1
|
Bano N, Khan S, Ahamad S, Dar NJ, Alanazi HH, Nazir A, Bhat SA. Microglial NOX2 as a therapeutic target in traumatic brain injury: Mechanisms, consequences, and potential for neuroprotection. Ageing Res Rev 2025; 108:102735. [PMID: 40122395 DOI: 10.1016/j.arr.2025.102735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/08/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
Traumatic brain injury (TBI) is a leading cause of long-term disability worldwide, with secondary injury mechanisms, including neuroinflammation and oxidative stress, driving much of its chronic pathology. While NADPH oxidase 2 (NOX2)-mediated reactive oxygen species (ROS) production is a recognized factor in TBI, the specific role of microglial NOX2 in perpetuating oxidative and inflammatory damage remains underexplored. Addressing this gap is critical, as current therapeutic approaches primarily target acute symptoms and fail to interrupt the persistent neuroinflammation that contributes to progressive neurodegeneration. Besides NOX, other ROS-generating enzymes, such as CYP1B1, COX2, and XO, also play crucial roles in triggering oxidative stress and neuroinflammatory conditions in TBI. However, this review highlights the pathophysiological role of microglial NOX2 in TBI, focusing on its activation following injury and its impact on ROS generation, neuroinflammatory signaling, and neuronal loss. These insights reveal NOX2 as a critical driver of secondary injury, linked to worsened outcomes, particularly in aged individuals where NOX2 activation is more pronounced. In addition, this review evaluates emerging therapeutic approaches targeting NOX2, such as GSK2795039 and other selective NOX2 inhibitors, which show potential in reducing ROS levels, limiting neuroinflammation, and preserving neurological functions. By highlighting the specific role of NOX2 in microglial ROS production and secondary neurodegeneration, this study advocates for NOX2 inhibition as a promising strategy to improve TBI outcomes by addressing the unmet need for therapies targeting long-term inflammation and neuroprotection. Our review highlights the potential of NOX2-targeted interventions to disrupt the cycle of oxidative stress and inflammation, ultimately offering a pathway to mitigate the chronic impact of TBI.
Collapse
Affiliation(s)
- Nargis Bano
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Sameera Khan
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Nawab John Dar
- CNB, SALK Institute of Biological Sciences, La Jolla, CA 92037, USA
| | - Hamad H Alanazi
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Al Jouf University 77455, Saudi Arabia
| | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India; Academy of Scientific and Innovative Research, New Delhi, India.
| | - Shahnawaz Ali Bhat
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
2
|
Murray KE, Ravula AR, Stiritz VA, Cominski TP, Delic V, Marín de Evsikova C, Rama Rao KV, Chandra N, Beck KD, Pfister BJ, Citron BA. Sex and Genotype Affect Mouse Hippocampal Gene Expression in Response to Blast-Induced Traumatic Brain Injury. Mol Neurobiol 2025:10.1007/s12035-025-04879-5. [PMID: 40178780 DOI: 10.1007/s12035-025-04879-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 03/21/2025] [Indexed: 04/05/2025]
Abstract
Blast-induced traumatic brain injury (bTBI) has been identified as an increasingly prevalent cause of morbidity and mortality in both military and civilian populations over the past few decades. Functional outcomes following bTBI vary widely among individuals, and chronic neurodegenerative effects including cognitive impairments can develop without effective diagnosis and treatment. Genetic predispositions and sex differences may affect gene expression changes in response to bTBI and influence an individual's probability of sustaining long-term damage or exhibiting resilience and tissue repair. Male and female mice from eight genetically diverse and distinct strains (129S1/SvImJ, A/J, C57BL/6J, CAST/EiJ, NOD/ShiLtJ, NZO/HlLtJ, PWK/PhJ, WSB/EiJ) which encompassed 90% of the genetic variability in commercially available laboratory mice were exposed to a single bTBI (180 kPa) using a well-established shock tube system. Subacute changes in hippocampal gene expression due to blast exposure were assessed using RNA-seq at 1-month post-injury. We identified patterns of dysregulation in gene ontology terms and canonical pathways related to mitochondrial function, ribosomal structure, synaptic plasticity, protein degradation, and intracellular signaling that varied by sex and/or strain, including significant changes in genes encoding respiratory complex I of the electron transport chain in male WSB/EiJ mice and the glutamatergic synapse across more than half of our groups. This study represents a multi-level examination of how genetic variability may influence response to bTBI and provides a foundation for the identification of potential therapeutic targets that could be modulated to improve the health of Veterans and others with histories of blast exposures.
Collapse
Affiliation(s)
- Kathleen E Murray
- Laboratory of Molecular Biology, Research & Development, U.S. Department of Veterans Affairs, VA New Jersey Health Care System, East Orange, NJ, USA
- School of Graduate Studies, Rutgers Health, Newark, NJ, USA
| | - Arun Reddy Ravula
- Molecular Neurotherapeutics Laboratory, Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Victoria A Stiritz
- Neurobehavioral Research Laboratory, Research & Development, U.S. Department of Veterans Affairs, VA New Jersey Health Care System, East Orange, NJ, USA
- School of Graduate Studies, Rutgers Health, Newark, NJ, USA
| | - Tara P Cominski
- Neurobehavioral Research Laboratory, Research & Development, U.S. Department of Veterans Affairs, VA New Jersey Health Care System, East Orange, NJ, USA
- Division of Life Sciences, School of Arts and Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Vedad Delic
- Laboratory of Molecular Biology, Research & Development, U.S. Department of Veterans Affairs, VA New Jersey Health Care System, East Orange, NJ, USA
- School of Graduate Studies, Rutgers Health, Newark, NJ, USA
- Department of Pharmacology, Physiology & Neuroscience, Rutgers-New Jersey Medical School, Newark, NJ, 07101, USA
| | - Caralina Marín de Evsikova
- Epigenetics and Functional Genomics Laboratory, Research & Development, U.S. Department of Veterans Affairs, Bay Pines VA Healthcare System, Bay Pines, FL, USA
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
| | - Kakulavarapu V Rama Rao
- Center for Injury Biomechanics, Materials, and Medicine, Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Namas Chandra
- Center for Injury Biomechanics, Materials, and Medicine, Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Kevin D Beck
- Neurobehavioral Research Laboratory, Research & Development, U.S. Department of Veterans Affairs, VA New Jersey Health Care System, East Orange, NJ, USA
- School of Graduate Studies, Rutgers Health, Newark, NJ, USA
- Department of Pharmacology, Physiology & Neuroscience, Rutgers-New Jersey Medical School, Newark, NJ, 07101, USA
| | - Bryan J Pfister
- Center for Injury Biomechanics, Materials, and Medicine, Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Bruce A Citron
- Laboratory of Molecular Biology, Research & Development, U.S. Department of Veterans Affairs, VA New Jersey Health Care System, East Orange, NJ, USA.
- School of Graduate Studies, Rutgers Health, Newark, NJ, USA.
- Department of Pharmacology, Physiology & Neuroscience, Rutgers-New Jersey Medical School, Newark, NJ, 07101, USA.
| |
Collapse
|
3
|
Norris C, Murphy SF, VandeVord PJ. Acute astrocytic and neuronal regulation of glutamatergic protein expression following blast. Neurosci Lett 2025; 848:138108. [PMID: 39734031 DOI: 10.1016/j.neulet.2024.138108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/17/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
Regulation of glutamate through glutamate-glutamine cycling is critical for mediating nervous system plasticity. Blast-induced traumatic brain injury (bTBI) has been linked to glutamate-dependent excitotoxicity, which may be potentiating chronic disorders such as post-traumatic epilepsy. The purpose of this study was to measure changes in the expression of astrocytic and neuronal proteins responsible for glutamatergic regulation at 4-, 12-, and 24 h in the cortex and hippocampus following single blast exposure in a rat model for bTBI. Animals were exposed to a blast with magnitudes ranging from 16 to 20 psi using an Advanced Blast Simulator, and western blotting was performed to compare changes in protein expression between blast and sham groups. Glial fibrillary acidic protein (GFAP) was increased at 24 h, consistent with astrocyte reactivity, yet no other proteins showed significant changes in expression at acute time points following blast (GS, GLT-1, GluN1, GluN2A, GluN2B). Therefore, these glutamate regulators likely do not play a major role in contributing to acute excitotoxicity or glial reactivity when analyzed by whole brain region. Investigation of substructural and subregional effects in future studies, particularly within the hippocampus (e.g., dentate gyrus, CA1, CA2, CA3), may reveal localized changes in expression and/or NMDAR subunit composition capable of potentiating bTBI molecular cascades. Nevertheless, alternative regulators are likely to demonstrate greater sensitivity as acute therapeutic targets contributing to bTBI pathophysiology following single blast exposure.
Collapse
Affiliation(s)
- Carly Norris
- School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, USA; Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| | - Susan F Murphy
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA; Veterans Affairs Medical Center, Salem, VA, USA
| | - Pamela J VandeVord
- School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, USA; Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA; Veterans Affairs Medical Center, Salem, VA, USA.
| |
Collapse
|
4
|
Zhang L, Liu Y, Xu Y, Pei M, Yao M, Chen X, Cui Y, Han F, Lu Y, Zhang C, Wang Y, Gao P, Zhu L, Wang J. Fluxapyroxad induced toxicity of earthworms: Insights from multi-level experiments and molecular simulation studies. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135911. [PMID: 39305595 DOI: 10.1016/j.jhazmat.2024.135911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 12/01/2024]
Abstract
Fluxapyroxad, an emerging succinate dehydrogenase inhibitor fungicide, is widely used due to its excellent properties. Given its persistence in soil with a 50 % disappearance time of 183-1000 days, it is crucial to evaluate the long-term effects of low-dose fluxapyroxad on non-target soil organisms such as earthworms (Eisenia fetida). The present study investigated the impacts of fluxapyroxad (0.01, 0.1, and 1 mg kg-1) on Eisenia fetida over 56 days, focusing on oxidative stress, digestive and nervous system functions, and histopathological changes. We also explored the mechanisms of fluxapyroxad-enzyme interactions through molecular docking and dynamics simulations. Results demonstrated a significant dose-response relationship in the integrated biomarker response of 12 biochemical indices. Fluxapyroxad altered expression levels of functional genes and induced histopathological damage in earthworm epidermis and intestines. Molecular simulations revealed that fluxapyroxad is directly bound to active sites of critical enzymes, potentially disrupting their structure and function. Even at low doses, long-term fluxapyroxad exposure significantly impacted earthworm physiology, with effects becoming more pronounced over time. Our findings provide crucial insights into the chronic toxicity of fluxapyroxad and emphasize the importance of long-term, low-dose studies in pesticide risk assessment in soil. This research offers valuable guidance for the responsible management and application of fungicides.
Collapse
Affiliation(s)
- Lanlan Zhang
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Yao Liu
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Ying Xu
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Mengyuan Pei
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Mengyao Yao
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Xiaoni Chen
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Yifei Cui
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Fengyang Han
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Yubo Lu
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Cheng Zhang
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China.
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Peng Gao
- Department of Environmental and Occupational Health, and Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Lusheng Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
5
|
Zhu X, Chu X, Wang H, Liao Z, Xiang H, Zhao W, Yang L, Wu P, Liu X, Chen D, Xie J, Dai W, Li L, Wang J, Zhao H. Investigating neuropathological changes and underlying neurobiological mechanisms in the early stages of primary blast-induced traumatic brain injury: Insights from a rat model. Exp Neurol 2024; 375:114731. [PMID: 38373483 DOI: 10.1016/j.expneurol.2024.114731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/06/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
The utilization of explosives and chemicals has resulted in a rise in blast-induced traumatic brain injury (bTBI) in recent times. However, there is a dearth of diagnostic biomarkers and therapeutic targets for bTBI due to a limited understanding of biological mechanisms, particularly in the early stages. The objective of this study was to examine the early neuropathological characteristics and underlying biological mechanisms of primary bTBI. A total of 83 Sprague Dawley rats were employed, with their heads subjected to a blast shockwave of peak overpressure ranging from 172 to 421 kPa in the GI, GII, and GIII groups within a closed shock tube, while the body was shielded. Neuromotor dysfunctions, morphological changes, and neuropathological alterations were detected through modified neurologic severity scores, brain water content analysis, MRI scans, histological, TUNEL, and caspase-3 immunohistochemical staining. In addition, label-free quantitative (LFQ)-proteomics was utilized to investigate the biological mechanisms associated with the observed neuropathology. Notably, no evident damage was discernible in the GII and GI groups, whereas mild brain injury was observed in the GIII group. Neuropathological features of bTBI were characterized by morphologic changes, including neuronal injury and apoptosis, cerebral edema, and cerebrovascular injury in the shockwave's path. Subsequently, 3153 proteins were identified and quantified in the GIII group, with subsequent enriched neurological responses consistent with pathological findings. Further analysis revealed that signaling pathways such as relaxin signaling, hippo signaling, gap junction, chemokine signaling, and sphingolipid signaling, as well as hub proteins including Prkacb, Adcy5, and various G-protein subunits (Gnai2, Gnai3, Gnao1, Gnb1, Gnb2, Gnb4, and Gnb5), were closely associated with the observed neuropathology. The expression of hub proteins was confirmed via Western blotting. Accordingly, this study proposes signaling pathways and key proteins that exhibit sensitivity to brain injury and are correlated with the early pathologies of bTBI. Furthermore, it highlights the significance of G-protein subunits in bTBI pathophysiology, thereby establishing a theoretical foundation for early diagnosis and treatment strategies for primary bTBI.
Collapse
Affiliation(s)
- Xiyan Zhu
- Department of Military Traffic Injury Prevention and Control, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiang Chu
- Cognitive Development and Learning and Memory Disorders Translational Medicine Laboratory, Children's Hospital, Chongqing Medical University, Chongqing, China; Emergency department, Daping Hospital, Army Medical University, Chongqing, China
| | - Hao Wang
- Neurosurgery department, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhikang Liao
- Department of Military Traffic Injury Prevention and Control, Daping Hospital, Army Medical University, Chongqing, China
| | - Hongyi Xiang
- Department of Military Traffic Injury Prevention and Control, Daping Hospital, Army Medical University, Chongqing, China
| | - Wenbing Zhao
- Department of Military Traffic Injury Prevention and Control, Daping Hospital, Army Medical University, Chongqing, China
| | - Li Yang
- Department of Military Traffic Injury Prevention and Control, Daping Hospital, Army Medical University, Chongqing, China
| | - Pengfei Wu
- Department of Military Traffic Injury Prevention and Control, Daping Hospital, Army Medical University, Chongqing, China
| | - Xing Liu
- Department of Military Traffic Injury Prevention and Control, Daping Hospital, Army Medical University, Chongqing, China
| | - Diyou Chen
- Department of Military Traffic Injury Prevention and Control, Daping Hospital, Army Medical University, Chongqing, China
| | - Jingru Xie
- Department of Military Traffic Injury Prevention and Control, Daping Hospital, Army Medical University, Chongqing, China
| | - Wei Dai
- Department of Military Traffic Injury Prevention and Control, Daping Hospital, Army Medical University, Chongqing, China
| | - Lei Li
- Trauma Medical Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Jianmin Wang
- Department of Weapon Bioeffect Assessment, Daping Hospital, Army Medical University, Chongqing, China.
| | - Hui Zhao
- Department of Military Traffic Injury Prevention and Control, Daping Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
6
|
Kumari M, Hasija Y, Trivedi R. Acute and sub-acute metabolic change in different brain regions induced by moderate blunt traumatic brain injury. Neuroreport 2024; 35:75-80. [PMID: 38064354 DOI: 10.1097/wnr.0000000000001982] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
The objective of the study was to observe the effect of moderate closed-head injury on hippocampal, thalamic, and striatal tissue metabolism with time. Closed head injury is responsible for metabolic changes. These changes can be permanent or temporary, depending on the injury's impact. For the experiment, 20 rats were randomly divided into four groups, each containing five animals. Animals were subjected to injury using a modified Marmarou's weight drop device; hippocampal, thalamic, and striatal tissue samples were collected after 1 day, 3 days, and 7 days of injury. NMR spectra were acquired following sample processing. Changes in myo-inositol, creatine, glutamate, succinate, lactate, and N-acetyl aspartic acid in hippocampal tissues were observed at day 3 PI. The tyrosine level in the hippocampus was altered at day 7 PI. While thalamic and striatal tissue samples showed altered levels of branched-chain amino acids and myo-inositol at day 1PI. Taurine, gamma amino butyric acid (GABA), choline, and alpha keto-glutarate levels were found to be significantly altered in striatal tissues at days 1 and 3PI. Acetate and GABA levels were altered in the thalamus on day 1 PI. The choline level in the thalamus was found to alter at all-time points after injury. The alteration in these metabolites may be due to the alteration in their respective pathways. Neurotransmitter and energy metabolism pathways were found to be altered in all three brain regions after TBI. This study may help better understand the effect of injury on the metabolic balance of a specific brain region and recovery.
Collapse
Affiliation(s)
- Megha Kumari
- Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Science (INMAS), DRDO
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Yasha Hasija
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Richa Trivedi
- Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Science (INMAS), DRDO
| |
Collapse
|
7
|
Norris C, Weatherbee J, Murphy SF, VandeVord PJ. Quantifying acute changes in neurometabolism following blast-induced traumatic brain injury. Neurosci Res 2024; 198:47-56. [PMID: 37352935 DOI: 10.1016/j.neures.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
Brain health is largely dependent on the metabolic regulation of amino acids. Brain injuries, diseases, and disorders can be detected through alterations in free amino acid (FAA) concentrations; and thus, mapping the changes has high diagnostic potential. Common methods focus on optimizing neurotransmitter quantification; however, recent focus has expanded to investigate the roles of molecular precursors in brain metabolism. An isocratic method using high performance liquid chromatography with electrochemical cell detection was developed to quantify a wide range of molecular precursors and neurotransmitters: alanine, arginine, aspartate, serine, taurine, threonine, tyrosine, glycine, glutamate, glutamine, and γ-Aminobutyric acid (GABA) following traumatic brain injury. First, baseline concentrations were determined in the serum, cerebrospinal fluid, hippocampus, cortex, and cerebellum of naïve male Sprague Dawley rats. A subsequent study was performed investigating acute changes in FAA concentrations following blast-induced traumatic brain injury (bTBI). Molecular precursor associated FAAs decreased in concentration at 4 h after injury in both the cortex and hippocampus while those serving as neurotransmitters remained unchanged. In particular, the influence of oxidative stress on the observed changes within alanine and arginine pathways following bTBI should be further investigated to elucidate the full therapeutic potential of these molecular precursors at acute time points.
Collapse
Affiliation(s)
- Carly Norris
- School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, USA; Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg VA, USA
| | - Justin Weatherbee
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg VA, USA
| | - Susan F Murphy
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg VA, USA; Veterans Affairs Medical Center, Salem, VA, USA
| | - Pamela J VandeVord
- School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, USA; Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg VA, USA; Veterans Affairs Medical Center, Salem, VA, USA.
| |
Collapse
|
8
|
Agas A, Ravula AR, Ma X, Cheng Y, Belfield KD, Haorah J. Hemolytic iron regulation in traumatic brain injury and alcohol use. Alcohol 2023; 109:1-12. [PMID: 36690222 PMCID: PMC10175116 DOI: 10.1016/j.alcohol.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/18/2022] [Accepted: 01/03/2023] [Indexed: 01/22/2023]
Abstract
Hemorrhage is a major component of traumatic brain injury (TBI). Red blood cells, accumulated at the hemorrhagic site, undergo hemolysis upon energy depletion and release free iron into the central nervous system. This iron must be managed to prevent iron neurotoxicity and ferroptosis. As prior alcohol consumption is often associated with TBI, we examined iron regulation in a rat model of chronic alcohol feeding subjected to fluid percussion-induced TBI. We found that alcohol consumption prior to TBI altered the expression profiles of the lipocalin 2/heme oxygenase 1/ferritin iron management system. Notably, unlike TBI alone, TBI following chronic alcohol consumption sustained the expression of all three regulatory proteins for 1, 3, and 7 days post-injury. In addition, alcohol significantly affected TBI-induced expression of ferritin light chain at 3 days post-injury. We also found that alcohol exacerbated TBI-induced activation of microglia at 7 days post-injury. Finally, we propose that microglia may also play a role in iron management through red blood cell clearance.
Collapse
Affiliation(s)
- Agnieszka Agas
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States.
| | - Arun Reddy Ravula
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Xiaotang Ma
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Yiming Cheng
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Kevin D Belfield
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, United States
| | - James Haorah
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| |
Collapse
|
9
|
Han Y, Fu M, Wu J, Zhou S, Qiao Z, Peng C, Zhang W, Liu F, Ye C, Yang J. Polylactic acid microplastics induce higher biotoxicity of decabromodiphenyl ethane on earthworms (Eisenia fetida) compared to polyethylene and polypropylene microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160909. [PMID: 36526185 DOI: 10.1016/j.scitotenv.2022.160909] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/19/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Decabromodiphenyl ethane (DBDPE) and microplastics (MPs), such as fossil-based polymers polyethylene (PE), polypropylene (PP), and bio-based plastics polylactic acid (PLA) are abundant in e-waste dismantling areas. However, the information on the effects of DBDPE combined with MPs (DBDPE-MPs) on earthworms is still limited. In this study, we explored the impacts of DBDPE-MPs on neurotoxic biomarkers, tissue damage, and transcriptomics of Eisenia fetida by simulating different exposure patterns of 10 mg kg-1 DBDPE and 10 mg kg-1 DBDPE-MPs (PLA, PP, and PE). Results showed that the activities of acetylcholinesterase, Na+/K+-ATPase, Ca2+/Mg2+-ATPase, carboxylate enzyme, and the contents of calcium and glutamate were significantly stimulated. DBDPE-MP co-exposure caused more severe damage to the epidermis, muscles, and tissues. Transcriptomic analysis revealed that differentially expressed genes (DEGs) of DBDPE-MPs were mainly related to inflammation, the immune system, digestive system, endocrine system, and metabolism. DBDPE and PP-MPs had similar influences on immunity and metabolism. However, DBDPE-PLA and DBDPE-PE further affected the endocrine system and signaling pathways. Specific DEGs showed that detoxification systems in the case of MPs were significantly upregulated. The study indicated that MPs exacerbated DBDPE toxicity in the nervous system, epidermis, and gene regulation of E. fetida, helping to assess the ecological risks of e-wastes and microplastics in soil.
Collapse
Affiliation(s)
- Yanna Han
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China; State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai 200233, PR China
| | - Mengru Fu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China; State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai 200233, PR China
| | - Jinhong Wu
- Shanghai Yaxin Urban Construction Co., Ltd., Shanghai 200436, PR China
| | - Shanqi Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Zhihua Qiao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China; State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai 200233, PR China.
| | - Fang Liu
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai 200233, PR China.
| | - Chunmei Ye
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai 200233, PR China
| | - Jie Yang
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai 200233, PR China
| |
Collapse
|
10
|
Kumari M, Arora P, Sharma P, Hasija Y, Rana P, D'souza MM, Chandra N, Trivedi R. Acute metabolic alterations in the hippocampus are associated with decreased acetylation after blast induced TBI. Metabolomics 2023; 19:5. [PMID: 36635559 DOI: 10.1007/s11306-022-01970-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/21/2022] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Blast induced Traumatic brain injury (BI-TBI) is common among military personnels as well as war affected civilians. In the war zone, people can also encounter repeated exposure of blast wave, which may affect their cognition and metabolic alterations. OBJECTIVE In this study we assess the metabolic and histological changes in the hippocampus of rats at 24 h post injury. METHOD Rats were divided into four groups: (i) Sham; (ii) Mild TBI (mi); (iii) Moderate TBI (mo); and (iv) Repetitive mild TBI (rm TBI) and then subjected to different intensities of blast exposure. Hippocampal tissues were collected after 24 h of injury for proton nuclear magnetic resonance spectroscopy (1H NMR spectroscopy) and immunohistochemical (IHC) analysis. RESULTS The metabolic alterations were found in the hippocampal tissue samples and these alterations showed significant change in glutamate, N-Acetylaspartic acid (NAA), acetate, creatine, phosphoethanolamine (PE), ethanolamine and PC/choline concentrations in rmTBI rats only. IHC studies revealed that AH3 (Acetyl histone) positive cells were decreased in rm TBI tissue samples in comparison to other TBI groups and sham rats. This might reflect an epigenetic alteration due to repeated blast exposure at 24 h post injury. Additionally, astrogliosis was observed in miTBI and moTBI hippocampal tissue while no change was observed in rmTBI tissues. CONCLUSION The present study reports altered acetylation in the presence of altered metabolism in hippocampal tissue of blast induced rmTBI at 24 h post injury. Mechanistic understanding of these intertwined processes may help in the development of better therapeutic pathways and agents for blast induced TBI in near future.
Collapse
Affiliation(s)
- Megha Kumari
- Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Science (INMAS), DRDO, Delhi, India
- Department of Biotechnology, Delhi Technological University, Delhi, 110042, India
| | - Palkin Arora
- Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Science (INMAS), DRDO, Delhi, India
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Priyanka Sharma
- Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Science (INMAS), DRDO, Delhi, India
| | - Yasha Hasija
- Department of Biotechnology, Delhi Technological University, Delhi, 110042, India
| | - Poonam Rana
- Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Science (INMAS), DRDO, Delhi, India
| | - Maria M D'souza
- Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Science (INMAS), DRDO, Delhi, India
| | - Namas Chandra
- Center for Injury Biomechanics, New Jersey Institute of Technology, 323 Dr Martin Luther King Jr Blvd, Newark, NJ, 07102, USA
| | - Richa Trivedi
- Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Science (INMAS), DRDO, Delhi, India.
| |
Collapse
|
11
|
Perumal V, Ravula AR, Shao N, Chandra N. Effect of minocycline and its nano-formulation on central auditory system in blast-induced hearing loss rat model. J Otol 2023; 18:38-48. [PMID: 36820161 PMCID: PMC9937842 DOI: 10.1016/j.joto.2022.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/13/2022] [Accepted: 09/27/2022] [Indexed: 01/25/2023] Open
Abstract
Blast injuries are common among the military service members and veterans. One of the devastating effects of blast wave induced TBI is either temporary or permanent hearing loss. Treating hearing loss using minocycline is restricted by optimal drug concentration, route of administration, and its half-life. Therefore, therapeutic approach using novel therapeutic delivery method is in great need. Among the different delivery methods, nanotechnology-based drug delivery is desirable, which can achieve longer systemic circulation, pass through some biological barriers and specifically targets desired sites. The current study aimed to examine therapeutic effect of minocycline and its nanoparticle formulation in moderate blast induced hearing loss rat model through central auditory system. The I.v. administered nanoparticle at reduced dose and frequency than regularly administered toxic dose. After moderate blast exposure, rats had hearing impairment as determined by ABR at 7- and 30-days post exposure. In chronic condition, free minocycline also showed the significant reduction in ABR threshold. In central auditory system, it is found in this study that minocycline nanoparticles ameliorate excitation in inferior colliculus; and astrocytes and microglia activation after the blast exposure is reduced by minocycline nanoparticles administration. The study demonstrated that in moderate blast induced hearing loss, minocycline and its nanoparticle formulation exhibited the optimal therapeutic effect on the recovery of the ABR impairment and a protective effect through central auditory system. In conclusion, targeted and non-targeted nanoparticle formulation have therapeutic effect on blast induced hearing loss.
Collapse
Key Words
- 5-HsT, 5-hydroxytryptamine
- ABR, auditory brainstem response
- AC, auditory cortex
- Blast injury and targeted drug delivery
- CAS, central auditory system
- DAI, (diffuse axonal injury)
- GABA, gamma-aminobutyric acid
- HL, (Hearing loss)
- Hearing loss
- Minocycline
- NMDAR1, N-methyl-D-aspartate receptor 1
- Nanoparticle
- PAS, peripheral auditory system
- bTBI, blast traumatic brain injury
Collapse
|
12
|
Gancitano G, Reiter RJ. The Multiple Functions of Melatonin: Applications in the Military Setting. Biomedicines 2022; 11:biomedicines11010005. [PMID: 36672513 PMCID: PMC9855431 DOI: 10.3390/biomedicines11010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
The aim of this review is to provide the reader with a general overview on the rationale for the use of melatonin by military personnel. This is a technique that is being increasingly employed to manage growing psycho-physical loads. In this context, melatonin, a pleotropic and regulatory molecule, has a potential preventive and therapeutic role in maintaining the operational efficiency of military personnel. In battlefield conditions in particular, the time to treatment after an injury is often a major issue since the injured may not have immediate access to medical care. Any drug that would help to stabilize a wounded individual, especially if it can be immediately administered (e.g., per os) and has a very high safety profile over a large range of doses (as melatonin does) would be an important asset to reduce morbidity and mortality. Melatonin may also play a role in the oscillatory synchronization of the neuro-cardio-respiratory systems and, through its epigenetic action, poses the possibility of restoring the main oscillatory waves of the cardiovascular system, such as the Mayer wave and RSA (respiratory sinus arrhythmia), which, in physiological conditions, result in the oscillation of the heartbeat in synchrony with the breath. In the future, this could be a very promising field of investigation.
Collapse
Affiliation(s)
- Giuseppe Gancitano
- 1st Carabinieri Paratrooper Regiment “Tuscania”, Italian Ministry of Defence, 57127 Livorno, Italy
- Correspondence:
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX 78229, USA
| |
Collapse
|
13
|
|
14
|
Iliou A, Vlaikou AM, Nussbaumer M, Benaki D, Mikros E, Gikas E, Filiou MD. Exploring the metabolomic profile of cerebellum after exposure to acute stress. Stress 2021; 24:952-964. [PMID: 34553679 DOI: 10.1080/10253890.2021.1973997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Psychological stress and stress-related disorders constitute a major health problem in modern societies. Although the brain circuits involved in emotional processing are intensively studied, little is known about the implication of cerebellum in stress responses whereas the molecular changes induced by stress exposure in cerebellum remain largely unexplored. Here, we investigated the effects of acute stress exposure on mouse cerebellum. We used a forced swim test (FST) paradigm as an acute stressor. We then analyzed the cerebellar metabolomic profiles of stressed (n = 11) versus control (n = 11) male CD1 mice by a Nuclear Magnetic Resonance (NMR)-based, untargeted metabolomics approach. Our results showed altered levels of 19 out of the 47 annotated metabolites, which are implicated in neurotransmission and N-acetylaspartic acid (NAA) turnover, as well as in energy and purine/pyrimidine metabolism. We also correlated individual metabolite levels with FST behavioral parameters, and reported associations between FST readouts and levels of 4 metabolites. This work indicates an altered metabolomic signature after acute stress in the cerebellum and highlights a previously unexplored involvement of cerebellum in stress responses.
Collapse
Affiliation(s)
- Aikaterini Iliou
- Department of Pharmacy, Section of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Angeliki-Maria Vlaikou
- Department of Biological Applications and Technology, Laboratory of Biochemistry, School of Health Sciences, University of Ioannina, Ioannina, Greece
- Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| | - Markus Nussbaumer
- Department of Biological Applications and Technology, Laboratory of Biochemistry, School of Health Sciences, University of Ioannina, Ioannina, Greece
- Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| | - Dimitra Benaki
- Department of Pharmacy, Section of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Emmanuel Mikros
- Department of Pharmacy, Section of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Evangelos Gikas
- Department of Pharmacy, Section of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), Athens, Greece
- Department of Chemistry, Section of Analytical Chemistry, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Michaela D Filiou
- Department of Biological Applications and Technology, Laboratory of Biochemistry, School of Health Sciences, University of Ioannina, Ioannina, Greece
- Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| |
Collapse
|
15
|
Wang C, Shao C, Zhang L, Siedlak SL, Meabon JS, Peskind ER, Lu Y, Wang W, Perry G, Cook DG, Zhu X. Oxidative Stress Signaling in Blast TBI-Induced Tau Phosphorylation. Antioxidants (Basel) 2021; 10:antiox10060955. [PMID: 34203583 PMCID: PMC8232162 DOI: 10.3390/antiox10060955] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/08/2021] [Accepted: 06/01/2021] [Indexed: 12/25/2022] Open
Abstract
Traumatic brain injury caused by blast is associated with long-term neuropathological changes including tau phosphorylation and pathology. In this study, we aimed to determine changes in initial tau phosphorylation after exposure to a single mild blast and the potential contribution of oxidative stress response pathways. C57BL/6 mice were exposed to a single blast overpressure (BOP) generated by a compressed gas-driven shock tube that recapitulates battlefield-relevant open-field BOP, and cortical tissues were harvested at different time points up to 24 h after blast for Western blot analysis. We found that BOP caused elevated tau phosphorylation at Ser202/Thr205 detected by the AT8 antibody at 1 h post-blast followed by tau phosphorylation at additional sites (Ser262 and Ser396/Ser404 detected by PHF1 antibody) and conformational changes detected by Alz50 antibody. BOP also induced acute oxidative damage at 1 h post-blast and gradually declined overtime. Interestingly, Extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) were acutely activated in a similar temporal pattern as the rise and fall in oxidative stress after blast, with p38 showing a similar trend. However, glycogen synthase kinase-3 β (GSK3β) was inhibited at 1 h and remained inhibited for 24 h post blast. These results suggested that mitogen-activated protein kinases (MAPKs) but not GSK3β are likely involved in mediating the effects of oxidative stress on the initial increase of tau phosphorylation following a single mild blast.
Collapse
Affiliation(s)
- Chunyu Wang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha 410083, China;
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA; (C.S.); (L.Z.); (S.L.S.); (Y.L.); (W.W.)
| | - Changjuan Shao
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA; (C.S.); (L.Z.); (S.L.S.); (Y.L.); (W.W.)
| | - Li Zhang
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA; (C.S.); (L.Z.); (S.L.S.); (Y.L.); (W.W.)
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200240, China
| | - Sandra L. Siedlak
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA; (C.S.); (L.Z.); (S.L.S.); (Y.L.); (W.W.)
| | - James S. Meabon
- VA Puget Sound Health Care System, Seattle, WA 98108, USA; (J.S.M.); (E.R.P.); (D.G.C.)
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98115, USA
| | - Elaine R. Peskind
- VA Puget Sound Health Care System, Seattle, WA 98108, USA; (J.S.M.); (E.R.P.); (D.G.C.)
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98115, USA
| | - Yubing Lu
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA; (C.S.); (L.Z.); (S.L.S.); (Y.L.); (W.W.)
| | - Wenzhang Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA; (C.S.); (L.Z.); (S.L.S.); (Y.L.); (W.W.)
| | - George Perry
- Department of Biology, College of Science, University of Texas at San Antonio, San Antonio, TX 78229, USA;
| | - David G. Cook
- VA Puget Sound Health Care System, Seattle, WA 98108, USA; (J.S.M.); (E.R.P.); (D.G.C.)
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98115, USA
- Departments of Medicine and Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA; (C.S.); (L.Z.); (S.L.S.); (Y.L.); (W.W.)
- Correspondence: ; Tel.: +1-216-368-5903
| |
Collapse
|
16
|
Boyko A, Tsepkova P, Aleshin V, Artiukhov A, Mkrtchyan G, Ksenofontov A, Baratova L, Ryabov S, Graf A, Bunik V. Severe Spinal Cord Injury in Rats Induces Chronic Changes in the Spinal Cord and Cerebral Cortex Metabolism, Adjusted by Thiamine That Improves Locomotor Performance. Front Mol Neurosci 2021; 14:620593. [PMID: 33867932 PMCID: PMC8044794 DOI: 10.3389/fnmol.2021.620593] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/05/2021] [Indexed: 01/23/2023] Open
Abstract
Our study aims at developing knowledge-based strategies minimizing chronic changes in the brain after severe spinal cord injury (SCI). The SCI-induced long-term metabolic alterations and their reactivity to treatments shortly after the injury are characterized in rats. Eight weeks after severe SCI, significant mitochondrial lesions outside the injured area are demonstrated in the spinal cord and cerebral cortex. Among the six tested enzymes essential for the TCA cycle and amino acid metabolism, mitochondrial 2-oxoglutarate dehydrogenase complex (OGDHC) is the most affected one. SCI downregulates this complex by 90% in the spinal cord and 30% in the cerebral cortex. This is associated with the tissue-specific changes in other enzymes of the OGDHC network. Single administrations of a pro-activator (thiamine, or vitamin B1, 1.2 mmol/kg) or a synthetic pro-inhibitor (triethyl glutaryl phosphonate, TEGP, 0.02 mmol/kg) of OGDHC within 15–20 h after SCI are tested as protective strategies. The biochemical and physiological assessments 8 weeks after SCI reveal that thiamine, but not TEGP, alleviates the SCI-induced perturbations in the rat brain metabolism, accompanied by the decreased expression of (acetyl)p53, increased expression of sirtuin 5 and an 18% improvement in the locomotor recovery. Treatment of the non-operated rats with the OGDHC pro-inhibitor TEGP increases the p53 acetylation in the brain, approaching the brain metabolic profiles to those after SCI. Our data testify to an important contribution of the OGDHC regulation to the chronic consequences of SCI and their control by p53 and sirtuin 5.
Collapse
Affiliation(s)
- Alexandra Boyko
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Polina Tsepkova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Vasily Aleshin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Artem Artiukhov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Garik Mkrtchyan
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Alexander Ksenofontov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Lyudmila Baratova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Sergey Ryabov
- Russian Cardiology Research-and-Production Complex, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anastasia Graf
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Nano-, Bio-, Informational and Cognitive Technologies, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Victoria Bunik
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Department of Biological Chemistry, Sechenov University, Moscow, Russia
| |
Collapse
|