1
|
Souza-Leal BD, Martins MDF, Hernandes JC, Costa PG, Bianchini A. Tissue bioaccumulation and distribution of organic contaminants in Brazilian guitarfish Pseudobatos horkelii reveal a concerning impact of contraceptive hormones and fecal sterols. MARINE POLLUTION BULLETIN 2025; 212:117582. [PMID: 39855061 DOI: 10.1016/j.marpolbul.2025.117582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
The critically endangered Brazilian guitarfish faces significant threats from environmental contamination. Assessing the impacts of such stressor is paramount from a conservational perspective. This study investigated the concentrations, distribution and accumulation patterns of organic contaminants in pregnant Brazilian guitarfish Pseudobatos horkelii. Blood, gill, gonad, liver, and muscle concentrations of polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polybrominated diphenyl ethers, fecal sterols, and synthetic hormones used as human contraceptives were assessed. Synthetic hormones, especially D-norgestrel, showed the highest concentrations, mainly in the liver. Together with the results of fecal sterols, this finding suggests that guitarfish are exposed to sewage discharge. OCPs, especially hexachlorobenzene, mirex, endosulfans, and drins, showed considerably high concentrations, indicating the relevance of agricultural inputs. PCBs presented significant concentrations in the muscle, indicating long-term exposure, in contrast with other analytes that were primarily concentrated in the liver. These results have conservational implications, since contaminants analyzed herein have endocrine disruptive effects.
Collapse
Affiliation(s)
- Brenda de Souza-Leal
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | | | | | - Patrícia Gomes Costa
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Adalto Bianchini
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil.
| |
Collapse
|
2
|
Ohoro CR, Amaku JF, Conradie J, Olisah C, Akpomie KG, Malloum A, Akpotu SO, Adegoke KA, Okeke ES, Omotola EO. Effect of physicochemical parameters on the occurrence of per- and polyfluoroalkyl substances (PFAS) in aquatic environment. MARINE POLLUTION BULLETIN 2024; 208:117040. [PMID: 39366060 DOI: 10.1016/j.marpolbul.2024.117040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/13/2024] [Accepted: 09/21/2024] [Indexed: 10/06/2024]
Abstract
Perfluoroalkyl substances (PFAS) and their distribution in aquatic environments have been studied extensively, but more information is needed to link these occurrences to their physicochemical characteristics. Understanding how these parameters influence PFAS can help predict their fate, mobility, and occurrences in water. This study reviewed the influence of physicochemical parameters on the occurrences of PFAS in aquatic environment using the relevant keywords to retrieve articles from databases spanning mostly between 2017 and 2024. The result suggests that high pH, turbidity, and dissolved oxygen, give high concentration of PFAS, while high electrical conductivity, temperature and salinity give low PFAS concentration in the water. Therefore, monitoring and safeguarding the aquatic bodies for human and environmental safety is imperative. Future studies should include the effects of the physicochemical properties on PFAS occurrences in the natural environment and focus on an organism's distinctive characteristics to comprehend the bioaccumulation and biomagnification of PFAS in them and environmental matrices.
Collapse
Affiliation(s)
- Chinemerem Ruth Ohoro
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11 Hoffman St, Potchefstroom 2520, South Africa.
| | - James F Amaku
- Department of Chemistry, Michael Okpara University of Agriculture, Umudike, Nigeria; Environmental Fate of Chemicals and Remediation Laboratory, Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, Gauteng, South Africa
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, Bloemfontein 9300, South Africa
| | - Chijioke Olisah
- Institute for Coastal and Marine Research (CMR), Nelson Mandela University, P.O. Box 77000, Gqeberha 6031, South Africa; Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 5/753, 625 00 Brno, Czech Republic
| | - Kovo G Akpomie
- Department of Chemistry, University of the Free State, Bloemfontein 9300, South Africa; Department of Pure & Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| | - Alhadji Malloum
- Department of Chemistry, University of the Free State, Bloemfontein 9300, South Africa; Department of Physics, Faculty of Science, University of Maroua, Maroua, Cameroon
| | - Samson O Akpotu
- Department of Biotechnology and Chemistry, Vaal University of Technology, Vanderbijlpark 1911, South Africa
| | - Kayode A Adegoke
- Department of Industrial Chemistry, First Technical University, Ibadan, Nigeria
| | - Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State, Nigeria; Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Elizabeth O Omotola
- Department of Chemical Sciences, Tai Solarin University of Education, Ijebu Ode PMB 2118, Ogun State, Nigeria
| |
Collapse
|
3
|
EFSA Panel name on Contaminants in the Food Chain (CONTAM), Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Wallace H, Falandysz J, Hart A, Rose M, Anastassiadou M, Eskes C, Gergelova P, Innocenti M, Rovesti E, Whitty B, Nielsen E. Risks for animal and human health related to the presence of polychlorinated naphthalenes (PCNs) in feed and food. EFSA J 2024; 22:e8640. [PMID: 38476320 PMCID: PMC10928787 DOI: 10.2903/j.efsa.2024.8640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024] Open
Abstract
EFSA was asked for a scientific opinion on the risks for animal and human health related to the presence of polychlorinated naphthalenes (PCNs) in feed and food. The assessment focused on hexaCNs due to very limited data on other PCN congeners. For hexaCNs in feed, 217 analytical results were used to estimate dietary exposures for food-producing and non-food-producing animals; however, a risk characterisation could not be performed because none of the toxicological studies allowed identification of reference points. The oral repeated dose toxicity studies performed in rats with a hexaCN mixture containing all 10 hexaCNs indicated that the critical target was the haematological system. A BMDL20 of 0.05 mg/kg body weight (bw) per day was identified for a considerable decrease in the platelet count. For hexaCNs in food, 2317 analytical results were used to estimate dietary exposures across dietary surveys and age groups. The highest exposure ranged from 0.91 to 29.8 pg/kg bw per day in general population and from 220 to 559 pg/kg bw per day for breast-fed infants with the highest consumption of breast milk. Applying a margin of exposure (MOE) approach, the estimated MOEs for the high dietary exposures ranged from 1,700,000 to 55,000,000 for the general population and from 90,000 to 230,000 for breast-fed infants with the highest consumption of breast milk. These MOEs are far above the minimum MOE of 2000 that does not raise a health concern. Taking account of the uncertainties affecting the assessment, the Panel concluded with at least 99% certainty that dietary exposure to hexaCNs does not raise a health concern for any of the population groups considered. Due to major limitations in the available data, no assessment was possible for genotoxic effects or for health risks of PCNs other than hexaCNs.
Collapse
|
4
|
Matson PG, Stevenson LM, Efroymson RA, Jett RT, Jones MW, Peterson MJ, Mathews TJ. Variation in natural attenuation rates of polychlorinated biphenyls (PCBs) in fish from streams and reservoirs in East Tennessee observed over a 35-year period. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129427. [PMID: 35797787 DOI: 10.1016/j.jhazmat.2022.129427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/14/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Environmental contamination due to human activities is a major concern, particularly for persistent chemicals. Within catchments, persistent chemicals linked to negative health outcomes such as polychlorinated biphenyls (PCBs) have great potential to be transported, through adsorption or biological uptake, with downstream locations acting as sinks for accumulation. Here we present long-term trends in PCB bioaccumulation in fish found in lower-order tributaries on the Oak Ridge Reservation, an impacted US Department of Energy property in East Tennessee, USA, and a large reservoir system adjacent to it composed of parts of the Clinch and Tennessee Rivers. Given that the reservoir system has experienced no direct PCB mitigation activities, this record offers an opportunity to explore potential natural attenuation of PCBs within a large lotic ecosystem. Attenuation rates ranged from 0% to 8% yr-1 in minnows and sunfish at stream sites and 5.4-11.3% yr-1 in catfish at reservoir sites. These rates are comparable to findings from similar studies in other regions, suggesting a consistency in responses since the banning of PCB production in 1979. Further, results suggest that PCB sources from discharge outfalls are important locally but are not primarily responsible for sustaining PCB contamination in downstream reservoirs.
Collapse
Affiliation(s)
- Paul G Matson
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Louise M Stevenson
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Rebecca A Efroymson
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - R Trent Jett
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Michael W Jones
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Mark J Peterson
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Teresa J Mathews
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
5
|
Nilén G, Obamwonyi OS, Liem-Nguyen V, Engwall M, Larsson M, Keiter SH. Observed and predicted embryotoxic and teratogenic effects of organic and inorganic environmental pollutants and their mixtures in zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 248:106175. [PMID: 35523058 DOI: 10.1016/j.aquatox.2022.106175] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Risk assessment of chemicals is still primarily focusing on single compound evaluation, even if environmental contamination consists of a mixture of pollutants. The concentration addition (CA) and independent action (IA) models have been developed to predict mixture toxicity. Both models assume no interaction between the components, resulting in an additive mixture effect. In the present study, the embryo toxicity test (OECD TG no. 236) with zebrafish embryos (Danio rerio) was performed to investigate whether the toxicity caused by binary, ternary, and quaternary mixtures of organic (Benzo[a]pyrene, perfluorooctanesulfonate, and 3,3´,4,4´,5-pentachlorobiphenyl 126) and inorganic (arsenate) pollutants can be predicted by CA and IA. The acute toxicity and sub-lethal alterations such as lack of blood circulation were investigated. The models estimated the mixture toxicity well and most of the mixtures were additive. However, the binary mixture of PFOS and PCB126 caused a synergistic effect, with almost a ten-fold difference between the observed and predicted LC50-value. For most of the mixtures, the CA model was better in predicting the mixture toxicity than the IA model, which was not expected due to the chemicals' different modes of action. In addition, some of the mixtures caused sub-lethal effects not observed in the single compound toxicity tests. The mixture of PFOS and BaP caused a division of the yolk and imbalance was caused by the combination of PFOS and As and the ternary mixture of PFOS, As, and BaP. Interestingly, PFOS was part of all three mixtures causing the mixture specific sub-lethal effects. In conclusion, the present study shows that CA and IA are mostly resulting in good estimations of the risks that mixtures with few components are posing. However, for a more reliable assessment and a better understanding of mixture toxicity, further investigations are required to study the underlying mechanisms.
Collapse
Affiliation(s)
- Greta Nilén
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden.
| | - Osagie S Obamwonyi
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden; University of Duisburg-Essen, Forsthausweg 2, 47057 Duisburg, Germany
| | - Van Liem-Nguyen
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| | - Magnus Engwall
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| | - Maria Larsson
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| | - Steffen H Keiter
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| |
Collapse
|
6
|
Bangma J, Guillette TC, Bommarito PA, Ng C, Reiner JL, Lindstrom AB, Strynar MJ. Understanding the dynamics of physiological changes, protein expression, and PFAS in wildlife. ENVIRONMENT INTERNATIONAL 2022; 159:107037. [PMID: 34896671 PMCID: PMC8802192 DOI: 10.1016/j.envint.2021.107037] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 05/06/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) accumulation and elimination in both wildlife and humans is largely attributed to PFAS interactions with proteins, including but not limited to organic anion transporters (OATs), fatty acid binding proteins (FABPs), and serum proteins such as albumin. In wildlife, changes in the biotic and abiotic environment (e.g. salinity, temperature, reproductive stage, and health status) often lead to dynamic and responsive physiological changes that alter the prevalence and location of many proteins, including PFAS-related proteins. Therefore, we hypothesize that if key PFAS-related proteins are impacted as a result of environmentally induced as well as biologically programmed physiological changes (e.g. reproduction), then PFAS that associate with those proteins will also be impacted. Changes in tissue distribution across tissues of PFAS due to these dynamics may have implications for wildlife studies where these chemicals are measured in biological matrices (e.g., serum, feathers, eggs). For example, failure to account for factors contributing to PFAS variability in a tissue may result in exposure misclassification as measured concentrations may not reflect average exposure levels. The goal of this review is to share general information with the PFAS research community on what biotic and abiotic changes might be important to consider when designing and interpreting a biomonitoring or an ecotoxicity based wildlife study. This review will also draw on parallels from the epidemiological discipline to improve study design in wildlife research. Overall, understanding these connections between biotic and abiotic environments, dynamic protein levels, PFAS levels measured in wildlife, and epidemiology serves to strengthen study design and study interpretation and thus strengthen conclusions derived from wildlife studies for years to come.
Collapse
Affiliation(s)
| | - T C Guillette
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Paige A Bommarito
- Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, Research Triangle Park, NC, USA
| | - Carla Ng
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jessica L Reiner
- Chemical Sciences Division, National Institute of Standards and Technology, 331 Fort Johnson Rd, Charleston, SC, USA
| | - Andrew B Lindstrom
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, 109 T.W. Alexander Drive, Research Triangle Park, NC, USA
| | - Mark J Strynar
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, 109 T.W. Alexander Drive, Research Triangle Park, NC, USA
| |
Collapse
|
7
|
Tam N, Lai KP, Kong RYC. Comparative transcriptomic analysis reveals reproductive impairments caused by PCBs and OH-PCBs through the dysregulation of ER and AR signaling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149913. [PMID: 34474298 DOI: 10.1016/j.scitotenv.2021.149913] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
Reports have highlighted the presence of PCBs and their metabolites, OH-PCBs, in human serum as well as their endocrine-disrupting effects on reproductive function through direct interactions with the androgen receptor (AR) and estrogen receptor (ER). However, the molecular mechanisms directly linking the actions of PCBs and OH-PCBs on the AR and ER to induce reproductive impairment remain poorly understood. In this study, we characterized the cellular response to PCBs and OH-PCBs acting on AR and ER transactivation at the transcriptome level coupled with bioinformatics analysis to identify the downstream pathways of androgen and estrogen signaling that leads to reproductive dysfunction. We first confirmed the agonistic and antagonistic effects of several PCBs and OH-PCBs on AR- and ER-mediated reporter gene activity using the androgen-responsive LNCaP and estrogen-responsive MCF-7 cell lines, respectively. Anti-estrogenic activity was not detected among the tested compounds; however, we found that in addition to anti-androgenic and estrogenic activity, PCB 28 and PCB 138 exhibited androgenic activity, while most of the tested OH-PCBs showed a synergistic effect on DHT-mediated transactivation of the AR. Bioinformatics analysis of transcriptome profiles from selected PCBs and OH-PCBs revealed various pathways that were dysregulated depending on their agonistic, antagonistic, or synergistic effects. The OH-PCBs with estrogenic activity affected pathways including vitamin metabolism and calcium transport. Other notable dysregulated pathways include cholesterol transport in response to androgenic PCBs, thyroid hormone metabolism in response to anti-androgenic PCBs, and antioxidant pathways in response to androgen-synergistic OH-PCBs. Our results demonstrate that PCBs and OH-PCBs directly alter specific pathways through androgen- or estrogen-mediated signaling, thereby providing additional insights into the mechanisms by which these compounds cause reproductive dysfunction.
Collapse
Affiliation(s)
- Nathan Tam
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Keng Po Lai
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, PR China; Department of Chemistry, City University of Hong Kong, Hong Kong, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China.
| | - Richard Yuen Chong Kong
- Department of Chemistry, City University of Hong Kong, Hong Kong, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
8
|
Recabarren-Villalón T, Ronda AC, Oliva AL, Cazorla AL, Marcovecchio JE, Arias AH. Seasonal distribution pattern and bioaccumulation of Polycyclic aromatic hydrocarbons (PAHs) in four bioindicator coastal fishes of Argentina. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118125. [PMID: 34536644 DOI: 10.1016/j.envpol.2021.118125] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are pollutants of global concern in coastal environments. They have a wide range of biological toxicity and due to their inherent properties, can easily bioaccumulate in organisms and concentrate in the environment. This work evaluated, in an integrated way, the seasonal PAH distribution patterns in sediments and four bioindicators fish species in a highly impacted estuary of Argentina; besides, their bioaccumulation patterns were assessed for the first time as indicator of ecological risk. The highest PAH levels in fish were found for Ramnogaster arcuata with an average of 64 ng g-1 w.w., followed by Micropogonias furnieri (45 ng g-1 w.w.), Cynoscion guatucupa (28 ng g-1 w.w.), and Mustelus schmitti (16 ng g-1 w.w.). Fish presented the highest PAH levels in fall with a predominance of petrogenic PAHs in colder seasons and pyrolytic PAHs in warmer seasons. Sediments presented an average of 233 ng g-1 d.w. with the same seasonal composition pattern of the fish tissues. Additionally, the data suggested that the main source of PAHs are wastewater discharges. The bioaccumulation factor (BAF) of PAHs in the tested fishes were found to range from 0.3 to 8. The highest values were observed during fall and winter, while bioaccumulation did not occur in moist spring and summer samples, which would suggest a high biotransformation process during these seasons. Results suggested that class III of juvenile C. guatucupa and M. furnieri, and adults R. arcuata are more sensitive bioindicators of chronic PAH contamination and that their bioaccumulation is independent of the compound hydrophobicity; this could have a positively influence on the criteria used for biological monitoring programs along the Atlantic coast. In addition, the presented BAF data on the target species will serve as a useful pollution indicator for South Atlantic coastal fish.
Collapse
Affiliation(s)
- Tatiana Recabarren-Villalón
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Camino La Carrindanga km 7.5, 8000, Bahía Blanca, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Ana C Ronda
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Camino La Carrindanga km 7.5, 8000, Bahía Blanca, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Av Alem 1253, 8000, Bahía Blanca, Argentina
| | - Ana L Oliva
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Camino La Carrindanga km 7.5, 8000, Bahía Blanca, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Andrea Lopez Cazorla
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Camino La Carrindanga km 7.5, 8000, Bahía Blanca, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Jorge E Marcovecchio
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Camino La Carrindanga km 7.5, 8000, Bahía Blanca, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Universidad de la Fraternidad de Agrupaciones Santo Tomás de Aquino, Gascón 3145, 7600, Mar del Plata, Argentina; Universidad Tecnológica Nacional-FRBB, 11 de Abril 445, 8000, Bahía Blanca, Argentina
| | - Andrés H Arias
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Camino La Carrindanga km 7.5, 8000, Bahía Blanca, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Departamento de Química, Área III, Universidad Nacional del Sur, Av Alem 1253, 8000, Bahía Blanca, Argentina
| |
Collapse
|
9
|
Fiorito F, Di Concilio D, Lambiase S, Amoroso MG, Langellotti AL, Martello A, Esposito M, Galiero G, Fusco G. Oyster Crassostrea gigas, a good model for correlating viral and chemical contamination in the marine environment. MARINE POLLUTION BULLETIN 2021; 172:112825. [PMID: 34388447 DOI: 10.1016/j.marpolbul.2021.112825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
To establish a relationship between viruses and chemicals, they were analysed in oyster Crassostrea gigas from an Italian experimental station. The chemicals concentrations were: Σ6 NDL-PCBs 0.82-7.12 ng g-1; BaP LOQ (<0.2 μg kg-1) to 1.2 μg kg-1; PAH4 LOQ (<0.2 μg kg-1) to 9.8 μg kg-1; Cd 0.073-0.365 mg kg-1; Pb 0.010-0.487 mg kg-1; and Hg < LOQ (0.089 mg kg-1). The viruses identified included: noroviruses (NoVGI/GII), astrovirus (AsV), rotavirus (RV), adenovirus (AdV), and sapovirus (SaV), while hepatitis A, hepatitis E, and Aichi viruses were not detected. Significant correlations were observed for NDL-PCBs with NoVGI, NoVGII, and AdV; BaP and PAH4 with NoVGI and AsV; Cd with RV; Pb with NoVGI and AsV; PAHs with Pb; AsV with NoVGI; and AdV with NoVGII. The study indicated as C. gigas is a model for correlating pollutants and foodborne viruses, whose co-presence may represent an additional food safety risk.
Collapse
Affiliation(s)
- Filomena Fiorito
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Università degli Studi di Napoli Federico II, Naples, Italy.
| | - Denise Di Concilio
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Naples, Italy
| | - Sara Lambiase
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Naples, Italy.
| | | | - Antonio L Langellotti
- Centro di Ateneo per l'Innovazione e lo Sviluppo dell'Industria Alimentare (CAISIAL), Università degli Studi di Napoli Federico II, Portici, Naples, Italy
| | - Anna Martello
- Centro di Ateneo per l'Innovazione e lo Sviluppo dell'Industria Alimentare (CAISIAL), Università degli Studi di Napoli Federico II, Portici, Naples, Italy
| | - Mauro Esposito
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Naples, Italy; Centro di Referenza Nazionale per l'Analisi e Studio di Correlazione tra Ambiente, Animale e Uomo, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Naples, Italy
| | - Giorgio Galiero
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Naples, Italy
| | - Giovanna Fusco
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Naples, Italy
| |
Collapse
|
10
|
Cerveny D, Fick J, Klaminder J, McCallum ES, Bertram MG, Castillo NA, Brodin T. Water temperature affects the biotransformation and accumulation of a psychoactive pharmaceutical and its metabolite in aquatic organisms. ENVIRONMENT INTERNATIONAL 2021; 155:106705. [PMID: 34139590 DOI: 10.1016/j.envint.2021.106705] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
Pharmaceutically active compounds (PhACs) have been shown to accumulate in aquatic and riparian food-webs. Yet, our understanding of how temperature, a key environmental factor in nature, affects uptake, biotransformation, and the subsequent accumulation of PhACs in aquatic organisms is limited. In this study, we tested to what extent bioconcentration of an anxiolytic drugs (temazepam and oxazepam) is affected by two temperature regimes (10 and 20 °C) and how the temperature affects the temazepam biotransformation and subsequent accumulation of its metabolite (oxazepam) in aquatic organisms. We used European perch (Perca fluviatilis) and dragonfly larvae (Sympetrum sp.), which represent predator and prey species of high ecological relevance in food chains of boreal and temperate aquatic ecosystems. Experimental organisms were exposed to target pharmaceuticals at a range of concentrations (0.2-6 µg L-1) to study concentration dependent differences in bioconcentration and biotransformation. We found that the bioconcentration of temazepam in perch was significantly reduced at higher temperatures. Also, temperature had a strong effect on temazepam biotransformation in the fish, with the production and subsequent accumulation of its metabolite (oxazepam) being two-fold higher at 20 °C compared to 10 °C. In contrast, we found no temperature dependency for temazepam bioconcentration in dragonfly larvae and no detectable biotransformation of the parent compound that would result in measurable concentrations of oxazepam in this organism. Our results highlight that while organisms may share the same aquatic ecosystem, their exposure to PhACs may change differently across temperature gradients in the environment.
Collapse
Affiliation(s)
- D Cerveny
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences (SLU), Umea, Sweden; University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, Vodnany, Czech Republic.
| | - J Fick
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - J Klaminder
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - E S McCallum
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences (SLU), Umea, Sweden
| | - M G Bertram
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences (SLU), Umea, Sweden
| | - N A Castillo
- Department of Earth and Environment, Institute of Environment, Florida International University, Miami, FL, USA
| | - T Brodin
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences (SLU), Umea, Sweden
| |
Collapse
|
11
|
Accolla C, Forbes VE. Temperature dependence of population responses to competition and metabolic stress: An agent-based model to inform ecological risk assessment in a changing climate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:144096. [PMID: 33360960 DOI: 10.1016/j.scitotenv.2020.144096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/16/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
Understanding the interactions among multiple stressors is a crucial issue for ecological risk assessment and ecosystem management. However, it is often impractical, or impossible, to collect empirical data concerning all the interactions at any scale because the type of interaction differs across species and levels of biological organization. We applied an agent-based model to simulate the effects of a hypothetical chemical stressor and inter-specific competition (both alone and together) on greenback cutthroat trout (GCT), a listed species under the US Endangered Species Act, in two temperature scenarios. The trout life cycle is modeled using the Dynamic Energy Budget theory. The chemical stressor is represented by a reduction in ingestion efficiency, and competition is implemented by introducing a population of brown trout. Results show that chemical exposure is the major stressor in the colder temperature scenario, whereas competition mostly affected the GCT population in the warmer environment. Moreover, the effects of the stressors at the individual level were not predictive of the type of interactions between stressors (additive, antagonistic, synergistic) at the population level, which differed between the two-temperature scenarios. We conclude that mechanistic models can help to identify generalities about interactions among environmental and stressor properties, create in-silico experiments to provide different scenarios for conservation purposes, and explore multiple-exposure consequences at higher levels of biological organization. In this way they can provide useful tools for improving ecological risk assessment and informing management decisions.
Collapse
Affiliation(s)
- Chiara Accolla
- Department of Ecology, Evolution, and Behavior, College of Biological Sciences, University of Minnesota, St. Paul, MN, USA.
| | - Valery E Forbes
- Department of Ecology, Evolution, and Behavior, College of Biological Sciences, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
12
|
Zhang Q, Wang H, Xia X, Bi S, Lin H, Chen J. Elevated temperature enhances the bioavailability of pyrene to Daphnia magna in the presence of dissolved organic matter: Implications for the effect of climate warming. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115349. [PMID: 32791466 DOI: 10.1016/j.envpol.2020.115349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/10/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Dissolved organic matter (DOM) is an essential factor in natural waters to affect the bioavailability of hydrophobic organic compounds (HOCs). Climate warming may influence the partition of HOCs between DOM and water as well as the physiology of organisms. Thus, we hypothesized that elevated temperature might affect the bioavailability of HOCs in the presence of DOM. To test this hypothesis, the effect of temperature on the bioavailability of pyrene to Daphnia magna (D. magna) in water-DOM (fulvic acid) system was investigated. The results showed that, although the concentration of freely dissolved pyrene increased slightly with temperature in the presence of DOM when the level of total dissolved pyrene was kept constant, D. magna immobilization (increased by 50.0-167%) and internal body burden of pyrene (increased by 18.4-41.5%) increased significantly with every 4 °C increase in temperature (16, 20, 24 °C). The main reasonable explanation for this result is that elevated temperature promoted pyrene uptake by D. magna. It was found that the increase percentage of 1-hydroxypyrene (main metabolite of pyrene) concentrations with temperature was higher than that of pyrene concentrations in the body except gut of D. magna. This result indicated that increased temperature might enhance the metabolic rates of D. magna, thus leading to increased uptake rate of freely dissolved and DOM-associated pyrene. This study suggests that elevated temperature might enhance the bioavailability of HOCs in natural waters through influencing both the bioavailable fraction of HOCs and their uptake rates in aquatic organisms, and this should be considered for evaluating their eco-environmental risks under the context of climate warming.
Collapse
Affiliation(s)
- Qianru Zhang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Haotian Wang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Xinghui Xia
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Siqi Bi
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Hui Lin
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Jian Chen
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
13
|
Vidal A, Lafay F, Daniele G, Vulliet E, Rochard E, Garric J, Babut M. Does water temperature influence the distribution and elimination of perfluorinated substances in rainbow trout (Oncorhynchus mykiss)? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:16355-16365. [PMID: 30980373 DOI: 10.1007/s11356-019-05029-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
Perfluorinated and polyfluorinated substances (PFASs) are widely found in freshwater ecosystems because of their resistance to degradation and their ability to accumulate in aquatic organisms. While water temperature controls many physiological processes in fish, knowledge of the effects of this factor on PFAS toxicokinetic is still limited. This study presents experimental results of internal distribution and elimination rates of two perfluorinated acid compounds, namely perfluorooctane sulfonate (PFOS) and perfluorohexane sulfonate (PFHxS) in adult rainbow trout (Oncorhynchus mykiss) exposed to three temperatures. Dietary exposure experiments were conducted at 7 °C, 11 °C, and 19 °C and liver, blood, muscle, brain, and kidney were sampled for analysis. PFOS concentrations were comparable to or exceeded those of PFHxS, while PFHxS was eliminated faster than PFOS, whatever the temperature. Internal distribution changed significantly for both substances when fish were exposed to a range of temperatures from 7 to 19 °C. Indeed, PFOS and PFHxS relative distribution increased in blood, liver, and brain while they decreased in muscle when the water temperature rose. The water temperature variation affected the elimination half-lives, depending on the substances and organs.
Collapse
Affiliation(s)
- Alice Vidal
- Irstea, RIVERLY Research Unit, 5 rue de la Doua CS 20244, 69625, Villeurbanne Cedex, France
| | - Florent Lafay
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280 CNRS, Université Claude Bernard Lyon 1, ENS-Lyon, 5 rue de la Doua, F-69100, Villeurbanne, France
| | - Gaelle Daniele
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280 CNRS, Université Claude Bernard Lyon 1, ENS-Lyon, 5 rue de la Doua, F-69100, Villeurbanne, France
| | - Emmanuelle Vulliet
- Université de Lyon, Institut des Sciences Analytiques, UMR 5280 CNRS, Université Claude Bernard Lyon 1, ENS-Lyon, 5 rue de la Doua, F-69100, Villeurbanne, France
| | - Eric Rochard
- Irstea, EABX Research Unit, 50 avenue de Verdun, 33612, Cestas, France
| | - Jeanne Garric
- Irstea, RIVERLY Research Unit, 5 rue de la Doua CS 20244, 69625, Villeurbanne Cedex, France
| | - Marc Babut
- Irstea, RIVERLY Research Unit, 5 rue de la Doua CS 20244, 69625, Villeurbanne Cedex, France.
| |
Collapse
|
14
|
Provencher JF, Avery-Gomm S, Liboiron M, Braune BM, Macaulay JB, Mallory ML, Letcher RJ. Are ingested plastics a vector of PCB contamination in northern fulmars from coastal Newfoundland and Labrador? ENVIRONMENTAL RESEARCH 2018; 167:184-190. [PMID: 30032001 DOI: 10.1016/j.envres.2018.07.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/06/2018] [Accepted: 07/14/2018] [Indexed: 06/08/2023]
Abstract
While marine animals are exposed to environmental contaminants via their prey, because plastic pollution in the aquatic environment can concentrate some chemicals, ingested plastics are thought to increase the exposure of biota to contaminants. Currently, in the literature there are contradictory results relating to how higher levels of ingested plastics by birds may lead to higher levels of polychlorinated biphenyl (PCBs). To date none of these have incorporated known Toxic Equivalency Factors (TEFs) for non-ortho and mono-ortho congeners of PCB which is critical to assessing the potential effects from PCBs. We examined northern fulmars (Fulmarus glacialis) from the Labrador Sea region Canada, and the ingested plastics from these same birds for comparative PCB concentrations. We found no significant correlations between the PCB concentrations in the birds and the mass or number of retained ingested plastic pieces in the stomach, this held true when PCBs were considered by a number of different ways, including ∑4PCB, ∑PCB, lower-chlorinated, high-chlorinated, non-ortho PCB, and mono-ortho congeners. PCB concentrations were lower in plastics as compared with livers. We found significant differences in congener profiles between the ingested plastics and seabird livers suggesting that while plastics do not contribute to the PCB concentrations, there may be some interactions between plastics and the chemicals that the birds are exposed to via ingested plastics.
Collapse
Affiliation(s)
- J F Provencher
- Biology Department, Acadia University, 15 University Drive, Wolfville, Nova Scotia, Canada B4P 2R6.
| | - S Avery-Gomm
- Centre of Excellence for Environmental Decisions, University of Queensland, St. Lucia, Brisbane, Queensland 4103, Australia
| | - M Liboiron
- Department of Geography, Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1B 3X9
| | - B M Braune
- Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, Canada K1A 0H3
| | - J B Macaulay
- Research and Productivity Council, Fredericton, NB, Canada E3B 6Z9
| | - M L Mallory
- Biology Department, Acadia University, 15 University Drive, Wolfville, Nova Scotia, Canada B4P 2R6
| | - R J Letcher
- Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, Canada K1A 0H3
| |
Collapse
|
15
|
Lima D, Zacchi FL, Mattos JJ, Flores-Nunes F, Gomes CHADM, de Mello ÁCP, Siebert MN, Piazza CE, Taniguchi S, Sasaki ST, Bícego MC, Bebianno MJ, de Almeida EA, Bainy ACD. Molecular and cellular effects of temperature in oysters Crassostrea brasiliana exposed to phenanthrene. CHEMOSPHERE 2018; 209:307-318. [PMID: 29933167 DOI: 10.1016/j.chemosphere.2018.06.094] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
Exposure of aquatic organisms to polycyclic aromatic hydrocarbons (PAH), such as phenanthrene (PHE), may increase the production of reactive oxygen species (ROS) and cause changes in the biotransformation systems. In addition, changes in water temperature can cause adverse effects in the organisms. Estuarine species, like the oyster Crassostrea brasiliana, can adapt and tolerate temperature variation. To evaluate the influence of temperature on biological responses of C. brasiliana exposed to PHE, oysters were maintained at three temperatures (18, 24 and 32 °C) for 15 days and co-exposed afterwards to 100 μg.L-1 of PHE for 24 and 96 h. Levels of PHE in the water and oyster tissues were determined, respectively after 24 and 96 h. In addition, thermal stress, biotransformation and oxidative stress-related genes were analyzed in oyster gills, together with the activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferases (GST) and levels of lipid peroxidation. Oyster accumulated significant levels of PHE. HSP70-like transcripts were affected by PHE exposure only at 32 °C. Transcript levels of cytochrome P450 isoforms (CYP2-like2 and CYP2AU1) were down-regulated in oysters exposed to PHE for 24 h at 32 °C. GSTΩ-like transcript levels were also down-regulated in the PHE-exposed group at 32 °C. After 96 h, CYP2-like2 transcripts were higher in the PHE exposed groups at 32 °C. Oysters kept at 18 °C showed higher levels of SOD-like transcripts, together with higher GST, GPx and G6PDH activities, associated to lower levels of lipoperoxidation. In general the biological responses evaluated were more affected by temperature, than by co-exposure to PHE.
Collapse
Affiliation(s)
- Daína Lima
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Flávia Lucena Zacchi
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Jacó Joaquim Mattos
- Aquaculture Pathology Research, NEPAQ, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Fabrício Flores-Nunes
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Carlos Henrique Araújo de Miranda Gomes
- Laboratory of Marine Mollusks (LMM), Department of Aquaculture, Center of Agricultural Science, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Álvaro Cavaler Pessoa de Mello
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Marília Nardelli Siebert
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Clei Endrigo Piazza
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Satie Taniguchi
- Laboratory of Marine Organic Chemistry, Oceanographic Institute, University of São Paulo, São Paulo, Brazil
| | - Silvio Tarou Sasaki
- Laboratory of Marine Organic Chemistry, Oceanographic Institute, University of São Paulo, São Paulo, Brazil
| | - Márcia Caruso Bícego
- Laboratory of Marine Organic Chemistry, Oceanographic Institute, University of São Paulo, São Paulo, Brazil
| | - Maria João Bebianno
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil; CIMA, University of Algarve, Campus de Gambelas, 8000-139 Faro, Portugal
| | - Eduardo Alves de Almeida
- Department of Natural Sciences, Fundação Universidade Regional de Blumenau, Blumenau, SC, Brazil
| | - Afonso Celso Dias Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil.
| |
Collapse
|
16
|
Miranda DA, Yogui GT. Polychlorinated biphenyls and chlorinated pesticides in king mackerel caught off the coast of Pernambuco, northeastern Brazil: Occurrence, contaminant profile, biological parameters and human intake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 569-570:1510-1516. [PMID: 27392580 DOI: 10.1016/j.scitotenv.2016.06.241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/19/2016] [Accepted: 06/29/2016] [Indexed: 06/06/2023]
Abstract
Persistent organic pollutants such as PCBs and DDTs are ubiquitous worldwide. Their lipophilic nature facilitates accumulation in fish tissues. This study investigated 182 PCB congeners and 14 organochlorine pesticides (DDTs, HCHs, chlordanes, heptachlor and mirex) in muscle and liver of king mackerel (Scomberomorus cavalla) caught off the northeastern coast of Brazil. Concentration of PCBs, DDTs and chlordanes in muscle averaged 31.5, 4.70 and 0.15ngg(-1) dry weight (dw), respectively. Mean levels of the same contaminants in liver were 145, 18.7 and 1.11ngg(-1) dw, respectively. HCHs, heptachlor and mirex were not detected in the samples. The metabolite p,p'-DDE dominated the composition of DDTs in both muscle and liver. However, a clear shift was observed in the proportions of p,p'-DDT and p,p'-DDD when comparing both tissues, suggesting metabolism in the liver. The PCBs profile revealed a depletion in mono- through tetra-CBs and an enrichment in penta- through deca-CBs. Biological parameters such as sex, maturity stage, age, body weight and total length did not influence contaminant levels in tissues. Dietary risk assessment indicated that S. cavalla from the northeastern coast of Brazil does not pose a health risk for humans.
Collapse
Affiliation(s)
- Daniele A Miranda
- Department of Oceanography, Federal University of Pernambuco, Av. Arquitetura s/n, Recife, PE CEP: 50740-550, Brazil.
| | - Gilvan T Yogui
- Department of Oceanography, Federal University of Pernambuco, Av. Arquitetura s/n, Recife, PE CEP: 50740-550, Brazil
| |
Collapse
|
17
|
Freese M, Sühring R, Pohlmann JD, Wolschke H, Magath V, Ebinghaus R, Hanel R. A question of origin: dioxin-like PCBs and their relevance in stock management of European eels. ECOTOXICOLOGY (LONDON, ENGLAND) 2016; 25:41-55. [PMID: 26477019 DOI: 10.1007/s10646-015-1565-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/02/2015] [Indexed: 06/05/2023]
Abstract
The stock of European Eel (Anguilla anguilla L.) has reached an all-time low in 2011. Spawner quality of mature eels in terms of health status and fitness is considered one of the key elements for successful migration and reproduction. Dioxin-like Polychlorinated Biphenyls (dl-PCBs) are known persistent organic pollutants potentially affecting the reproductive capability and health status of eels throughout their entire lifetime. In this study, muscle tissue samples of 192 European eels of all continental life stages from 6 different water bodies and 13 sampling sites were analyzed for contamination with lipophilic dl-PCBs to investigate the potential relevance of the respective habitat in light of eel stock management. Results of this study reveal habitat-dependent and life history stage-related accumulation of targeted PCBs. Sum concentrations of targeted PCBs differed significantly between life stages and inter-habitat variability in dl-PCB levels and -profiles was observed. Among all investigated life stages, migrant silver eels were found to be the most suitable life history stage to represent their particular water system due to habitat dwell-time and their terminal contamination status. With reference to a possible negative impact of dl-PCBs on health and the reproductive capability of eels, it was hypothesized that those growing up in less polluted habitats have a better chance to produce healthy offspring than those growing up in highly polluted habitats. We suggest that the contamination status of water systems is fundamental for the life cycle of eels and needs to be considered in stock management and restocking programs.
Collapse
|