1
|
Mukherjee P, Dutta J, Roy M, Thakur TK, Mitra A. Plant growth-promoting rhizobacterial secondary metabolites in augmenting heavy metal(loid) phytoremediation: An integrated green in situ ecorestorative technology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55851-55894. [PMID: 39251536 DOI: 10.1007/s11356-024-34706-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 11/17/2022] [Indexed: 09/11/2024]
Abstract
In recent times, increased geogenic and human-centric activities have caused significant heavy metal(loid) (HM) contamination of soil, adversely impacting environmental, plant, and human health. Phytoremediation is an evolving, cost-effective, environment-friendly, in situ technology that employs indigenous/exotic plant species as natural purifiers to remove toxic HM(s) from deteriorated ambient soil. Interestingly, the plant's rhizomicrobiome is pivotal in promoting overall plant nutrition, health, and phytoremediation. Certain secondary metabolites produced by plant growth-promoting rhizobacteria (PGPR) directly participate in HM bioremediation through chelation/mobilization/sequestration/bioadsorption/bioaccumulation, thus altering metal(loid) bioavailability for their uptake, accumulation, and translocation by plants. Moreover, the metallotolerance of the PGPR and the host plant is another critical factor for the successful phytoremediation of metal(loid)-polluted soil. Among the phytotechniques available for HM remediation, phytoextraction/phytoaccumulation (HM mobilization, uptake, and accumulation within the different plant tissues) and phytosequestration/phytostabilization (HM immobilization within the soil) have gained momentum in recent years. Natural metal(loid)-hyperaccumulating plants have the potential to assimilate increased levels of metal(loid)s, and several such species have already been identified as potential candidates for HM phytoremediation. Furthermore, the development of transgenic rhizobacterial and/or plant strains with enhanced environmental adaptability and metal(loid) uptake ability using genetic engineering might open new avenues in PGPR-assisted phytoremediation technologies. With the use of the Geographic Information System (GIS) for identifying metal(loid)-impacted lands and an appropriate combination of normal/transgenic (hyper)accumulator plant(s) and rhizobacterial inoculant(s), it is possible to develop efficient integrated phytobial remediation strategies in boosting the clean-up process over vast regions of HM-contaminated sites and eventually restore ecosystem health.
Collapse
Affiliation(s)
- Pritam Mukherjee
- Department of Oceanography, Techno India University, West Bengal, EM 4/1 Sector V, Salt Lake, Kolkata, 700091, West Bengal, India.
| | - Joystu Dutta
- Department of Environmental Science, University Teaching Department, Sant Gahira Guru University, Ambikapur, 497001, Chhattisgarh, India
| | - Madhumita Roy
- Department of Microbiology, Bose Institute, P-1/12, CIT Road, Scheme VIIM, Kankurgachi, Kolkata, 700054, West Bengal, India
| | - Tarun Kumar Thakur
- Department of Environmental Science, Indira Gandhi National Tribal University, Amarkantak, 484886, Madhya Pradesh, India
| | - Abhijit Mitra
- Department of Marine Science, University of Calcutta, 35 B. C. Road, Kolkata, 700019, West Bengal, India
| |
Collapse
|
2
|
Shehzad J, Khan I, Zaheer S, Farooq A, Chaudhari SK, Mustafa G. Insights into heavy metal tolerance mechanisms of Brassica species: physiological, biochemical, and molecular interventions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:108448-108476. [PMID: 37924172 DOI: 10.1007/s11356-023-29979-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/15/2023] [Indexed: 11/06/2023]
Abstract
Heavy metal (HM) contamination of soil due to anthropogenic activities has led to bioaccumulation and biomagnification, posing toxic effects on plants by interacting with vital cellular biomolecules such as DNA and proteins. Brassica species have developed complex physiological, biochemical, and molecular mechanisms for adaptability, tolerance, and survival under these conditions. This review summarizes the HM tolerance strategies of Brassica species, covering the role of root exudates, microorganisms, cell walls, cell membranes, and organelle-specific proteins. The first line of defence against HM stress in Brassica species is the avoidance strategy, which involves metal ion precipitation, root sorption, and metal exclusion. The use of plant growth-promoting microbes, Pseudomonas, Psychrobacter, and Rhizobium species effectively immobilizes HMs and reduces their uptake by Brassica roots. The roots of Brassica species efficiently detoxify metals, particularly by flavonoid glycoside exudation. The composition of the cell wall and callose deposition also plays a crucial role in enhancing HMs resistance in Brassica species. Furthermore, plasma membrane-associated transporters, BjCET, BjPCR, BjYSL, and BnMTP, reduce HM concentration by stimulating the efflux mechanism. Brassica species also respond to stress by up-regulating existing protein pools or synthesizing novel proteins associated with HM stress tolerance. This review provides new insights into the HM tolerance mechanisms of Brassica species, which are necessary for future development of HM-resistant crops.
Collapse
Affiliation(s)
- Junaid Shehzad
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Ilham Khan
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Saira Zaheer
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Atikah Farooq
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Sunbal Khalil Chaudhari
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Sargodha Campus, Sargodha, 42100, Pakistan
| | - Ghazala Mustafa
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
- Lishui Institute of Agriculture and Forestry Sciences, Lishui, 323000, China.
- State Agricultural Ministry Laboratory of Horticultural Crop growth and Development, Ministry of Agri-culture, Department of Horticulture, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Cui X, Cao X, Xue W, Xu L, Cui Z, Zhao R, Ni SQ. Integrative effects of microbial inoculation and amendments on improved crop safety in industrial soils co-contaminated with organic and inorganic pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162202. [PMID: 36775162 DOI: 10.1016/j.scitotenv.2023.162202] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 01/12/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Soils co-contaminated by organic and inorganic pollutants usually pose major ecological risks to soil ecosystems including plants. Thus, effective strategies are needed to alleviate the phytotoxicity caused by such co-contamination. In this study, microbial agents (a mixture of Bacillus subtilis, Sphingobacterium multivorum, and a commercial microbial product named OBT) and soil amendments (β-cyclodextrin, rice husk, biochar, calcium magnesium phosphate fertilizer, and organic fertilizer) were evaluated to determine their applicability in alleviating toxicity to crops (maize and soybean) posed by polycyclic aromatic hydrocarbon (PAHs) and potentially toxic metals co-contaminated soils. The results showed that peroxidase, catalase, and superoxide dismutase activity levels in maize or soybean grown in severely or mildly contaminated soils were significantly enhanced by the integrative effects of amendments and microbial agents, compared with those in single plant treatments. The removal rates of Zn, Pb, and Cd in severely contaminated soils were 49 %, 47 %, and 51 % and 46 %, 45 %, and 48 %, for soybean and maize, respectively. The total contents of Cd, Pb, Zn, and PAHs in soil decreased by day 90. Soil organic matter content, levels of nutrient elements, and enzyme activity (catalase, urease, and dehydrogenase) increased after the amendments and application of microbial agents. Moreover, the amendments and microbial agents also increased the diversity and distribution of bacterial species in the soil. These results suggest that the amendments and microbial agents were beneficial for pollutant purification, improving the soil environment and enhancing both plant resistance to pollutants and immune systems of plants.
Collapse
Affiliation(s)
- Xiaowei Cui
- School of Municipal & Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Xiufeng Cao
- School of Municipal & Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China.
| | - Wenxiu Xue
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Lei Xu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Zhaojie Cui
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Rui Zhao
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Shou-Qing Ni
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
4
|
Raklami A, Meddich A, Oufdou K, Baslam M. Plants-Microorganisms-Based Bioremediation for Heavy Metal Cleanup: Recent Developments, Phytoremediation Techniques, Regulation Mechanisms, and Molecular Responses. Int J Mol Sci 2022; 23:5031. [PMID: 35563429 PMCID: PMC9105715 DOI: 10.3390/ijms23095031] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
Rapid industrialization, mine tailings runoff, and agricultural activities are often detrimental to soil health and can distribute hazardous metal(loid)s into the soil environment, with harmful effects on human and ecosystem health. Plants and their associated microbes can be deployed to clean up and prevent environmental pollution. This green technology has emerged as one of the most attractive and acceptable practices for using natural processes to break down organic contaminants or accumulate and stabilize metal pollutants by acting as filters or traps. This review explores the interactions between plants, their associated microbiomes, and the environment, and discusses how they shape the assembly of plant-associated microbial communities and modulate metal(loid)s remediation. Here, we also overview microbe-heavy-metal(loid)s interactions and discuss microbial bioremediation and plants with advanced phytoremediation properties approaches that have been successfully used, as well as their associated biological processes. We conclude by providing insights into the underlying remediation strategies' mechanisms, key challenges, and future directions for the remediation of metal(loid)s-polluted agricultural soils with environmentally friendly techniques.
Collapse
Affiliation(s)
- Anas Raklami
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Labeled Research Unit-CNRST N°4, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco; (A.R.); (K.O.)
| | - Abdelilah Meddich
- Center of Agrobiotechnology and Bioengineering, Research Unit Labelled CNRST (Centre Agro-Biotech URL-CNRST-05), “Physiology of Abiotic Stresses” Team, Cadi Ayyad University, Marrakesh 40000, Morocco;
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Faculty of Science Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Khalid Oufdou
- Laboratory of Microbial Biotechnologies, Agrosciences, and Environment, Labeled Research Unit-CNRST N°4, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco; (A.R.); (K.O.)
| | - Marouane Baslam
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| |
Collapse
|
5
|
Ke T, Guo G, Liu J, Zhang C, Tao Y, Wang P, Xu Y, Chen L. Improvement of the Cu and Cd phytostabilization efficiency of perennial ryegrass through the inoculation of three metal-resistant PGPR strains. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116314. [PMID: 33360656 DOI: 10.1016/j.envpol.2020.116314] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/01/2020] [Accepted: 12/13/2020] [Indexed: 05/08/2023]
Abstract
To explore a novel strategy for the remediation of soils polluted with Cu and Cd, three strains of plant-growth-promoting rhizobacteria (PGPRs) isolated from contaminated mines and two grass species (perennial ryegrass and tall fescue) were selected in this study. The performance of PGPR strains in metal adsorption, maintaining promotion traits under stress, and ameliorating phytostabilization potential was evaluated. Cd2+ exerted a stronger deleterious effect on microbial growth than Cu2+, but the opposite occurred for grass seedlings. Adsorption experiment showed that the growing PGPR strains were able to immobilize maximum 79.49% Cu and 81.35% Cd owing to biosorption or bioaccumulation. The strains exhibited the ability to secrete indole-3-acetic acid (IAA) and dissolve phosphorus in the absence and presence of metals, and IAA production was even enhanced in the presence of low Cu2+ (5 mg L-1). However, the siderophore-producing ability of the isolates was strongly suppressed under Cu and Cd exposure. Ryegrass was further selected for pot experiments owing to its higher germination rate and tolerance under Cu and Cd stress than fescue. Pot-experiment results revealed that PGPR addition significantly increased the shoot and root biomasses of ryegrass by 11.49%-44.50% and 43.53%-90.29% in soil co-contaminated with 800 mg Cu kg-1 and 30 mg Cd kg-1, respectively. Metal uptake and translocation in inoculated ryegrass significantly decreased owing to the reduced diethylenetriamine pentaacetic acid-extractable metal content and increased residual metal-fraction percentage mediated by PGPR. Interestingly, stress mitigation was observed in these inoculated plants; in particular, their malondialdehyde content and superoxide dismutase activity were even significantly lower than those of ryegrass under normal conditions. Therefore, PGPR could be a promising option to enhance the phytostabilization efficiency of Cu and Cd in heavily polluted soils.
Collapse
Affiliation(s)
- Tan Ke
- School of Resource & Environmental Sciences, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei Research Center of Environment Remediation Technology, Wuhan University, Wuhan, 430079, PR China
| | - Guangyu Guo
- School of Resource & Environmental Sciences, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei Research Center of Environment Remediation Technology, Wuhan University, Wuhan, 430079, PR China
| | - Junrong Liu
- School of Resource & Environmental Sciences, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei Research Center of Environment Remediation Technology, Wuhan University, Wuhan, 430079, PR China
| | - Chao Zhang
- School of Resource & Environmental Sciences, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei Research Center of Environment Remediation Technology, Wuhan University, Wuhan, 430079, PR China
| | - Yue Tao
- School of Resource & Environmental Sciences, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei Research Center of Environment Remediation Technology, Wuhan University, Wuhan, 430079, PR China
| | - Panpan Wang
- School of Resource & Environmental Sciences, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei Research Center of Environment Remediation Technology, Wuhan University, Wuhan, 430079, PR China
| | - Yanhong Xu
- National Central City Research Institute, Zhengzhou Normal University, Zhengzhou, 450044, PR China
| | - Lanzhou Chen
- School of Resource & Environmental Sciences, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei Research Center of Environment Remediation Technology, Wuhan University, Wuhan, 430079, PR China.
| |
Collapse
|
6
|
Fang L, Ju W, Yang C, Jin X, Liu D, Li M, Yu J, Zhao W, Zhang C. Exogenous application of signaling molecules to enhance the resistance of legume-rhizobium symbiosis in Pb/Cd-contaminated soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114744. [PMID: 32806415 DOI: 10.1016/j.envpol.2020.114744] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/22/2020] [Accepted: 05/04/2020] [Indexed: 05/24/2023]
Abstract
Being signaling molecules, nitric oxide (NO) and hydrogen sulfide (H2S) can mediate a wide range of physiological processes caused by plant metal toxicity. Moreover, legume-rhizobium symbiosis has gained increasing attention in mitigating heavy metal stress. However, systematic regulatory mechanisms used for the exogenous application of signaling molecules to alter the resistance of legume-rhizobium symbiosis under metal stress are currently unknown. In this study, we examined the exogenous effects of sodium nitroprusside (SNP) as an NO donor additive and sodium hydrosulfide (NaHS) as a H2S donor additive on the phytotoxicity and soil quality of alfalfa (Medicago sativa)-rhizobium symbiosis in lead/cadmium (Pb/Cd)-contaminated soils. Results showed that rhizobia inoculation markedly promoted alfalfa growth by increasing chlorophyll content, fresh weight, and plant height and biomass. Compared to the inoculated rhizobia treatment alone, the addition of NO and H2S significantly reduced the bioaccumulation of Pb and Cd in alfalfa-rhizobium symbiosis, respectively, thus avoiding the phytotoxicity caused by the excessive presence of metals. The addition of signaling molecules also alleviated metal-induced phytotoxicity by increasing antioxidant enzyme activity and inhibiting the level of lipid peroxidation and reactive oxygen species (ROS) in legume-rhizobium symbiosis. Also, signaling molecules improved soil nutrient cycling, increased soil enzyme activities, and promoted rhizosphere bacterial community diversity. Both partial least squares path modeling (PLS-PM) and variation partitioning analysis (VPA) identified that using signaling molecules can improve plant growth by regulating major controlling variables (i.e., soil enzymes, soil nutrients, and microbial diversity/plant oxidative damage) in legume-rhizobium symbiosis. This study offers integrated insight that confirms that the exogenous application of signaling molecules can enhance the resistance of legume-rhizobium symbiosis under metal toxicity by regulating the biochemical response of the plant-soil system, thereby minimizing potential health risks.
Collapse
Affiliation(s)
- Linchuan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, China; CAS Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xian, 710061, China
| | - Wenliang Ju
- Institute of Soil and Water Conservation, Chinese Academy of Sciences, Ministry of Water Resources, Yangling, 712100, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Congli Yang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, China
| | - Xiaolian Jin
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, China
| | - Dongdong Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, China
| | - Mengdi Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, China
| | - Jialuo Yu
- Institute of Soil and Water Conservation, Chinese Academy of Sciences, Ministry of Water Resources, Yangling, 712100, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Zhao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, China
| | - Chao Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
7
|
Abdelkrim S, Jebara SH, Jebara M. Antioxidant systems responses and the compatible solutes as contributing factors to lead accumulation and tolerance in Lathyrus sativus inoculated by plant growth promoting rhizobacteria. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 166:427-436. [PMID: 30292109 DOI: 10.1016/j.ecoenv.2018.09.115] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/13/2018] [Accepted: 09/26/2018] [Indexed: 05/07/2023]
Abstract
Short-term lead (Pb) uptake by plants is important to better understand the mechanisms of metal uptake, plant tolerance and detoxification strategy. Thus we examined the response of Lathyrus sativus to 1 mM Pb application in hydroponic sorption kinetics at 24, 48 and 72 h, and we investigated the contribution of two inocula I1 (R. leguminosarum (M5) + B. simplex + Luteibacter sp + Variovorax sp) and I5 (R. leguminosarum (M5) + P. fluorescens (K23) + Luteibacter sp + Variovorax sp) in plant mechanisms responses. Pb application induced its immediate uptake by L. sativus with highest concentrations, which increased gradually mostly for inoculated plants. The control plant shoots accumulated the highest concentration of lead at 24 h. However, at 48 and 72 h this potential uptake was significantly enhanced in plants inoculated with I5. Moreover, inoculation increased significantly root Pb-uptake with the maximum reached at 72 h. We observed a progressive decline in chlorophyll contents after Pb exposure in control plants that was higher than in PGPR-treated plants and the greatest improvement (152%) was recorded in I5 inoculated leaves. The PGPR also promoted significant elevation in the carotenoid content with the highest increases (188%) in plants inoculated with I5 at 72 h. Data illustrated remarkable augmentation in malondialdehyde, ion leakage level and decrease in membrane stability. Whereas, inoculation enhanced significantly cellular membrane integrity through increases in membrane stability index as compared to the control plants. In response to Pb, proline biosynthesis, as well as total soluble sugars concentration, immediately increased and the stimulatory effect was more pronounced in inoculated plants at 72 h. Lead considerably altered the activities of SOD, GPOX, CAT and APX enzymes in leaves and roots in a time- and inoculation- dependent manner. It is concluded that antioxidant enzymes, carotenoids, soluble sugars and proline were involved in the main defense mechanism and tolerance of Lathyrus sativus to Pb oxidative stress, as well lead accumulation, and are likely to operate in combination.
Collapse
Affiliation(s)
- Souhir Abdelkrim
- Center of Biotechnology of Borj Cedria, Laboratory of Legumes, BP 901, 2050 Hammam Lif, Tunisia; National Agronomic Institute of Tunisia, University of Carthage, Tunis, Tunisia
| | - Salwa Harzalli Jebara
- Center of Biotechnology of Borj Cedria, Laboratory of Legumes, BP 901, 2050 Hammam Lif, Tunisia
| | - Moez Jebara
- Center of Biotechnology of Borj Cedria, Laboratory of Legumes, BP 901, 2050 Hammam Lif, Tunisia.
| |
Collapse
|
8
|
Heavy metal accumulation in Lathyrus sativus growing in contaminated soils and identification of symbiotic resistant bacteria. Arch Microbiol 2018; 201:107-121. [PMID: 30276423 DOI: 10.1007/s00203-018-1581-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 07/24/2018] [Accepted: 09/28/2018] [Indexed: 02/06/2023]
Abstract
In this study, two populations of leguminous plants Lathyrus sativus were grown in four soils that were collected from sites differently contaminated by heavy metals. Evaluations included basic soil properties, concentrations of major nutrients and four metals (copper, zinc, lead and cadmium) in these soils. Investigation of Lathyrus sativus response to contamination showed that the increase of heavy metal concentration in soils affected biomass of plant, number of nodules and plant metal uptake. Heavy metal tolerance of 46 isolated bacteria from the root nodules was evaluated and demonstrated that the maximum concentration of Cd, Pb, Cu and Zn tolerated by strains were 0.8, 2.5, 0.2, and 0.5 mM, respectively. Twenty-two isolates were tested for their effects on plant biomass production and nodule formation and showed that only R. leguminosarum nodulated Lathyrus sativus, while some bacteria improved the shoot and root dry biomass. Sequences of their 16S rDNA gene fragments were also obtained and evaluated for tentative identification of the isolates which revealed different bacterial genera represented by Rhizobium sp, Rhizobium leguminosarum, Sinorhizobium meliloti, Pseudomonas sp, Pseudomonas fluorescens, Luteibacter sp, Variovorax sp, Bacillus simplex and Bacillus megaterium. The existence of Pb- and Cd-resistant genes (PbrA and CadA) in these bacteria was determined by PCR, and it showed high homology with PbrA and CadA genes from other bacteria. The tested resistant population was able to accumulate high concentrations of Pb and Cd in all plant parts and, therefore, can be classified as a strong metal accumulator with suitable potential for phytoremediation of Pb and Cd polluted sites. Heavy metal resistant and efficient bacteria isolated from root nodules were chosen with Lathyrus sativus to form symbiotic associations for eventual bioremediation program, which could be tested to remove pollutants from contaminated sites.
Collapse
|
9
|
Abdelkrim S, Jebara SH, Saadani O, Chiboub M, Abid G, Jebara M. Effect of Pb-resistant plant growth-promoting rhizobacteria inoculation on growth and lead uptake by Lathyrus sativus. J Basic Microbiol 2018; 58:579-589. [DOI: 10.1002/jobm.201700626] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/02/2018] [Accepted: 04/20/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Souhir Abdelkrim
- Center of Biotechnology of Borj Cedria; Laboratory of Legumes; Hammam Lif Tunisia
- National Agronomic Institute of Tunisia; University of Carthage; Tunis Tunisia
| | - Salwa H. Jebara
- Center of Biotechnology of Borj Cedria; Laboratory of Legumes; Hammam Lif Tunisia
| | - Omar Saadani
- Center of Biotechnology of Borj Cedria; Laboratory of Legumes; Hammam Lif Tunisia
| | - Manel Chiboub
- Center of Biotechnology of Borj Cedria; Laboratory of Legumes; Hammam Lif Tunisia
| | - Ghassen Abid
- Center of Biotechnology of Borj Cedria; Laboratory of Legumes; Hammam Lif Tunisia
| | - Moez Jebara
- Center of Biotechnology of Borj Cedria; Laboratory of Legumes; Hammam Lif Tunisia
| |
Collapse
|
10
|
Chiboub M, Jebara SH, Saadani O, Fatnassi IC, Abdelkerim S, Jebara M. Physiological responses and antioxidant enzyme changes in Sulla coronaria inoculated by cadmium resistant bacteria. JOURNAL OF PLANT RESEARCH 2018; 131:99-110. [PMID: 28808815 DOI: 10.1007/s10265-017-0971-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/16/2017] [Indexed: 06/07/2023]
Abstract
Plant growth promoting bacteria (PGPB) may help to reduce the toxicity of heavy metals on plants growing in polluted soils. In this work, Sulla coronaria inoculated with four Cd resistant bacteria (two Pseudomonas spp. and two Rhizobium sullae) were cultivated in hydroponic conditions treated by Cd; long time treatment 50 µM CdCl2 for 30 days and short time treatment; 100 µM CdCl2 for 7 days. Results showed that inoculation with Cd resistant PGPB enhanced plant biomass, thus shoot and root dry weights of control plants were enhanced by 148 and 35% respectively after 7 days. Co-inoculation of plants treated with 50 and 100 µM Cd increased plant biomasses as compared to Cd-treated and uninoculated plants. Cadmium treatment induced lipid peroxidation in plant tissues measured through MDA content in short 7 days 100 µM treatment. Antioxidant enzyme studies showed that inoculation of control plants enhanced APX, SOD and CAT activities after 30 days in shoots and SOD, APX, SOD, GPOX in roots. Application of 50 µM CdCl2 stimulated all enzymes in shoots and decreased SOD and CAT activities in roots. Moreover, 100 µM of CdCl2 increased SOD, APX, CAT and GPOX activities in shoots and increased significantly CAT activity in roots. Metal accumulation depended on Cd concentration, plant organ and time of treatment. Furthermore, the inoculation enhanced Cd uptake in roots by 20% in all treatments. The cultivation of this symbiosis in Cd contaminated soil or in heavy metal hydroponically treated medium, showed that inoculation improved plant biomass and increased Cd uptake especially in roots. Therefore, the present study established that co-inoculation of S. coronaria by a specific consortium of heavy metal resistant PGPB formed a symbiotic system useful for soil phytostabilization.
Collapse
Affiliation(s)
- Manel Chiboub
- Laboratoire des Légumineuses, Centre de Biotechnologie Borj Cedria, University Tunis El Manar, BP 901, 2050, Hammam Lif, Tunisia
| | - Salwa Harzalli Jebara
- Laboratoire des Légumineuses, Centre de Biotechnologie Borj Cedria, University Tunis El Manar, BP 901, 2050, Hammam Lif, Tunisia.
| | - Omar Saadani
- Laboratoire des Légumineuses, Centre de Biotechnologie Borj Cedria, University Tunis El Manar, BP 901, 2050, Hammam Lif, Tunisia
| | - Imen Challougui Fatnassi
- Laboratoire des Légumineuses, Centre de Biotechnologie Borj Cedria, University Tunis El Manar, BP 901, 2050, Hammam Lif, Tunisia
| | - Souhir Abdelkerim
- Laboratoire des Légumineuses, Centre de Biotechnologie Borj Cedria, University Tunis El Manar, BP 901, 2050, Hammam Lif, Tunisia
| | - Moez Jebara
- Laboratoire des Légumineuses, Centre de Biotechnologie Borj Cedria, University Tunis El Manar, BP 901, 2050, Hammam Lif, Tunisia
| |
Collapse
|
11
|
Saadani O, Fatnassi IC, Chiboub M, Abdelkrim S, Barhoumi F, Jebara M, Jebara SH. In situ phytostabilisation capacity of three legumes and their associated Plant Growth Promoting Bacteria (PGPBs) in mine tailings of northern Tunisia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 130:263-269. [PMID: 27151677 DOI: 10.1016/j.ecoenv.2016.04.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 04/23/2016] [Accepted: 04/25/2016] [Indexed: 06/05/2023]
Abstract
PGPBs-legumes associations represent an alternative procedure for phytostabilisation of heavy metals polluted soils mainly generated by industrial and agricultural practices. In this study we evaluated the capacity of Vicia faba, Lens culinaris and Sulla coronaria, inoculated in situ by specific heavy metals resistant inocula, for the phytostabilisation of copper, lead and cadmium respectively. The experimentation was performed in mine tailings of northern Tunisia. Results proved that inoculation enhanced roots and shoots biomass production of faba bean by 14% and 12%, respectively, and significantly improved pods yield by 91%. In lentil, the inoculation ameliorated shoot biomass up to 27%. The highest nitrogen fixation was recorded by Sulla coronaria. The three symbioses accumulated heavy metals essentially in roots, and poorly in shoots. In addition, cadmium accumulation in roots of inoculated sulla was enhanced by 39%. Furthermore, inoculations decreased heavy metals availability in the soil up to -10% of Cu and -47% of Pb respectively in roots of faba bean and lentil. Our results suggested a positive effect of co-inoculation of legumes by appropriate heavy metals resistant PGPBs for the phytostabilisation of mine tailings. Elsewhere, the enhancement in the antioxidant enzymes activities demonstrated the role of the three inocula to alleviate the heavy metals induced stress.
Collapse
Affiliation(s)
- Omar Saadani
- Centre de Biotechnologie Borj Cedria, University Tunis El Manar, BP 901, 2050 Hammam Lif, Tunisia.
| | - Imen Challougui Fatnassi
- Centre de Biotechnologie Borj Cedria, University Tunis El Manar, BP 901, 2050 Hammam Lif, Tunisia
| | - Manel Chiboub
- Centre de Biotechnologie Borj Cedria, University Tunis El Manar, BP 901, 2050 Hammam Lif, Tunisia
| | - Souhir Abdelkrim
- Centre de Biotechnologie Borj Cedria, University Tunis El Manar, BP 901, 2050 Hammam Lif, Tunisia
| | - Fathi Barhoumi
- Centre de Biotechnologie Borj Cedria, University Tunis El Manar, BP 901, 2050 Hammam Lif, Tunisia
| | - Moez Jebara
- Centre de Biotechnologie Borj Cedria, University Tunis El Manar, BP 901, 2050 Hammam Lif, Tunisia
| | - Salwa Harzalli Jebara
- Centre de Biotechnologie Borj Cedria, University Tunis El Manar, BP 901, 2050 Hammam Lif, Tunisia
| |
Collapse
|
12
|
Ma Y, Rajkumar M, Rocha I, Oliveira RS, Freitas H. Serpentine bacteria influence metal translocation and bioconcentration of Brassica juncea and Ricinus communis grown in multi-metal polluted soils. FRONTIERS IN PLANT SCIENCE 2014; 5:757. [PMID: 25601876 PMCID: PMC4283507 DOI: 10.3389/fpls.2014.00757] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/09/2014] [Indexed: 05/20/2023]
Abstract
The aim of this study was to assess the effects of inoculation of rhizosphere or endophytic bacteria (Psychrobacter sp. SRS8 and Pseudomonas sp. A3R3, respectively) isolated from a serpentine environment on the plant growth and the translocation and accumulation of Ni, Zn, and Fe by Brassica juncea and Ricinus communis on a multi-metal polluted serpentine soil (SS). Field collected SS was diluted to 0, 25, 50, and 75% with pristine soil in order to obtain a range of heavy metal concentrations and used in microcosm experiments. Regardless of inoculation with bacteria, the biomass of both plant species decreased with increase of the proportion of SS. Inoculation of plants with bacteria significantly increased the plant biomass and the heavy metal accumulation compared with non-inoculated control in the presence of different proportion of SS, which was attributed to the production of plant growth promoting and/or metal mobilizing metabolites by bacteria. However, SRS8 showed a maximum increase in the biomass of the test plants grown even in the treatment of 75% SS. In turn, A3R3 showed maximum effects on the accumulation of heavy metals in both plants. Regardless of inoculation of bacteria and proportion of SS, both plant species exhibited low values of bioconcentration factor (<1) for Ni and Fe. The inoculation of both bacterial strains significantly increased the translocation factor (TF) of Ni while decreasing the TF of Zn in both plant species. Besides this contrasting effect, the TFs of all metals were <1, indicating that all studied bacteria-plant combinations are suitable for phytostabilization. This study demonstrates that the bacterial isolates A3R3 and SRS8 improved the growth of B. juncea and R. communis in SS soils and have a great potential to be used as inoculants in phytostabilization scenarios of multi-metal contaminated soils.
Collapse
Affiliation(s)
- Ying Ma
- Centre for Functional Ecology, Department of Life Sciences, University of CoimbraCoimbra, Portugal
- *Correspondence: Ying Ma, Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal e-mail:
| | - Mani Rajkumar
- Department of Life Sciences, Central University of Tamil NaduThiruvarur, India
| | - Inês Rocha
- Centre for Functional Ecology, Department of Life Sciences, University of CoimbraCoimbra, Portugal
| | - Rui S. Oliveira
- Centre for Functional Ecology, Department of Life Sciences, University of CoimbraCoimbra, Portugal
- Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica PortuguesaPorto, Portugal
- Research Centre on Health and Environment, School of Allied Health Sciences, Polytechnic Institute of PortoVila Nova de Gaia, Portugal
| | - Helena Freitas
- Centre for Functional Ecology, Department of Life Sciences, University of CoimbraCoimbra, Portugal
| |
Collapse
|