1
|
Huang Y, Li Z, Li C, Zang Z, Wang Q, Huang S, Liu Q, Liang Y. Bioorthogonal Diels-Alder Click Chemistry-Based Pretargeted PET Imaging Strategy for Monitoring Programmed Death-Ligand 1 Expression. ACS OMEGA 2024; 9:36969-36981. [PMID: 39246495 PMCID: PMC11375721 DOI: 10.1021/acsomega.4c01063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/05/2024] [Accepted: 08/14/2024] [Indexed: 09/10/2024]
Abstract
The development of antibody tracers for positron emission tomography (PET) imaging enables real-time monitoring of tumor expression of programmed cell death ligand 1 (PD-L1) in vivo, aiming to facilitate the selection of immunotherapy responders. However, the slow pharmacokinetics of the antibodies in vivo limits their applications in PET imaging with commonly used radionuclides with short half-lives. In this study, we developed a pretargeted PET imaging strategy based on Diels-Alder (IEDDA) click chemistry to overcome these limitations. Atezolizumab and durvalumab, the most commonly used PD-L1 antibodies in cancer immunotherapy, were selected and compared in the development of the pretargeted PET imaging strategy. Fluorine-18-labeled derivatives of methyl tetrazine ([18F]Tz, [18F]PEG6-Tz, and [18F]PEG12-Tz) were tested in biodistribution and PET imaging of A549-PDL1 xenografts (PD-L1 positive) pretargeted with the trans-cyclooctene (TCO)-functionalized atezolizumab/durvalumab. The biodistribution and imaging results indicated that atezolizumab-TCO/[18F]PEG12-Tz was more suitable for pretargeted PET imaging strategy, and the optimal interval time was 48 h after atezolizumab-TCO administration, where the atezolizumab-TCO/[18F]PEG12-Tz pretargeted approach clearly delineated the A549-PDL1 tumor with a tumor-to-muscle ratio of 5.33, while the ratios are 3.39 and 2.39 for durvalumab/[18F]PEG12-Tz and mock-pretargeting controls, respectively. In conclusion, a pretargeted 18F-immuno-PET imaging technology was successfully established on atezolizumab. The high-contrast PET images of the A549-PDL1 tumor models demonstrate that the pretargeting strategy incorporating short-lived fluorine-18 is viable in identifying tumors with high PD-L1 expression, marking this strategy as a potential candidate for further clinical translation.
Collapse
Affiliation(s)
- Yong Huang
- Department of Nuclear Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Zhongjing Li
- Department of Nuclear Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Chengze Li
- Department of Nuclear Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Zihan Zang
- Shenzhen Middle School, Shenzhen 518024, China
| | - Qiong Wang
- Department of Nuclear Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Size Huang
- Department of Nuclear Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Qi Liu
- International Cancer Center, Shenzhen University School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Ying Liang
- Department of Nuclear Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| |
Collapse
|
2
|
Kazim M, Yoo E. Recent Advances in the Development of Non-Invasive Imaging Probes for Cancer Immunotherapy. Angew Chem Int Ed Engl 2024; 63:e202310694. [PMID: 37843426 DOI: 10.1002/anie.202310694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/17/2023]
Abstract
The last two decades have witnessed a major revolution in the field of tumor immunology including clinical progress using various immunotherapy strategies. These advances have highlighted the potential for approaches that harness the power of the immune system to fight against cancer. While cancer immunotherapies have shown significant clinical successes, patient responses vary widely due to the complex and heterogeneous nature of tumors and immune responses, calling for reliable biomarkers and therapeutic strategies to maximize the benefits of immunotherapy. Especially, stratifying responding individuals from non-responders during the early stages of treatment could help avoid long-term damage and tailor personalized treatments. In efforts to develop non-invasive means for accurately evaluating and predicting tumor response to immunotherapy, multiple affinity-based agents targeting immune cell markers and checkpoint molecules have been developed and advanced to clinical trials. In addition, researchers have recently turned their attention to substrate and activity-based imaging probes that can provide real-time, functional assessment of immune response to treatment. Here, we highlight some of those recently designed probes that image functional proteases as biomarkers of cancer immunotherapy with a focus on their chemical design and detection modalities and discuss challenges and opportunities for the development of imaging tools utilized in cancer immunotherapy.
Collapse
Affiliation(s)
- Muhammad Kazim
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Euna Yoo
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| |
Collapse
|
3
|
Bauer D, Cornejo MA, Hoang TT, Lewis JS, Zeglis BM. Click Chemistry and Radiochemistry: An Update. Bioconjug Chem 2023; 34:1925-1950. [PMID: 37737084 PMCID: PMC10655046 DOI: 10.1021/acs.bioconjchem.3c00286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/16/2023] [Indexed: 09/23/2023]
Abstract
The term "click chemistry" describes a class of organic transformations that were developed to make chemical synthesis simpler and easier, in essence allowing chemists to combine molecular subunits as if they were puzzle pieces. Over the last 25 years, the click chemistry toolbox has swelled from the canonical copper-catalyzed azide-alkyne cycloaddition to encompass an array of ligations, including bioorthogonal variants, such as the strain-promoted azide-alkyne cycloaddition and the inverse electron-demand Diels-Alder reaction. Without question, the rise of click chemistry has impacted all areas of chemical and biological science. Yet the unique traits of radiopharmaceutical chemistry have made it particularly fertile ground for this technology. In this update, we seek to provide a comprehensive guide to recent developments at the intersection of click chemistry and radiopharmaceutical chemistry and to illuminate several exciting trends in the field, including the use of emergent click transformations in radiosynthesis, the clinical translation of novel probes synthesized using click chemistry, and the advent of click-based in vivo pretargeting.
Collapse
Affiliation(s)
- David Bauer
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
| | - Mike A. Cornejo
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
- Department
of Chemistry, Hunter College, City University
of New York, New York, New York 10065, United States
- Ph.D.
Program in Chemistry, Graduate Center of
the City University of New York, New York, New York 10016, United States
| | - Tran T. Hoang
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
- Department
of Pharmacology, Weill Cornell Medical College, New York, New York 10065, United States
| | - Jason S. Lewis
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
- Department
of Radiology, Weill Cornell Medical College, New York 10021, New York United States
| | - Brian M. Zeglis
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York, New York 10021, United States
- Department
of Chemistry, Hunter College, City University
of New York, New York, New York 10065, United States
- Ph.D.
Program in Chemistry, Graduate Center of
the City University of New York, New York, New York 10016, United States
- Department
of Pharmacology, Weill Cornell Medical College, New York, New York 10065, United States
- Department
of Radiology, Weill Cornell Medical College, New York 10021, New York United States
- Ph.D.
Program
in Biochemistry, Graduate Center of the
City University of New York, New
York, New York 10016, United States
| |
Collapse
|
4
|
Zhong X, Yan J, Ding X, Su C, Xu Y, Yang M. Recent Advances in Bioorthogonal Click Chemistry for Enhanced PET and SPECT Radiochemistry. Bioconjug Chem 2023; 34:457-476. [PMID: 36811499 DOI: 10.1021/acs.bioconjchem.2c00583] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Due to their high reaction rate and reliable selectivity, bioorthogonal click reactions have been extensively investigated in numerous research fields, such as nanotechnology, drug delivery, molecular imaging, and targeted therapy. Previous reviews on bioorthogonal click chemistry for radiochemistry mainly focus on 18F-labeling protocols employed to produce radiotracers and radiopharmaceuticals. In fact, besides fluorine-18, other radionuclides such as gallium-68, iodine-125, and technetium-99m are also used in the field of bioorthogonal click chemistry. Herein, to provide a more comprehensive perspective, we provide a summary of recent advances in radiotracers prepared using bioorthogonal click reactions, including small molecules, peptides, proteins, antibodies, and nucleic acids as well as nanoparticles based on these radionuclides. The combination of pretargeting with imaging modalities or nanoparticles, as well as the clinical translations study, are also discussed to illustrate the effects and potential of bioorthogonal click chemistry for radiopharmaceuticals.
Collapse
Affiliation(s)
- Xinlin Zhong
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Junjie Yan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China
| | - Xiang Ding
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China
| | - Chen Su
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi 214002, P. R. China
| | - Yuping Xu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China
| | - Min Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, P. R. China
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
5
|
García Melián MF, Moreno M, Cerecetto H, Calzada V. Aptamer-Based Immunotheranostic Strategies. Cancer Biother Radiopharm 2023; 38:246-255. [PMID: 36603108 DOI: 10.1089/cbr.2022.0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The escape from immune surveillance is a hallmark of cancer progression. The classic immune checkpoint molecules PD-1, PD-L1, CTLA-4, LAG-3, TIM-3 novel ones are part of a sophisticated system of up- and downmodulation of the immune system, which is unregulated in cancer. In recent years, there have been remarkable advances in the development of targeting strategies, focused principally on immunotherapies aiming at blocking those molecules involved in the evasion of the immune system. However, there are still challenges to predicting their efficacy due to the wide heterogeneity of clinical responses. Thus, there is a need to develop new strategies, and theranostics has much to contribute in this field. Besides that, aptamers have emerged as promising molecules with the potential to generate a huge impact in the immunotheranostic field. They are single-stranded oligonucleotides with a unique self-folding tridimensional structure, with high affinity and specificity for the target. In particular, their small size and physicochemical characteristics make them a versatile tool for designing theranostic strategies. Here, we review the progress in theranostic strategies based on aptamers against immune checkpoints, and highlight the potential of those approaches.
Collapse
Affiliation(s)
- María Fernanda García Melián
- Área de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - María Moreno
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Hugo Cerecetto
- Área de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Victoria Calzada
- Área de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
6
|
Zhang Y, Ding Y, Li N, Wang S, Zhou S, Li R, Yang H, Li W, Qu J. Noninvasive Imaging of Tumor PD-L1 Expression Using [ 99mTc]Tc-Labeled KN035 with SPECT/CT. Mol Pharm 2023; 20:690-700. [PMID: 36541699 DOI: 10.1021/acs.molpharmaceut.2c00874] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Programmed cell death protein-1/ligand-1 (PD-1/PD-L1) checkpoint blockade is a major breakthrough in cancer therapy, but identifying patients likely to benefit from this therapy remains challenging. Immunohistochemistry is not informative about PD-L1 expression heterogeneity because of the limitations of invasive tissue collection. Noninvasive SPECT imaging is an approach to patient selection and therapeutic monitoring by assessing the PD-L1 status throughout the whole body. Here, we radiolabeled a single-domain PD-L1 antibody with technetium-99m (99mTc) for immune-SPECT imaging to evaluate its feasibility of detecting PD-L1 expression. The radiochemical purity of [99mTc]Tc-HYNIC-KN035 was 99.40 ± 0.11% with a specific activity of 2.68 MBq/μg. [99mTc]Tc-HYNIC-KN035 displayed a high PD-L1 specificity both in vitro and in vivo and showed a high specific affinity for PD-L1 with an equilibrium dissociation constant (KD) of 31.04 nM. The binding of [99mTc]Tc-HYNIC-KN035 to H1975 cells (high expression of PD-L1) was much higher than to A549 cells (low expression of PD-L1). SPECT/CT imaging showed that H1975 tumors were visualized at 4 h post-injection and became clearer with time. However, mild tumor uptake was observed in A549 tumors and H1975 tumors of the blocking group at all time points. The uptake value of [99mTc]Tc-HYNIC-KN035 in H1975 tumors was increased continuously from 9.68 ± 0.91% ID/g at 4 h to 13.31 ± 2.23% ID/g at 24 h post-injection, which was higher than in A549 tumors with %ID/g of 4.59 ± 0.76 and 5.54 ± 0.28 at 4 and 24 h post-injection, respectively. These specific bindings were confirmed by blocking studies. [99mTc]Tc-HYNIC-KN035 can be synthesized easily and specifically targeted to PD-L1 in the tumor environment, allowing PD-L1 expression assessment noninvasively and dynamically with SPECT/CT imaging.
Collapse
Affiliation(s)
- Yingying Zhang
- Department of Nuclear Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Ying Ding
- Department of Nuclear Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China.,Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.,Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan 430022, China
| | - Ning Li
- Department of Nuclear Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Sen Wang
- Department of Nuclear Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Si Zhou
- Department of Nuclear Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Ruping Li
- Department of Nuclear Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Hui Yang
- Department of Nuclear Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Wenliang Li
- Department of Nuclear Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Jinrong Qu
- Department of Radiology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| |
Collapse
|
7
|
Zhang L, Zhao S, Jiang H, Zhang R, Zhang M, Pan W, Sun Z, Wang D, Li J. Radioimmunotherapy study of 131I-labeled Atezolizumab in preclinical models of colorectal cancer. EJNMMI Res 2022; 12:70. [DOI: 10.1186/s13550-022-00939-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/30/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Programmed cell death 1 ligand 1(PD-L1) is overexpressed in many tumors. The radionuclide-labeled anti-PD-L1 monoclonal antibody can be used for imaging and therapy of PD-L1 overexpressing cancer. Here, we described 131I-labeled Atezolizumab (131I-Atezolizumab, targeting PD-L1) as a therapeutic agent for colorectal cancer with PD-L1 overexpression.
Methods
131I-Atezolizumab was prepared by the Iodogen method. The expression levels of PD-L1 in different human colorectal cells were determined by flow cytometry, western blot and cell binding assay. The immunoreactivity of 131I-Atezolizumab to PD-L1 high-expressing cells was determined by immunoreactive fraction. The killing abilities of different concentrations of 131I-Atezolizumab on cells with high and low expression of PD-L1 were detected by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Cerenkov luminescence imaging (CLI) and radioimmunotherapy (RIT) of 131I-Atezolizumab were performed on two human colorectal cancer models. The distribution and tumor targeting of 131I-Atezolizumab were evaluated by imaging. Tumor volume and survival time were used as indicators to evaluate the anti-tumor effect of 131I-Atezolizumab.
Results
The expression level of PD-L1 in vitro determined by the cell binding assay was related to the data of flow cytometry and western blot. 131I-Atezolizumab can specifically bind to PD-L1 high-expressing cells in vitro to reflect the expression level of PD-L1. Immunoreactive fraction of PD-L1 high-expressing RKO cells with 131I-Atezolizumab was 52.2%. The killing ability of 131I-Atezolizumab on PD-L1 high-expressing cells was higher than that of low-expressing cells. CLI proved that the specific uptake level of tumors depends on the expression level of PD-L1. Effect of 131I-Atezolizumab RIT showed an activity-dependent tumor suppressor effect on RKO tumor-bearing mice with high PD-L1 expression. 131I-Atezolizumab (37 MBq) can improve the median survival time of mice (34 days), compared to untreated mice (27 days) (P = 0.027). Although a single activity(37 MBq) of 131I-Atezolizumab also inhibited the tumors of HCT8 tumor-bearing mice with low PD-L1 expression (P < 0.05), it could not prolong the survival of mice(P = 0.29).
Conclusion
131I-Atezolizumab can be used as a CLI agent for screening PD-L1 expression levels. It may be used as a radioimmunotherapy drug target for PD- L1 overexpressing tumors.
Collapse
|
8
|
Liu WL, Zhang YQ, Li LT, Zhu YY, Ming ZH, Chen WL, Yang RQ, Li RH, Chen M, Zhang GJ. Application of molecular imaging in immune checkpoints therapy: From response assessment to prognosis prediction. Crit Rev Oncol Hematol 2022; 176:103746. [PMID: 35752425 DOI: 10.1016/j.critrevonc.2022.103746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/30/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Recently, immune checkpoint therapy (ICT) represented by programmed cell death1 (PD-1) and its major ligands, programmed death ligand 1 (PD-L1), has achieved significant success. Detection of PD-L1 by immunohistochemistry (IHC) is a classic method to guide the treatment of ICT patients. However, PD-L1 expression in the tumor microenvironment is highly complex. Thus, PD-L1 IHC is inadequate to fully understand the relevance of PD-L1 levels in the whole body and their dynamics to improve therapeutic outcomes. Intriguingly, numerous studies have revealed that molecular imaging technologies could potentially meet this need. Therefore, the purpose of this narrative review is to summarize the preclinical and clinical application of ICT guided by molecular imaging technology, and to explore the future opportunities and practical difficulties of these innovations.
Collapse
Affiliation(s)
- Wan-Ling Liu
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer (Xiang'an Hospital of Xiamen University), 2000 East Xiang'an Road, Xiamen, China; Xiamen Key Laboratory for Endocrine Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, 2000 East Xiang'an Road, Xiamen, China
| | - Yong-Qu Zhang
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer (Xiang'an Hospital of Xiamen University), 2000 East Xiang'an Road, Xiamen, China; Xiamen Key Laboratory for Endocrine Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, 2000 East Xiang'an Road, Xiamen, China
| | - Liang-Tao Li
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer (Xiang'an Hospital of Xiamen University), 2000 East Xiang'an Road, Xiamen, China; Xiamen Key Laboratory for Endocrine Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, 2000 East Xiang'an Road, Xiamen, China
| | - Yuan-Yuan Zhu
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer (Xiang'an Hospital of Xiamen University), 2000 East Xiang'an Road, Xiamen, China; Xiamen Key Laboratory for Endocrine Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, 2000 East Xiang'an Road, Xiamen, China
| | - Zi-He Ming
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer (Xiang'an Hospital of Xiamen University), 2000 East Xiang'an Road, Xiamen, China; Xiamen Key Laboratory for Endocrine Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, 2000 East Xiang'an Road, Xiamen, China
| | - Wei-Ling Chen
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer (Xiang'an Hospital of Xiamen University), 2000 East Xiang'an Road, Xiamen, China; Xiamen Key Laboratory for Endocrine Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, 2000 East Xiang'an Road, Xiamen, China
| | - Rui-Qin Yang
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer (Xiang'an Hospital of Xiamen University), 2000 East Xiang'an Road, Xiamen, China; Xiamen Key Laboratory for Endocrine Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, 2000 East Xiang'an Road, Xiamen, China
| | - Rong-Hui Li
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer (Xiang'an Hospital of Xiamen University), 2000 East Xiang'an Road, Xiamen, China; Department of Medical Oncology, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China
| | - Min Chen
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer (Xiang'an Hospital of Xiamen University), 2000 East Xiang'an Road, Xiamen, China; Xiamen Key Laboratory for Endocrine Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China.
| | - Guo-Jun Zhang
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer (Xiang'an Hospital of Xiamen University), 2000 East Xiang'an Road, Xiamen, China; Xiamen Key Laboratory for Endocrine Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, 2000 East Xiang'an Road, Xiamen, China; Cancer Research Center, School of Medicine, Xiamen University, 4221 South Xiang'an Road, Xiamen, China.
| |
Collapse
|
9
|
Krutzek F, Kopka K, Stadlbauer S. Development of Radiotracers for Imaging of the PD-1/PD-L1 Axis. Pharmaceuticals (Basel) 2022; 15:ph15060747. [PMID: 35745666 PMCID: PMC9228425 DOI: 10.3390/ph15060747] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/24/2022] Open
Abstract
Immune checkpoint inhibitor (ICI) therapy has emerged as a major treatment option for a variety of cancers. Among the immune checkpoints addressed, the programmed death receptor 1 (PD-1) and its ligand PD-L1 are the key targets for an ICI. PD-L1 has especially been proven to be a reproducible biomarker allowing for therapy decisions and monitoring therapy success. However, the expression of PD-L1 is not only heterogeneous among and within tumor lesions, but the expression is very dynamic and changes over time. Immunohistochemistry, which is the standard diagnostic tool, can only inadequately address these challenges. On the other hand, molecular imaging techniques such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) provide the advantage of a whole-body scan and therefore fully address the issue of the heterogeneous expression of checkpoints over time. Here, we provide an overview of existing PET, SPECT, and optical imaging (OI) (radio)tracers for the imaging of the upregulation levels of PD-1 and PD-L1. We summarize the preclinical and clinical data of the different molecule classes of radiotracers and discuss their respective advantages and disadvantages. At the end, we show possible future directions for developing new radiotracers for the imaging of PD-1/PD-L1 status in cancer patients.
Collapse
Affiliation(s)
- Fabian Krutzek
- Department of Translational TME Ligands, Institute of Radiopharmaceutical Cancer Research, Helmholtz Center Dresden-Rossendorf, 01328 Dresden, Germany; (F.K.); (K.K.)
| | - Klaus Kopka
- Department of Translational TME Ligands, Institute of Radiopharmaceutical Cancer Research, Helmholtz Center Dresden-Rossendorf, 01328 Dresden, Germany; (F.K.); (K.K.)
- School of Science, Faculty of Chemistry and Food Chemistry, Technical University Dresden, 01069 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, University Cancer Cancer (UCC), 01307 Dresden, Germany
| | - Sven Stadlbauer
- Department of Translational TME Ligands, Institute of Radiopharmaceutical Cancer Research, Helmholtz Center Dresden-Rossendorf, 01328 Dresden, Germany; (F.K.); (K.K.)
- Correspondence:
| |
Collapse
|
10
|
Zhou X, Zhu K, Zhang Y, Ming Y, Shi D, Tan H, Xiang B, Zhu S, Cheng D, Lai H, Wang C, Liu G. CD11b-Based Pre-Targeted SPECT/CT Imaging Allows for the Detection of Inflammation in Aortic Aneurysm. J Inflamm Res 2022; 15:1921-1933. [PMID: 35321320 PMCID: PMC8935951 DOI: 10.2147/jir.s350593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/08/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose To investigate the feasibility of a pre-targeted imaging strategy based on the cycloaddition between 1,2,4,5-terazine (Tz) and trans-cyclooctene (TCO) for evaluating CD11b expression in inflammatory aortic aneurysm (AA) using single photon emission computed tomography/computed tomography (SPECT/CT). Methods C57BL/6J mice were fed β-aminopropionitrile (1 g/kg/day) for 4 weeks to establish AA models. Anti-CD11b-TCO was synthesized and 99mTc-HYNIC-PEG11-Tz was designed for pre-targeted SPECT/CT. The affinity and specificity of the probe for the inflammatory cell line Raw-264.7 were investigated. Then, anti-CD11b-TCO pre-targeted and 99mTc-HYNIC-PEG11-Tz based SPECT/CT were performed to detect in vivo inflammation in AA. Finally, ex vivo aortic breast-specific gamma imaging (BSGI), Western blot assays, and immunohistochemical CD11b staining were performed to confirm the in vivo findings of SPECT/CT. Results In the AA models, 65.22% (15/23) had aortic lesions, including 43.48% (10/23) AA lesions. The anti-CD11b-TCO presented with a high TCO coupling ratio (7.43), and the 99mTc-HYNIC-PEG11-Tz showed high radio-purity (>95%), good in vitro stability and a rapid clearance rate. Additionally, anti-CD11b-TCO and 99mTc-HYNIC-PEG11-Tz presented high click rate (~89%). The in vitro clicked compound, 99mTc-HYNIC-PEG11-Tz/TCO-anti-CD11b, showed high affinity and specificity for Raw-264.7 cells. 99mTc-HYNIC-PEG11-Tz/TCO-anti-CD11b pre-targeting SPECT/CT successfully demonstrated inflammatory AA with a high AA-to-background ratio in AA mice, compared to AA mice that were injected with 99mTc-HYNIC-Tz/TCO-IgG (8.13 versus 3.71, P < 0.001) and control mice injected with 99mTc-HYNIC-Tz/TCO-anti-CD11b (8.13 versus 3.66, P < 0.001). This result was confirmed by ex vivo BSGI performed immediately after SPECT/CT and immunohistochemical CD11b staining. Conclusion SPECT/CT imaging using the anti-CD11b-TCO/Tz-PEG11-HYNIC-99mTc based pre-targeting imaging strategy allows for the detection of inflammation in progressive AA.
Collapse
Affiliation(s)
- Xiaonan Zhou
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, People’s Republic of China
| | - Kai Zhu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, People’s Republic of China
| | - Yiqiu Zhang
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
- Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, People’s Republic of China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, People’s Republic of China
| | - Yang Ming
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, People’s Republic of China
| | - Dai Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
- Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, People’s Republic of China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, People’s Republic of China
| | - Hui Tan
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
- Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, People’s Republic of China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, People’s Republic of China
| | - Bitao Xiang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, People’s Republic of China
| | - Shichao Zhu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, People’s Republic of China
| | - Dengfeng Cheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
- Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, People’s Republic of China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, People’s Republic of China
| | - Hao Lai
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, People’s Republic of China
| | - Chunsheng Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, People’s Republic of China
- Chunsheng Wang, Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, No. 180 in Fenglin Road, Shanghai, 200032, People’s Republic of China, Email
| | - Guobing Liu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
- Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, People’s Republic of China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, People’s Republic of China
- Correspondence: Guobing Liu, Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 in Fenglin Road, Shanghai, 200032, People’s Republic of China, Tel +8618317086732, Fax +86-21-62489191, Email
| |
Collapse
|
11
|
Liu H, Hu M, Deng J, Zhao Y, Peng D, Feng Y, Wang L, Chen Y, Qiu L. A Novel Small Cyclic Peptide-Based 68Ga-Radiotracer for Positron Emission Tomography Imaging of PD-L1 Expression in Tumors. Mol Pharm 2022; 19:138-147. [PMID: 34910492 DOI: 10.1021/acs.molpharmaceut.1c00694] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In the tumor microenvironment, programmed death protein 1 and programmed death protein ligand 1 (PD-L1) signaling pathways help tumors escape the immune system. We designed a gallium-68 (68Ga)-labeled small-molecule peptide-targeting PD-L1 and used positron emission tomography/computed tomography (PET/CT) to detect and dynamically monitor the expression level of PD-L1 in tumors. S-Cyclo(ETSK)-SF-NH2 (SETSKSF) is a cyclic peptide inhibitor comprising seven amino-acid residues. We connected it with the chelating agent DOTA, labeled DOTA-SETSKSF, with the short half-life nuclide Ga-68, and measured the stability of 68Ga-2,2',2″-(10-(2-((S)-1-((3S,6S,9S,18S)-18-((S)-1-((S)-1-amino-1-oxo-3-henylpropan-2-ylamino)-3-hydroxy-1-oxopropan-2-ylcarbamoyl)-6-((R)-1-hydroxyethyl)-3-(hydroxymethyl)-2,5,8,12-tetraoxo-1,4,7,13-tetraazacyclooctadecan-9-ylamino)-3-ydroxy-1-oxopropan-2-ylamino)-2-oxoethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetic acid (68Ga-DOTA-SETSKSF) in normal saline (NS), phosphate-buffered saline (PBS), and fetal bovine serum (FBS) in vitro. We conducted the 68Ga-DOTA-SETSKSF affinity test, cell-specific uptake experiments, time-combined experiments, western blotting, and laser confocal experiments to confirm the expression and localization of PD-L1 at the cell level and determine the uptake. Biodistribution and imaging experiments were performed using the H1975, B16F10, and A549 tumor models. 68Ga-DOTA-SETSKSF was successfully synthesized, and the radiochemical purity was >99% after purification. The in vitro stability of 68Ga-DOTA-SETSKSF was >95% in NS, PBS, and FBS at 37 °C after 4 h of incubation. Cell-binding experiments confirmed that 68Ga-DOTA-SETSKSF exhibited high uptake in H1975 tumors with high PD-L1 expression and low uptake in A549 tumors with low PD-L1 expression. The clear half-life (T1/2) of 68Ga-DOTA-SETSKSF from the blood was 14.48 ± 3.26 min. The percentages of the injected dose per gram of tissue (%ID/g) for H1975 and A549 tumors were 5.29 ± 0.21 and 0.89 ± 0.10 at 1 h after injection, respectively. The H1975 tumor-to-muscle and tumor-to-blood ratios were 41.79 ± 5.81 and 4.75 ± 0.19 at 4 h, respectively. Apart from the H1975 tumor, the kidney and the bladder showed high accumulation because 68Ga-DOTA-SETSKSF was excreted through the urinary system. PET/CT images showed high accumulation of 68Ga-DOTA-SETSKSF in H1975 tumors and low uptake in A549 tumors, which was consistent with the results of biodistribution experiments. 68Ga-DOTA-SETSKSF is convenient to prepare, has high stability, can be used to monitor the expression of PD-L1, and has an extremely high clinical application value.
Collapse
Affiliation(s)
- Hanxiang Liu
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping Street, Jiangyang District, Luzhou, Sichuan 646000, People's Republic of China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, People's Republic of China.,Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan 646000, People's Republic of China
| | - Mei Hu
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping Street, Jiangyang District, Luzhou, Sichuan 646000, People's Republic of China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, People's Republic of China.,Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan 646000, People's Republic of China.,School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Jia Deng
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping Street, Jiangyang District, Luzhou, Sichuan 646000, People's Republic of China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, People's Republic of China.,Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan 646000, People's Republic of China
| | - Yan Zhao
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping Street, Jiangyang District, Luzhou, Sichuan 646000, People's Republic of China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, People's Republic of China.,Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan 646000, People's Republic of China.,School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Dengsai Peng
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping Street, Jiangyang District, Luzhou, Sichuan 646000, People's Republic of China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, People's Republic of China.,Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan 646000, People's Republic of China
| | - Yue Feng
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping Street, Jiangyang District, Luzhou, Sichuan 646000, People's Republic of China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, People's Republic of China.,Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan 646000, People's Republic of China.,School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Li Wang
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping Street, Jiangyang District, Luzhou, Sichuan 646000, People's Republic of China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, People's Republic of China.,Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan 646000, People's Republic of China.,School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping Street, Jiangyang District, Luzhou, Sichuan 646000, People's Republic of China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, People's Republic of China.,Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan 646000, People's Republic of China
| | - Lin Qiu
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25, Taiping Street, Jiangyang District, Luzhou, Sichuan 646000, People's Republic of China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, People's Republic of China.,Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan 646000, People's Republic of China
| |
Collapse
|
12
|
Zhang Y, Lin Q, Wang T, Shi D, Fu Z, Si Z, Xu Z, Cheng Y, Shi H, Cheng D. Targeting Infiltrating Myeloid Cells in Gastric Cancer Using a Pretargeted Imaging Strategy Based on Bio-Orthogonal Diels-Alder Click Chemistry and Comparison with 89Zr-Labeled Anti-CD11b Positron Emission Tomography Imaging. Mol Pharm 2022; 19:246-257. [PMID: 34816721 DOI: 10.1021/acs.molpharmaceut.1c00745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Gastric cancer (GC) is a common cancer worldwide, with high incidence and mortality rates. Therefore, early and precise diagnosis is critical to improving GC prognosis. Tumor-associated myeloid cells infiltrate the tumor microenvironment (TME) and can produce immunosuppressive effects in the early stage of the tumor. The surface integrin receptor CD11b is widely expressed in the specific subsets of myeloid cells, and it has the characteristics of high abundance, high specificity, and high potential for targeted immunotherapy. In this study, two strategies for labeling anti-CD11b, including 89Zr-DFO-anti-CD11b and pretargeted imaging (68Ga-NOTA-polypeptide-PEG11-Tz/anti-CD11b-TCO), were used to evaluate the value of early diagnosis of GC and confirm the advantages of the pretargeted strategy for the diagnosis of GC. Pretargeted molecular probe 68Ga-NOTA-polypeptide-PEG11-Tz was synthesized. The binding affinity of the Tz-radioligand to CD11b was evaluated in vitro, and its blood pharmacokinetic test was performed in vivo. Moreover, the anti-CD11b antibody was conjugated with a p-isothiocyanatobenzyl-desferrioxamine (SCN-DFO) chelator and radiolabeled with zirconium-89. Biodistribution and positron-emission computed tomography imaging experiments were performed in MGC-803 tumor-bearing model mice to evaluate the value of the early diagnosis of GC. Histological evaluation of MGC-803 tumors was conducted to confirm the infiltration of the GC TME with CD11b+ myeloid cells. 68Ga-NOTA-polypeptide-PEG11-Tz was successfully radiosynthesized, with the radiochemical purity above 95%, as confirmed by reversed-phase high-performance liquid chromatography. The radioligand showed favorable stability in normal saline and phosphate-buffered saline, good affinity to RAW264.7 cells, and rapid blood clearance in mice. The results of biodistribution and imaging experiments using the pretargeted method showed that the tumor/muscle ratios were 5.17 ± 2.98, 5.94 ± 1.46, and 4.46 ± 2.73 at the pretargeting intervals of 24, 48, and 72 h, respectively. The experimental results using the method of the directly labeling antibody (89Zr-DFO-anti-CD11b) showed that, despite radioactive accumulation in the tumor, there was a higher level of radioactive accumulation in normal tissues. The tumor/muscle ratios were 1.09 ± 0.67, 1.66 ± 0.95, 2.94 ± 1.24, 3.64 ± 1.21, and 3.55 ± 1.64 at 1, 24, 48, 72, and 120 h. The current research proved the value of 68Ga-NOTA-polypeptide-PEG11-Tz/anti-CD11b-TCO in the diagnosis of GC using the pretargeted strategy. Compared to 89Zr-DFO-anti-CD11b, the image contrast achieved by the pretargeted strategy was relatively improved, and the background accumulation of the probe was relatively low. These advantages can improve the diagnostic efficiency for GC and provide supporting evidence for radioimmunotherapy targeting CD11b receptors.
Collapse
Affiliation(s)
- Yingying Zhang
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, People's Republic of China
| | - Qingyu Lin
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, People's Republic of China.,Institute of Nuclear Medicine, Fudan University, Shanghai 200032, People's Republic of China.,Shanghai Institute of Medical Imaging, Shanghai 200032, People's Republic of China
| | - Tingting Wang
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, People's Republic of China
| | - Dai Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, People's Republic of China
| | - Zhequan Fu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, People's Republic of China
| | - Zhan Si
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, People's Republic of China
| | - Zhan Xu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, People's Republic of China
| | - Yuan Cheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, People's Republic of China
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, People's Republic of China.,Institute of Nuclear Medicine, Fudan University, Shanghai 200032, People's Republic of China.,Shanghai Institute of Medical Imaging, Shanghai 200032, People's Republic of China
| | - Dengfeng Cheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, People's Republic of China.,Institute of Nuclear Medicine, Fudan University, Shanghai 200032, People's Republic of China.,Shanghai Institute of Medical Imaging, Shanghai 200032, People's Republic of China
| |
Collapse
|
13
|
Current status and future perspective of radiopharmaceuticals in China. Eur J Nucl Med Mol Imaging 2021; 49:2514-2530. [PMID: 34767047 PMCID: PMC8586637 DOI: 10.1007/s00259-021-05615-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/02/2021] [Indexed: 12/17/2022]
Abstract
Radiopharmaceuticals are essential components of nuclear medicine and serve as one of the cornerstones of molecular imaging and precision medicine. They provide new means and approaches for early diagnosis and treatment of diseases. After decades of development and hard efforts, a relatively matured radiopharmaceutical production and management system has been established in China with high-quality facilities. This review provides an overview of the current status of radiopharmaceuticals on production and distribution, clinical application, and regulatory supervision and also describes some important advances in research and development and clinical translation of radiopharmaceuticals in the past 10 years. Moreover, some prospects of research and development of radiopharmaceuticals in the near future are discussed.
Collapse
|
14
|
Zeng XZ, An HW, Wang H. Chemical Reactions Trigger Peptide Self-Assembly in vivo for Tumor Therapy. ChemMedChem 2021; 16:2452-2458. [PMID: 33882175 DOI: 10.1002/cmdc.202100254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Indexed: 01/02/2023]
Abstract
Self-assembly peptide materials have promoted the development of science research including life science, optics, medicine, and catalysis over the past two decades. Especially in tumor treatment, peptide self-assembly strategies have exhibited promising potential by their high degree of biocompatibility, construction modularization, and diversity in structure controllability. Driven by physical and chemical triggers, peptides can self-assemble in vivo to form fibers, spheres, hydrogels, or ribbons to achieve predeterminate biological functions. Peptide self-assembly triggered by chemical reactions provides superior specificity and intelligent responsiveness to produce assembly-induced biological effects in target regions. Herein, from the perspective of triggers of peptide assembly, we briefly review the applications of in vivo peptide self-assembly strategies for tumor treatment, including tumor-pathology-factor-induced chemical reactions and bio-orthogonal reactions.
Collapse
Affiliation(s)
- Xiang-Zhong Zeng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Haidian District, Beijing, 100190, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), No. 19 Yuquan Rd, Shijingshan District, Beijing, 100049, China.,Academy for Advanced Interdisciplinary Studies, Peking University, No. 5 Yiheyuan Rd, Haidian District, Beijing, 100871, China
| | - Hong-Wei An
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Haidian District, Beijing, 100190, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), No. 19 Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Haidian District, Beijing, 100190, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), No. 19 Yuquan Rd, Shijingshan District, Beijing, 100049, China
| |
Collapse
|
15
|
Qiu L, Lin Q, Si Z, Tan H, Liu G, Zhou J, Wang T, Chen Y, Huang Y, Yu T, Jin M, Cheng D, Shi H. A Pretargeted Imaging Strategy for EGFR-Positive Colorectal Carcinoma via Modulation of Tz-Radioligand Pharmacokinetics. Mol Imaging Biol 2021; 23:38-51. [PMID: 32914391 DOI: 10.1007/s11307-020-01539-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 11/27/2022]
Abstract
PURPOSE Previously, we successfully developed a pretargeted imaging strategy (atezolizumab-TCO/[99mTc]HYNIC-PEG11-Tz) for evaluating programmed cell death ligand-1 (PD-L1) expression in xenograft mice. However, the surplus unclicked [99mTc]HYNIC-PEG11-Tz is cleared somewhat sluggishly through the intestines, which is not ideal for colorectal cancer (CRC) imaging. To shift the excretion of the Tz-radioligand to the renal system, we developed a novel Tz-radioligand by adding a polypeptide linker between HYNIC and PEG11. PROCEDURES Pretargeted molecular probes [99mTc]HYNIC-polypeptide-PEG11-Tz and cetuximab-TCO were synthesized. [99mTc]HYNIC-polypeptide-PEG11-Tz was evaluated for in vitro stability and in vivo blood pharmacokinetics. In vitro ligation reactivity of [99mTc]HYNIC-polypeptide-PEG11-Tz towards cetuximab-TCO was also tested. Biodistribution assay and imaging of [99mTc]HYNIC-polypeptide-PEG11-Tz were performed to observe its excretion pathway. Pretargeted biodistribution was measured at three different accumulation intervals to determine the optimal pretargeted interval time. Pretargeted (cetuximab-TCO 48 h/[99mTc]HYNIC-PEG11-Tz 6 h) and (cetuximab-TCO 48 h/[99mTc]HYNIC-Polypeptide-PEG11-Tz 6 h) imagings were compared to examine the effect of the excretion pathway on tumor imaging. RESULTS [99mTc]HYNIC-polypeptide-PEG11-Tz showed favorable in vitro stability and rapid blood clearance in mice. SEC-HPLC revealed almost complete reaction between cetuximab-TCO and [99mTc]HYNIC-polypeptide-PEG11-Tz in vitro, with the 8:1 Tz-to-mAb reaction providing a conversion yield of 87.83 ± 3.27 %. Biodistribution and imaging analyses showed that the Tz-radioligand was cleared through the kidneys. After 24, 48, and 72 h of accumulation in HCT116 tumor, the tumor-to-blood ratio of cetuximab-TCO was 0.83 ± 0.13, 1.40 ± 0.31, and 1.15 ± 0.21, respectively. Both pretargeted (cetuximab-TCO 48 h/[99mTc]HYNIC-PEG11-Tz 6 h) and (cetuximab-TCO 48 h/[99mTc]HYNIC-polypeptide-PEG11-Tz 6 h) clearly delineated HCT116 tumor. Pretargeted imaging strategy using cetuximab-TCO/[99mTc]HYNIC-polypeptide-PEG11-Tz could be used for diagnosing CRC, as the surplus unclicked [99mTc]HYNIC-polypeptide-PEG11-Tz was cleared through the urinary system, leading to low abdominal uptake background. CONCLUSION Our novel pretargeted imaging strategy (cetuximab-TCO/[99mTc]HYNIC-polypeptide-PEG11-Tz) was useful for imaging CRC, broadening the application scope of pretargeted imaging strategy. The pretargeted imaging strategy clearly delineated HCT116 tumor, showing that its use could be extended to selection of internalizing antibodies.
Collapse
Affiliation(s)
- Lin Qiu
- Department of Nuclear Medicine, Zhongshan Hospital Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Qingyu Lin
- Department of Nuclear Medicine, Zhongshan Hospital Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Zhan Si
- Department of Nuclear Medicine, Zhongshan Hospital Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Hui Tan
- Department of Nuclear Medicine, Zhongshan Hospital Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Guobing Liu
- Department of Nuclear Medicine, Zhongshan Hospital Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Jun Zhou
- Department of Nuclear Medicine, Zhongshan Hospital Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Tingting Wang
- Department of Nuclear Medicine, Zhongshan Hospital Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | | | - Tao Yu
- WuXi AppTec, Shanghai, China
| | - Mingzhi Jin
- WuXi Biologics (Shanghai) Co., Ltd, Shanghai, China
| | - Dengfeng Cheng
- Department of Nuclear Medicine, Zhongshan Hospital Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China.
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China.
| |
Collapse
|
16
|
Wang W, Gao Z, Wang L, Li J, Yu J, Han S, Meng X. Application and Prospects of Molecular Imaging in Immunotherapy. Cancer Manag Res 2020; 12:9389-9403. [PMID: 33061627 PMCID: PMC7533904 DOI: 10.2147/cmar.s269773] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 09/10/2020] [Indexed: 12/18/2022] Open
Abstract
Recently, immunotherapies that target the interactions of programmed cell death 1 (PD-1) with its major ligands, programmed death ligand 1 (PD-L1) and programmed death ligand 2 (PD-L2), have achieved significant success. To date, several immune checkpoint inhibitors targeting the PD-1/PD-L1 pathway have been developed to treat melanoma, non-small cell lung cancer, head and neck cancer, renal cell carcinoma, and urothelial carcinoma. Despite promising outcomes with immunotherapy, there are many limitations to several current immune biomarkers for predicting immune benefits and to traditional imaging for evaluating the efficacy and prognosis of immunotherapy and monitoring adverse reactions. In this review, we recommend a novel imaging method, molecular imaging. This paper reviews the application and prospects of molecular imaging in the context of current immunotherapies in regard to the following aspects: 1) detecting the expression of PD-1/PD-L1; 2) evaluating the efficacy of immunotherapy; 3) assessing patient prognosis with immunotherapy; 4) monitoring the toxicity of immunotherapy; and 5) other targets imaging.
Collapse
Affiliation(s)
- Weiqing Wang
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261053, People's Republic of China.,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, People's Republic of China
| | - Zhenhua Gao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, People's Republic of China
| | - Lu Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, People's Republic of China
| | - Jianing Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, People's Republic of China
| | - Jinming Yu
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261053, People's Republic of China.,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, People's Republic of China
| | - Shumei Han
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, People's Republic of China
| | - Xue Meng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, People's Republic of China
| |
Collapse
|