mRNA and protein expression level of DAXX in HUVECs, effects that were reversed by additional phosphonoformic acid treatment. Functionally, high Pi resulted in a significantly increased apoptosis in HUVECs, whereas DAXX knockdown markedly repressed high Pi-induced cell apoptosis, indicating that DAXX mediated high Pi-induced endothelial cell apoptosis. High Pi treatment and DAXX overexpression induced the activation of extracellular regulated protein kinases (ERKs), while DAXX knockdown inhibited high Pi-induced ERKs activation. Finally, we demonstrated that DAXX overexpression induced HUVECs apoptosis in the presence of normal Pi, whereas additional treatment with U0126 (a specific ERK inhibitor) reversed that effect. CONCLUSION Upregulated DAXX promoted high Pi-induced HUVECs apoptosis by activating ERK signaling and indicated that the DAXX/ERK signaling axis may be served as a potential target for CKD therapy.
Collapse
Affiliation(s)
- Shu Wang
- Nephrology and Rheumatology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Mingyu Wu
- Nephrology and Rheumatology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ling Qin
- Nephrology and Rheumatology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yaxiang Song
- Nephrology and Rheumatology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ai Peng
- Nephrology and Rheumatology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
22
|
Bliziotis NG, Engelke UFH, Aspers RLEG, Engel J, Deinum J, Timmers HJLM, Wevers RA, Kluijtmans LAJ. A comparison of high-throughput plasma NMR protocols for comparative untargeted metabolomics. Metabolomics 2020; 16:64. [PMID: 32358672 PMCID: PMC7196944 DOI: 10.1007/s11306-020-01686-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/23/2020] [Indexed: 12/15/2022]
Abstract
INTRODUCTION When analyzing the human plasma metabolome with Nuclear Magnetic Resonance (NMR) spectroscopy, the Carr-Purcell-Meiboom-Gill (CPMG) experiment is commonly employed for large studies. However, this process can lead to compromised statistical analyses due to residual macromolecule signals. In addition, the utilization of Trimethylsilylpropanoic acid (TSP) as an internal standard often leads to quantification issues, and binning, as a spectral summarization step, can result in features not clearly assignable to metabolites. OBJECTIVES Our aim was to establish a new complete protocol for large plasma cohorts collected with the purpose of describing the comparative metabolic profile of groups of samples. METHODS We compared the conventional CPMG approach to a novel procedure that involves diffusion NMR, using the Longitudinal Eddy-Current Delay (LED) experiment, maleic acid (MA) as the quantification reference and peak picking for spectral reduction. This comparison was carried out using the ultrafiltration method as a gold standard in a simple sample classification experiment, with Partial Least Squares-Discriminant Analysis (PLS-DA) and the resulting metabolic signatures for multivariate data analysis. In addition, the quantification capabilities of the method were evaluated. RESULTS We found that the LED method applied was able to detect more metabolites than CPMG and suppress macromolecule signals more efficiently. The complete protocol was able to yield PLS-DA models with enhanced classification accuracy as well as a more reliable set of important features than the conventional CPMG approach. Assessment of the quantitative capabilities of the method resulted in good linearity, recovery and agreement with an established amino acid assay for the majority of the metabolites tested. Regarding repeatability, ~ 85% of all peaks had an adequately low coefficient of variation (< 30%) in replicate samples. CONCLUSION Overall, our comparison yielded a high-throughput untargeted plasma NMR protocol for optimized data acquisition and processing that is expected to be a valuable contribution in the field of metabolic biomarker discovery.
Collapse
Affiliation(s)
- Nikolaos G. Bliziotis
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboudumc, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Udo F. H. Engelke
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboudumc, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Ruud L. E. G. Aspers
- Institute for Molecules and Materials, Radboud University, Houtlaan 4, 6525 XZ Nijmegen, The Netherlands
| | - Jasper Engel
- Institute for Molecules and Materials, Radboud University, Houtlaan 4, 6525 XZ Nijmegen, The Netherlands
- Present Address: Biometris, Wageningen UR, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jaap Deinum
- Department of Internal Medicine, Radboudumc, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Henri J. L. M. Timmers
- Department of Internal Medicine, Radboudumc, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Ron A. Wevers
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboudumc, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Leo A. J. Kluijtmans
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboudumc, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
23
|
Urinary proteome and metabolome in dogs (Canis lupus familiaris): The effect of chronic kidney disease. J Proteomics 2020; 222:103795. [PMID: 32335294 DOI: 10.1016/j.jprot.2020.103795] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/14/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023]
Abstract
Chronic kidney disease (CKD) is a progressive and irreversible disease. Although urine is an ideal biological sample for proteomics and metabolomics studies, sensitive and specific biomarkers are currently lacking in dogs. This study characterised dog urine proteome and metabolome aiming to identify and possibly quantify putative biomarkers of CKD in dogs. Twenty-two healthy dogs and 28 dogs with spontaneous CKD were selected and urine samples were collected. Urinary proteome was separated by SDS-PAGE and analysed by mass spectrometry, while urinary metabolome was analysed in protein-depleted samples by 1D 1H NMR spectra. The most abundant proteins in urine samples from healthy dogs were uromodulin, albumin and, in entire male dogs, arginine esterase. In urine samples from CKD dogs, the concentrations of uromodulin and albumin were significantly lower and higher, respectively, than in healthy dogs. In addition, these samples were characterised by a more complex protein pattern indicating mixed glomerular (protein bands ≥65 kDa) and tubular (protein bands <65 kDa) proteinuria. Urine spectra acquired by NMR allowed the identification of 86 metabolites in healthy dogs, belonging to 49 different pathways mainly involved in amino acid metabolism, purine and aminoacyl-tRNA biosynthesis or tricarboxylic acid cycle. Seventeen metabolites showed significantly different concentrations when comparing healthy and CKD dogs. In particular, carnosine, trigonelline, and cis-aconitate, might be suggested as putative biomarkers of CKD in dogs. SIGNIFICANCE: Urine is an ideal biological sample, however few proteomics and metabolomics studies investigated this fluid in dogs and in the context of CKD (chronic kidney disease). In this research, applying a multi-omics approach, new insights were gained regarding the molecular changes triggered by this disease in canine urinary proteome and metabolome. In particular, the involvement of the tubular component was highlighted, suggesting uromodulin, trigonelline and carnosine as possible biomarkers of CKD in dogs.
Collapse
|
24
|
Hanifa MA, Maltesen RG, Rasmussen BS, Buggeskov KB, Ravn HB, Skott M, Nielsen S, Frøkiær J, Ring T, Wimmer R. Citrate NMR peak irreproducibility in blood samples after reacquisition of spectra. Metabolomics 2019; 16:7. [PMID: 31858270 DOI: 10.1007/s11306-019-1629-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/10/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND In our metabolomics studies we have noticed that repeated NMR acquisition on the same sample can result in altered metabolite signal intensities. AIMS To investigate the reproducibility of repeated NMR acquisition on selected metabolites in serum and plasma from two large human metabolomics studies. METHODS Two peak regions for each metabolite were integrated and changes occurring after reacquisition were correlated. RESULTS Integral changes were generally small, but serum citrate signals decreased significantly in some samples. CONCLUSIONS Several metabolite integrals were not reproducible in some of the repeated spectra. Following established protocols, randomising analysis order and biomarker validation are important.
Collapse
Affiliation(s)
- Munsoor A Hanifa
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
- Department of Anesthesia and Intensive Care Medicine, Aalborg University Hospital, 9000, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, 9000, Aalborg, Denmark
| | - Raluca G Maltesen
- Department of Anesthesia and Intensive Care Medicine, Aalborg University Hospital, 9000, Aalborg, Denmark
| | - Bodil S Rasmussen
- Department of Anesthesia and Intensive Care Medicine, Aalborg University Hospital, 9000, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, 9000, Aalborg, Denmark
| | - Katrine B Buggeskov
- Department of Cardiothoracic Anesthesiology, Rigshospitalet, Copenhagen University Hospital, 2100, Copenhagen, Denmark
| | - Hanne B Ravn
- Department of Cardiothoracic Anesthesiology, Rigshospitalet, Copenhagen University Hospital, 2100, Copenhagen, Denmark
| | - Martin Skott
- Department of Urology, Aarhus University Hospital, 8250, Aarhus N, Denmark
| | | | - Jørgen Frøkiær
- Department of Clinical Medicine, Aarhus University, 8200, Aarhus N, Denmark
| | - Troels Ring
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
- The Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh, Pittsburg, PA, 15261, USA
| | - Reinhard Wimmer
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark.
| |
Collapse
|
25
|
Gagnebin Y, Pezzatti J, Lescuyer P, Boccard J, Ponte B, Rudaz S. Combining the advantages of multilevel and orthogonal partial least squares data analysis for longitudinal metabolomics: Application to kidney transplantation. Anal Chim Acta 2019; 1099:26-38. [PMID: 31986274 DOI: 10.1016/j.aca.2019.11.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 11/15/2019] [Accepted: 11/21/2019] [Indexed: 11/29/2022]
Abstract
Kidney transplantation is one of the renal replacement options in patients suffering from end-stage renal disease (ESRD). After a transplant, patient follow-up is essential and is mostly based on immunosuppressive drug levels control, creatinine measurement and kidney biopsy in case of a rejection suspicion. The extensive analysis of metabolite levels offered by metabolomics might improve patient monitoring, help in the surveillance of the restoration of a "normal" renal function and possibly also predict rejection. The longitudinal follow-up of those patients with repeated measurements is useful to understand changes and decide whether an intervention is necessary. The time modality, therefore, constitutes a specific dimension in the data structure, requiring dedicated consideration for proper statistical analysis. The handling of specific data structures in metabolomics has received strong interest in recent years. In this work, we demonstrated the recently developed ANOVA multiblock OPLS (AMOPLS) to efficiently analyse longitudinal metabolomic data by considering the intrinsic experimental design. Indeed, AMOPLS combines the advantages of multilevel approaches and OPLS by separating between and within individual variations using dedicated predictive components, while removing most uncorrelated variations in the orthogonal component(s), thus facilitating interpretation. This modelling approach was applied to a clinical cohort study aiming to evaluate the impact of kidney transplantation over time on the plasma metabolic profile of graft patients and donor volunteers. A dataset of 266 plasma metabolites was identified using an LC-MS multiplatform analytical setup. Two separate AMOPLS models were computed: one for the recipient group and one for the donor group. The results highlighted the benefits of transplantation for recipients and the relatively low impacts on blood metabolites of donor volunteers.
Collapse
Affiliation(s)
- Yoric Gagnebin
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Julian Pezzatti
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Pierre Lescuyer
- Department of Genetic and Laboratory Medicine, Geneva University Hospitals (HUG), Geneva, Switzerland
| | - Julien Boccard
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Belen Ponte
- Service of Nephrology, Geneva University Hospitals (HUG), Geneva, Switzerland
| | - Serge Rudaz
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
26
|
FGF23-Mediated Activation of Local RAAS Promotes Cardiac Hypertrophy and Fibrosis. Int J Mol Sci 2019; 20:ijms20184634. [PMID: 31540546 PMCID: PMC6770314 DOI: 10.3390/ijms20184634] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/09/2019] [Accepted: 09/16/2019] [Indexed: 12/25/2022] Open
Abstract
Patients with chronic kidney disease (CKD) are prone to developing cardiac hypertrophy and fibrosis, which is associated with increased fibroblast growth factor 23 (FGF23) serum levels. Elevated circulating FGF23 was shown to induce left ventricular hypertrophy (LVH) via the calcineurin/NFAT pathway and contributed to cardiac fibrosis by stimulation of profibrotic factors. We hypothesized that FGF23 may also stimulate the local renin–angiotensin–aldosterone system (RAAS) in the heart, thereby further promoting the progression of FGF23-mediated cardiac pathologies. We evaluated LVH and fibrosis in association with cardiac FGF23 and activation of RAAS in heart tissue of 5/6 nephrectomized (5/6Nx) rats compared to sham-operated animals followed by in vitro studies with isolated neonatal rat ventricular myocytes and fibroblast (NRVM, NRCF), respectively. Uremic rats showed enhanced cardiomyocyte size and cardiac fibrosis compared with sham. The cardiac expression of Fgf23 and RAAS genes were increased in 5/6Nx rats and correlated with the degree of cardiac fibrosis. In NRVM and NRCF, FGF23 stimulated the expression of RAAS genes and induced Ngal indicating mineralocorticoid receptor activation. The FGF23-mediated hypertrophic growth of NRVM and induction of NFAT target genes were attenuated by cyclosporine A, losartan and spironolactone. In NRCF, FGF23 induced Tgfb and Ctgf, which were suppressed by losartan and spironolactone, only. Our data suggest that FGF23-mediated activation of local RAAS in the heart promotes cardiac hypertrophy and fibrosis.
Collapse
|