1
|
Peixoto-Rodrigues MC, Monteiro-Neto JR, Teglas T, Toborek M, Soares Quinete N, Hauser-Davis RA, Adesse D. Early-life exposure to PCBs and PFAS exerts negative effects on the developing central nervous system. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136832. [PMID: 39689563 DOI: 10.1016/j.jhazmat.2024.136832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/18/2024] [Accepted: 12/08/2024] [Indexed: 12/19/2024]
Abstract
Persistent organic pollutants (POPs) are ubiquitous in the environment and display the capacity to bioaccumulate in living organisms, constituting a hazard to both wildlife and humans. Although restrictions have been applied to prohibit the production of several POPs since the 1960s, high levels of these compounds can still be detected in many environmental and biological matrices, due to their chemical properties and significantly long half-lives. Some POPs can be passed from mother to the fetus and can gain entry to the central nervous system (CNS), by crossing the blood-brain barrier (BBB), resulting in significant deleterious effects, including neurocognitive and psychiatric abnormalities, which may lead to long-term socio-economic burdens. A growing body of evidence obtained from clinical and experimental studies has increasingly indicated that these POPs may influence neurodevelopment through several cellular and molecular mechanisms. However, studies assessing their mechanisms of action are still incipient, requiring further research. Polychlorinated biphenyls (PCBs) and per- and polyfluoroalkyl substances (PFAS) are two of the main classes of POPs associated with disturbances in different human systems, mainly the nervous and endocrine systems. This narrative review discusses the main PCB and PFAS effects on the CNS, focusing on neuroinflammation and oxidative stress and their consequences for neural development and BBB integrity. Moreover, we propose which mechanisms could be involved in POP-induced neurodevelopmental defects. In this sense, we highlight potential cellular and molecular pathways by which these POPs can affect neurodevelopment and could be further explored to propose preventive therapies and formulate public health policies.
Collapse
Affiliation(s)
- Maria Carolina Peixoto-Rodrigues
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fiocruz, Brazil; Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Brazil
| | | | - Timea Teglas
- Research Institute of Sport Science, Hungarian University of Sports Science, Budapest, Hungary; Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Hungarian University of Sports Science, Budapest, Hungary
| | - Michal Toborek
- Institute of Physiotherapy and Health Sciences, Blood-Brain Barrier Research Center, Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Natalia Soares Quinete
- Departament of Chemistry and Biochemistry & Institute of Environment, Florida International University, Miami, Florida, United States
| | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fiocruz, Brazil
| | - Daniel Adesse
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Brazil; Laboratory of Ocular Immunology and Transplantation, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, United States.
| |
Collapse
|
2
|
Sánchez-Jaramillo E, Sánchez-Islas E, Gómez-González GB, Yáñez-Recendis N, Mucio-Ramírez S, Barbaro F, Toni R, León-Olea M. Perinatal exposure to Aroclor 1254 disrupts thyrotropin-releasing hormone mRNA expression in the paraventricular nucleus of male and female rats. Toxicology 2024; 508:153935. [PMID: 39182713 DOI: 10.1016/j.tox.2024.153935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024]
Abstract
Polychlorinated biphenyls (PCBs) are industrial pollutants that act as endocrine disruptors and alter thyroid function. However, it is still unclear whether PCBs can affect hypothalamic thyrotropin releasing hormone (Trh) mRNA expression through TH signaling disruption. As salt-loading dehydration induces tertiary hypothyroidism in the hypothalamic parvocellular paraventricular nuclei (paPVN), and perinatal exposure to Aroclor 1254 (A1254) disrupts the hydric balance in rats, we hypothesized that TRH synthesis could be altered during dehydration in TRH neurons that control the hypothalamic-pituitary-thyroid (HPT) axis activity in rats perinatally exposed to A1254. We examined Trh mRNA expression in the paPVN and the response to salt-loading dehydration (hyperosmotic (hyper) stress) in the progeny of Wistar pregnant rats receiving 0 mg/kg BW (control) or 30 mg/kg BW A1254 daily from gestational days 10-19. Three-month-old offspring were subjected to normosmotic or hyper conditions and Trh mRNA, glucocorticoid receptor (GR) mRNA expression were measured in the PVN by RT-PCR. TRH mRNA and TRH+ neurons were measured in the paPVN by fluorescent in situ hybridization (FISH). As expected, Trh mRNA levels were decreased in the paPVN of male and female rats in the hyper group. Basal Trh mRNA expression and serum TSH were decreased in male rats in the A1254 group. Notably, Trh mRNA levels were further decreased in the paPVN of male and female A1254 + hyper rats, in which the GR mRNA expression was significantly decreased. These results support the hypothesis that perinatal exposure to A1254 results in inadequate adaptive response of the HPT axis in adulthood and contributes to dysregulation of the HPT axis response to salt-loading dehydration.
Collapse
Affiliation(s)
- Edith Sánchez-Jaramillo
- Laboratorio de Neuroendocrinología Molecular, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco, México, D.F. C.P. 14370, México.
| | - Eduardo Sánchez-Islas
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco, México, D.F. C.P. 14370, México
| | - Gabriela B Gómez-González
- Laboratorio de Neuroendocrinología Molecular, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco, México, D.F. C.P. 14370, México
| | - Nashiely Yáñez-Recendis
- Laboratorio de Neuroendocrinología Molecular, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco, México, D.F. C.P. 14370, México
| | - Samuel Mucio-Ramírez
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco, México, D.F. C.P. 14370, México
| | - Fulvio Barbaro
- Laboratory of Regenerative Morphology and Bioartificial Structures (Re.Mo.Bio.S.), Unit of Biomedical, Biotechnological and Translational Sciences, Section of Human Anatomy, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Roberto Toni
- Laboratory of Regenerative Morphology and Bioartificial Structures (Re.Mo.Bio.S.), Unit of Biomedical, Biotechnological and Translational Sciences, Section of Human Anatomy, Department of Medicine and Surgery, University of Parma, Parma, Italy; Division of Endocrinology, Diabetes and Metabolism, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Martha León-Olea
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco, México, D.F. C.P. 14370, México
| |
Collapse
|
3
|
Liu Y, Yang C, Zhang J, Ihsan A, Ares I, Martínez M, Lopez-Torres B, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez MA. Recent progress in adverse events of carboxylic acid non-steroidal anti-inflammatory drugs (CBA-NSAIDs) and their association with the metabolism: the consequences on mitochondrial dysfunction and oxidative stress, and prevention with natural plant extracts. Expert Opin Drug Metab Toxicol 2024:1-21. [PMID: 38980754 DOI: 10.1080/17425255.2024.2378885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/08/2024] [Indexed: 07/11/2024]
Abstract
INTRODUCTION Carboxylic acid non-steroidal anti-inflammatory drugs (CBA-NSAIDs) are extensively used worldwide due to their antipyretic, analgesic, and anti-inflammatory effects. CBA-NSAIDs have reasonable margin of safety at therapeutic doses, and in the current climate, do not possess addiction potential like opioid drugs. Studies have revealed that various adverse events of CBA-NSAIDs are related mitochondrial dysfunction and oxidative stress. AREAS COVERED This review article summarizes adverse events induced by CBA-NSAIDs, mechanisms of mitochondrial damage, oxidative stress, and metabolic interactions. Meanwhile, this review discusses the treatment and prevention of CBA-NSAIDs damage by natural plant extracts based on antioxidant effects. EXPERT OPINION CBA-NSAIDs can induce reactive oxygen species (ROS) production, mediate DNA, protein and lipid damage, lead to imbalance of cell antioxidant status, change of mitochondrial membrane potential, activate oxidative stress signal pathway, thus leading to oxidative stress and cell damage. Adverse events caused by CBA-NSAIDs often exhibit dose and time dependence. In order to avoid adverse events caused by CBA-NSAIDs, it is necessary to provide detailed patient consultation and eliminate influencing factors. Moreover, constructive research studies on the organ-specific toxicity and mechanism of natural plant extracts in preventing and treating metabolic abnormalities of CBA-NSAIDs, will provide important value for warning and guidance for use of CBA-NSAIDs.
Collapse
Affiliation(s)
- Yanan Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Chao Yang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jieying Zhang
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Awais Ihsan
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Islamabad, Pakistan
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), Madrid, Spain
| | - María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), and Research Institute Hospital 12 de Octubre (i+12), Madrid, Spain
| |
Collapse
|
4
|
Kou X, Becerra-Tomás N, Canals J, Bulló M, Arija V. Association between Prenatal Dietary Toxicants and Infant Neurodevelopment: The Role of Fish. TOXICS 2024; 12:338. [PMID: 38787117 PMCID: PMC11126097 DOI: 10.3390/toxics12050338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024]
Abstract
More research is needed to understand how the maternal consumption of fish and fish-borne toxicants impacts infant neurodevelopment. The present analysis was conducted over 460 mother-infant pairs within the ECLIPSES study. Dietary intake of metals and persistent organic pollutants from fish (including white fish, blue fish, and seafood) was estimated in pregnant women. The infants underwent cognitive, language, and motor function assessments using the Bayley Scales of Infant Development-III at the 40-day postpartum. Associations between dietary toxicants and outcomes were assessed using multivariable linear regression models. Estimated prenatal exposure to fish-borne toxicants, such as arsenic, inorganic arsenic, methylmercury, dioxin-like polychlorinated biphenyls (DL-PCBs), and non-DL-PCBs, was associated with poorer language functions in infants, whereas no significant associations were found with motor or cognitive functions. Maternal fish consumption exceeding the Spanish recommendation of no more than 71 g per day was linked to these adverse effects on language abilities without affecting motor or cognitive development. This highlights the importance of vigilant monitoring of environmental toxicants and the provision of dietary guidance for pregnant women, with potential implications for public health and child development.
Collapse
Affiliation(s)
- Xiruo Kou
- Nutrition and Mental Health (NUTRISAM) Research Group, Universitat Rovira i Virgili, 43204 Reus, Spain; (X.K.); (N.B.-T.); (J.C.)
- Institut d’Investigació Sanitaria Pere Virgili (IISPV), 43204 Reus, Spain;
| | - Nerea Becerra-Tomás
- Nutrition and Mental Health (NUTRISAM) Research Group, Universitat Rovira i Virgili, 43204 Reus, Spain; (X.K.); (N.B.-T.); (J.C.)
- Institut d’Investigació Sanitaria Pere Virgili (IISPV), 43204 Reus, Spain;
| | - Josefa Canals
- Nutrition and Mental Health (NUTRISAM) Research Group, Universitat Rovira i Virgili, 43204 Reus, Spain; (X.K.); (N.B.-T.); (J.C.)
- Institut d’Investigació Sanitaria Pere Virgili (IISPV), 43204 Reus, Spain;
- Centre de Recerca en Avaluació i Mesura de la Conducta (CRAMC), Department of Psychology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- University Research Institute on Sustainablility, Climate Change and Energy Transition (IU-RESCAT), Universitat Rovira i Virgili, 43003 Tarragona, Spain
| | - Monica Bulló
- Institut d’Investigació Sanitaria Pere Virgili (IISPV), 43204 Reus, Spain;
- CIBER Physiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, 28029 Madrid, Spain
- Center of Environmental, Food and Toxicological Technology—TecnATox, Rovira i Virgili University, 43201 Reus, Spain
| | - Victoria Arija
- Nutrition and Mental Health (NUTRISAM) Research Group, Universitat Rovira i Virgili, 43204 Reus, Spain; (X.K.); (N.B.-T.); (J.C.)
- Institut d’Investigació Sanitaria Pere Virgili (IISPV), 43204 Reus, Spain;
- University Research Institute on Sustainablility, Climate Change and Energy Transition (IU-RESCAT), Universitat Rovira i Virgili, 43003 Tarragona, Spain
- Collaborative Research Group on Lifestyles, Nutrition and Smoking (CENIT), Tarragona-Reus Research Support Unit, Jordi Gol Primary Care Research Institute, 43003 Tarragona, Spain
| |
Collapse
|
5
|
Tang J, Zhang N, Chen S, Hu K, Li Y, Fang Y, Wu Z, Zhang Y, Xu L. Cadmium (Cd) and 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) co-exposure induces acute kidney injury through oxidative stress and RIPK3-dependent necroptosis. ENVIRONMENTAL TOXICOLOGY 2023; 38:2332-2343. [PMID: 37357614 DOI: 10.1002/tox.23869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/27/2023]
Abstract
Environmental pollution is complex, and co-exposure can accurately reflect the true environmental conditions that are important for assessment of human health. Cadmium (Cd) is a widespread toxicant that can cause acute kidney injury (AKI), while its combined effect with 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) is not fully understood. Thus, we used an in vivo model where C57BL/6J mice were treated with low dietary intake of Cd (5 mg/kg/day) and/or BDE-47 (1 mg/kg/day) for 28 days to examine AKI, and in vitro experiments to investigate the possible mechanism. Results showed that Cd or BDE-47 caused pathological kidney damage, accompanied by elevated urea nitrogen (BUN) and urinary creatinine, as well as increased interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), and reduced IL-10 in kidney tissues. In vitro Cd or BDE-47 exposure decreased cell viability and induced cell swelling and blebbing of human embryonic kidney 293 (HEK-293) and renal tubular epithelial cell lines (HKCs), and changes in co-exposure was larger than that in Cd and BDE-47 treatment. Oxidative stress indicators of the reactive oxygen species (ROS) and malondialdehyde (MDA) were elevated, while the antioxidant superoxide dismutase (SOD) was decreased. Necrosis occurred with increased lactate dehydrogenase (LDH) release and propidium iodide (PI) staining, which was attenuated by the ROS scavenger N-acetyl-L-cysteine (NAC). Furthermore, necroptotic genes of receptor-interacting protein kinase-3 (RIPK3), classical mixed lineage kinase domain-like protein-dependent (MLKL), IL-1β and TNF-α were up-regulated, whereas RIPK1 was down-regulated, which was attenuated by the RIPK3 inhibitor GSK872. These findings demonstrate that Cd or BDE-47 alone produces kidney toxicities, and co-exposure poses an additive effect, resulting in AKI via inducing oxidative stress and regulating RIPK3-dependent necroptosis, which offers a further mechanistic understanding for kidney damage, and the combined effect of environmental pollutants should be noticed.
Collapse
Affiliation(s)
- Jie Tang
- Department of Pathology, Jiaxing key laboratory of infectious diseases and bacterial resistance research, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing, China
| | - Nenghua Zhang
- Department of Pathology, Jiaxing key laboratory of infectious diseases and bacterial resistance research, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing, China
| | - Shipiao Chen
- Department of Preventive Medicine, Forensic and Pathology Laboratory, Institute of Forensic Science, College of Medicine, Jiaxing University, Jiaxing, China
| | - Kewei Hu
- Department of Preventive Medicine, Forensic and Pathology Laboratory, Institute of Forensic Science, College of Medicine, Jiaxing University, Jiaxing, China
| | - Yintao Li
- Department of Preventive Medicine, Forensic and Pathology Laboratory, Institute of Forensic Science, College of Medicine, Jiaxing University, Jiaxing, China
| | - Yipeng Fang
- Department of Preventive Medicine, Forensic and Pathology Laboratory, Institute of Forensic Science, College of Medicine, Jiaxing University, Jiaxing, China
| | - Zhenqiang Wu
- Department of Preventive Medicine, Forensic and Pathology Laboratory, Institute of Forensic Science, College of Medicine, Jiaxing University, Jiaxing, China
| | - Yi Zhang
- Department of Pathology, Jiaxing key laboratory of infectious diseases and bacterial resistance research, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing, China
| | - Long Xu
- Department of Preventive Medicine, Forensic and Pathology Laboratory, Institute of Forensic Science, College of Medicine, Jiaxing University, Jiaxing, China
| |
Collapse
|
6
|
Nagar N, Saxena H, Pathak A, Mishra A, Poluri KM. A review on structural mechanisms of protein-persistent organic pollutant (POP) interactions. CHEMOSPHERE 2023; 332:138877. [PMID: 37164191 DOI: 10.1016/j.chemosphere.2023.138877] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/20/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
With the advent of the industrial revolution, the accumulation of persistent organic pollutants (POPs) in the environment has become ubiquitous. POPs are halogen-containing organic molecules that accumulate, and remain in the environment for a long time, thus causing toxic effects in living organisms. POPs exhibit a high affinity towards biological macromolecules such as nucleic acids, proteins and lipids, causing genotoxicity and impairment of homeostasis in living organisms. Proteins are essential members of the biological assembly, as they stipulate all necessary processes for the survival of an organism. Owing to their stereochemical features, POPs and their metabolites form energetically favourable complexes with proteins, as supported by biological and dose-dependent toxicological studies. Although individual studies have reported the biological aspects of protein-POP interactions, no comprehensive study summarizing the structural mechanisms, thermodynamics and kinetics of protein-POP complexes is available. The current review identifies and classifies protein-POP interaction according to the structural and functional basis of proteins into five major protein targets, including digestive and other enzymes, serum proteins, transcription factors, transporters, and G-protein coupled receptors. Further, analysis detailing the molecular interactions and structural mechanism evidenced that H-bonds, van der Waals, and hydrophobic interactions essentially mediate the formation of protein-POP complexes. Moreover, interaction of POPs alters the protein conformation through kinetic and thermodynamic processes like competitive inhibition and allostery to modulate the cellular signalling processes, resulting in various pathological conditions such as cancers and inflammations. In summary, the review provides a comprehensive insight into the critical structural/molecular aspects of protein-POP interactions.
Collapse
Affiliation(s)
- Nupur Nagar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Harshi Saxena
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Aakanksha Pathak
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, 342011, Rajasthan, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
7
|
Vellingiri B, Chandrasekhar M, Sri Sabari S, Gopalakrishnan AV, Narayanasamy A, Venkatesan D, Iyer M, Kesari K, Dey A. Neurotoxicity of pesticides - A link to neurodegeneration. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:113972. [PMID: 36029574 DOI: 10.1016/j.ecoenv.2022.113972] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 05/15/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder which mainly targets motor symptoms such as tremor, rigidity, bradykinesia and postural instability. The physiological changes occur due to dopamine depletion in basal ganglia region of the brain. PD aetiology is not yet elucidated clearly but genetic and environmental factors play a prominent role in disease occurrence. Despite of various environmental factors, pesticides exposure has been convicted as major candidate in PD pathogenesis. Among various pesticides 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been widely investigated in PD following with paraquat (PQ), maneb (MB), organochlorines (OC) and rotenone. Effect of these pesticides has been suggested to be involved in oxidative stress, alterations in dopamine transporters, mitochondrial dysfunction, α-synuclein (αSyn) fibrillation, and neuroinflammation in PD. The present review discusses the influence of pesticides in neurodegeneration and its related epidemiological studies conducted in PD. Furthermore, we have deliberated the common pesticides involved in PD and its associated genetic alterations and the probable mechanism of them behind PD pathogenesis. Hence, we conclude that pesticides play a prominent role in PD pathogenesis and advance research is needed to investigate the alterations in genetic and mechanistic aspects of PD.
Collapse
Affiliation(s)
- Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India.
| | - Mamatha Chandrasekhar
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - S Sri Sabari
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Arul Narayanasamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Dhivya Venkatesan
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Mahalaxmi Iyer
- Livestock Farming and Bioresource Technology, Tamil Nadu, India
| | - Kavindra Kesari
- Department of Applied Physics, School of Science, Aalto University, Espoo, 00076, Finland.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, 700073, West Bengal, India
| |
Collapse
|
8
|
Sule RO, Condon L, Gomes AV. A Common Feature of Pesticides: Oxidative Stress-The Role of Oxidative Stress in Pesticide-Induced Toxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5563759. [PMID: 35096268 PMCID: PMC8791758 DOI: 10.1155/2022/5563759] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 12/17/2021] [Indexed: 12/16/2022]
Abstract
Pesticides are important chemicals or biological agents that deter or kill pests. The use of pesticides has continued to increase as it is still considered the most effective method to reduce pests and increase crop growth. However, pesticides have other consequences, including potential toxicity to humans and wildlife. Pesticides have been associated with increased risk of cardiovascular disease, cancer, and birth defects. Labels on pesticides also suggest limiting exposure to these hazardous chemicals. Based on experimental evidence, various types of pesticides all seem to have a common effect, the induction of oxidative stress in different cell types and animal models. Pesticide-induced oxidative stress is caused by both reactive oxygen species (ROS) and reactive nitrogen species (RNS), which are associated with several diseases including cancer, inflammation, and cardiovascular and neurodegenerative diseases. ROS and RNS can activate at least five independent signaling pathways including mitochondrial-induced apoptosis. Limited in vitro studies also suggest that exogenous antioxidants can reduce or prevent the deleterious effects of pesticides.
Collapse
Affiliation(s)
- Rasheed O. Sule
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, USA
| | - Liam Condon
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, USA
| | - Aldrin V. Gomes
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, USA
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
9
|
Blanc M, Alfonso S, Bégout ML, Barrachina C, Hyötyläinen T, Keiter SH, Cousin X. An environmentally relevant mixture of polychlorinated biphenyls (PCBs) and polybrominated diphenylethers (PBDEs) disrupts mitochondrial function, lipid metabolism and neurotransmission in the brain of exposed zebrafish and their unexposed F2 offspring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142097. [PMID: 32911150 DOI: 10.1016/j.scitotenv.2020.142097] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/25/2020] [Accepted: 08/29/2020] [Indexed: 06/11/2023]
Abstract
Polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) are persistent organic pollutants still present in aquatic environments despite their total or partial ban. Previously, we observed that an environmentally realistic mixture of these compounds affects energy balance, growth, and reproduction in exposed zebrafish (F0), and behavior in their unexposed offspring (F1-F4). In the present work, we performed lipidomic and transcriptomic analyses on brains of zebrafish (F0-F2) from exposed and control lineages to identify molecular changes that could explain the observed phenotypes. The use of both technologies highlighted that F0 zebrafish displayed impaired mitochondrial function and lipid metabolism regulation (depletion in triacylglycerols and phospholipids) which can explain disruption of energy homeostasis. A subset of the regulated biological pathways related to energetic metabolism and neurotransmission were inherited in F2. In addition, there were increasing effects on epigenetic pathways from the F0 to the F2 generation. Altogether, we show that the effects of an environmental exposure to PCBs and PBDEs on energetic metabolism as well as neurotransmission extend over 2 generations of zebrafish, possibly due to transgenerational epigenetic inheritance.
Collapse
Affiliation(s)
- Mélanie Blanc
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden.
| | - Sébastien Alfonso
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Route de Maguelone, F-34250 Palavas-les-Flots, France; COISPA Tecnologia & Ricerca, Stazione Sperimentale per lo Studio delle Risorse del Mare, Via dei Trulli, n 18, 70126 Bari, Italy
| | - Marie-Laure Bégout
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Route de Maguelone, F-34250 Palavas-les-Flots, France
| | - Célia Barrachina
- MGX, Univ. Montpellier, CNRS, INSERM, Université Montpellier 2, Place Eugène Bataillon, F-34095 Montpellier, France
| | - Tuulia Hyötyläinen
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| | - Steffen H Keiter
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| | - Xavier Cousin
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Route de Maguelone, F-34250 Palavas-les-Flots, France; Université Paris-Saclay, AgroParisTech, INRAE, GABI, Domaine de Vilvert, F-78350 Jouy-en-Josas, France
| |
Collapse
|
10
|
Berlin M, Barchel D, Brik A, Kohn E, Livne A, Keidar R, Tovbin J, Betser M, Moskovich M, Mandel D, Lubetzky R, Ovental A, Factor-Litvak P, Britzi M, Ziv-Baran T, Koren R, Klieger C, Berkovitch M, Matok I, Marom R. Maternal and Newborn Thyroid Hormone, and the Association With Polychlorinated Biphenyls (PCBs) Burden: The EHF (Environmental Health Fund) Birth Cohort. Front Pediatr 2021; 9:705395. [PMID: 34589452 PMCID: PMC8473683 DOI: 10.3389/fped.2021.705395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/20/2021] [Indexed: 12/22/2022] Open
Abstract
Background: Polychlorinated biphenyls (PCBs) are ubiquitous environmental contaminants found in human tissues. PCBs can be transferred through the placenta and may disrupt the maternal thyroid homeostasis, and affect fetal thyroid hormone production. Several studies have shown that intrauterine exposure to PCBs might be associated with abnormal levels of thyroid hormones in mothers and their offspring. Objectives: To examine the associations between environmental exposure to PCBs and thyroid hormone levels in mothers and newborns. Methods: The EHF-Assaf-Harofeh-Ichilov cohort includes 263 mothers-newborns dyads. A total of 157 mother-newborn dyads had both PCBs and thyroid function measures. Regression models were used to estimate associations between maternal PCB exposure and maternal and newborn thyroid function, controlling for possible confounders. Results: Four PCBs congeners were analyzed: PCBs 118, 138, 153, and 180. ∑PCBs median (IQR) level was 14.65 (2.83-68.14) ng/g lipids. The median maternal thyroid-stimulating hormone (TSH) level was 2.66 (0.70-8.23) μIU/ml, the median maternal free thyroxine (FT4) level was 12.44 (11.27-13.53) μg/dL, the median maternal thyroid peroxidase antibodies (TPO Ab) level was 9.6 (7.36-12.51) IU/mL. Newborns' median total thyroxine (T4) level was 14.8 (7.6-24.9) μg/dL. No association was found between exposure to different congeners or to ∑PCBs and maternal TSH, FT4, thyroglobulin autoantibodies (Tg Ab), TPO Ab and newborn total T4 levels. In multivariable analysis a 1% change in ∑PCBs level was significantly associated with a 0.57% change in maternal TSH levels in women with body mass index (BMI) < 19. The same association was observed for each of the studied PCB congeners. Maternal TPO Ab levels statistically significantly increased by 0.53 and 0.46% for 1% increase in PCB 118 and 153 congeners, respectively. In women with BMI > 25, the association between the PCBs levels and maternal TSH levels was in the opposite direction. No association was found in women with normal BMI (19-24.9). Conclusions: Background exposure to environmentally relevant concentrations of some PCBs can alter thyroid hormone homeostasis in pregnant women and might be associated with abnormal TSH levels and TPO-Ab in women with low BMI. However, these findings require further investigation.
Collapse
Affiliation(s)
- Maya Berlin
- Clinical Pharmacology and Toxicology Unit, Shamir Medical Center (Assaf Harofeh), Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel.,Division of Clinical Pharmacy, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dana Barchel
- Clinical Pharmacology and Toxicology Unit, Shamir Medical Center (Assaf Harofeh), Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Anna Brik
- Clinical Pharmacology and Toxicology Unit, Shamir Medical Center (Assaf Harofeh), Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Elkana Kohn
- Clinical Pharmacology and Toxicology Unit, Shamir Medical Center (Assaf Harofeh), Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Ayelet Livne
- Department of Neonatology, Shamir Medical Center (Assaf Harofeh), Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Rimona Keidar
- Department of Neonatology, Shamir Medical Center (Assaf Harofeh), Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Josef Tovbin
- Division of Obstetrics and Gynecology, Shamir Medical Center (Assaf Harofeh), Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Moshe Betser
- Division of Obstetrics and Gynecology, Shamir Medical Center (Assaf Harofeh), Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Miki Moskovich
- Division of Obstetrics and Gynecology, Shamir Medical Center (Assaf Harofeh), Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Dror Mandel
- Departments of Neonatology and Pediatrics, Dana Dwek Children's Hospital, Tel Aviv Medical Center, Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Ronit Lubetzky
- Departments of Neonatology and Pediatrics, Dana Dwek Children's Hospital, Tel Aviv Medical Center, Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Amit Ovental
- Departments of Neonatology and Pediatrics, Dana Dwek Children's Hospital, Tel Aviv Medical Center, Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Pam Factor-Litvak
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Malka Britzi
- Residues Lab, Kimron Veterinary Institute, Beit-Dagan, Israel
| | - Tomer Ziv-Baran
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Ronit Koren
- Division of Obstetrics and Gynecology, Shamir Medical Center (Assaf Harofeh), Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel.,Department of Internal Medicine A, Shamir Medical Center (Assaf Harofeh), Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Chagit Klieger
- Feto-Maternal Unit, Lis Hospital, Tel Aviv Medical Center, Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Matitiahu Berkovitch
- Clinical Pharmacology and Toxicology Unit, Shamir Medical Center (Assaf Harofeh), Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Ilan Matok
- Division of Clinical Pharmacy, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ronella Marom
- Departments of Neonatology and Pediatrics, Dana Dwek Children's Hospital, Tel Aviv Medical Center, Affiliated to Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
11
|
Gao J, Zhang H, Xiong P, Yan X, Liao C, Jiang G. Application of electrophysiological technique in toxicological study: From manual to automated patch-clamp recording. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116082] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Shannon M, Xie Y, Verhaegen S, Wilson J, Berntsen HF, Zimmer KE, Ropstad E, Green BD, Connolly L. A Human Relevant Defined Mixture of Persistent Organic Pollutants (POPs) Affects In Vitro Secretion of Glucagon-Like Peptide 1 (GLP-1), but Does Not Affect Translocation of Its Receptor. Toxicol Sci 2020; 172:359-367. [PMID: 31432086 DOI: 10.1093/toxsci/kfz192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Environmental exposure to persistent organic pollutants (POPs) has been suggested as a contributing factor for the increased rate of type 2 diabetes and obesity. A complex mixture of 29 POPs (Total mixture), based on human blood concentrations, was used to expose a glucagon-like peptide 1 (GLP-1) secreting enteroendocrine cell line (pGIP/neo: STC-1) in vitro for 3 and 24 h. Significant increases of GLP-1 occurred when cells were exposed to the Total mixture at ×500 blood levels. Six sub-mixtures representing chlorinated (Cl), brominated (Br), and perfluorinated chemicals (PFAA), and their combinations (Cl + Br, Cl + PFAA, Br + PFAA) were also tested at ×500. Secretion levels seen for these remained lower than the Total mixture, and the Br mixture had no effect. After 24 h, increased secretion was seen with all mixtures at ×1 blood levels. Cytotoxicity was present for ×100 and ×500 blood levels. When tested in a GLP-1 receptor translocation assay (U2OS-GLP1R-EGFP), neither agonistic nor antagonist effects on receptor internalization were seen for any of the mixtures. We conclude individual classes of POPs, alone or in combination, can affect GLP-1 secretion and may contribute as a molecular mechanism linking environmental toxicants and diabetes.
Collapse
Affiliation(s)
- Maeve Shannon
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, Northern Ireland, UK
| | - Yuling Xie
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, Northern Ireland, UK
| | - Steven Verhaegen
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo 0102, Norway
| | - Jodie Wilson
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, Northern Ireland, UK
| | - Hanne F Berntsen
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo 0102, Norway.,Department of Administration, Lab Animal Unit, National Institute of Occupational Health, Oslo 0363, Norway
| | - Karin E Zimmer
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo 0102, Norway
| | - Erik Ropstad
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo 0102, Norway
| | - Brian D Green
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, Northern Ireland, UK
| | - Lisa Connolly
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, Northern Ireland, UK
| |
Collapse
|
13
|
Liu J, Tan Y, Song E, Song Y. A Critical Review of Polychlorinated Biphenyls Metabolism, Metabolites, and Their Correlation with Oxidative Stress. Chem Res Toxicol 2020; 33:2022-2042. [DOI: 10.1021/acs.chemrestox.0c00078] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jing Liu
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, People’s Republic of China
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Ya Tan
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Erqun Song
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Yang Song
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| |
Collapse
|
14
|
Wu JP, Peng Y, Zhi H, Wu SK, Chen XY, Zeng YH, Luo XJ, Mai BX. Contaminant-related oxidative distress in common kingfisher (Alcedo atthis) breeding at an e-waste site in South China. ENVIRONMENTAL RESEARCH 2020; 182:109079. [PMID: 31887468 DOI: 10.1016/j.envres.2019.109079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/29/2019] [Accepted: 12/21/2019] [Indexed: 06/10/2023]
Abstract
The crude electronic waste (e-waste) recycling has caused severe contamination of polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in the local environment, begging the question of whether wildlife like birds living at e-waste sites are suffering from adverse effects. We examined several oxidative status markers and their relationships with hepatic concentrations of PCBs and PBDEs in common kingfisher (Alcedo atthis) that inhabit an e-waste site in South China. The results showed that the mean concentrations of ∑PCBs (19100 ng/g) and ∑PBDEs (507 ng/g) in kingfishers from e-waste site were several orders of magnitude higher than those in the species from a reference site. Correspondingly, hepatic concentrations of malondialdehyde (MDA) and reactive oxygen species (ROS) in kingfishers from the e-waste site were significantly higher than those detected in the reference population, suggesting oxidative distress in the birds breeding at the e-waste site. The activities of superoxide dismutase (SOD) and catalase (CAT) in the liver from the exposed group were significantly lower compared with the reference group, while the opposite trend was observed for glutathione peroxidase (GPx). Significantly positive correlations were observed between PCB or PBDE concentrations and the levels of MDA and ROS; while negative correlations were found for enzymatic activities of SOD and CAT. Overall, our results may suggest a potential linkage between exposure to e-waste-derived pollutants and elevated oxidative stress, thereby indicating a potential oxidative stress-related health effects in common kingfisher breeding at the e-waste site.
Collapse
Affiliation(s)
- Jiang-Ping Wu
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, College of Environmental Science and Engineering, Anhui Normal University, Wuhu, 241002, China.
| | - Ying Peng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Hui Zhi
- School of Basic Medical Sciences, Wannan Medical College, Wuhu, 241002, China
| | - Si-Kang Wu
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, College of Environmental Science and Engineering, Anhui Normal University, Wuhu, 241002, China
| | - Xiao-Yun Chen
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, College of Environmental Science and Engineering, Anhui Normal University, Wuhu, 241002, China
| | - Yan-Hong Zeng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Xiao-Jun Luo
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
15
|
Effects of environmental pollutants on calcium release and uptake by rat cortical microsomes. Neurotoxicology 2018; 69:266-277. [DOI: 10.1016/j.neuro.2018.07.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 06/26/2018] [Accepted: 07/25/2018] [Indexed: 12/11/2022]
|
16
|
Zhang W, Hou X, Huang M, Zeng X, He X, Liao Y. TDCPP protects cardiomyocytes from H2O2-induced injuries via activating PI3K/Akt/GSK3β signaling pathway. Mol Cell Biochem 2018; 453:53-64. [DOI: 10.1007/s11010-018-3431-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/16/2018] [Indexed: 10/28/2022]
|
17
|
Hessel EVS, Staal YCM, Piersma AH. Design and validation of an ontology-driven animal-free testing strategy for developmental neurotoxicity testing. Toxicol Appl Pharmacol 2018; 354:136-152. [PMID: 29544899 DOI: 10.1016/j.taap.2018.03.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/26/2018] [Accepted: 03/11/2018] [Indexed: 12/26/2022]
Abstract
Developmental neurotoxicity entails one of the most complex areas in toxicology. Animal studies provide only limited information as to human relevance. A multitude of alternative models have been developed over the years, providing insights into mechanisms of action. We give an overview of fundamental processes in neural tube formation, brain development and neural specification, aiming at illustrating complexity rather than comprehensiveness. We also give a flavor of the wealth of alternative methods in this area. Given the impressive progress in mechanistic knowledge of human biology and toxicology, the time is right for a conceptual approach for designing testing strategies that cover the integral mechanistic landscape of developmental neurotoxicity. The ontology approach provides a framework for defining this landscape, upon which an integral in silico model for predicting toxicity can be built. It subsequently directs the selection of in vitro assays for rate-limiting events in the biological network, to feed parameter tuning in the model, leading to prediction of the toxicological outcome. Validation of such models requires primary attention to coverage of the biological domain, rather than classical predictive value of individual tests. Proofs of concept for such an approach are already available. The challenge is in mining modern biology, toxicology and chemical information to feed intelligent designs, which will define testing strategies for neurodevelopmental toxicity testing.
Collapse
Affiliation(s)
- Ellen V S Hessel
- Center for Health Protection, National Institute for Public Health and The Environment (RIVM), P.O. Box 1, 3720BA Bilthoven, The Netherlands.
| | - Yvonne C M Staal
- Center for Health Protection, National Institute for Public Health and The Environment (RIVM), P.O. Box 1, 3720BA Bilthoven, The Netherlands
| | - Aldert H Piersma
- Center for Health Protection, National Institute for Public Health and The Environment (RIVM), P.O. Box 1, 3720BA Bilthoven, The Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
18
|
Dingemans MML, Kock M, van den Berg M. Mechanisms of Action Point Towards Combined PBDE/NDL-PCB Risk Assessment. Toxicol Sci 2018; 153:215-24. [PMID: 27672163 DOI: 10.1093/toxsci/kfw129] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
At present, human risk assessment of the structurally similar non-dioxin-like (NDL) PCBs and polybrominated diphenylethers (PBDEs) is done independently for both groups of compounds. There are however obvious similarities between NDL-PCBs and PBDEs with regard to modulation of the intracellular calcium homeostasis (basal calcium levels, voltage-gated calcium channels, calcium uptake, ryanodine receptor) and thyroid hormone (TH) homeostasis (TH levels and transport). which are mechanisms of action related to neurobehavioral effects (spontaneous activity, habituation and learning ability). There also similarities in agonistic interactions with the hepatic nuclear receptors PXR and CAR. Several effects on developmental (reproductive) processes have also been observed, but results were more dispersed and insufficient to compare both groups of compounds. The available mechanistic information is sufficient to warrant a dose addition model for NDL-PCBs and PBDEs, including their hydroxylated metabolites.Although many of the observed effects are similar from a qualitative point of view for both groups, congener or tissue specific differences have also been found. As this is a source of uncertainty in the combined hazard and risk assessment of these compounds, molecular entities involved in the observed mechanisms and adverse outcomes associated with these compounds need to be identified. The systematical generation of (quantitative) structure-activity information for NDL-PCBs and PBDEs on these targets (including potential non-additive effects) will allow a more realistic risk estimation associated with combined exposure to both groups of compounds during early life. Additional validation studies are needed to quantify these uncertainties for risk assessment of NDL-PCBs and PBDEs.
Collapse
Affiliation(s)
- Milou M L Dingemans
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Marjolijn Kock
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Martin van den Berg
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
19
|
Kang J, Song J, Shen S, Li B, Yang X, Chen M. Diisononyl phthalate aggravates allergic dermatitis by activation of NF-kB. Oncotarget 2018; 7:85472-85482. [PMID: 27863430 PMCID: PMC5356750 DOI: 10.18632/oncotarget.13403] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/27/2016] [Indexed: 01/31/2023] Open
Abstract
Several epidemiological studies have suggested a possible link between exposure to Diisononyl phthalate (DINP) and the development of allergies. These findings remain controversial since there is insufficient scientific evidence to assess the ability of DINP to influence allergic immune responses. In addition, the mechanisms behind DINP-caused allergic diseases have not been fully elucidated. In this study, Balb/c mice were orally exposed to DINP for 3 weeks and were then sensitized with fluorescein isothiocyanate (FITC). We showed that oral exposure to DINP could aggravate allergic-dermatitis-like lesions, indicated by an increase in the number of mast cells, and in increased skin edema in FITC-induced contact hypersensitivity. This deterioration was concomitant with increased total serum immunoglobulin-E and Th2 cytokines. We determined the oxidative damage and the activation of nuclear factor-kb (NF-kB). The data demonstrated that DINP could promote oxidative damage and the activation of NF-kB in the skin. The expression of thymic stromal lymphopoietin and the activation of signal transducer and activator of transcriptions 3, 5 and 6 were enhanced concomitant with exacerbated allergic dermatitis effects and the activation of NF-kB induced by DINP. These effects were alleviated by pyrollidine dithiocarbamate, an inhibitor of NF-kB. The results suggest that oral exposure to DINP aggravated allergic contact dermatitis, which was positively regulated via NF-kB.
Collapse
Affiliation(s)
- Jun Kang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Jing Song
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Shiping Shen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Baizhan Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Xu Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Mingqing Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| |
Collapse
|
20
|
Nyffeler J, Chovancova P, Dolde X, Holzer AK, Purvanov V, Kindinger I, Kerins A, Higton D, Silvester S, van Vugt-Lussenburg BMA, Glaab E, van der Burg B, Maclennan R, Legler DF, Leist M. A structure-activity relationship linking non-planar PCBs to functional deficits of neural crest cells: new roles for connexins. Arch Toxicol 2017; 92:1225-1247. [PMID: 29164306 DOI: 10.1007/s00204-017-2125-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 11/15/2017] [Indexed: 12/14/2022]
Abstract
Migration of neural crest cells (NCC) is a fundamental developmental process, and test methods to identify interfering toxicants have been developed. By examining cell function endpoints, as in the 'migration-inhibition of NCC (cMINC)' assay, a large number of toxicity mechanisms and protein targets can be covered. However, the key events that lead to the adverse effects of a given chemical or group of related compounds are hard to elucidate. To address this issue, we explored here, whether the establishment of two overlapping structure-activity relationships (SAR)-linking chemical structure on the one hand to a phenotypic test outcome, and on the other hand to a mechanistic endpoint-was useful as strategy to identify relevant toxicity mechanisms. For this purpose, we chose polychlorinated biphenyls (PCB) as a large group of related, but still toxicologically and physicochemically diverse structures. We obtained concentration-dependent data for 26 PCBs in the cMINC assay. Moreover, the test chemicals were evaluated by a new high-content imaging method for their effect on cellular re-distribution of connexin43 and for their capacity to inhibit gap junctions. Non-planar PCBs inhibited NCC migration. The potency (1-10 µM) correlated with the number of ortho-chlorine substituents; non-ortho-chloro (planar) PCBs were non-toxic. The toxicity to NCC partially correlated with gap junction inhibition, while it fully correlated (p < 0.0004) with connexin43 cellular re-distribution. Thus, our double-SAR strategy revealed a mechanistic step tightly linked to NCC toxicity of PCBs. Connexin43 patterns in NCC may be explored as a new endpoint relevant to developmental toxicity screening.
Collapse
Affiliation(s)
- Johanna Nyffeler
- In vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Universitaetsstr. 10, 78457, Konstanz, Germany.,Research Training Group RTG1331, 78457, Konstanz, Germany
| | - Petra Chovancova
- In vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Universitaetsstr. 10, 78457, Konstanz, Germany.,Konstanz Research School Chemical Biology (KoRS-CB), 78457, Konstanz, Germany
| | - Xenia Dolde
- In vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Universitaetsstr. 10, 78457, Konstanz, Germany.,Konstanz Research School Chemical Biology (KoRS-CB), 78457, Konstanz, Germany
| | - Anna-Katharina Holzer
- In vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Universitaetsstr. 10, 78457, Konstanz, Germany
| | - Vladimir Purvanov
- Biotechnology Institute Thurgau at the University of Konstanz, 8280, Kreuzlingen, Switzerland
| | - Ilona Kindinger
- Biotechnology Institute Thurgau at the University of Konstanz, 8280, Kreuzlingen, Switzerland
| | - Anna Kerins
- Cyprotex Discovery, No 24 Mereside, Alderley Park, Cheshire, SK10 4TG, UK
| | - David Higton
- Cyprotex Discovery, No 24 Mereside, Alderley Park, Cheshire, SK10 4TG, UK
| | - Steve Silvester
- Cyprotex Discovery, No 24 Mereside, Alderley Park, Cheshire, SK10 4TG, UK
| | | | - Enrico Glaab
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362, Esch-sur-Alzette, Luxembourg
| | - Bart van der Burg
- BioDetection Systems bv, Science Park 406, 1098XH, Amsterdam, The Netherlands
| | - Richard Maclennan
- Cyprotex Discovery, No 24 Mereside, Alderley Park, Cheshire, SK10 4TG, UK
| | - Daniel F Legler
- Research Training Group RTG1331, 78457, Konstanz, Germany.,Konstanz Research School Chemical Biology (KoRS-CB), 78457, Konstanz, Germany.,Biotechnology Institute Thurgau at the University of Konstanz, 8280, Kreuzlingen, Switzerland
| | - Marcel Leist
- In vitro Toxicology and Biomedicine, Department Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Universitaetsstr. 10, 78457, Konstanz, Germany. .,Research Training Group RTG1331, 78457, Konstanz, Germany. .,Konstanz Research School Chemical Biology (KoRS-CB), 78457, Konstanz, Germany.
| |
Collapse
|
21
|
NTP Research Report on Biological Activity of Bisphenol A (BPA) Structural Analogues and Functional Alternatives. ACTA ACUST UNITED AC 2017. [DOI: 10.22427/ntp-rr-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Wang X, Anadón A, Wu Q, Qiao F, Ares I, Martínez-Larrañaga MR, Yuan Z, Martínez MA. Mechanism of Neonicotinoid Toxicity: Impact on Oxidative Stress and Metabolism. Annu Rev Pharmacol Toxicol 2017; 58:471-507. [PMID: 28968193 DOI: 10.1146/annurev-pharmtox-010617-052429] [Citation(s) in RCA: 199] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Thousands of tons of neonicotinoids are widely used around the world as broad-spectrum systemic insecticides and veterinary drugs. Researchers originally thought that neonicotinoids exhibited low mammalian toxicity. However, following their widespread use, it became increasingly evident that neonicotinoids could have various toxic effects on vertebrates and invertebrates. The primary focus of this review is to summarize the research progress associated with oxidative stress as a plausible mechanism for neonicotinoid-induced toxicity as well as neonicotinoid metabolism. This review summarizes the research conducted over the past decade into the production of reactive oxygen species, reactive nitrogen species, and oxidative stress as aresult of neonicotinoid treatments, along with their correlation with the toxicity and metabolism of neonicotinoids. The metabolism of neonicotinoids and protection of various compounds against neonicotinoid-induced toxicity based on their antioxidative effects is also discussed. This review sheds new light on the critical roles of oxidative stress in neonicotinoid-induced toxicity to nontarget species.
Collapse
Affiliation(s)
- Xu Wang
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain; .,National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China;
| | - Arturo Anadón
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou 434025, China.,Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Králové, Hradec Králové 50003, Czech Republic
| | - Fang Qiao
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Irma Ares
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - María-Rosa Martínez-Larrañaga
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; .,MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei 430070, China
| | - María-Aránzazu Martínez
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| |
Collapse
|
23
|
Mucio-Ramírez S, Sánchez-Islas E, Sánchez-Jaramillo E, Currás-Collazo M, Juárez-González VR, Álvarez-González MY, Orser LE, Hou B, Pellicer F, Kodavanti PRS, León-Olea M. Perinatal exposure to organohalogen pollutants decreases vasopressin content and its mRNA expression in magnocellular neuroendocrine cells activated by osmotic stress in adult rats. Toxicol Appl Pharmacol 2017; 329:173-189. [PMID: 28579251 PMCID: PMC5996972 DOI: 10.1016/j.taap.2017.05.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 05/29/2017] [Accepted: 05/31/2017] [Indexed: 11/17/2022]
Abstract
Polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) are environmental pollutants that produce neurotoxicity and neuroendocrine disruption. They affect the vasopressinergic system but their disruptive mechanisms are not well understood. Our group reported that rats perinatally exposed to Aroclor-1254 (A1254) and DE-71 (commercial mixtures of PCBs and PBDEs) decrease somatodendritic vasopressin (AVP) release while increasing plasma AVP responses to osmotic activation, potentially emptying AVP reserves required for body-water balance. The aim of this research was to evaluate the effects of perinatal exposure to A1254 or DE-71 (30mgkg/day) on AVP transcription and protein content in the paraventricular and supraoptic hypothalamic nuclei, of male and female rats, by in situ hybridization and immunohistochemistry. cFOS mRNA expression was evaluated in order to determine neuroendocrine cells activation due to osmotic stimulation. Animal groups were: vehicle (control); exposed to either A1254 or DE-71; both, control and exposed, subjected to osmotic challenge. The results confirmed a physiological increase in AVP-immunoreactivity (AVP-IR) and gene expression in response to osmotic challenge as reported elsewhere. In contrast, the exposed groups did not show this response to osmotic activation, they showed significant reduction in AVP-IR neurons, and AVP mRNA expression as compared to the hyperosmotic controls. cFOS mRNA expression increased in A1254 dehydrated groups, suggesting that the AVP-IR decrease was not due to a lack of the response to the osmotic activation. Therefore, A1254 may interfere with the activation of AVP mRNA transcript levels and protein, causing a central dysfunction of vasopressinergic system.
Collapse
Affiliation(s)
- Samuel Mucio-Ramírez
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco, México D.F. C.P. 14370, México.
| | - Eduardo Sánchez-Islas
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco, México D.F. C.P. 14370, México.
| | - Edith Sánchez-Jaramillo
- Laboratorio de Neuroendocrinología Molecular, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco. México D.F. C.P. 14370, México.
| | - Margarita Currás-Collazo
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA 92521, USA.
| | - Victor R Juárez-González
- Medicina Molecular y Bioprocesos, Instituto de Biotecnología, UNAM, Av. Universidad #2001, Col. Chamilpa, C.P. 62210 Cuernavaca, Morelos, México.
| | - Mhar Y Álvarez-González
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco, México D.F. C.P. 14370, México.
| | - L E Orser
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA 92521, USA
| | - Borin Hou
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA 92521, USA
| | - Francisco Pellicer
- Laboratorio de Fisiología Integrativa, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz. Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco, México D.F. C.P. 14370, México.
| | - Prasada Rao S Kodavanti
- Neurotoxicology Branch, Toxicity Assessment Division, NHEERL/ORD, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - Martha León-Olea
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco, México D.F. C.P. 14370, México.
| |
Collapse
|
24
|
Zhang R, Pessah IN. Divergent Mechanisms Leading to Signaling Dysfunction in Embryonic Muscle by Bisphenol A and Tetrabromobisphenol A. Mol Pharmacol 2017; 91:428-436. [PMID: 28143888 PMCID: PMC5363716 DOI: 10.1124/mol.116.107342] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/26/2017] [Indexed: 11/22/2022] Open
Abstract
Bisphenol A (BPA) and its brominated derivative tetrabromobisphenol A (TBBPA) are high production volume chemicals used in the manufacture of various consumer products. Although regarded as endocrine disruptors, these chemicals are suspected to exert nongenomic actions on muscle function that are not well understood. Using skeletal muscle microsomes, we examined the effects of BPA and TBBPA on ryanodine receptor type 1 (RyR1), dihydropyridine receptor (DHPR), and sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA). We assessed the impact of these chemicals on Ca2+ dynamics and signaling in embryonic skeletal myotubes through fluorescent Ca2+ imaging and measurement of resting membrane potential (Vm). TBBPA activated RyR1 and inhibited DHPR and SERCA, inducing a net efflux of Ca2+ from loaded microsomes, whereas BPA exhibited little or no activity at these targets. Regardless, both compounds disrupted the function of intact myotubes. TBBPA diminished and eventually abrogated Ca2+ transients, altered intracellular Ca2+ equilibrium, and caused Vm depolarization. For some cells, BPA caused rapid Ca2+ transient loss without marked changes in cytosolic and sarcoplasmic reticulum Ca2+ levels, likely owing to altered cellular excitability as a result of BPA-induced Vm hyperpolarization. BPA and TBBPA both interfere with skeletal muscle function through divergent mechanisms that impair excitation-contraction coupling and may be exemplary of their adverse outcomes in other muscle types.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis (R.Z., I.N.P.), and The Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, Sacramento (I.N.P.), California
| | - Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis (R.Z., I.N.P.), and The Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, Sacramento (I.N.P.), California
| |
Collapse
|
25
|
Holland EB, Feng W, Zheng J, Dong Y, Li X, Lehmler HJ, Pessah IN. An Extended Structure-Activity Relationship of Nondioxin-Like PCBs Evaluates and Supports Modeling Predictions and Identifies Picomolar Potency of PCB 202 Towards Ryanodine Receptors. Toxicol Sci 2016; 155:170-181. [PMID: 27655348 DOI: 10.1093/toxsci/kfw189] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Nondioxin-like polychlorinated biphenyls (NDL PCBs) activate ryanodine-sensitive Ca2+ channels (RyRs) and this activation has been associated with neurotoxicity in exposed animals. RyR-active congeners follow a distinct structure-activity relationship and a quantitative structure-activity relationship (QSAR) predicts that a large number of PCBs likely activate the receptor, which requires validation. Additionally, previous structural based conclusions have been established using receptor ligand binding assays but the impact of varying PCB structures on ion channel gating behavior is not understood. We used [3H]Ryanodine ([3H]Ry) binding to assess the RyR-activity of 14 previously untested PCB congeners evaluating the predictability of the QSAR. Congeners determined to display widely varying potency were then assayed with single channel voltage clamp analysis to assess direct influences on channel gating kinetics. The RyR-activity of individual PCBs assessed in in vitro assays followed the general pattern predicted by the QSAR but binding and lipid bilayer experiments demonstrated higher potency than predicted. Of the 49 congeners tested to date, tetra-ortho PCB 202 was found to be the most potent RyR-active congener increasing channel open probability at 200 pM. Shifting meta-substitutions to the para-position resulted in a > 100-fold reduction in potency as seen with PCB 197. Non-ortho PCB 11 was found to lack activity at the receptor supporting a minimum mono-ortho substitution for PCB RyR activity. These findings expand and support previous SAR assessments; where out of the 49 congeners tested to date 42 activate the receptor demonstrating that the RyR is a sensitive and common target of PCBs.
Collapse
Affiliation(s)
- Erika B Holland
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California; .,Department of Biological Sciences, California State University of Long Beach, Long Beach, California.,Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California
| | - Wei Feng
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California
| | - Jing Zheng
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California.,Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, China Pharmaceutical University, Nanjing 211198, China
| | - Yao Dong
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California
| | - Xueshu Li
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa
| | - Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California.,The Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, University of California Davis Medical Center, Sacramento, California.,UC Davis Center for Children's Environmental Health and Disease Prevention, Davis, California
| |
Collapse
|
26
|
Wang X, Martínez MA, Wu Q, Ares I, Martínez-Larrañaga MR, Anadón A, Yuan Z. Fipronil insecticide toxicology: oxidative stress and metabolism. Crit Rev Toxicol 2016; 46:876-899. [DOI: 10.1080/10408444.2016.1223014] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
27
|
Wang X, Martínez MA, Dai M, Chen D, Ares I, Romero A, Castellano V, Martínez M, Rodríguez JL, Martínez-Larrañaga MR, Anadón A, Yuan Z. Permethrin-induced oxidative stress and toxicity and metabolism. A review. ENVIRONMENTAL RESEARCH 2016; 149:86-104. [PMID: 27183507 DOI: 10.1016/j.envres.2016.05.003] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/21/2016] [Accepted: 05/02/2016] [Indexed: 06/05/2023]
Abstract
Permethrin (PER), the most frequently used synthetic Type I pyrethroid insecticide, is widely used in the world because of its high activity as an insecticide and its low mammalian toxicity. It was originally believed that PER exhibited low toxicity on untargeted animals. However, as its use became more extensive worldwide, increasing evidence suggested that PER might have a variety of toxic effects on animals and humans alike, such as neurotoxicity, immunotoxicity, cardiotoxicity, hepatotoxicity, reproductive, genotoxic, and haematotoxic effects, digestive system toxicity, and cytotoxicity. A growing number of studies indicate that oxidative stress played critical roles in the various toxicities associated with PER. To date, almost no review has addressed the toxicity of PER correlated with oxidative stress. The focus of this article is primarily to summarise advances in the research associated with oxidative stress as a potential mechanism for PER-induced toxicity as well as its metabolism. This review summarises the research conducted over the past decade into the reactive oxygen species (ROS) generation and oxidative stress as a consequence of PER treatments, and ultimately their correlation with the toxicity and the metabolism of PER. The metabolism of PER involves various CYP450 enzymes, alcohol or aldehyde dehydrogenases for oxidation and the carboxylesterases for hydrolysis, through which oxidative stress might occur, and such metabolic factors are also reviewed. The protection of a variety of antioxidants against PER-induced toxicity is also discussed, in order to further understand the role of oxidative stress in PER-induced toxicity. This review will throw new light on the critical roles of oxidative stress in PER-induced toxicity, as well as on the blind spots that still exist in the understanding of PER metabolism, the cellular effects in terms of apoptosis and cell signaling pathways, and finally strategies to help to protect against its oxidative damage.
Collapse
Affiliation(s)
- Xu Wang
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain; National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - María-Aránzazu Martínez
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Menghong Dai
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Dongmei Chen
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Irma Ares
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Alejandro Romero
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Victor Castellano
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Marta Martínez
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - José Luis Rodríguez
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Arturo Anadón
- Department of Toxicology and Pharmacology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, Hubei, China.
| |
Collapse
|
28
|
In vitro neurotoxic hazard characterisation of dinitrophenolic herbicides. Toxicol Lett 2016; 252:62-9. [DOI: 10.1016/j.toxlet.2016.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/14/2016] [Accepted: 04/18/2016] [Indexed: 11/23/2022]
|
29
|
No evidence for oxidative stress in the cerebellar tissues or cells of juvenile male mice exposed via lactation to the 6 non-dioxin-like PCBs at levels below the regulatory safe limits for humans. Toxicol Lett 2016; 245:7-14. [DOI: 10.1016/j.toxlet.2015.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 12/15/2015] [Accepted: 12/18/2015] [Indexed: 11/19/2022]
|
30
|
Cigliano L, Nebbia C, Rychen G, Feidt C, Girolami F, Rossetti C, Spagnuolo MS. Evaluation of serum markers of blood redox homeostasis and inflammation in PCB naturally contaminated heifers undergoing decontamination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 542:653-664. [PMID: 26546761 DOI: 10.1016/j.scitotenv.2015.10.104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/15/2015] [Accepted: 10/21/2015] [Indexed: 06/05/2023]
Abstract
Dioxins and polychlorinated biphenyls (PCBs) are widely spread and long persistent contaminants. The aim of this study was to evaluate physiological changes associated with the decontamination of animals previously exposed to environmental pollutants. Eight Limousine heifers were removed from a polluted area and fed a standard ration for six months. The extent of contamination was defined by measuring total toxic equivalents (TEQ) values of dioxin like-PCBs (DL-PCBs), polychlorinated dibenzo-p-dioxins (PCDDs), and polychlorinated dibenzofurans (PCDFs), and NDL-PCBs amount in pericaudal fat two weeks after the removal from the contaminated area (day 0) and then bimonthly for six months during the decontamination (days 59, 125, and 188). The concentrations of both DL-PCBs + PCDD/Fs and NDL-PCBs at the start of decontamination (day 0) were higher than those legally admitted, and they were strongly decreased at the end of the experimental period. Specific indices of blood redox homeostasis and inflammation were also measured at each time. Serum concentrations of Retinol, Tocopherol and Ascorbate, the total antioxidant capacity (TAC) and the activities of superoxide dismutase and glutathione peroxidase were lower at day 0 than after 59, 125 or 188 days of decontamination. Protein-bound carbonyls (PC), nitro-tyrosine (N-Tyr), and lipid hydroperoxides concentrations were higher at day 0 than during decontamination. In addition, TAC, PC and N-Tyr levels correlated with both DL-PCB and NDL-PCB concentrations only at day 0. Serum concentrations of TNF-alpha and Haptoglobin were higher in samples collected at day 0 than in those obtained during decontamination. As Haptoglobin and TNF-alpha levels correlated with both DL-PCB and NDL-PCB concentrations at day 0 and at day 59 (when these concentrations are still over legal limit), they might represent easily measurable parameters for assessing acute exposure to pollutants. Further both N-Tyr and TNF-alpha concentrations could be used as bio-monitoring markers of the decontamination procedure.
Collapse
Affiliation(s)
- Luisa Cigliano
- Department of Biology, University of Naples Federico II, via Cinthia 121, 80126 Naples, Italy.
| | - Carlo Nebbia
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, 10095 Grugliasco, Italy.
| | - Guido Rychen
- Université de Lorraine, INRA, 2 avenue de la forêt de Haye, TSA 40602, 54518 Vandoeuvre Cedex, France.
| | - Cyril Feidt
- Université de Lorraine, INRA, 2 avenue de la forêt de Haye, TSA 40602, 54518 Vandoeuvre Cedex, France.
| | - Flavia Girolami
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, 10095 Grugliasco, Italy.
| | - Cristina Rossetti
- National Research Council (CNR), Institute of Animal Production System in Mediterranean Environments (ISPAAM), via Argine 1085, 80147 Naples, Italy.
| | - Maria Stefania Spagnuolo
- National Research Council (CNR), Institute of Animal Production System in Mediterranean Environments (ISPAAM), via Argine 1085, 80147 Naples, Italy.
| |
Collapse
|
31
|
Hendriks HS, Westerink RH. Neurotoxicity and risk assessment of brominated and alternative flame retardants. Neurotoxicol Teratol 2015; 52:248-69. [DOI: 10.1016/j.ntt.2015.09.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 09/01/2015] [Accepted: 09/01/2015] [Indexed: 11/29/2022]
|
32
|
Elnar AA, Allouche A, Desor F, Yen FT, Soulimani R, Oster T. Lactational exposure of mice to low levels of non-dioxin-like polychlorinated biphenyls increases susceptibility to neuronal stress at a mature age. Neurotoxicology 2015; 53:314-320. [PMID: 26480858 DOI: 10.1016/j.neuro.2015.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 10/05/2015] [Indexed: 11/27/2022]
Abstract
Lactational exposure to low levels of the sum of the six indicator polychlorinated biphenyls (Σ6 NDL-PCBs, 10ng/kg/day) is known to lead to persistent anxious behavior in young and adult offspring mice at postnatal days 40 and 160, respectively. At more advanced life stages, we evaluated the effects on the mouse brain of neuronal stress induced by the synaptotoxic amyloid-beta (Aβ) peptide. Perinatal exposure of lactating mice to Σ6 NDL-PCBs did not affect short-term memory performances of their offspring male mice aged 14 months as compared to control PCB-naive mice. However, following intracerebroventricular injection of soluble Aβ oligomers, significant impairments in long-term memory were detected in the mice that had been lactationally treated with Σ6 NDL-PCBs. In addition, immunoblot analyses of the synaptosomal fraction of hippocampal tissues from treated mice revealed a lower expression of the synaptic proteins synaptophysin and PSD-95. Though preliminary, our findings suggest for the first time that early exposure to low levels of NDL-PCBs induce late neuronal vulnerability to amyloid stress. Additional experiments are needed to confirm whether early environmental influences are involved in the etiology of brain aging and cognitive decline.
Collapse
Affiliation(s)
- Arpiné Ardzivian Elnar
- Neurotoxicologie Alimentaire et Bioactivité, MRCA, BP 4102, 57040 Metz, France; Université de Lorraine, Unité de Recherche Animal et Fonctionnalités des Produits Animaux (UR AFPA), EA3998, INRA USC 0340, France.
| | - Ahmad Allouche
- Biodisponibilité et Fonctionnalités des Lipides Alimentaires, BFLA, ENSAIA, Avenue de la forêt de Haye, 54500 Vandœuvre-lès-Nancy, France; Université de Lorraine, Unité de Recherche Animal et Fonctionnalités des Produits Animaux (UR AFPA), EA3998, INRA USC 0340, France
| | - Frédéric Desor
- Neurotoxicologie Alimentaire et Bioactivité, MRCA, BP 4102, 57040 Metz, France; Université de Lorraine, Unité de Recherche Animal et Fonctionnalités des Produits Animaux (UR AFPA), EA3998, INRA USC 0340, France
| | - Frances T Yen
- Biodisponibilité et Fonctionnalités des Lipides Alimentaires, BFLA, ENSAIA, Avenue de la forêt de Haye, 54500 Vandœuvre-lès-Nancy, France; Université de Lorraine, Unité de Recherche Animal et Fonctionnalités des Produits Animaux (UR AFPA), EA3998, INRA USC 0340, France
| | - Rachid Soulimani
- Neurotoxicologie Alimentaire et Bioactivité, MRCA, BP 4102, 57040 Metz, France; Université de Lorraine, Unité de Recherche Animal et Fonctionnalités des Produits Animaux (UR AFPA), EA3998, INRA USC 0340, France
| | - Thierry Oster
- Biodisponibilité et Fonctionnalités des Lipides Alimentaires, BFLA, ENSAIA, Avenue de la forêt de Haye, 54500 Vandœuvre-lès-Nancy, France; Université de Lorraine, Unité de Recherche Animal et Fonctionnalités des Produits Animaux (UR AFPA), EA3998, INRA USC 0340, France
| |
Collapse
|
33
|
Perez-Vazquez FJ, Flores-Ramirez R, Ochoa-Martinez AC, Orta-Garcia ST, Hernandez-Castro B, Carrizalez-Yañez L, Pérez-Maldonado IN. Concentrations of persistent organic pollutants (POPs) and heavy metals in soil from San Luis Potosí, México. ENVIRONMENTAL MONITORING AND ASSESSMENT 2015; 187:4119. [PMID: 25480599 DOI: 10.1007/s10661-014-4119-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 10/28/2014] [Indexed: 06/04/2023]
Abstract
The aim of this study was to assess the levels of polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), p,p'-dichlorodiphenyltrichloroethane (DDT), p,p'-dichlorodiphenyldichloroethylene (DDE), and four heavy metals (arsenic, cadmium, lead, and mercury) in soil from the city of San Luis Potosí in Mexico. In order to confirm the presence of the previously mentioned compounds, outdoor surface soil samples were collected and analyzed by gas chromatography/mass spectrometer for PBDEs, PCBs, DDT, and DDE. Meanwhile, heavy metals were quantified using the atomic absorption spectrophotometry technique. The total PBDEs levels ranged from 5.0 to 134 μg/kg dry weight (dw), with a total mean PBDEs level of 22.0 ± 32.5 μg/kg dw (geometric mean ± standard deviation). For PCBs, the total mean level in the studied soil was 21.6 ± 24.7 μg/kg dw (range, <LOD to 80.5). An important finding in our study was that all soil samples (100 %) had detectable levels of the metabolite DDE. Moreover, the total mean DDT level (∑ DDT and DDE) was approximately 5.50 ± 4.50 μg/kg dw. The mean levels for arsenic, mercury, cadmium, and lead in soil samples were 7.20 ± 10.7 (range, 15.0 to 265 mg/kg dw), 0.45 ± 0.48 (range, <LOD to 2.50 mg/kg dw), 3.00 ± 3.00 (range, 1.00-13.0 mg/kg dw), and 108 ± 105 (range, 25.0 to 435 mg/kg dw), respectively. This screening study provides us with concentration data for the occurrence of persistent organic pollutants (POPs) and four heavy metals in soil samples from the city of San Luis Potosí, Mexico, and considering that soil is an important pathway of exposure for people, a biomonitoring program for the surveillance of the general population in the city of San Luis Potosi is necessary.
Collapse
Affiliation(s)
- Francisco Javier Perez-Vazquez
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | | | | | | | | | | | | |
Collapse
|
34
|
León-Olea M, Martyniuk CJ, Orlando EF, Ottinger MA, Rosenfeld C, Wolstenholme J, Trudeau VL. Current concepts in neuroendocrine disruption. Gen Comp Endocrinol 2014; 203:158-173. [PMID: 24530523 PMCID: PMC4133337 DOI: 10.1016/j.ygcen.2014.02.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 02/01/2014] [Accepted: 02/04/2014] [Indexed: 11/17/2022]
Abstract
In the last few years, it has become clear that a wide variety of environmental contaminants have specific effects on neuroendocrine systems in fish, amphibians, birds and mammals. While it is beyond the scope of this review to provide a comprehensive examination of all of these neuroendocrine disruptors, we will focus on select representative examples. Organochlorine pesticides bioaccumulate in neuroendocrine areas of the brain that directly regulate GnRH neurons, thereby altering the expression of genes downstream of GnRH signaling. Organochlorine pesticides can also agonize or antagonize hormone receptors, adversely affecting crosstalk between neurotransmitter systems. The impacts of polychlorinated biphenyls are varied and in many cases subtle. This is particularly true for neuroedocrine and behavioral effects of exposure. These effects impact sexual differentiation of the hypothalamic-pituitary-gonadal axis, and other neuroendocrine systems regulating the thyroid, metabolic, and stress axes and their physiological responses. Weakly estrogenic and anti-androgenic pollutants such as bisphenol A, phthalates, phytochemicals, and the fungicide vinclozolin can lead to severe and widespread neuroendocrine disruptions in discrete brain regions, including the hippocampus, amygdala, and hypothalamus, resulting in behavioral changes in a wide range of species. Behavioral features that have been shown to be affected by one or more these chemicals include cognitive deficits, heightened anxiety or anxiety-like, sociosexual, locomotor, and appetitive behaviors. Neuroactive pharmaceuticals are now widely detected in aquatic environments and water supplies through the release of wastewater treatment plant effluents. The antidepressant fluoxetine is one such pharmaceutical neuroendocrine disruptor. Fluoxetine is a selective serotonin reuptake inhibitor that can affect multiple neuroendocrine pathways and behavioral circuits, including disruptive effects on reproduction and feeding in fish. There is growing evidence for the association between environmental contaminant exposures and diseases with strong neuroendocrine components, for example decreased fecundity, neurodegeneration, and cardiac disease. It is critical to consider the timing of exposures of neuroendocrine disruptors because embryonic stages of central nervous system development are exquisitely sensitive to adverse effects. There is also evidence for epigenetic and transgenerational neuroendocrine disrupting effects of some pollutants. We must now consider the impacts of neuroendocrine disruptors on reproduction, development, growth and behaviors, and the population consequences for evolutionary change in an increasingly contaminated world. This review examines the evidence to date that various so-called neuroendocrine disruptors can induce such effects often at environmentally-relevant concentrations.
Collapse
Affiliation(s)
- Martha León-Olea
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría, R.F.M., México D.F., México
| | - Christopher J. Martyniuk
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick, E2L 4L5, Canada
| | - Edward F. Orlando
- University of Maryland, Department of Animal and Avian Sciences, College Park, MD 20742, USA
| | - Mary Ann Ottinger
- University of Maryland, Department of Animal and Avian Sciences, College Park, MD 20742, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Cheryl Rosenfeld
- Departments of Biomedical Sciences and Bond Life Sciences Center, Genetics Area Program, University of Missouri, Columbia, MO 65211, USA
| | - Jennifer Wolstenholme
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 23112, USA
| | - Vance L. Trudeau
- Department of Biology, University of Ottawa, 30 Marie Curie Private, Ottawa, ON, Canada, K1N 6N5
- Corresponding author:
| |
Collapse
|