1
|
Cao GH, Wang XF, Li ZD, Zhang X, Li XG, Gu W, Zhang F, Yu J, He S. A Panax notoginseng phosphate transporter, PnPht1;3, greatly contributes to phosphate and arsenate uptake. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:259-271. [PMID: 35115080 DOI: 10.1071/fp21218] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
The crisis of arsenic (As) accumulation in rhizomes threatens the quality and safety of Panax notoginseng (Burk.) F.H. Chen, which is a well-known traditional Chinese herb with a long clinical history. The uptake of arsenate (AsV) could be suppressed by supplying phosphate (Pi), in which Pi transporters play important roles in the uptake of Pi and AsV. Herein, the P . notoginseng Pi transporter-encoding gene PnPht1;3 was identified and characterised under Pi deficiency and AsV exposure. In this study, the open reading frame (ORF) of PnPht1;3 was cloned according to RNA-seq and encoded 545 amino acids. The relative expression levels revealed that PnPht1;3 was significantly upregulated under phosphate deficiency and AsV exposure. Heterologous expression in Saccharomyces cerevisiae MB192 demonstrated that PnPht1;3 performed optimally in complementing the yeast Pi-transport defect and accumulated more As in the cells. Combined with the subcellular localisation prediction, it was concluded that PnPht1;3 encodes a functional plasma membrane-localised transporter protein that mediates putative high-affinity Pi/H+ symport activity and enhances the uptake of Pi and AsV. Therefore, a better understanding of the roles of the P . notoginseng Pi transporter could provide new insight for solving As accumulation in medicinal plants.
Collapse
Affiliation(s)
- Guan-Hua Cao
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Xi-Fu Wang
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Ze-Dong Li
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Xue Zhang
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Xiao-Gang Li
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Wen Gu
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Fan Zhang
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Jie Yu
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Sen He
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China; and Yunnan Key Laboratory for Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| |
Collapse
|
2
|
Rabêlo FHS, Vangronsveld J, Baker AJM, van der Ent A, Alleoni LRF. Are Grasses Really Useful for the Phytoremediation of Potentially Toxic Trace Elements? A Review. FRONTIERS IN PLANT SCIENCE 2021; 12:778275. [PMID: 34917111 PMCID: PMC8670575 DOI: 10.3389/fpls.2021.778275] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/19/2021] [Indexed: 05/27/2023]
Abstract
The pollution of soil, water, and air by potentially toxic trace elements poses risks to environmental and human health. For this reason, many chemical, physical, and biological processes of remediation have been developed to reduce the (available) trace element concentrations in the environment. Among those technologies, phytoremediation is an environmentally friendly in situ and cost-effective approach to remediate sites with low-to-moderate pollution with trace elements. However, not all species have the potential to be used for phytoremediation of trace element-polluted sites due to their morpho-physiological characteristics and low tolerance to toxicity induced by the trace elements. Grasses are prospective candidates due to their high biomass yields, fast growth, adaptations to infertile soils, and successive shoot regrowth after harvest. A large number of studies evaluating the processes related to the uptake, transport, accumulation, and toxicity of trace elements in grasses assessed for phytoremediation have been conducted. The aim of this review is (i) to synthesize the available information on the mechanisms involved in uptake, transport, accumulation, toxicity, and tolerance to trace elements in grasses; (ii) to identify suitable grasses for trace element phytoextraction, phytostabilization, and phytofiltration; (iii) to describe the main strategies used to improve trace element phytoremediation efficiency by grasses; and (iv) to point out the advantages, disadvantages, and perspectives for the use of grasses for phytoremediation of trace element-polluted soils.
Collapse
Affiliation(s)
| | - Jaco Vangronsveld
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
- Department of Plant Physiology and Biophysics, Maria Curie-Skłodowska University, Lublin, Poland
| | - Alan J. M. Baker
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD, Australia
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
- Laboratoire Sols et Environnement, Université de Lorraine – INRAE, Nancy, France
| | - Antony van der Ent
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD, Australia
| | | |
Collapse
|
3
|
Yang GL, Yang MX, Lv SM, Tan AJ. The effect of chelating agents on iron plaques and arsenic accumulation in duckweed (Lemna minor). JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126410. [PMID: 34157466 DOI: 10.1016/j.jhazmat.2021.126410] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023]
Abstract
Iron plaques have been found to limit the phytoremediation efficiency by reducing iron solubility, while chelating agents can increase the bioavailability of iron from Fe plaques to numerous terrestrial plants. However, the effects of chelating agents on Fe plaques along the As accumulation in aquatic plants remain unknown. In this study, the effects of five chelating agents (EDTA, DTPA, NTA, GLDA, and CA) on the As (As(III) or As(V)), phosphate, and iron uptake by iron plaques and duckweed (Lemna minor) were examined. The results showed that the chelating agents increased the As accumulation in L. minor plants by desorbing and mobilizing As from Fe plaques. The desorption rates of As(V) (As(III)) from the Fe plaques by the chelating agents were 5.26-8.77% (8.70-15.02%), and the plants/DCB extract ratios of As(V) (As(III)) increased from 2.63 ± 0.13 (1.97 ± 0.06) to the peak value of 3.38 ± 0.21 (2.70 ± 0.14) upon adding chelating agents. Besides, the addition of chelating agents increased the uptake of P and Fe by L. minor plants. This work provides a theoretical basis for the remediation of As-contaminated waters by duckweed with the help of chelating agents.
Collapse
Affiliation(s)
- Gui-Li Yang
- College of Life Sciences, Guizhou University, Guiyang 550025, China.
| | - Ming-Xing Yang
- Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Shi-Ming Lv
- College of Animal Science, Guizhou University, Guiyang 50025, China
| | - Ai-Juan Tan
- College of Life Sciences, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
4
|
Zhao Y, Zhen Z, Wang Z, Zeng L, Yan C. Influence of environmental factors on arsenic accumulation and biotransformation using the aquatic plant species Hydrilla verticillata. J Environ Sci (China) 2020; 90:244-252. [PMID: 32081320 DOI: 10.1016/j.jes.2019.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
Hydrilla verticillata (waterthyme) has been successfully used for phytoremediation in arsenic (As) contaminated water. To evaluate the effects of environmental factors on phytoremediation, this study conducted a series of orthogonal design experiments to determine optimal conditions, including phosphorus (P), nitrogen (N), and arsenate (As(V)) concentrations and initial pH levels, for As accumulation and biotransformation using this aquatic plant species, while also analyzing As species transformation in culture media after 96-hr exposure. Analysis of variance and the signal-to-noise ratio were used to identify both the effects of these environmental factors and their optimal conditions for this purpose. Results indicated that both N and P significantly impacted accumulation, and N was essential in As species transformation. High N and intermediate P levels were critical to As accumulation and biotransformation by H. verticillata, while high N and low P levels were beneficial to As species transformation in culture media. The highest total arsenic accumulation was (197.2 ± 17.4) μg/g dry weight when As(V) was at level 3 (375 μg/L), N at level 2 (4 mg/L), P at level 1 (0.02 mg/L), and pH at level 2 (7). Although H. verticillata is highly efficient in removing As(V) from aquatic environments, its use could be potentially harmful to both humans and the natural environment due to its release of highly toxic arsenite. For cost-effective and ecofriendly phytoremediation of As-contaminated water, both N and P are helpful in regulating As accumulation and transformation in plants.
Collapse
Affiliation(s)
- Yuan Zhao
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuo Zhen
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenhong Wang
- School of Chemistry and Environment, Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China
| | - Liqing Zeng
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changzhou Yan
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
5
|
Kofroňová M, Hrdinová A, Mašková P, Tremlová J, Soudek P, Petrová Š, Pinkas D, Lipavská H. Multi-Component Antioxidative System and Robust Carbohydrate Status, the Essence of Plant Arsenic Tolerance. Antioxidants (Basel) 2020; 9:E283. [PMID: 32230748 PMCID: PMC7222215 DOI: 10.3390/antiox9040283] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/15/2020] [Accepted: 03/17/2020] [Indexed: 01/01/2023] Open
Abstract
Arsenic (As) contaminates the food chain and decreases agricultural production through impairing plants, particularly due to oxidative stress. To better understand the As tolerance mechanisms, two contrasting tobacco genotypes: As-sensitive Nicotiana sylvestris and As-tolerant N.tabacum, cv. 'Wisconsin' were analyzed. The most meaningful differences were found in the carbohydrate status, neglected so far in the As context. In the tolerant genotype, contrary to the sensitive one, net photosynthesis rates and saccharide levels were unaffected by As exposure. Importantly, the total antioxidant capacity was far stronger in the As-tolerant genotype, based on higher antioxidants levels (e.g., phenolics, ascorbate, glutathione) and activities and/or appropriate localizations of antioxidative enzymes, manifested as reverse root/shoot activities in the selected genotypes. Accordingly, malondialdehyde levels, a lipid peroxidation marker, increased only in sensitive tobacco, indicating efficient membrane protection in As-tolerant species. We bring new evidence of the orchestrated action of a broad spectrum of both antioxidant enzymes and molecules essential for As stress coping. For the first time, we propose robust carbohydrate metabolism based on undisturbed photosynthesis to be crucial not only for subsidizing C and energy for defense but also for participating in direct reactive oxygen species (ROS) quenching. The collected data and suggestions can serve as a basis for the selection of plant As phytoremediators or for targeted breeding of tolerant crops.
Collapse
Affiliation(s)
- Monika Kofroňová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 2, 128 44 Prague, Czech Republic (A.H.); (H.L.)
| | - Aneta Hrdinová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 2, 128 44 Prague, Czech Republic (A.H.); (H.L.)
| | - Petra Mašková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 2, 128 44 Prague, Czech Republic (A.H.); (H.L.)
| | - Jana Tremlová
- Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Science, Prague 6, Kamýcká, 961/129 Suchdol, Czech Republic;
| | - Petr Soudek
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová, 313 Prague 6-Lysolaje, Czech Republic; (P.S.); (Š.P.)
| | - Šárka Petrová
- Laboratory of Plant Biotechnologies, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová, 313 Prague 6-Lysolaje, Czech Republic; (P.S.); (Š.P.)
| | - Dominik Pinkas
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 2, 128 44 Prague, Czech Republic;
| | - Helena Lipavská
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 2, 128 44 Prague, Czech Republic (A.H.); (H.L.)
| |
Collapse
|
6
|
Wang Z, Gui H, Luo Z, Zhen Z, Yan C, Xing B. Dissolved organic phosphorus enhances arsenate bioaccumulation and biotransformation in Microcystis aeruginosa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:1755-1763. [PMID: 31295694 DOI: 10.1016/j.envpol.2019.06.126] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/29/2019] [Accepted: 06/29/2019] [Indexed: 06/09/2023]
Abstract
Only limited information is available on the effects of dissolved organic phosphorus (DOP) on arsenate (As(V)) bioaccumulation and biotransformation in organisms. In this study, we examined the influence of three different DOP forms (β-sodium glycerophosphate (βP), adenosine 5'-triphosphate (ATP), and D-Glucose-6-phosphate disodium (GP) salts) and inorganic phosphate (IP) on As(V) toxicity, accumulation, and biotransformation in Microcystis aeruginosa. Results showed that M. aeruginosa utilized the three DOP forms to sustain its growth. At a subcellular level, the higher phosphorus (P) distribution in metal-sensitive fractions (MSF) observed in the IP treatments could explain the comparatively lower toxic stress of algae compared to the DOP treatments. Meanwhile, the higher MSF distribution of arsenic (As) in M. aeruginosa in the presence of DOP could explain the higher toxicity with lower 96-h half maximal effective concentration (EC50) values. Although we observed As(V) and P discrimination in M. aeruginosa under IP treatments with high intracellular P/As, we did not find this discrimination under the DOP treatments. As accumulation in algal cells was therefore greatly enhanced by DOP, especially βP, given its lower transformation rate to phosphate compared to ATP and GP in media. Additionally, As(V) reduction and, subsequently, As(III) methylation were greatly facilitated in M. aeruginosa by the presence of DOP, particularly GP, which was confirmed by the higher relative expression of its two functional genes (arsC and arsM). Our findings indicate that As(V) accumulation and its subsequent biotransformation were enhanced by organic P forms, which provides new insight into how DOP modulates As metabolism in algae.
Collapse
Affiliation(s)
- Zhenhong Wang
- College of Chemistry and Environment, Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China; National Engineering Research Center of Coal Mine Water Hazard Controlling (Suzhou University), Suzhou, Anhui, 234000, China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA.
| | - Herong Gui
- National Engineering Research Center of Coal Mine Water Hazard Controlling (Suzhou University), Suzhou, Anhui, 234000, China
| | - Zhuanxi Luo
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA.
| | - Zhuo Zhen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Changzhou Yan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
7
|
Kofroňová M, Mašková P, Lipavská H. Two facets of world arsenic problem solution: crop poisoning restriction and enforcement of phytoremediation. PLANTA 2018; 248:19-35. [PMID: 29736625 DOI: 10.1007/s00425-018-2906-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 04/27/2018] [Indexed: 06/08/2023]
Abstract
This review provides insights into As toxicity in plants with focus on photosynthesis and sugar metabolism as important arsenic targets and simultaneously defence tools against accompanying oxidative stress. Heavy metal contamination is a great problem all over the world. Arsenic, a metalloid occurring naturally in the Earth's crust, also massively spreads out in the environment by human activities. Its accumulation in crops poses a severe health risk to humans and animals. Besides the restriction of human-caused contamination, there are two basic ways how to cope with the problem: first, to limit arsenic accumulation in harvestable parts of the crops; second, to make use of some arsenic hyperaccumulating plants for phytoremediation of contaminated soils and waters. Progress in the use of both strategies depends strongly on the level of our knowledge on the physiological and morphological processes resulting from arsenic exposure. Arsenic uptake is mediated preferentially by P and Si transporters and its accumulation substantially impairs plant metabolism at numerous levels including damages through oxidative stress. Rice is a predominantly studied crop where substantial progress has been made in understanding of the mechanisms of arsenic uptake, distribution, and detoxification, though many questions still remain. Full exploitation of plant potential for soil and water phytoremediations also requires deep understanding of the plant response to this toxic metalloid. The aim of this review is to summarize data regarding the effect of arsenic on plant physiology with a focus on mechanisms providing increased arsenic tolerance and/or hyperaccumulation. The emphasis is placed on the topic unjustifiably neglected in the previous reviews - i.e., carbohydrate metabolism, tightly connected to photosynthesis, and beside others involved in plant ability to cope with arsenic-induced oxidative and nitrosative stresses.
Collapse
Affiliation(s)
- Monika Kofroňová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 43, Prague 2, Czech Republic
| | - Petra Mašková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 43, Prague 2, Czech Republic.
| | - Helena Lipavská
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 43, Prague 2, Czech Republic
| |
Collapse
|
8
|
Anawar HM, Rengel Z, Damon P, Tibbett M. Arsenic-phosphorus interactions in the soil-plant-microbe system: Dynamics of uptake, suppression and toxicity to plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 233:1003-1012. [PMID: 29033177 DOI: 10.1016/j.envpol.2017.09.098] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 08/02/2017] [Accepted: 09/29/2017] [Indexed: 05/13/2023]
Abstract
High arsenic (As) concentrations in the soil, water and plant systems can pose a direct health risk to humans and ecosystems. Phosphate (Pi) ions strongly influence As availability in soil, its uptake and toxicity to plants. Better understanding of As(V)-Pi interactions in soils and plants will facilitate a potential remediation strategy for As contaminated soils, reducing As uptake by crop plants and toxicity to human populations via manipulation of soil Pi content. However, the As(V)-Pi interactions in soil-plant systems are complex, leading to contradictory findings among different studies. Therefore, this review investigates the role of soil type, soil properties, minerals, Pi levels in soil and plant, Pi transporters, mycorrhizal association and microbial activities on As-Pi interactions in soils and hydroponics, and uptake by plants, elucidate the key mechanisms, identify key knowledge gaps and recommend new research directions. Although Pi suppresses As uptake by plants in hydroponic systems, in soils it could either increase or decrease As availability and toxicity to plants depending on the soil types, properties and charge characteristics. In soil, As(V) availability is typically increased by the addition of Pi. At the root surface, the Pi transport system has high affinity for Pi over As(V). However, Pi concentration in plant influences the As transport from roots to shoots. Mycorrhizal association may reduce As uptake via a physiological shift to the mycorrhizal uptake pathway, which has a greater affinity for Pi over As(V) than the root epidermal uptake pathway.
Collapse
Affiliation(s)
- Hossain M Anawar
- School of Earth and Environment (M087), The University of Western Australia, Crawley, WA 6009, Australia.
| | - Zed Rengel
- School of Earth and Environment (M087), The University of Western Australia, Crawley, WA 6009, Australia
| | - Paul Damon
- School of Earth and Environment (M087), The University of Western Australia, Crawley, WA 6009, Australia
| | - Mark Tibbett
- Centre for Agri-Environmental Research & Soil Research Centre, School of Agriculture, Policy and Development, University of Reading, RG6 6AR Reading, UK
| |
Collapse
|
9
|
Azeem W, Ashraf M, Shahzad SM, Imtiaz M, Akhtar M, Rizwan MS. Phosphate-arsenate relations to affect arsenic concentration in plant tissues, growth, and antioxidant efficiency of sunflower (Helianthus annuus L.) under arsenic stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:24376-24386. [PMID: 0 DOI: 10.1007/s11356-017-9977-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 08/21/2017] [Indexed: 05/26/2023]
|
10
|
Wang Z, Luo Z, Yan C, Xing B. Impacts of environmental factors on arsenate biotransformation and release in Microcystis aeruginosa using the Taguchi experimental design approach. WATER RESEARCH 2017; 118:167-176. [PMID: 28431349 DOI: 10.1016/j.watres.2017.04.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/22/2017] [Accepted: 04/09/2017] [Indexed: 06/07/2023]
Abstract
Very limited information is available on how and to what extent environmental factors influence arsenic (As) biotransformation and release in freshwater algae. These factors include concentrations of arsenate (As(V)), dissolved inorganic nitrogen (N), phosphate (P), and ambient pH. This study conducted a series of experiments using Taguchi methods to determine optimum conditions for As biotransformation. We assessed principal effective factors of As(V), N, P, and pH and determined that As biotransformation and release actuate at 10.0 μM As(V) in dead alga cells, the As efflux ratio and organic As efflux content actuate at 1.0 mg/L P, algal growth and intracellular arsenite (As(III)) content actuate at 10.0 mg/L N, and the total sum of As(III) efflux from dead alga cells actuates at a pH level of 10. Moreover, N is the critical component for As(V) biotransformation in M. aeruginosa, specifically for As(III) transformation, because N can accelerate algal growth, subsequently improving As(III) accumulation and its efflux, which results in an As(V) to As(III) reduction. Furthermore, low P concentrations in combination with high N concentrations promote As accumulation. Following As(V), P was the primary impacting factor for As accumulation. In addition, small amounts of As accumulation under low concentrations of As and high P were securely stored in living algal cells and were easily released after cell death. Results from this study will help to assess practical applications and the overall control of key environmental factors, particularly those associated with algal bioremediation in As polluted water.
Collapse
Affiliation(s)
- Zhenhong Wang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; School of Chemistry and Environment, Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou, 363000, China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, United States
| | - Zhuanxi Luo
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, United States
| | - Changzhou Yan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, United States
| |
Collapse
|
11
|
Vromman D, Martínez JP, Lutts S. Phosphorus deficiency modifies As translocation in the halophyte plant species Atriplex atacamensis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 139:344-351. [PMID: 28187398 DOI: 10.1016/j.ecoenv.2017.01.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 01/25/2017] [Accepted: 01/27/2017] [Indexed: 06/06/2023]
Abstract
Most arsenic in surface soil and water exists primarily in its oxidized form, as arsenate (As(V); AsO43-), which is an analog of phosphate (PO43-). Arsenate can be taken up by phosphate transporters. Atriplex atacamensis Phil. is native to northern Chile (Atacama Desert), and this species can cope with high As concentrations and low P availability in its natural environment. To determine the impact of P on As accumulation and tolerance in A. atacamensis, the plants were cultivated in a hydroponic system under four treatments: no As(V) addition with 323µM phosphate (control); 1000µM As(V) addition with 323µM phosphate; no As(V) and no phosphate; 1000µM As(V) addition and no phosphate. Phosphate starvation decreased shoot fresh weight, while As(V) addition reduced stem and root fresh weights. Arsenate addition decreased the P concentrations in both roots and leaves, but to a lesser extent than for P starvation. Phosphorus starvation increased the As concentrations in roots, but decreased it in shoots, which suggests that P deficiency reduced As translocation from roots to shoots. Arsenate addition increased total glutathione, but P deficiency decreased oxidized and reduced glutathione in As(V)-treated plants. Arsenate also induced an increase in S accumulation and nonprotein thiol and ethylene synthesis, and a decrease in K concentrations, effects that were similar for the P-supplied and P-starved plants. In contrast, in As(V)-treated plants, P starvation dramatically decreased total soluble protein content and increased lipid peroxidation, compared to plants supplied with P. Phosphorus nutrition thus appears to be an important component of A. atacamensis response to As toxicity.
Collapse
Affiliation(s)
- Delphine Vromman
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute - Agronomy (ELI-A), Université Catholique de Louvain, 5 (Bte 7.07.13) Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium
| | - Juan-Pablo Martínez
- Instituto de Investigaciones Agropecuarias (INIA - La Cruz), Chorillos no. 86, La Cruz, Chile
| | - Stanley Lutts
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute - Agronomy (ELI-A), Université Catholique de Louvain, 5 (Bte 7.07.13) Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
12
|
Yin X, Wang L, Zhang Z, Fan G, Liu J, Sun K, Sun GX. Biomethylation and Volatilization of Arsenic by Model Protozoan Tetrahymena pyriformis under Different Phosphate Regimes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:E188. [PMID: 28216593 PMCID: PMC5334742 DOI: 10.3390/ijerph14020188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 11/16/2022]
Abstract
Tetrahymena pyriformis, a freshwater protozoan, is common in aquatic systems. Arsenic detoxification through biotransformation by T. pyriformis is important but poorly understood. Arsenic metabolic pathways (including cellular accumulation, effluxion, biomethylation, and volatilization) of T. pyriformis were investigated at various phosphate concentrations. The total intracellular As concentration increased markedly as the external phosphate concentration decreased. The highest concentration was 168.8 mg·kg-1 dry weight, after exposure to As(V) for 20 h. Inorganic As was dominant at low phosphate concentrations (3, 6, and 15 mg·L-1), but the concentration was much lower at 30 mg·L-1 phosphate, and As(V) contributed only ~7% of total cellular As. Methylated As contributed 84% of total As at 30 mg·L-1 phosphate, and dimethylarsenate (DMAs(V)) was dominant, contributing up to 48% of total As. Cellular As effluxion was detected, including inorganic As(III), methylarsenate (MAs(V)) and DMAs(V). Volatile As was determined at various phosphate concentrations in the medium. All methylated As concentrations (intracellular, extracellular, and volatilized) had significant linear positive relationships with the initial phosphate concentration. To the best of our knowledge, this is the first study of As biotransformation by protozoa at different phosphate concentrations.
Collapse
Affiliation(s)
- Xixiang Yin
- Jinan Research Academy of Environmental Sciences, Jinan 250014, China.
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Lihong Wang
- Shandong Analysis and Test Center, Shandong Academy of Sciences, Jinan 250014, China.
| | - Zhanchao Zhang
- Jinan Research Academy of Environmental Sciences, Jinan 250014, China.
| | - Guolan Fan
- Jinan Research Academy of Environmental Sciences, Jinan 250014, China.
| | - Jianjun Liu
- Jinan Research Academy of Environmental Sciences, Jinan 250014, China.
| | - Kaizhen Sun
- Jinan Research Academy of Environmental Sciences, Jinan 250014, China.
| | - Guo-Xin Sun
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
13
|
Pita-Barbosa A, Gonçalves EC, Azevedo AA. Morpho-anatomical and growth alterations induced by arsenic in Cajanus cajan (L.) DC (Fabaceae). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:11265-11274. [PMID: 25797017 DOI: 10.1007/s11356-015-4342-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 03/09/2015] [Indexed: 06/04/2023]
Abstract
Arsenic (As) is a toxic element to most organisms. Studies investigating anatomic alterations due to As exposure in plants are scarce but of utmost importance to the establishment of environmental biomonitoring techniques. So, this study aimed to investigate the effects of As on the development and initial root growth in Cajanus cajan (Fabaceae), characterize and quantify the possible damages, evaluate genotoxic effects, and identify structural markers to be used in environmental bioindication. Plants were exposed hydroponically to 0.5, 1.0, 1.5, and 2.0 mg As L(-1), as sodium arsenate. Growth parameters were measured, and in the end of the exposure, root samples were analyzed for qualitative and quantitative anatomical alterations. Arsenic genotoxicity was evaluated through analysis of the mitotic index in the root apex. Compared to the control, As-treated seedlings showed an altered architecture, with significantly decreased root length (due to the lower mitotic index in the apical meristem and reduced elongation of parenchyma cells) with darkened color, and abnormal development of the root cap. A significant increase in vascular cylinder/root diameter ratio was also detected, due to the reduction of the cellular spaces in the cortex. The secondary xylem vessel elements were reduced in diameter and had sinuous walls. The severest damage was visible in the ramification zone, where uncommon division planes of phellogen and cambium cells and disintegration of the parenchyma cells adjacent to lateral roots were observed. The high sensibility of C. cajan to As was confirmed, since it caused severe damages in root growth and anatomy. The main structural markers for As toxicity were the altered root architecture, with the reduction of the elongation zone and increase of ramification zone length, and the root primordia retained within the cortex. Our results show a new approach about As toxicity and indicate that C. cajan is a promising species to be used for bioindication of environmental contamination by As.
Collapse
Affiliation(s)
- Alice Pita-Barbosa
- Department of Plant Biology, Federal University of Viçosa, Viçosa, MG, 36570-000, Brazil
| | | | | |
Collapse
|
14
|
Grifoni M, Schiavon M, Pezzarossa B, Petruzzelli G, Malagoli M. Effects of phosphate and thiosulphate on arsenic accumulation in the species Brassica juncea. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:2423-2433. [PMID: 24677062 DOI: 10.1007/s11356-014-2811-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/17/2014] [Indexed: 06/03/2023]
Abstract
Arsenic (As) is recognized as a toxic pollutant in soils of many countries. Since phosphorus (P) and sulphur (S) can influence arsenic mobility and bioavailability, as well as the plant tolerance to As, phytoremediation techniques employed to clean-up As-contaminated areas should consider the interaction between As and these two nutrients. In this study, the bioavailability and accumulation of arsenate in the species Brassica juncea were compared between soil system and hydroponics in relation to P and S concentration of the growth substrate. In one case, plants were grown in pots filled with soil containing 878 mg As kg(-1). The addition of P to soil resulted in increased As desorption and significantly higher As accumulation in plants, with no effect on growth. The absence of toxic effects on plants was likely due to high S in soil, which could efficiently mitigate metal toxicity. In the hydroponic experiment, plants were grown with different combinations of As (0 or 100 μM) and P (56 or 112 μM). S at 400 μM was also added to the nutrient solution of control (-As) and As-treated plants, either individually or in combination with P. The addition of P reduced As uptake by plants, while high S resulted in higher As accumulation and lower P content. These results suggest that S can influence the interaction between P and As for the uptake by plants. The combined increase of P and S in the nutrient solution did not lead to higher accumulation of As, but enhanced As translocation from the root to the shoot. This aspect is of relevance for the phytoremediation of As-contaminated sites.
Collapse
Affiliation(s)
- Martina Grifoni
- Department of Agronomy, Food, Natural resources, Animal and Environment, University of Padova, Agripolis-Viale dell'Università, 16, 35020, Legnaro, PD, Italy
| | | | | | | | | |
Collapse
|
15
|
Zvobgo G, Hu H, Shang S, Shamsi IH, Zhang G. The effects of phosphate on arsenic uptake and toxicity alleviation in tobacco genotypes with differing arsenic tolerances. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:45-52. [PMID: 25319205 DOI: 10.1002/etc.2776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/11/2014] [Accepted: 09/15/2014] [Indexed: 05/04/2023]
Abstract
Phosphate (PO4 (3-) ) has been reported to suppress arsenate (As(v) ) uptake in plants. However, its effects on controlling the availability of As(v) in tobacco genotypes with different arsenic (As) tolerances has not been fully explored. In the present study, the effects of PO4 (3-) on As(v) uptake were investigated in a hydroponic culture using 2 tobacco (Nicotiana tabacum) genotypes (ZY90 and FSMY) that differed in As(v) tolerance. A total of 9 treatment combinations comprising As(v) treatments of 0 µM, 10 µM, and 100 µM and PO4 (3-) treatments of 0 µM, 50 µM, and 500 µM were used. The results showed that ZY90 had greater reductions in leaf photosynthetic parameters, root and shoot dry weight, length, and nutrient content than did FSMY when exposed to As(v) stress. The addition of 500 µM external PO4 (3-) significantly suppressed As(v) (100 µM) uptake in both FSMY and ZY90, with the effect being more pronounced in FSMY. Greater PO4 (3-) uptake in plants significantly reduced the influx of As(v) , causing an increase in photosynthesis and nutrient uptake. Phosphate supply increased superoxide dismutase activity, catalase activity, and malondialdehyde content. The present study showed that PO4 (3-) is an effective competitive inhibitor of As(v) , and it can be effectively used to control As(v) accumulation in tobacco plants.
Collapse
Affiliation(s)
- Gerald Zvobgo
- Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | | | | | | | | |
Collapse
|
16
|
Wang Z, Luo Z, Yan C, Che F, Yan Y. Arsenic uptake and depuration kinetics in Microcystis aeruginosa under different phosphate regimes. JOURNAL OF HAZARDOUS MATERIALS 2014; 276:393-399. [PMID: 24922097 DOI: 10.1016/j.jhazmat.2014.05.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/12/2014] [Accepted: 05/15/2014] [Indexed: 06/03/2023]
Abstract
Strategies used by Microcystis aeruginosa, bloom-forming cyanobacteria, for potential inorganic arsenic (arsenate and arsenite) uptake, and depuration kinetics under phosphate-enriched (+P) and depleted (-P) treatments were examined via short- and long-term experiments. Phosphate depletion improved arsenate or arsenite uptake rate constants. M. aeruginosa arsenite influx occurred considerably faster than arsenate influx under +P or -P treatments. Different phosphate regimes yielded significant impacts on long-term but not on short-term arsenic (As) uptake. In addition, considerable differences were observed in short-term As efflux between live and dead cells after arsenate or arsenite pre-exposure. Arsenic depuration rates in live M. aeruginosa cells were affected not only by accumulation rates of different As inorganic species but also by phosphate concentrations in tested media, which was inferred from estimated kinetic parameters. Specifically, +P was clearly found to inhibit As efflux after live M. aeruginosa cells were pre-exposed to As(V). Efflux was higher for dead cells no matter the inorganic As species involved. Owing to higher As uptake and depuration rates under -P treatments, P deficiency will considerably accelerate As uptake and efflux processes in aquatic environments.
Collapse
Affiliation(s)
- Zhenhong Wang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Chemistry and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Zhuanxi Luo
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Changzhou Yan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Feifei Che
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yameng Yan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|