1
|
Starzyński D, Rzeszotek S, Kolasa A, Grabowska M, Wiszniewska B, Kudrymska A, Karpińska K, Tołoczko-Grabarek A, Janiec A, Myszka A, Rynio P, Syrenicz A, Sowińska-Przepiera E. Pilot Study: FSHR Expression in Neuroendocrine Tumors of the Appendix. J Clin Med 2023; 12:5086. [PMID: 37568488 PMCID: PMC10419379 DOI: 10.3390/jcm12155086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Appendix neuroendocrine neoplasm (ANEN) treatment is based on tumor size and proliferation markers. Recently, the role of the follicle-stimulating hormone receptor (FSHR) from the clinical perspective has also been increasingly discussed. The FSHR is expressed in the endothelial cells of both intratumoral and peritumoral blood vessels, where it contributes to neoangiogenesis and blood vessel remodeling. FSHR expression is associated with a range of tumor types, such as gastrointestinal tumors, and it is not detected in healthy tissues located more than 10 mm from the tumor site or in tumor lymphatics. In this study, we evaluated the expression of FSHR and CD31 in the blood vessels of ANENs in females and males with confirmed histopathology. We conducted a quantitative analysis of the immunohistochemical reactions and found a higher number of microvessels in the mucosa and submucosa of neuroendocrine tumors in the appendix. A higher level of FSHR expression was observed in women. Future research should consider whether an elevated number of blood vessels along with a strong pattern of FSHR expression may influence future treatment strategies.
Collapse
Affiliation(s)
- Dariusz Starzyński
- Department of Endocrinology, Metabolic and Internal Diseases, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 70-252 Szczecin, Poland; (D.S.); (A.J.); (A.M.); (A.S.); (E.S.-P.)
| | - Sylwia Rzeszotek
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (A.K.); (B.W.)
| | - Agnieszka Kolasa
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (A.K.); (B.W.)
| | - Marta Grabowska
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University, Żołnierska 48, 71-210 Szczecin, Poland;
| | - Barbara Wiszniewska
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (A.K.); (B.W.)
| | - Aleksandra Kudrymska
- Department of Pathomorphology, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 70-252 Szczecin, Poland; (A.K.); (K.K.)
| | - Katarzyna Karpińska
- Department of Pathomorphology, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 70-252 Szczecin, Poland; (A.K.); (K.K.)
| | - Aleksandra Tołoczko-Grabarek
- Department of Genetics and Pathomorphology, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland;
| | - Agnieszka Janiec
- Department of Endocrinology, Metabolic and Internal Diseases, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 70-252 Szczecin, Poland; (D.S.); (A.J.); (A.M.); (A.S.); (E.S.-P.)
| | - Aleksandra Myszka
- Department of Endocrinology, Metabolic and Internal Diseases, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 70-252 Szczecin, Poland; (D.S.); (A.J.); (A.M.); (A.S.); (E.S.-P.)
| | - Paweł Rynio
- Department of Vascular Surgery, General Surgery and Angiology, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland;
| | - Anhelli Syrenicz
- Department of Endocrinology, Metabolic and Internal Diseases, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 70-252 Szczecin, Poland; (D.S.); (A.J.); (A.M.); (A.S.); (E.S.-P.)
| | - Elżbieta Sowińska-Przepiera
- Department of Endocrinology, Metabolic and Internal Diseases, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 70-252 Szczecin, Poland; (D.S.); (A.J.); (A.M.); (A.S.); (E.S.-P.)
| |
Collapse
|
2
|
Abstract
Attenuation correction has been one of the main methodological challenges in the integrated positron emission tomography and magnetic resonance imaging (PET/MRI) field. As standard transmission or computed tomography approaches are not available in integrated PET/MRI scanners, MR-based attenuation correction approaches had to be developed. Aspects that have to be considered for implementing accurate methods include the need to account for attenuation in bone tissue, normal and pathological lung and the MR hardware present in the PET field-of-view, to reduce the impact of subject motion, to minimize truncation and susceptibility artifacts, and to address issues related to the data acquisition and processing both on the PET and MRI sides. The standard MR-based attenuation correction techniques implemented by the PET/MRI equipment manufacturers and their impact on clinical and research PET data interpretation and quantification are first discussed. Next, the more advanced methods, including the latest generation deep learning-based approaches that have been proposed for further minimizing the attenuation correction related bias are described. Finally, a future perspective focused on the needed developments in the field is given.
Collapse
Affiliation(s)
- Ciprian Catana
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States of America
| |
Collapse
|
3
|
Gurram B, Li M, Fan J, Wang J, Peng X. Near-infrared fluorescent probe for fast track of cyclooxygenase-2 in Golgi apparatus in cancer cells. Front Chem Sci Eng 2019. [DOI: 10.1007/s11705-019-1796-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
4
|
Lizneva D, Rahimova A, Kim SM, Atabiekov I, Javaid S, Alamoush B, Taneja C, Khan A, Sun L, Azziz R, Yuen T, Zaidi M. FSH Beyond Fertility. Front Endocrinol (Lausanne) 2019; 10:136. [PMID: 30941099 PMCID: PMC6433784 DOI: 10.3389/fendo.2019.00136] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/13/2019] [Indexed: 12/24/2022] Open
Abstract
The traditional view of follicle-stimulating hormone (FSH) as a reproductive hormone is changing. It has been shown that FSH receptors (FSHRs) are expressed in various extra-gonadal tissues and mediate the biological effects of FSH at those sites. Molecular, animal, epidemiologic, and clinical data suggest that elevated serum FSH may play a significant role in the evolution of bone loss and obesity, as well as contributing to cardiovascular and cancer risk. This review summarizes recent data on FSH action beyond reproduction.
Collapse
Affiliation(s)
- Daria Lizneva
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Alina Rahimova
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Se-Min Kim
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ihor Atabiekov
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Seher Javaid
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Bateel Alamoush
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Charit Taneja
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ayesha Khan
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Li Sun
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ricardo Azziz
- Academic Health and Hospital Affairs, State University of New York, Albany, NY, United States
| | - Tony Yuen
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mone Zaidi
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
5
|
Baskaran R, Lee J, Yang SG. Clinical development of photodynamic agents and therapeutic applications. Biomater Res 2018; 22:25. [PMID: 30275968 PMCID: PMC6158913 DOI: 10.1186/s40824-018-0140-z] [Citation(s) in RCA: 327] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/11/2018] [Indexed: 12/20/2022] Open
Abstract
Background Photodynamic therapy (PDT) is photo-treatment of malignant or benign diseases using photosensitizing agents, light, and oxygen which generates cytotoxic reactive oxygens and induces tumour regressions. Several photodynamic treatments have been extensively studied and the photosensitizers (PS) are key to their biological efficacy, while laser and oxygen allow to appropriate and flexible delivery for treatment of diseases. Introduction In presence of oxygen and the specific light triggering, PS is activated from its ground state into an excited singlet state, generates reactive oxygen species (ROS) and induces apoptosis of cancer tissues. Those PS can be divided by its specific efficiency of ROS generation, absorption wavelength and chemical structure. Main body Up to dates, several PS were approved for clinical applications or under clinical trials. Photofrin® is the first clinically approved photosensitizer for the treatment of cancer. The second generation of PS, Porfimer sodium (Photofrin®), Temoporfin (Foscan®), Motexafin lutetium, Palladium bacteriopheophorbide, Purlytin®, Verteporfin (Visudyne®), Talaporfin (Laserphyrin®) are clinically approved or under-clinical trials. Now, third generation of PS, which can dramatically improve cancer-targeting efficiency by chemical modification, nano-delivery system or antibody conjugation, are extensively studied for clinical development. Conclusion Here, we discuss up-to-date information on FDA-approved photodynamic agents, the clinical benefits of these agents. However, PDT is still dearth for the treatment of diseases in specifically deep tissue cancer. Next generation PS will be addressed in the future for PDT. We also provide clinical unmet need for the design of new photosensitizers.
Collapse
Affiliation(s)
- Rengarajan Baskaran
- World Class Smart Lab, Department of New Drug Development, Inha University College of Medicine, 366, Seohae-daero, Jung-gu, Incheon, 22332 Republic of Korea
| | - Junghan Lee
- World Class Smart Lab, Department of New Drug Development, Inha University College of Medicine, 366, Seohae-daero, Jung-gu, Incheon, 22332 Republic of Korea
| | - Su-Geun Yang
- World Class Smart Lab, Department of New Drug Development, Inha University College of Medicine, 366, Seohae-daero, Jung-gu, Incheon, 22332 Republic of Korea
| |
Collapse
|
6
|
Ghinea N. Vascular Endothelial FSH Receptor, a Target of Interest for Cancer Therapy. Endocrinology 2018; 159:3268-3274. [PMID: 30113652 DOI: 10.1210/en.2018-00466] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/30/2018] [Indexed: 11/19/2022]
Abstract
Improved molecular understanding of tumor microenvironment has resulted in the identification of various cancer cell targets for diagnostic and therapeutic interventions, including the receptor for the FSH, a glycoprotein hormone responsible for growth, maturation, and function of human reproductive system. The expression and localization of the FSH receptor (FSHR)-protein were associated with the tumor epithelial cells and/or with the peripheral tumor blood vessels. The available evidence indicates that in ovarian cancer, prostate cancer, and breast cancer, the tumor epithelial FSHR promotes proliferation, migration, and invasion of cancer cells. The vascular endothelial FSHR, detected in 11 types of solid tumors and 11 types of sarcomas, is involved in receptor-mediated transendothelial transport of FSH, tumor angiogenesis, and vascular remodeling. In contrast to intratumor vessels, which are abnormal and disorganized, the FSHR-positive blood microvessels are arranged in a hierarchical pattern: arterioles-capillaries-venules. The FSHR-positive blood vessels make connections between the intratumor vessels and the general blood circulation of patients. In this mini-review, I summarize these studies and discuss the rationale for developing a strategy for cancer therapy based on FSHR expressed on the luminal endothelial cell surface of blood vessels located in the peritumoral area rather than endothelial markers expressed in the core of tumors. Because FSHR is a common marker of peritumoral vessels, therapeutic agents coupled to anti-FSHR humanized antibodies should in principle be applicable to a wide range of tumor types.
Collapse
Affiliation(s)
- Nicolae Ghinea
- Inserm-Tumor Angiogenesis Team, Translational Research Department, Curie Institute, Paris, France
| |
Collapse
|
7
|
Gurram B, Zhang S, Li M, Li H, Xie Y, Cui H, Du J, Fan J, Wang J, Peng X. Celecoxib Conjugated Fluorescent Probe for Identification and Discrimination of Cyclooxygenase-2 Enzyme in Cancer Cells. Anal Chem 2018; 90:5187-5193. [PMID: 29587478 DOI: 10.1021/acs.analchem.7b05337] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cyclooxygenase-2 (COX-2) is an enzyme overexpressed in most types of cancers and has been used for an excellent targetable biomarker. Celecoxib is an effective inhibitor of COX-2, used in anti-inflammation. Herein we report a one and two-photon fluorescence probe (NP-C6-CXB) for COX-2, based on the conjugation of naphthalamide with Celecoxib, by using flexible hexylene linker. NP-C6-CXB is nonfluorescent in buffer solution and normal cells, while it shows bright fluorescence in solutions and cancer cells in the presence of COX-2 with an excellent selectivity. Interestingly, NP-C6-CXB can discriminate cancer cells (MCF-7) from normal cells (COS-7) in the single culture medium under confocal microscopy. Due to the selective binding affinity of NP-C6-CXB with a COX-2 enzyme, the intensity is proportional to the level of COX-2 enzyme in cancer cells. In vivo and in vitro experiments proved that NP-C6-CXB is a potential tool for identification of tumor and might be used in surgical resection of COX-2 expressed tumors.
Collapse
Affiliation(s)
- Bhaskar Gurram
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , High-Tech District, Dalian 116024 , China
| | - Shuangzhe Zhang
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , High-Tech District, Dalian 116024 , China
| | - Miao Li
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , High-Tech District, Dalian 116024 , China
| | - Haidong Li
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , High-Tech District, Dalian 116024 , China
| | - Yahui Xie
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , High-Tech District, Dalian 116024 , China
| | - Hongyan Cui
- Department School of Life Science and Biotechnology , Dalian University of Technology , 2 Linggong Road , High-Tech District, Dalian 116024 , China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , High-Tech District, Dalian 116024 , China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , High-Tech District, Dalian 116024 , China
| | - Jingyun Wang
- Department School of Life Science and Biotechnology , Dalian University of Technology , 2 Linggong Road , High-Tech District, Dalian 116024 , China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , High-Tech District, Dalian 116024 , China
| |
Collapse
|
8
|
Wu C, Gleysteen J, Teraphongphom NT, Li Y, Rosenthal E. In-vivo optical imaging in head and neck oncology: basic principles, clinical applications and future directions. Int J Oral Sci 2018; 10:10. [PMID: 29555901 PMCID: PMC5944254 DOI: 10.1038/s41368-018-0011-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 12/29/2017] [Accepted: 01/10/2018] [Indexed: 02/05/2023] Open
Abstract
Head and neck cancers become a severe threat to human's health nowadays and represent the sixth most common cancer worldwide. Surgery remains the first-line choice for head and neck cancer patients. Limited resectable tissue mass and complicated anatomy structures in the head and neck region put the surgeons in a dilemma between the extensive resection and a better quality of life for the patients. Early diagnosis and treatment of the pre-malignancies, as well as real-time in vivo detection of surgical margins during en bloc resection, could be leveraged to minimize the resection of normal tissues. With the understanding of the head and neck oncology, recent advances in optical hardware and reagents have provided unique opportunities for real-time pre-malignancies and cancer imaging in the clinic or operating room. Optical imaging in the head and neck has been reported using autofluorescence imaging, targeted fluorescence imaging, high-resolution microendoscopy, narrow band imaging and the Raman spectroscopy. In this study, we reviewed the basic theories and clinical applications of optical imaging for the diagnosis and treatment in the field of head and neck oncology with the goal of identifying limitations and facilitating future advancements in the field.
Collapse
Affiliation(s)
- Chenzhou Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - John Gleysteen
- Department of Otolaryngology, University of Tennessee Health Science Center, 38163, Memphis, TN, USA
| | | | - Yi Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Eben Rosenthal
- Department of Otolaryngology and Radiology, Stanford University, 94305, Stanford, CA, USA.
| |
Collapse
|
9
|
Wang S, Hossack JA, Klibanov AL. Targeting of microbubbles: contrast agents for ultrasound molecular imaging. J Drug Target 2018; 26:420-434. [PMID: 29258335 DOI: 10.1080/1061186x.2017.1419362] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
For contrast ultrasound imaging, the most efficient contrast agents comprise highly compressible gas-filled microbubbles. These micrometer-sized particles are typically filled with low-solubility perfluorocarbon gases, and coated with a thin shell, often a lipid monolayer. These particles circulate in the bloodstream for several minutes; they demonstrate good safety and are already in widespread clinical use as blood pool agents with very low dosage necessary (sub-mg per injection). As ultrasound is an ubiquitous medical imaging modality, with tens of millions of exams conducted annually, its use for molecular/targeted imaging of biomarkers of disease may enable wider implementation of personalised medicine applications, precision medicine, non-invasive quantification of biomarkers, targeted guidance of biopsy and therapy in real time. To achieve this capability, microbubbles are decorated with targeting ligands, possessing specific affinity towards vascular biomarkers of disease, such as tumour neovasculature or areas of inflammation, ischaemia-reperfusion injury or ischaemic memory. Once bound to the target, microbubbles can be selectively visualised to delineate disease location by ultrasound imaging. This review discusses the general design trends and approaches for such molecular ultrasound imaging agents, which are currently at the advanced stages of development, and are evolving towards widespread clinical trials.
Collapse
Affiliation(s)
- Shiying Wang
- a Department of Biomedical Engineering , University of Virginia , Charlottesville , VA , USA
| | - John A Hossack
- a Department of Biomedical Engineering , University of Virginia , Charlottesville , VA , USA
| | - Alexander L Klibanov
- a Department of Biomedical Engineering , University of Virginia , Charlottesville , VA , USA.,b Cardiovascular Division (Department of Medicine), Robert M Berne Cardiovascular Research Center , University of Virginia , Charlottesville , VA , USA
| |
Collapse
|
10
|
Chung HH, Lee JC, Minn I. Follicle-stimulating hormone receptor in gynecological cancers. Mol Cell Toxicol 2018. [DOI: 10.1007/s13273-018-0001-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Upchurch E, Griffiths S, Lloyd GR, Isabelle M, Kendall C, Barr H. Developments in optical imaging for gastrointestinal surgery. Future Oncol 2017; 13:2363-2382. [PMID: 29121775 DOI: 10.2217/fon-2017-0181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
To improve outcomes for patients with cancer, in terms of both survival and a reduction in the morbidity and mortality that results from surgical resection and treatment, there are two main areas that require improvement. Accurate early diagnosis of the cancer, at a stage where curative and, ideally, minimally invasive treatment is achievable, is desired as well as identification of tumor margins, lymphatic and distant disease, enabling complete, but not unnecessarily extensive, resection. Optical imaging is making progress in achieving these aims. This review discusses the principles of optical imaging, focusing on fluorescence and spectroscopy, and the current research that is underway in GI tract carcinomas.
Collapse
Affiliation(s)
- Emma Upchurch
- Biophotonics Research Unit, Gloucestershire Royal Hospital, Great Western Road, Gloucester, UK, GL1 3NN.,Department of Upper GI Surgery, Gloucestershire Royal Hospital, Great Western Road, Gloucester, UK, GL1 3NN
| | - Shelly Griffiths
- Department of Upper GI Surgery, Gloucestershire Royal Hospital, Great Western Road, Gloucester, UK, GL1 3NN
| | - Gavin-Rhys Lloyd
- Biophotonics Research Unit, Gloucestershire Royal Hospital, Great Western Road, Gloucester, UK, GL1 3NN
| | - Martin Isabelle
- Renishaw plc, New Mills, Wotton-under-Edge, Gloucestershire, UK, GL12 8JR
| | - Catherine Kendall
- Biophotonics Research Unit, Gloucestershire Royal Hospital, Great Western Road, Gloucester, UK, GL1 3NN
| | - Hugh Barr
- Biophotonics Research Unit, Gloucestershire Royal Hospital, Great Western Road, Gloucester, UK, GL1 3NN.,Department of Upper GI Surgery, Gloucestershire Royal Hospital, Great Western Road, Gloucester, UK, GL1 3NN
| |
Collapse
|
12
|
Boonstra MC, de Geus SWL, Prevoo HAJM, Hawinkels LJAC, van de Velde CJH, Kuppen PJK, Vahrmeijer AL, Sier CFM. Selecting Targets for Tumor Imaging: An Overview of Cancer-Associated Membrane Proteins. BIOMARKERS IN CANCER 2016; 8:119-133. [PMID: 27721658 PMCID: PMC5040425 DOI: 10.4137/bic.s38542] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/05/2016] [Accepted: 09/06/2016] [Indexed: 12/30/2022]
Abstract
Tumor targeting is a booming business: The global therapeutic monoclonal antibody market accounted for more than $78 billion in 2012 and is expanding exponentially. Tumors can be targeted with an extensive arsenal of monoclonal antibodies, ligand proteins, peptides, RNAs, and small molecules. In addition to therapeutic targeting, some of these compounds can also be applied for tumor visualization before or during surgery, after conjugation with radionuclides and/or near-infrared fluorescent dyes. The majority of these tumor-targeting compounds are directed against cell membrane-bound proteins. Various categories of targetable membrane-bound proteins, such as anchoring proteins, receptors, enzymes, and transporter proteins, exist. The functions and biological characteristics of these proteins determine their location and distribution on the cell membrane, making them more, or less, accessible, and therefore, it is important to understand these features. In this review, we evaluate the characteristics of cancer-associated membrane proteins and discuss their overall usability for cancer targeting, especially focusing on imaging applications.
Collapse
Affiliation(s)
- Martin C Boonstra
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Susanna W L de Geus
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Lukas J A C Hawinkels
- Department of Gastroenterology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands.; Antibodies for Research Applications BV, Gouda, the Netherlands
| | | | - Cornelis F M Sier
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands.; Antibodies for Research Applications BV, Gouda, the Netherlands
| |
Collapse
|
13
|
In vivo targeting of metastatic breast cancer via tumor vasculature-specific nano-graphene oxide. Biomaterials 2016; 104:361-71. [PMID: 27490486 DOI: 10.1016/j.biomaterials.2016.07.029] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/20/2016] [Accepted: 07/23/2016] [Indexed: 12/21/2022]
Abstract
Angiogenesis, i.e. the formation of neovasculatures, is a critical process during cancer initiation, progression, and metastasis. Targeting of angiogenic markers on the tumor vasculature can result in more efficient delivery of nanomaterials into tumor since no extravasation is required. Herein we demonstrated efficient targeting of breast cancer metastasis in an experimental murine model with nano-graphene oxide (GO), which was conjugated to a monoclonal antibody (mAb) against follicle-stimulating hormone receptor (FSHR). FSHR has been confirmed to be a highly selective tumor vasculature marker, which is abundant in both primary and metastatic tumors. These functionalized GO nano-conjugates had diameters of ∼120 nm based on atomic force microscopy (AFM), TEM, and dynamic laser scattering (DLS) measurement. (64)Cu was incorporated as a radiolabel which enabled the visualization of these GO conjugates by positron emission tomography (PET) imaging. Breast cancer lung metastasis model was established by intravenous injection of click beetle green luciferase-transfected MDA-MB-231 (denoted as cbgLuc-MDA-MB-231) breast cancer cells into female nude mice and the tumor growth was monitored by bioluminescence imaging (BLI). Systematic in vitro and in vivo studies have been performed to investigate the stability, targeting efficacy and specificity, and tissue distribution of GO conjugates. Flow cytometry and fluorescence microscopy examination confirmed the targeting specificity of FSHR-mAb attached GO conjugates against cellular FSHR. More potent and persistent uptake of (64)Cu-NOTA-GO-FSHR-mAb in cbgLuc-MDA-MB-231 nodules inside the lung was witnessed when compared with that of non-targeted GO conjugates ((64)Cu-NOTA-GO). Histology evaluation also confirmed the vasculature accumulation of GO-FSHR-mAb conjugates in tumor at early time points while they were non-specifically captured in liver and spleen. In addition, these GO conjugates can serve as good drug carriers with satisfactory drug loading capacity (e.g. for doxorubicin [DOX], 756 mg/g). Enhanced drug delivery efficiency in cbgLuc-MDA-MB-231 metastatic sites was demonstrated in DOX-loaded GO-FSHR-mAb by fluorescence imaging. This FSHR-targeted, GO-based nanoplatform can serve as a useful tool for early metastasis detection and targeted delivery of therapeutics.
Collapse
|
14
|
Monitoring Cell Death in Regorafenib-Treated Experimental Colon Carcinomas Using Annexin-Based Optical Fluorescence Imaging Validated by Perfusion MRI. PLoS One 2015; 10:e0138452. [PMID: 26393949 PMCID: PMC4578959 DOI: 10.1371/journal.pone.0138452] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/31/2015] [Indexed: 12/13/2022] Open
Abstract
Objective To investigate annexin-based optical fluorescence imaging (OI) for monitoring regorafenib-induced early cell death in experimental colon carcinomas in rats, validated by perfusion MRI and multiparametric immunohistochemistry. Materials and Methods Subcutaneous human colon carcinomas (HT-29) in athymic rats (n = 16) were imaged before and after a one-week therapy with regorafenib (n = 8) or placebo (n = 8) using annexin-based OI and perfusion MRI at 3 Tesla. Optical signal-to-noise ratio (SNR) and MRI tumor perfusion parameters (plasma flow PF, mL/100mL/min; plasma volume PV, %) were assessed. On day 7, tumors underwent immunohistochemical analysis for tumor cell apoptosis (TUNEL), proliferation (Ki-67), and microvascular density (CD31). Results Apoptosis-targeted OI demonstrated a tumor-specific probe accumulation with a significant increase of tumor SNR under therapy (mean Δ +7.78±2.95, control: -0.80±2.48, p = 0.021). MRI detected a significant reduction of tumor perfusion in the therapy group (mean ΔPF -8.17±2.32 mL/100 mL/min, control -0.11±3.36 mL/100 mL/min, p = 0.036). Immunohistochemistry showed significantly more apoptosis (TUNEL; 11392±1486 vs. 2921±334, p = 0.001), significantly less proliferation (Ki-67; 1754±184 vs. 2883±323, p = 0.012), and significantly lower microvascular density (CD31; 107±10 vs. 182±22, p = 0.006) in the therapy group. Conclusions Annexin-based OI allowed for the non-invasive monitoring of regorafenib-induced early cell death in experimental colon carcinomas, validated by perfusion MRI and multiparametric immunohistochemistry.
Collapse
|
15
|
de Boer E, Moore LS, Warram JM, Huang CC, Brandwein-Gensler MS, van Dam GM, Rosenthal EL, Schmalbach CE. On the horizon: Optical imaging for cutaneous squamous cell carcinoma. Head Neck 2015; 38 Suppl 1:E2204-13. [PMID: 25899874 DOI: 10.1002/hed.24079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Surgical resection with negative margins remains the standard of care for high-risk cutaneous squamous cell carcinoma (SCC). However, surgical management is often limited by poor intraoperative tumor visualization and inability to detect occult nodal metastasis. The inability to intraoperatively detect microscopic disease can lead to additional surgery, tumor recurrence, and decreased survival. METHODS A comprehensive literature review was conducted to identify studies incorporating optical imaging technology in the management of cutaneous SCC (January 1, 2000-December 1, 2014). RESULTS Several innovative optical imaging techniques, Raman spectroscopy, confocal microscopy, and fluorescence imaging, have been developed for intraoperative surgical guidance. Fifty-seven studies review the ability of these techniques to improve cutaneous SCC localization at the gross and microscopic level. CONCLUSION Significant advances have been achieved with real-time optical imaging strategies for intraoperative cutaneous SCC margin assessment and tumor detection. Optical imaging holds promise in improving the percentage of negative surgical margins and in the early detection of micrometastatic disease. © 2015 Wiley Periodicals, Inc. Head Neck 38: E2204-E2213, 2016.
Collapse
Affiliation(s)
- Esther de Boer
- Division of Otolaryngology, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Lindsay S Moore
- Division of Otolaryngology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jason M Warram
- Division of Otolaryngology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Conway C Huang
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Margaret S Brandwein-Gensler
- Division of Anatomic Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Gooitzen M van Dam
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Eben L Rosenthal
- Division of Otolaryngology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Cecelia E Schmalbach
- Division of Otolaryngology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
16
|
Planeix F, Siraj MA, Bidard FC, Robin B, Pichon C, Sastre-Garau X, Antoine M, Ghinea N. Endothelial follicle-stimulating hormone receptor expression in invasive breast cancer and vascular remodeling at tumor periphery. J Exp Clin Cancer Res 2015; 34:12. [PMID: 25652007 PMCID: PMC4321709 DOI: 10.1186/s13046-015-0128-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 01/20/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Follicle-stimulating hormone receptor (FSHR) is expressed on the endothelial surface of blood vessels associated with solid tumor periphery, where angiogenesis is known to occur. The correlation between FSHR expression and formation of new peritumoral vessels has not been previously investigated. METHODS We used immunohistochemical techniques involving specific antibodies to detect FSHR and the endothelial markers (CD34, VEGFR2, and D2-40) in tissue samples from 83 patients with lymph node-negative, invasive breast cancer representing four main clinical treatment groups: HR+/HER2-, HR+/HER2+, HR-/HER2+ and triple-negative. RESULTS The FSHR+ vessels were exclusively located at breast cancer periphery, in a layer that extended 2 mm into and 5 mm outside of the tumor. The percentage of blood vessels expressing FSHR reached a maximum of 100% at the demarcation line between the tumor and the normal tissue. Common among FSHR+ vessels, regardless of breast cancer type, were the high densities of arterioles and venules (6.4 ± 1.4 and 13.9 ± 2.1 vessels/mm(2), respectively). These values were 3-fold higher that those noticed for CD34+ arterioles and venules associated with normal breast tissue located at a distance greater than 10 mm outside the tumors. The average density of FSHR+ and CD34+ blood vessels as well as of D2-40+ lymphatic vessels did not differ significantly among breast cancer subgroups. FSHR+ vessels did not express VEGFR2. The endothelial FSHR expression correlated significantly with the peritumoral CD34+ vessels' density (p < 0.001) and tumor size (p = 0.01). CONCLUSION Endothelial FSHR expression in breast cancer is associated with vascular remodeling at tumor periphery.
Collapse
Affiliation(s)
- François Planeix
- INSERM "Tumoral Angiogenesis" Laboratory, Curie Institute, Research Center, Translational Research Department, 26 rue d'Ulm, Paris, France.
| | - Mohammad-Ahsan Siraj
- INSERM "Tumoral Angiogenesis" Laboratory, Curie Institute, Research Center, Translational Research Department, 26 rue d'Ulm, Paris, France.
| | | | - Blaise Robin
- INSERM "Tumoral Angiogenesis" Laboratory, Curie Institute, Research Center, Translational Research Department, 26 rue d'Ulm, Paris, France.
| | - Christophe Pichon
- INSERM "Tumoral Angiogenesis" Laboratory, Curie Institute, Research Center, Translational Research Department, 26 rue d'Ulm, Paris, France.
| | | | - Martine Antoine
- Tenon Hospital, Pathology Department, 4 rue de la Chine, Paris, France.
| | - Nicolae Ghinea
- INSERM "Tumoral Angiogenesis" Laboratory, Curie Institute, Research Center, Translational Research Department, 26 rue d'Ulm, Paris, France.
| |
Collapse
|
17
|
Hong H, Yan Y, Shi S, Graves SA, Krasteva LK, Nickles RJ, Yang M, Cai W. PET of follicle-stimulating hormone receptor: broad applicability to cancer imaging. Mol Pharm 2015; 12:403-10. [PMID: 25581441 DOI: 10.1021/mp500766x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Selective overexpression of follicle-stimulating hormone receptor (FSHR) inside the vascular endothelium of tumors has been confirmed to play critical roles in angiogenesis, tumor invasion, and metastases. The expression level of FSHR correlates strongly with the response of tumors to antiangiogenic therapies. In this study, an immunoPET tracer was developed for imaging of FSHR in different cancer types. A monoclonal antibody (FSHR-mAb) against FSHR was conjugated with S-2-(4-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid (p-SCN-Bn-NOTA) and used for subsequent (64)Cu-labeling. NOTA-FSHR-mAb preserved FSHR specificity/affinity, confirmed by flow cytometry measurements. (64)Cu-labeling was successfully conducted with decent yields (∼25%) and high specific activity (0.93 GBq/mg). The uptake of (64)Cu-NOTA-FSHR-mAb was 3.6 ± 0.8, 13.2 ± 0.7, and 14.6 ± 0.4 %ID/g in FSHR-positive CAOV-3 tumors at 4, 24, and 48 h postinjection, respectively (n = 3), significantly higher (p < 0.05) than that in FSHR-negative SKOV-3 tumors (2.3 ± 1.2, 8.0 ± 0.9, and 9.1 ± 1.3 %ID/g at 4, 24, and 48 h postinjection, respectively (n = 3)) except at 4 h p.i. FSHR-relevant uptake of (64)Cu-NOTA-FSHR-mAb was also readily observed in other tumor types (e.g., triple-negative breast tumor MDA-MB-231 or prostate tumor PC-3). Histology studies showed universal FSHR expression in microvasculature of these four tumor types and also prominent expression in tumor cells of CAOV-3, PC-3, and MDA-MB-231. Correlations between tumor FSHR level and uptake of (64)Cu-NOTA-FSHR-mAb were witnessed in this study. FSHR-specific uptake of (64)Cu-NOTA-FSHR mAb in different tumors enables its applicability for future cancer theranostic applications and simultaneously establishes FSHR as a promising clinical target for cancer.
Collapse
Affiliation(s)
- Hao Hong
- Department of Radiology, ‡Department of Medical Physics, §Materials Science Program, and ∥Department of Biomedical Engineering, University of Wisconsin-Madison , Madison, Wisconsin 53705-2275, United States
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Etchebehere ECSDC, de Oliveira Santos A, Gumz B, Vicente A, Hoff PG, Corradi G, Ichiki WA, de Almeida Filho JG, Cantoni S, Camargo EE, Costa FP. 68Ga-DOTATATE PET/CT, 99mTc-HYNIC-octreotide SPECT/CT, and whole-body MR imaging in detection of neuroendocrine tumors: a prospective trial. J Nucl Med 2014; 55:1598-604. [PMID: 25168627 DOI: 10.2967/jnumed.114.144543] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED There are different metabolic imaging methods, various tracers, and emerging anatomic modalities to stage neuroendocrine tumor (NET). We aimed to compare NET lesion detectability among (99m)Tc-hydrazinonicotinamide (HYNIC)-octreotide (somatostatin receptor scintigraphy [SSRS]) SPECT/CT, (68)Ga-DOTATATE PET/CT, and whole-body diffusion-weighted MR imaging (WB DWI). METHODS Nineteen consecutive patients (34-77 y old; mean, 54.3 ± 10.4 y old; 10 men and 9 women) underwent SSRS SPECT/CT, (68)Ga-DOTATATE PET/CT, and WB DWI. Images were acquired with a maximum interval of 3 mo between them and were analyzed with masking by separate teams. Planar whole-body imaging and SPECT/CT were performed from thorax to pelvis using a double-head 16-slice SPECT/CT scanner 4 h after injection of 111-185 MBq of (99m)Tc-HYNIC-octreotide. (68)Ga-DOTATATE PET/CT was performed from head to feet using a 16-slice PET/CT scanner 45 min after injection of 185 MBq of tracer. WB DWI was performed in the coronal plane using a 1.5-T scanner and a body coil. The standard method of reference for evaluation of image performance was undertaken: consensus among investigators at the end of the study, clinical and imaging follow-up, and biopsy of suggestive lesions. RESULTS McNemar testing was applied to evaluate the detectability of lesions using (68)Ga-DOTATATE PET/CT in comparison to SSRS SPECT/CT and WB DWI: a significant difference in detectability was noted for pancreas (P = 0.0455 and P = 0.0455, respectively), gastrointestinal tract (P = 0.0455 and P = 0.0455), and bones (P = 0.0082 and P = 0.0082). Two unknown primary lesions were identified solely by (68)Ga-DOTATATE PET/CT. (68)Ga-DOTATATE PET/CT, SSRS SPECT/CT, and WB DWI demonstrated, respectively, sensitivities of 0.96, 0.60, and 0.72; specificities of 0.97, 0.99, and 1.00; positive predictive values of 0.94, 0.96, and 1.00; negative predictive values of 0.98, 0.83, and 0.88; and accuracies of 0.97, 0.86, and 0.91. CONCLUSION (68)Ga PET/CT seems to be more sensitive for detection of well-differentiated NET lesions, especially for bone and unknown primary lesions. NET can be staged with (68)Ga-DOTATATE PET/CT. WB DWI is an efficient new method with high accuracy and without ionizing radiation exposure. SSRS SPECT/CT should be used only when (68)Ga-DOTATATE PET/CT and WB DWI are not available.
Collapse
Affiliation(s)
| | | | - Brenda Gumz
- Oncology Center, Sirio Libanes Hospital, São Paulo, Brazil; and
| | - Andreia Vicente
- Division of Nuclear Medicine and PET/CT, Sirio Libanes Hospital, São Paulo, Brazil
| | - Paulo Ghem Hoff
- Oncology Center, Sirio Libanes Hospital, São Paulo, Brazil; and
| | - Gustavo Corradi
- Division of Radiology, Sirio Libanes Hospital, São Paulo, Brazil
| | - Wilson André Ichiki
- Division of Nuclear Medicine and PET/CT, Sirio Libanes Hospital, São Paulo, Brazil
| | | | - Saulo Cantoni
- Division of Radiology, Sirio Libanes Hospital, São Paulo, Brazil
| | | | | |
Collapse
|