1
|
Ayers GD, Cohen AS, Bae SW, Wen X, Pollard A, Sharma S, Claus T, Payne A, Geng L, Zhao P, Tantawy MN, Gammon ST, Manning HC. Reproducibility and repeatability of 18F-(2S, 4R)-4-fluoroglutamine PET imaging in preclinical oncology models. PLoS One 2025; 20:e0313123. [PMID: 39787098 PMCID: PMC11717184 DOI: 10.1371/journal.pone.0313123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/19/2024] [Indexed: 01/12/2025] Open
Abstract
INTRODUCTION Measurement of repeatability and reproducibility (R&R) is necessary to realize the full potential of positron emission tomography (PET). Several studies have evaluated the reproducibility of PET using 18F-FDG, the most common PET tracer used in oncology, but similar studies using other PET tracers are scarce. Even fewer assess agreement and R&R with statistical methods designed explicitly for the task. 18F-(2S, 4R)-4-fluoro-glutamine (18F-Gln) is a PET tracer designed for imaging glutamine uptake and metabolism. This study illustrates high reproducibility and repeatability with 18F-Gln for in vivo research. METHODS Twenty mice bearing colorectal cancer cell line xenografts were injected with ~9 MBq of 18F-Gln and imaged in an Inveon microPET. Three individuals analyzed the tumor uptake of 18F-Gln using the same set of images, the same image analysis software, and the same analysis method. Scans were randomly re-ordered for a second repeatability measurement 6 months later. Statistical analyses were performed using the methods of Bland and Altman (B&A), Gauge Reproducibility and Repeatability (Gauge R&R), and Lin's Concordance Correlation Coefficient. A comprehensive equivalency test, designed to reject a null hypothesis of non-equivalence, was also conducted. RESULTS In a two-way random effects Gauge R&R model, variance among mice and their measurement variance were 0.5717 and 0.024. Reproducibility and repeatability accounted for 31% and 69% of the total measurement error, respectively. B&A repeatability coefficients for analysts 1, 2, and 3 were 0.16, 0.35, and 0.49. One-half B&A agreement limits between analysts 1 and 2, 1 and 3, and 2 and 3 were 0.27, 0.47, and 0.47, respectively. The mean square deviation and total deviation index were lowest for analysts 1 and 2, while coverage probabilities and coefficients of the individual agreement were highest. Finally, the definitive agreement inference hypothesis test for equivalency demonstrated that all three confidence intervals for the average difference of means from repeated measures lie within our a priori limits of equivalence (i.e. ± 0.5%ID/g). CONCLUSIONS Our data indicate high individual analyst and laboratory-level reproducibility and repeatability. The assessment of R&R using the appropriate methods is critical and should be adopted by the broader imaging community.
Collapse
Affiliation(s)
- Gregory D. Ayers
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Allison S. Cohen
- Vanderbilt Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Seong-Woo Bae
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Xiaoxia Wen
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Alyssa Pollard
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Shilpa Sharma
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Trey Claus
- Vanderbilt Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Adria Payne
- Vanderbilt Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Ling Geng
- Vanderbilt Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Ping Zhao
- Vanderbilt Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Mohammed Noor Tantawy
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, Nashville, TN, United States of America
| | - Seth T. Gammon
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - H. Charles Manning
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Vanderbilt Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, Nashville, TN, United States of America
| |
Collapse
|
2
|
Li C, Lu X, Zhang F, Huang S, Ding L, Wang H, Chen S. Neuroblastoma with high ASPM reveals pronounced heterogeneity and poor prognosis. BMC Cancer 2024; 24:1151. [PMID: 39289658 PMCID: PMC11406734 DOI: 10.1186/s12885-024-12912-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 09/06/2024] [Indexed: 09/19/2024] Open
Abstract
OBJECTIVE We explored the preliminary value of abnormal spindle-like microcephaly- associated (ASPM) protein in aiding precise risk sub-stratification, prediction of metabolic heterogeneity, and prognosis of neuroblastoma (NB). METHODS This retrospective study enrolled newly diagnosed patients with NB who underwent positron emission tomography/computed tomography (PET/CT) before therapy, and tumor tissue was collected after surgery. Regression analysis was used to evaluate ASPM expression and risk stratification in patients with NB. The expression levels of ASPM, clinical information, and PET/CT text features were analyzed using univariate and multivariate survival analyses. Finally, a correlation analysis was used to explore the relationship between ASPM and tumor metabolic heterogeneity. RESULTS There were 48 patients with NB in this study (35 boys and 13 girls); 22 patients progressed and 16 died. We found that the level of ASPM was highly associated with risk stratification (OR = 5.295, 95%IC: 1.348-41.722, p = 0.021). Patients with NB and high-risk stratification with high ASPM level had a lower 3-year progression-free survival (PFS) rate (14.28%) and 1-year PFS rate (57.14%) than those with low ASPM level (57.14% and 93.75%, respectively). Using univariate and multivariate survival analyses, this study revealed that ASPM and LDH were independent risk factors for both PFS and overall survival (OS), whales GLZLM_ZLNU was only a risk factor for PFS. CONCLUSION ASPM holds promise as a novel biomarker for refining current risk stratification and predicting prognosis in neuroblastoma. Elevated levels of ASPM, LDH, and GLZLM_ZLNU may be associated with poorer survival outcomes in neuroblastoma patients.
Collapse
Affiliation(s)
- Chao Li
- Department of Nuclear Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Xueyuan Lu
- Department of Nuclear Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Fengxian Zhang
- Department of Nuclear Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Road, Shanghai, 200433, China
| | - Shuo Huang
- Department of Nuclear Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Lin Ding
- Department of Nuclear Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Hui Wang
- Department of Nuclear Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Suyun Chen
- Department of Nuclear Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
3
|
Liang Y, Wang Q, Zhang X, Zhang M, Du B, Cheng W, Wang H, Li L, Hou G, Zhang W. Dual isothermal amplification all-in-one approach for rapid and highly sensitive quantification of plasma circulating MYCN gene of neuroblastoma. Anal Biochem 2022; 658:114922. [PMID: 36162447 DOI: 10.1016/j.ab.2022.114922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 11/27/2022]
Abstract
A dual isothermal amplification assay with dual fluorescence signal detection strategy, named dual isothermal amplification all-in-one approach, was developed for rapid, one-step, highly sensitive quantification of plasma circulating MYCN copy number of neuroblastoma (NB). The developed strategy consisted of rolling circle amplification (RCA) and loop-mediated isothermal amplification (LAMP) on a real-time PCR system using highly specific probe, molecular beacon (MB), as detection probe. The developed strategy possessing a broad linear dynamic range of 10 aM to 1 pM for both target gene (MYCN) and reference gene (NAGK). The ratio of the MYCN copy number to NAGK copy number (M/N ratio) was detected by the developed approach in cell lines, NB tumor tissues, hepatoblastoma tumor tissues and Wilms' tumor tissues, to which the M/N ratios were consistent with previous reports. In particular, the M/N ratio in NB clinical tissue specimens and NB plasma specimens detected with the developed approach were in keeping with the standard RT-PCR approach. More importantly, the M/N ratio in NB tissue samples and corresponding plasma samples of NB patients were consistent with each other with a correlation coefficient of 0.9690, indicating that plasma circulating MYCN is a promising indicator for the risk classification of NB.
Collapse
Affiliation(s)
- Ying Liang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan International Joint Laboratory for Pediatric Disease Prevention and Control, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Qionglin Wang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan International Joint Laboratory for Pediatric Disease Prevention and Control, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Xianwei Zhang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan International Joint Laboratory for Pediatric Disease Prevention and Control, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Mengxin Zhang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan International Joint Laboratory for Pediatric Disease Prevention and Control, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Bang Du
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan International Joint Laboratory for Pediatric Disease Prevention and Control, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Weyland Cheng
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan International Joint Laboratory for Pediatric Disease Prevention and Control, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Huanmin Wang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan International Joint Laboratory for Pediatric Disease Prevention and Control, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China
| | - Lifeng Li
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan International Joint Laboratory for Pediatric Disease Prevention and Control, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China.
| | - Guangjun Hou
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan International Joint Laboratory for Pediatric Disease Prevention and Control, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China.
| | - Wancun Zhang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan International Joint Laboratory for Pediatric Disease Prevention and Control, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China.
| |
Collapse
|
4
|
[18F]-(2S,4R)4-Fluoroglutamine PET Imaging of Glutamine Metabolism in Murine Models of Hepatocellular Carcinoma (HCC). Mol Imaging 2022; 2022:5185951. [PMID: 35967756 PMCID: PMC9351703 DOI: 10.1155/2022/5185951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/18/2022] Open
Abstract
Purpose Quantitative in vivo [18F]-(2S,4R)4-fluoroglutamine ([18F]4-FGln or more simply [18F]FGln) metabolic kinetic parameters are compared with activity levels of glutamine metabolism in different types of hepatocellular carcinoma (HCC). Methods For this study, we used two transgenic mouse models of HCC induced by protooncogenes, MYC, and MET. Biochemical data have shown that tumors induced by MYC have increased levels of glutamine metabolism compared to those induced by MET. One-hour dynamic [18F]FGln PET data were acquired and reconstructed for fasted MYC mice (n = 11 tumors from 7 animals), fasted MET mice (n = 8 tumors from 6 animals), fasted FVBN controls (n = 8 normal liver regions from 6 animals), nonfasted MYC mice (n = 16 tumors from 6 animals), and nonfasted FVBN controls (n = 8 normal liver regions from 3 animals). The influx rate constants (K1) using the one-tissue compartment model were derived for each tumor with the left ventricular blood pool input function. Results Influx rate constants were significantly higher for MYC tumors (K1 = 0.374 ± 0.133) than for MET tumors (K1 = 0.141 ± 0.058) under fasting conditions (P = 0.0002). Rate constants were also significantly lower for MET tumors (K1 = 0.141 ± 0.135) than normal livers (K1 = 0.332 ± 0.179) under fasting conditions (P = 0.0123). Fasting conditions tested for MYC tumors and normal livers did not result in any significant difference with P values > 0.005. Conclusion Higher influx rate constants corresponded to elevated levels of glutamine metabolism as determined by biochemical assays. The data showed that there is a distinctive difference in glutamine metabolism between MYC and MET tumors. Our study has demonstrated the potential of [18F]FGln PET imaging as a tool to assess glutamine metabolism in HCC tumors in vivo with a caution that it may not be able to clearly distinguish HCC tumors from normal liver tissue.
Collapse
|
5
|
Cohen AS, Grudzinski J, Smith GT, Peterson TE, Whisenant JG, Hickman TL, Ciombor KK, Cardin D, Eng C, Goff LW, Das S, Coffey RJ, Berlin JD, Manning HC. First-in-Human PET Imaging and Estimated Radiation Dosimetry of l-[5- 11C]-Glutamine in Patients with Metastatic Colorectal Cancer. J Nucl Med 2022; 63:36-43. [PMID: 33931465 PMCID: PMC8717201 DOI: 10.2967/jnumed.120.261594] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/26/2021] [Indexed: 12/23/2022] Open
Abstract
Altered metabolism is a hallmark of cancer. In addition to glucose, glutamine is an important nutrient for cellular growth and proliferation. Noninvasive imaging via PET may help facilitate precision treatment of cancer through patient selection and monitoring of treatment response. l-[5-11C]-glutamine (11C-glutamine) is a PET tracer designed to study glutamine uptake and metabolism. The aim of this first-in-human study was to evaluate the radiologic safety and biodistribution of 11C-glutamine for oncologic PET imaging. Methods: Nine patients with confirmed metastatic colorectal cancer underwent PET/CT imaging. Patients received 337.97 ± 44.08 MBq of 11C-glutamine. Dynamic PET acquisitions that were centered over the abdomen or thorax were initiated simultaneously with intravenous tracer administration. After the dynamic acquisition, a whole-body PET/CT scan was acquired. Volume-of-interest analyses were performed to obtain estimates of organ-based absorbed doses of radiation. Results:11C-glutamine was well tolerated in all patients, with no observed safety concerns. The organs with the highest radiation exposure included the bladder, pancreas, and liver. The estimated effective dose was 4.46E-03 ± 7.67E-04 mSv/MBq. Accumulation of 11C-glutamine was elevated and visualized in lung, brain, bone, and liver metastases, suggesting utility for cancer imaging. Conclusion: PET using 11C-glutamine appears safe for human use and allows noninvasive visualization of metastatic colon cancer lesions in multiple organs. Further studies are needed to elucidate its potential for other cancers and for monitoring response to treatment.
Collapse
Affiliation(s)
- Allison S Cohen
- Vanderbilt Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Gary T Smith
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Section Chief, Nuclear Medicine, Tennessee Valley Healthcare System, Nashville VA Medical Center, Nashville, Tennessee
| | - Todd E Peterson
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jennifer G Whisenant
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Tiffany L Hickman
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Kristen K Ciombor
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Dana Cardin
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Cathy Eng
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Laura W Goff
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Satya Das
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Robert J Coffey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee; and
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - Jordan D Berlin
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - H Charles Manning
- Vanderbilt Center for Molecular Probes, Vanderbilt University Medical Center, Nashville, Tennessee;
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee; and
| |
Collapse
|
6
|
Valtorta S, Toscani D, Chiu M, Sartori A, Coliva A, Brevi A, Taurino G, Grioni M, Ruffini L, Vacondio F, Zanardi F, Bellone M, Moresco RM, Bussolati O, Giuliani N. [ 18F](2 S,4 R)-4-Fluoroglutamine as a New Positron Emission Tomography Tracer in Myeloma. Front Oncol 2021; 11:760732. [PMID: 34712616 PMCID: PMC8546185 DOI: 10.3389/fonc.2021.760732] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/20/2021] [Indexed: 12/15/2022] Open
Abstract
The high glycolytic activity of multiple myeloma (MM) cells is the rationale for use of Positron Emission Tomography (PET) with 18F-fluorodeoxyglucose ([18F]FDG) to detect both bone marrow (BM) and extramedullary disease. However, new tracers are actively searched because [18F]FDG-PET has some limitations and there is a portion of MM patients who are negative. Glutamine (Gln) addiction has been recently described as a typical metabolic feature of MM cells. Yet, the possible exploitation of Gln as a PET tracer in MM has never been assessed so far and is investigated in this study in preclinical models. Firstly, we have synthesized enantiopure (2S,4R)-4-fluoroglutamine (4-FGln) and validated it as a Gln transport analogue in human MM cell lines, comparing its uptake with that of 3H-labelled Gln. We then radiosynthesized [18F]4-FGln, tested its uptake in two different in vivo murine MM models, and checked the effect of Bortezomib, a proteasome inhibitor currently used in the treatment of MM. Both [18F]4-FGln and [18F]FDG clearly identified the spleen as site of MM cell colonization in C57BL/6 mice, challenged with syngeneic Vk12598 cells and assessed by PET. NOD.SCID mice, subcutaneously injected with human MM JJN3 cells, showed high values of both [18F]4-FGln and [18F]FDG uptake. Bortezomib significantly reduced the uptake of both radiopharmaceuticals in comparison with vehicle at post treatment PET. However, a reduction of glutaminolytic, but not of glycolytic, tumor volume was evident in mice showing the highest response to Bortezomib. Our data indicate that [18F](2S,4R)-4-FGln is a new PET tracer in preclinical MM models, yielding a rationale to design studies in MM patients.
Collapse
Affiliation(s)
- Silvia Valtorta
- Department of Medicine and Surgery and Tecnomed Foundation, University of Milan Bicocca, Milano, Italy.,Department of Nuclear Medicine, San Raffaele Scientific Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milano, Italy
| | - Denise Toscani
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Martina Chiu
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Andrea Sartori
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Angela Coliva
- Department of Nuclear Medicine, San Raffaele Scientific Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milano, Italy
| | - Arianna Brevi
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milano, Italy
| | - Giuseppe Taurino
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Matteo Grioni
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milano, Italy
| | - Livia Ruffini
- Nuclear Medicine, "Azienda Ospedaliero-Universitaria di Parma", Parma, Italy
| | | | - Franca Zanardi
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Matteo Bellone
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milano, Italy
| | - Rosa Maria Moresco
- Department of Medicine and Surgery and Tecnomed Foundation, University of Milan Bicocca, Milano, Italy.,Department of Nuclear Medicine, San Raffaele Scientific Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milano, Italy.,Institute of Bioimaging and Molecular Physiology, National Research Council (IBFM-CNR), Milano, Italy
| | - Ovidio Bussolati
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Nicola Giuliani
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,Hematology, "Azienda Ospedaliero-Universitaria di Parma", Parma, Italy
| |
Collapse
|
7
|
Kahya U, Köseer AS, Dubrovska A. Amino Acid Transporters on the Guard of Cell Genome and Epigenome. Cancers (Basel) 2021; 13:E125. [PMID: 33401748 PMCID: PMC7796306 DOI: 10.3390/cancers13010125] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 02/06/2023] Open
Abstract
Tumorigenesis is driven by metabolic reprogramming. Oncogenic mutations and epigenetic alterations that cause metabolic rewiring may also upregulate the reactive oxygen species (ROS). Precise regulation of the intracellular ROS levels is critical for tumor cell growth and survival. High ROS production leads to the damage of vital macromolecules, such as DNA, proteins, and lipids, causing genomic instability and further tumor evolution. One of the hallmarks of cancer metabolism is deregulated amino acid uptake. In fast-growing tumors, amino acids are not only the source of energy and building intermediates but also critical regulators of redox homeostasis. Amino acid uptake regulates the intracellular glutathione (GSH) levels, endoplasmic reticulum stress, unfolded protein response signaling, mTOR-mediated antioxidant defense, and epigenetic adaptations of tumor cells to oxidative stress. This review summarizes the role of amino acid transporters as the defender of tumor antioxidant system and genome integrity and discusses them as promising therapeutic targets and tumor imaging tools.
Collapse
Affiliation(s)
- Uğur Kahya
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (U.K.); (A.S.K.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
| | - Ayşe Sedef Köseer
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (U.K.); (A.S.K.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Anna Dubrovska
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (U.K.); (A.S.K.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
8
|
Matés JM, Di Paola FJ, Campos-Sandoval JA, Mazurek S, Márquez J. Therapeutic targeting of glutaminolysis as an essential strategy to combat cancer. Semin Cell Dev Biol 2019; 98:34-43. [PMID: 31100352 DOI: 10.1016/j.semcdb.2019.05.012] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/11/2019] [Accepted: 05/13/2019] [Indexed: 01/08/2023]
Abstract
Metabolic reprogramming in cancer targets glutamine metabolism as a key mechanism to provide energy, biosynthetic precursors and redox requirements to allow the massive proliferation of tumor cells. Glutamine is also a signaling molecule involved in essential pathways regulated by oncogenes and tumor suppressor factors. Glutaminase isoenzymes are critical proteins to control glutaminolysis, a key metabolic pathway for cell proliferation and survival that directs neoplasms' fate. Adaptive glutamine metabolism can be altered by different metabolic therapies, including the use of specific allosteric inhibitors of glutaminase that can evoke synergistic effects for the therapy of cancer patients. We also review other clinical applications of in vivo assessment of glutaminolysis by metabolomic approaches, including diagnosis and monitoring of cancer.
Collapse
Affiliation(s)
- José M Matés
- Instituto de Investigación Biomédica de Málaga (IBIMA), Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, E-29071 Málaga, Spain
| | - Floriana J Di Paola
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University of Giessen, D-35392 Giessen, Germany
| | - José A Campos-Sandoval
- Instituto de Investigación Biomédica de Málaga (IBIMA), Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, E-29071 Málaga, Spain
| | - Sybille Mazurek
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University of Giessen, D-35392 Giessen, Germany
| | - Javier Márquez
- Instituto de Investigación Biomédica de Málaga (IBIMA), Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, E-29071 Málaga, Spain.
| |
Collapse
|