1
|
Akkam Y, Zaitoun M, Aljarrah I, Jaradat A, Hmedat A, Alhmoud H, Rababah T, Almajwal A, Al-Rayyan N. Effective Detoxification of Olive Mill Wastewater Using Multi-Step Surfactant-Based Treatment: Assessment of Environmental and Health Impact. Molecules 2024; 29:4284. [PMID: 39339279 PMCID: PMC11434139 DOI: 10.3390/molecules29184284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Olive mill wastewater (OMW) poses a significant environmental challenge and health concern in olive-producing countries, including Jordan. Surfactant micelles are frequently employed as solubilizing agents to enhance the water solubility of chemical compounds. This study aims to leverage the sodium dodecyl sulfate (SDS) micelles in a multi-step process to detoxify OMW for agricultural and industrial uses and reduce its impact. The OMW was treated in multiple steps: screening, coagulation with different chemicals, and distillation with different surfactants. The treatment steps were monitored using LC-MS, GC-MS, ICP-MS, chemical oxygen demand contents, and total phenolic compounds. The detoxification of OMW was evaluated using standard germination assays, MTT assays using tissue culture, and toxicity assays using fluorescence bacteria. Following the treatment, the seed growth rate improved significantly from 0% to 100%. The GC-MS revealed a substantial decrease in pollutants. The concentration of polyphenols was reduced to 2.5%, while the COD level decreased to 35%. The toxicity in bacteria was significantly reduced in a time-dependent manner, and the toxicity in human cells decreased by 95%. Additionally, between 50% and 95% of metals in OMW were removed. The multi-step SDS-based approach successfully detoxified the OMW and enhanced water quality, which would pave the road for its direct application in industry and agriculture.
Collapse
Affiliation(s)
- Yazan Akkam
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan; (M.Z.); (I.A.)
| | - Mohammad Zaitoun
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan; (M.Z.); (I.A.)
| | - Islam Aljarrah
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan; (M.Z.); (I.A.)
| | - Aiman Jaradat
- Department of Civil Engineering, Hijjawi Faculty for Engineering Technology, Yarmouk University, Irbid 21163, Jordan;
| | - Ali Hmedat
- Department of Pharmaceutical Technology and Pharmaceutics, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan; (A.H.); (H.A.)
| | - Hassan Alhmoud
- Department of Pharmaceutical Technology and Pharmaceutics, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan; (A.H.); (H.A.)
| | - Taha Rababah
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia;
| | - Numan Al-Rayyan
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA;
| |
Collapse
|
2
|
Swathilakshmi AV, Geethamala GV, Aldawood S, Kavipriya N, Kokilaselvi S, Chitra P, Selvankumar T, Poonkothai M. Optimization of Rhizoclonium hieroglyphicum extract for enhanced synthesis of nickel oxide nanoparticles using response surface methodology and its potential exploration in biological application. LUMINESCENCE 2024; 39:e4893. [PMID: 39254155 DOI: 10.1002/bio.4893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/31/2024] [Accepted: 08/24/2024] [Indexed: 09/11/2024]
Abstract
The study investigates the potential of Rhizoclonium hieroglyphicum as a novel source for synthesizing nickel oxide nanoparticles (RH-NiONPs) and evaluates its biological applications. Phytochemicals in the algal extract serve as capping, reducing and stabilizing agent for nickel oxide nanoparticles. The process variables were optimized using BBD based RSM to obtain maximum RH-NiONPs. Characterization of RH-NiONPs using UV-Vis and FT-IR spectroscopy reveals the plasmon resonance peak at 340 nm and the functional groups responsible for reduction and stabilization. XRD confirmed the crystalline nature while the stability and size of the RH-NiONPs were determined by DLS and zeta potential. Toxicity assessments demonstrated the effect of RH-NiONPs against Vigna radiata, Allium cepa and Artemia salina was low. RH-NiONPs revealed significant zone of inhibition against the selected bacteria and fungi. The results of larvicidal activity showed that RH-NiONPs are toxic to 4th instar larvae of Daphnis nerii. Also, RH-NiONPs efficiently decolorized Reactive Violet 13 (92%) under sunlight irradiation and the experimental data well fits to Langmuir isotherm along with pseudo second order kinetic model. The thermodynamic studies enunciate the exothermic and non-spontaneous photocatalytic decolorization of reactive violet 13. Thus, the current study assesses the eco-friendly and cost-effective nature of RH-NiONPs along with its biological applications.
Collapse
Affiliation(s)
- Ammapettai Varanavasu Swathilakshmi
- Department of the Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India
| | - Gunaseelan Vivekananth Geethamala
- Department of the Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India
| | - Saad Aldawood
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nachimuthu Kavipriya
- Department of the Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India
| | - Senniappan Kokilaselvi
- Department of the Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India
| | - Pechimuthu Chitra
- Department of the Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India
| | - Thangaswamy Selvankumar
- Biomaterials Research Unit, Center for Global Health Research, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, India
| | - Mani Poonkothai
- Department of the Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India
| |
Collapse
|
3
|
Geethamala GV, Swathilakshmi AV, Keerthana S, Vidhyanivetha D, Preethi G, Chitra P, Poonkothai M. Exploring the Potential of Nickel Oxide Nanoparticles Synthesized from Dictyota bartayresiana and its Biological Applications. Biol Trace Elem Res 2024; 202:4260-4278. [PMID: 38095844 DOI: 10.1007/s12011-023-03978-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/26/2023] [Indexed: 07/18/2024]
Abstract
The present study validates the impact of nickel oxide nanoparticles (NiONPs) biosynthesized from the brown seaweed Dictyota bartayresiana (DB) and its biological applications. The phytochemicals analyzed in the seaweed extract served as a reducing, capping or stabilizing agent in the formation of nanoparticles. UV visible spectrum of nickel oxide nanoparticles synthesized from DB (DB-NiONPs) represented a prominent peak at 392 nm which validates its formation. Fourier Transmission Infrared Spectroscopy (FT-IR) showcased the presence of functional groups in the biomolecules which aids in the stabilization of DB-NiONPs. The X-ray diffractometry (XRD) revealed the crystalline nature of DB-NiONPs and the particle size was calculated as 18.26 nm. The Scanning electron microscope (SEM) illustrates the irregularly shaped DB-NiONPs and the desired elements were depicted in energy dispersive X-ray (EDX) spectrum which confirms the purity of DB-NiONPs. The DB-NiONPs efficiently decolorised the Black B133 (BB133) dye to 86% in 25 min. The data of adsorption studies well fitted into Langmuir isotherm and pseudo-second order kinetic model. The thermodynamic study substantiated the spontaneous, feasible and endothermic process of adsorption. DB-NiONPs revealed enhanced antimicrobial, larvicidal and nematicidal activities against the selected microbes, larva of Culex pipens and juveniles of Meloidogyne incognita respectively. The phytotoxicity studies revealed the DB-NiONPs had a positive impact on the germination and growth of green gram seedlings.
Collapse
Affiliation(s)
- G V Geethamala
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India
| | - A V Swathilakshmi
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India
| | - S Keerthana
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India
| | - D Vidhyanivetha
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India
| | - G Preethi
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India
| | - P Chitra
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India
| | - M Poonkothai
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India.
| |
Collapse
|
4
|
Parić A, Mesic A, Mahmutović-Dizdarević I, Jerković-Mujkić A, Žujo B, Bašić N, Pustahija F. Bioactive potential of Mentha arvensis L. essential oil. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2024; 59:584-594. [PMID: 39192720 DOI: 10.1080/03601234.2024.2396730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
The aim of this study was to evaluate the phytotoxic, genotoxic, cytotoxic and antimicrobial effects of the Mentha arvensis L. essential oil (EO). The biological activity of M. arvensis EO depended on the analyzed variable and the tested oil concentration. Higher concentrations of EO (20 and 30 µg mL-1) showed a moderate inhibitory effect on the germination and growth of seedlings of tested weed species (Bellis perennis, Cyanus segetum, Daucus carota, Leucanthemum vulgare, Matricaria chamomilla, Nepeta cataria, Taraxacum officinale, Trifolium repens and Verbena × hybrida). The results obtained also indicate that the EO of M. arvensis has some genotoxic, cytotoxic and proliferative potential in both plant and human in vitro systems. Similar results were obtained for antimicrobial activity against eight bacteria, including multidrug-resistant (MDR) strains [Bacillus subtilis, Enterococcus faecalis, Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Escherichia coli, extended-spectrum beta-lactamase-producing (ESBL) E. coli, Pseudomonas aeruginosa and Salmonella enterica subsp. enterica serovar Enteritidis], with the effect on multidrug-resistant bacterial strains. Research indicates that the EO of M. arvensis shows phytotoxic, genotoxic, cytotoxic and antimicrobial effects, as well as its potential application as a herbicide and against various human diseases.
Collapse
Affiliation(s)
- Adisa Parić
- Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Aner Mesic
- Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | | | | | - Belma Žujo
- Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Neđad Bašić
- Faculty of Forestry, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Fatima Pustahija
- Faculty of Forestry, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
5
|
Esmaeili S, Dehvari M, Neisi A, Takdastan A, Tahmasebi Birgani Y, Babaei AA. Ultrasound‒induced facile synthesis of spinel CoFe 2O 4‒PAC magnetic nanocatalyst for remediation of hypersaline petrochemical wastewater: Degradation mechanism, biodegradability enhancement and phytotoxicity mitigation. ENVIRONMENTAL RESEARCH 2024; 254:118676. [PMID: 38763285 DOI: 10.1016/j.envres.2024.118676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/03/2024] [Accepted: 03/09/2024] [Indexed: 05/21/2024]
Abstract
In this study, magnetic CoFe2O4-PAC nanocatalysts were synthesized through facile hydrothermal and co‒precipitation approaches with ultrasonic irradiation, which were used for the treatment of hypersaline petrochemical wastewater (HPCW). When an ultrasound‒induced synthesis process (US@CoFe2O4‒PAC) was used, a more efficient and stable magnetic spinel CoFe2O4‒PAC nanocatalyst was developed. The application of this nanocatalyst as a PMS activator, not only caused eradication of 90.4% of chemical oxygen demand (COD) of a HPCW after 90 min reaction time under the optimum conditions (pH 5-6, catalyst dose 1.0 g/L and 1.0 mM PMS), but also led to marginal leaching of iron (314 μg/L) and cobalt (95 μg/L) from the nanocatalyst. Recycling experiments over five consecutive runs showed a negligible decrease (7.2%) in COD removal efficiency which proved the stability and reusability of magnetic US@CoFe2O4-PAC. Two main mechanisms of adsorption and catalytic oxidation processes (homogeneous and heterogeneous PMS) are involved simultaneously in the PMS/US@CoFe2O4-PAC system, which are responsible for the destruction of refractory contaminants of HPCW through the generation of SO4•‒ and OH• radicals. COD of HPCW was mainly removed through SO4•- radical attack (73.6%) and the biodegradability of HPCW was enhanced dramatically after 90 min reaction time. The germination index (GI) of raw HPCW was increased 17.1 ± 4.2% and 24.3 ± 8.8% after 15 and 90 min reaction time, respectively, even PMS/US@CoFe2O4-PAC system showed less impact on phytotoxicity mitigation. Hence, it can be recommended to dilute the effluent before using for irrigational purpose. The findings of this study present practical significance of spinel US@CoFe2O4-PAC, which is an environment‒friendly catalyst, easy to handle and can sustain long‒term operation for the treatment of recalcitrant hypersaline wastewater and the other potential practical applications.
Collapse
Affiliation(s)
- Shirin Esmaeili
- Department of Environmental Health Engineering, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahboobeh Dehvari
- Environmental Technologies Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abdolkazem Neisi
- Environmental Technologies Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Afshin Takdastan
- Environmental Technologies Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Yaser Tahmasebi Birgani
- Environmental Technologies Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Akbar Babaei
- Environmental Technologies Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
6
|
Vaz T, Quina MMJ, Martins RC, Gomes J. Olive mill wastewater treatment strategies to obtain quality water for irrigation: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172676. [PMID: 38670378 DOI: 10.1016/j.scitotenv.2024.172676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
The olive mill industry is a relevant sector in the economy of Mediterranean countries, while it involves high consumption of water and the production of effluents with high environmental impact. The efficient treatment of olive mill wastewater (OMW) is of high relevance, particularly for these countries. Climate changes are leading to increasing periods of droughts, and water recovery from polluted streams is essential to ensure the sustainability of this scarce resource. A combination of various technologies involving physical, chemical, and biological processes has been developed for OMW treatment. However, the treatments studied have limitations such as the operation costs, difficulty of industrial scale-up, and the fact that the vast majority do not lead to suitable treated water for discharge/reuse. As such, it is urgent to develop a solution capable of efficiently treating this effluent, overcoming the disadvantages of existing processes to convert OMW from a serious environmental problem into a valuable source of water and nutrients. In this review, several studies based on the OMW treatment are critically discussed, from conventional approaches such as the physical (e.g. centrifugation, filtration, and adsorption) and biological (anaerobic digestion and anaerobic co-digestion) processes, to the most recent technologies such as advanced membrane filtration, advanced oxidation processes (AOPs) and sulfate radical based AOPs (SR-AOPs). Due to the complexity of the effluent, OMW cannot be efficiently treated by a single process, requiring a sequence of technologies before reaching the required characteristics for discharge into water courses or use in crop irrigation. Reviewing the published results in this matter, it seems that the sequence of processes encompassing ozonation, anaerobic digestion, and SR-AOPs could be the ideal combination for this purpose. However, membrane technologies may be necessary in the final stage of treatment so that the effluent meets legal discharge or irrigation limits.
Collapse
Affiliation(s)
- Telma Vaz
- University of Coimbra, CERES, Department of Chemical Engineering, Faculty of Sciences and Technology, Rua Sílvio Lima, Polo II, 3030-790 Coimbra, Portugal
| | - Margarida M J Quina
- University of Coimbra, CERES, Department of Chemical Engineering, Faculty of Sciences and Technology, Rua Sílvio Lima, Polo II, 3030-790 Coimbra, Portugal
| | - Rui C Martins
- University of Coimbra, CERES, Department of Chemical Engineering, Faculty of Sciences and Technology, Rua Sílvio Lima, Polo II, 3030-790 Coimbra, Portugal
| | - João Gomes
- University of Coimbra, CERES, Department of Chemical Engineering, Faculty of Sciences and Technology, Rua Sílvio Lima, Polo II, 3030-790 Coimbra, Portugal..
| |
Collapse
|
7
|
Pandita K, Kumari R, Malaviya P. Impact of short-term irrigation of diverse distillery wastewater types on plant attributes and antioxidative enzymes of pea (Pisum sativum L. var. Rachna). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22547-22559. [PMID: 38409379 DOI: 10.1007/s11356-024-32618-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/19/2024] [Indexed: 02/28/2024]
Abstract
The study was focused on evaluating the short-term irrigation effect of three different types of distillery wastewater, i.e., untreated, primary treated, and secondary treated, on the germination, growth, photosynthetic pigments, and antioxidant enzymes of pea (Pisum sativum L. var. Rachna). The findings indicated that exposure to 50% secondary treated distillery wastewater (ST50) resulted in the maximum values for positive germination parameters of pea, including germination percentage, germination value, germination index, peak value, vigor index, speed of germination, and tolerance index. The minimum values were observed at 100% concentration of untreated wastewater (UT100). In contrast, the maximum values for various negative germination parameters, i.e., percent inhibition, seedling mortality, and germination period, were observed at UT100 and minimum at ST50. All the growth parameters studied, i.e., length of shoot, length of root and length of seedlings, fresh weight of shoot, fresh weight of root, dry weight of shoot, and dry weight of root, showed maximum values at ST50 and minimum at UT100. Photosynthetic pigment analysis also followed a similar trend. The antioxidative enzyme characterization of Pisum sativum L. var. Rachna revealed the minimum values of catalase, ascorbic peroxidase, glutathione reductase, and superoxide dismutase at ST25 (25% concentration of secondary treated distillery wastewater) and maximum values were observed at UT100.
Collapse
Affiliation(s)
- Kirti Pandita
- Department of Environmental Sciences, University of Jammu, Jammu, 180006, J&K, India
| | - Rekha Kumari
- Department of Environmental Sciences, University of Jammu, Jammu, 180006, J&K, India
| | - Piyush Malaviya
- Department of Environmental Sciences, University of Jammu, Jammu, 180006, J&K, India.
| |
Collapse
|
8
|
Belkodia K, El Mersly L, Edaala MA, Achtak H, Alaoui Tahiri A, Briche S, Rafqah S. Cheese wastewater treatment through combined coagulation-flocculation and photo-Fenton-like advanced oxidation processes for reuse in irrigation: effect of operational parameters and phytotoxicity assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11801-11814. [PMID: 38225487 DOI: 10.1007/s11356-024-31828-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/29/2023] [Indexed: 01/17/2024]
Abstract
The present study aims to investigate the efficiency of a combined cheese wastewater treatment approach involving coagulation with ferric chloride coupled with a photo-Fenton-like oxidation process for potential reuse in irrigation. Laboratory-scale tests were conducted, examining the effect of various operational parameters on the treatment process. Specifically, the effects of initial wastewater pH, coagulant dosage, decantation time for the coagulation process, and initial pH, chemical oxygen demand (COD) concentration, and Fe3+ and H2O2 dosages for photo-Fenton-like oxidation were studied. Coagulation was found effective at natural pH of 6 and showed a highest removal efficiency in terms of COD (50.6%), biological oxygen demand BOD5 (42.1%), turbidity (99.3%), and least sludge volume generation (11.8% v/v) for an optimum coagulant dose of 400 mg Fe3+ L-1 and 8 h of decantation time. Thereafter, photo-Fenton-like oxidation (Fe3+/H2O2/UVA-300W) of the pretreated cheese effluent enhanced the removal of COD, BOD5 and TOC to 91.2%, 91.4%, and 97.5%, respectively, using the optimized conditions (pH = 3; [Fe3+] = 5.0 × 10-4 mol L-1; [H2O2] = 0.2 mol L-1 and tirr = 24 h). This study also shows that the proposed combined process allowed a significant phytotoxicity reduction toward lentil seed germination. The obtained outcome was encouraging and supports the possible use of the treated cheese wastewater as an additional water source for agricultural irrigation.
Collapse
Affiliation(s)
- Kaltoum Belkodia
- Laboratoire de Chimie Analytique Et Moléculaire, Faculté Polysciplinaire de Safi, Université Cadi Ayyad, Safi, Morocco
| | - Lekbira El Mersly
- Laboratoire de Chimie Analytique Et Moléculaire, Faculté Polysciplinaire de Safi, Université Cadi Ayyad, Safi, Morocco
| | - Mohammed-Amine Edaala
- Laboratoire de Chimie Analytique Et Moléculaire, Faculté Polysciplinaire de Safi, Université Cadi Ayyad, Safi, Morocco
| | - Hafid Achtak
- Environment and Health Team, Department of Biology, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Sidi Bouzid, B.P. 4162, 46000, Safi, Morocco
| | - Abdelaziz Alaoui Tahiri
- Laboratoire de Chimie Analytique Et Moléculaire, Faculté Polysciplinaire de Safi, Université Cadi Ayyad, Safi, Morocco
| | - Samir Briche
- Département Stockage de L'énergie Et Revêtements Multifonctionnels, MAScIR, Rabat, Morocco
| | - Salah Rafqah
- Laboratoire de Chimie Analytique Et Moléculaire, Faculté Polysciplinaire de Safi, Université Cadi Ayyad, Safi, Morocco.
| |
Collapse
|
9
|
Swathilakshmi AV, Geethamala GV, Poonkothai M, Al-Ansari MM, Al-Dahmash ND, Mythili R, Govindan K. A response surface model to examine the reactive red 239 sorption behaviors on Rhizoclonium hieroglyphicum: isotherms, kinetics, thermodynamics and toxicity analyses. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:37. [PMID: 38227114 DOI: 10.1007/s10653-023-01805-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/19/2023] [Indexed: 01/17/2024]
Abstract
The present study is an attempt to investigate the potentiality of Rhizoclonium hieroglyphicum in the removal of reactive red 239 (RR239) from aqueous solution and to assess the toxicity of the treated dye solution. Optimisation of the process variables namely dye and biosorbent concentrations, pH, temperature and incubation time for RR239 removal was performed using Response Surface Methodology (RSM) assisted Box Behnken Design (BBD) model. The recycling and regeneration efficiency of the dye adsorbed alga was evaluated using different eluents under optimized conditions. Further to understand the adsorption mechanism, isotherms, kinetics and thermodynamic studies were performed. UV-vis and FT-IR spectroscopy was employed to confirm the interaction between the adsorbate and biosorbent. The nature of the treated dye solution was assessed using phyto, microbial and brine shrimp toxicity studies. On the basis of quadratic polynomial equation and response surfaces given by RSM, 90% decolorization of RR239 was recorded at room temperature under specified optimal conditions (300 mg/L of dye, 500 mg/L of biosorbent, pH 8 and 72 h of contact time). Desorption experiments demonstrated 88% of RR239 recovery using 0.1 N acetic acid as an eluent and 81% of dye removal in regeneration studies. The data closely aligned with Freundlich isotherm (R2 - 0.98) and pseudo-second-order kinetic model (R2 - 0.9671). Thermodynamic analysis revealed that the process of adsorption was endothermic, spontaneous, and favorable. UV-Vis and FT-IR analyses provided evidence for adsorbate-biosorbent interaction, substantiating the process of decolorization. In addition, the results of phyto, microbial and brine shrimp toxicity assays consistently confirmed the non-toxic nature of the treated dye. Thus, the study demonstrated that R. hieroglyphicum can act as a potent bioremediation agent in alleviating the environmental repercussions of textile dyeing processes.
Collapse
Affiliation(s)
- A V Swathilakshmi
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India
| | - G V Geethamala
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India
| | - M Poonkothai
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641043, Tamil Nadu, India.
| | - Mysoon M Al-Ansari
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Nora Dahmash Al-Dahmash
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - R Mythili
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India
| | - Kadarkarai Govindan
- Water Quality Center (WQC), Department of Civil, Construction, and Environmental Engineering, Marquette University, 1637 West Wisconsin Avenue, Milwaukee, WI, 53233, USA
| |
Collapse
|
10
|
Elayadi F, Achak M, Boumya W, Barka N, Lamy E, El Adlouni C. Olive mill wastewater treatment using natural adsorbents: phytotoxicity on durum wheat (Triticum turgidum L. var. durum) and white bean (Phaseolus vulgaris L.) seed germination. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:109481-109499. [PMID: 37924176 DOI: 10.1007/s11356-023-29741-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/02/2023] [Indexed: 11/06/2023]
Abstract
This research was undertaken to optimize the phenolic compound removal from Olive Mill Wastewater (OMW) by sawdust and red clay as natural adsorbents. Fractional factorial experimental design at 25-1 was used in order to optimize the experimental conditions for high removal efficiency. Statistics ANOVA analysis, Fisher's test, and Student's test suggested that the adsorbent dose has the most significant influence on polyphenol removal for both adsorbents. The maximum removal of polyphenols by sawdust reached 49.6% at 60 °C by using 60 g/L of adsorbent dose, pH 2, reaction time of 24 h, and agitation speed of 80 rpm. Whereas, for red clay, 48.08% of polyphenols removal was observed under the same conditions for sawdust except the temperature of 25 °C instead of 60 °C. In addition, the thermodynamic parameters suggested spontaneous process for both adsorbents, endothermic for the sawdust and exothermic for red clay. Furthermore, the phytotoxicity effect of OMW on durum wheat (Triticum turgidum L. var. durum) and white bean (Phaseolus vulgaris L.) seed germination was investigated. The obtained results showed that the untreated OMW inhibited the seed germination of T. turgidum and P. vulgaris seeds. OMW treatment with red clay followed by dilution (95% water) resulted in 87 and 30% germination of P. vulgaris and T. turgidum, respectively. While, the treatment of OMW with sawdust and dilution at 95% resulted in 51 and 26% germination of P. vulgaris and T. turgidum, respectively.
Collapse
Affiliation(s)
- Fatima Elayadi
- Marine Biotechnologies and Environment, Laboratory Sciences Faculty, Chouaïb Doukkali University, El Jadida, Morocco
- Science Engineer Laboratory for Energy, National School of Applied Sciences, Chouaïb Doukkali University, El Jadida, Morocco
| | - Mounia Achak
- Science Engineer Laboratory for Energy, National School of Applied Sciences, Chouaïb Doukkali University, El Jadida, Morocco.
- Chemical & Biochemical Sciences. Green Process Engineering, CBS, Mohammed VI Polytechnic University, Ben Guerir, Morocco.
| | - Wafaa Boumya
- Multidisciplinary Research and Innovation Laboratory, Sultan Moulay Slimane University of Beni Mellal, FP Khouribga, Morocco
| | - Noureddine Barka
- Multidisciplinary Research and Innovation Laboratory, Sultan Moulay Slimane University of Beni Mellal, FP Khouribga, Morocco
| | - Edvina Lamy
- Integrated Transformations of Renewable Matter (TIMR), Sorbonne University, University of Technology of Compiegne, UTC/ESCOM, EA 4297 TIMR, Compiegne, France
| | - Chakib El Adlouni
- Marine Biotechnologies and Environment, Laboratory Sciences Faculty, Chouaïb Doukkali University, El Jadida, Morocco
| |
Collapse
|
11
|
Saf C, Gondet L, Villain-Gambier M, Belaqziz M, Trebouet D, Ouazzani N. Investigation of the agroecological applications of olive mill wastewater fractions from the ultrafiltration-nanofiltration process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 333:117467. [PMID: 36764180 DOI: 10.1016/j.jenvman.2023.117467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/19/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Agricultural applications of olive mill wastewater (OMW) represent a critical challenge, consistent with waste recycling and the trend towards a more sustainable pattern of agriculture. In this context, an integrated study on the agroecological applications of OMW from the ultrafiltration (UF) - nanofiltration (NF) process was carried out. This process generated three fractions: UF retentate and NF permeate, depleted in salts and phenolic compounds, were studied for their fertilization and irrigation potential, while NF retentate, enriched in these elements, was studied for its potential as a bioherbicide. The phytotoxicity of the NF retentate fraction on two crops (maize and flax) was evaluated on seedlings growth and chloroplast pigments content. In addition, the induced defense responses in maize and flax seedlings were investigated by measuring two parameters: the activity of the detoxification enzyme glutathione-S-transferase (GST) and the concentration of polyphenols, as a component of the antioxidant defense strategy in plants. Biomass, height, and chloroplast pigments content decreased progressively with increasing NF retentate concentration. Conversely, an increase in GST activity and polyphenol concentration was observed. These results highlighted the ability of OMW to induce an oxidative stress on maize and flax seedlings, triggering a defense response through GST and phenolic compounds. On the other hand, in vitro tests on the phytotoxicity of the NF retentate fraction on the common weed Sinapis arvensis were carried out. No germination was observed even with the lowest dilution applied, thus establishing the first data about the selectivity of potential OMW-derived bioherbicides. On the other hand, UF retentate and NF permeate treatments led to a significant increase in maize growth: these fractions could then be considered as a promising organic fertilizer for degraded agricultural soils, as well as an alternative water source for crops irrigation.
Collapse
Affiliation(s)
- Chaima Saf
- Laboratory of Water, Biodiversity and Climate Change, Cadi Ayyad University, Marrakech, Morocco; Université de Strasbourg, CNRS, UMR 7178, F-67000, Strasbourg, France
| | - Laurence Gondet
- Université de Strasbourg, CNRS, UMR 7178, F-67000, Strasbourg, France.
| | | | | | | | - Naaila Ouazzani
- Laboratory of Water, Biodiversity and Climate Change, Cadi Ayyad University, Marrakech, Morocco; National Center for Studies and Research on Water and Energy (CNEREE), Cadi Ayyad University, Marrakech, Morocco
| |
Collapse
|
12
|
Alaguprathana M, Poonkothai M, Ameen F, Ahmad Bhat S, Mythili R, Sudhakar C. Sodium hydroxide pre-treated Aspergillus flavus biomass for the removal of reactive black 5 and its toxicity evaluation. ENVIRONMENTAL RESEARCH 2022; 214:113859. [PMID: 35841968 DOI: 10.1016/j.envres.2022.113859] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/01/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
The present study was focused on the removal of Reactive Black 5 (RB5) from aqueous solution using pre treated Aspergillus flavus as a biosorbent. Pre-treatment of fungal biomass with 0.1 M sodium hydroxide facilitated the removal of dye effectively when compared to untreated fungal biomass. Optimum biosorption conditions for RB5 removal was determined as a function of dye concentration (50-400 mg/L), biosorbent concentration (100-500 mg/L), incubation time (1-7hrs), pH (3-8) and temperature (20-50 °C). At the optimum conditions, the maximum removal efficiency of RB5 achieved by NaOH pretreated A. flavus was 91%. The dye removal was studied kinetically and it obeys the pseudo-second order model and the experimental equilibrium data well fitted the Langmuir isotherm indicating monolayer adsorption of dye molecules on the biosorbent. The thermodynamic parameters such as a change in free energy (ΔG), enthalpy (ΔH) and entropy (ΔS) were calculated and negative values of ΔG suggested that the dye removal process was spontaneous at all temperatures. Furthermore, the values of ΔH revealed that the adsorption process was endothermic. Recovery of RB5 from the fungal biomass was effective using 0.1 M Na2CO3 as an eluent. The interaction of adsorbate with biosorbent was analyzed using UV-Vis and FT-IR spectroscopy, SEM and XRD analyses. Phytotoxicity and microbial toxicity studies revealed the non-toxic nature of the treated dye solution. Hence, the fungal biomass pretreated with NaOH was efficient in decolorizing RB5 as well as composite raw industrial effluent generated from dyeing industries.
Collapse
Affiliation(s)
- M Alaguprathana
- Department of Zoology, Adhiyaman Arts and Science College for Women, Uthangarai, Krishnagiri - 635 207, Tamil Nadu, India
| | - M Poonkothai
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore - 641 043, Tamil Nadu, India.
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sartaj Ahmad Bhat
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - R Mythili
- PG and Research Department of Biotechnology, Mahendra Arts and Science College (Autonomous), Kalippatti, Namakkal - 637501, Tamil Nadu, India
| | - C Sudhakar
- PG and Research Department of Biotechnology, Mahendra Arts and Science College (Autonomous), Kalippatti, Namakkal - 637501, Tamil Nadu, India
| |
Collapse
|
13
|
Shabir S, Ilyas N, Mashwani ZUR, Ahmad MS, Al-Ansari MM, Al-Humaid L, Reddy MS. Designing of pretreatment filter technique for reduction of phenolic constituents from olive-mill wastewater and testing its impact on wheat germination. CHEMOSPHERE 2022; 299:134438. [PMID: 35358557 DOI: 10.1016/j.chemosphere.2022.134438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/13/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Olive oil extraction produces a great volume of olive mill wastewater (OMW), which is considered a serious ecological challenge. In this study, we have designed and tested a trickling filter consisting of seven different layers of natural material, including (coarse gravel, fine gravel, lime (Ca (OH)2), sand (SiO2), carbon char, sponge/mesh), to treat OMW. The filter process involved physical separation, filtration, coagulation and adsorption with the removal of COD (69.8%), BOD (40.2%), Phenolic contents (90%), pH (41%), EC (41.6%) and total suspended solids (TSS) (69%). Our results have shown that treated OMW has a high potential oxidant activity. T7, Untreated OMW at 1:6 dilutions, had the strongest correlation (i.e. 0.97), while untreated OMW had the lowest IC50 (7.62 g ml-1), which shown the best DPPH radical scavenging capabilities. While pure Untreated OMW has the maximum radical scavenging activity, 63%, treated (1:6) diluted OMW exhibits the lowest value i. e 9% when phosphomolybdate assay was done. HPLC analysis showed that the trickling filter removed the vanillic acid, caffeic acid and reduced the contents of phenolic components such as gallic acid, hydroxytyrosol, vanillin, quercetin and catechol. Filtered OMW was also tested for its germination efficacy at various dilutions (1:0, 1:2, 1:4, 1:6). A remarkable improvement in germination percentage, germination index, seedling length, seedling vigor index, promptness index, stress tolerance index (76.7%, 68.4%, 51.7%, 82.1%, 54.8%, and 66.7%, respectively) has shown the efficiency of treated OMW at 1:6 dilutions. The results from this study show the efficiency of our filter design which can be further used.
Collapse
Affiliation(s)
- Sumera Shabir
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, 46300, Rawalpindi, Pakistan
| | - Noshin Ilyas
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, 46300, Rawalpindi, Pakistan.
| | - Zia-Ur-Rehman Mashwani
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, 46300, Rawalpindi, Pakistan
| | - Muhammad Sheeraz Ahmad
- Department of Biochemistry, PMAS-Arid Agriculture University Rawalpindi, 46300, Rawalpindi, Pakistan
| | - Mysoon M Al-Ansari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Latifah Al-Humaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - M S Reddy
- Asian PGPR Society for Sustainable Agriculture & Auburn Ventures, Department of Plant Pathology and Entomology, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
14
|
Sarkar P, Maji M, Dey A. Kinetic modelling of high concentration 4-Nitrophenol biodegradation by an isolated bacterial consortium and post-treatment ecotoxicity analysis. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Machine Learning Approach to Predict Quality Parameters for Bacterial Consortium-Treated Hospital Wastewater and Phytotoxicity Assessment on Radish, Cauliflower, Hot Pepper, Rice and Wheat Crops. WATER 2022. [DOI: 10.3390/w14010116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Raw hospital wastewater is a source of excessive heavy metals and pharmaceutical pollutants. In water-stressed countries such as Pakistan, the practice of unsafe reuse by local farmers for crop irrigation is of major concern. In our previous work, we developed a low-cost bacterial consortium wastewater treatment method. Here, in a two-part study, we first aimed to find what physico-chemical parameters were the most important for differentiating consortium-treated and untreated wastewater for its safe reuse. This was achieved using a Kruskal–Wallis test on a suite of physico-chemical measurements to find those parameters which were differentially abundant between consortium-treated and untreated wastewater. The differentially abundant parameters were then input to a Random Forest classifier. The classifier showed that ‘turbidity’ was the most influential parameter for predicting biotreatment. In the second part of our study, we wanted to know if the consortium-treated wastewater was safe for crop irrigation. We therefore carried out a plant growth experiment using a range of popular crop plants in Pakistan (Radish, Cauliflower, Hot pepper, Rice and Wheat), which were grown using irrigation from consortium-treated and untreated hospital wastewater at a range of dilutions (turbidity levels) and performed a phytotoxicity assessment. Our results showed an increasing trend in germination indices and a decreasing one in phytotoxicity indices in plants after irrigation with consortium-treated hospital wastewater (at each dilution/turbidity measure). The comparative study of growth between plants showed the following trend: Cauliflower > Radish > Wheat > Rice > Hot pepper. Cauliflower was the most adaptive plant (PI: −0.28, −0.13, −0.16, −0.06) for the treated hospital wastewater, while hot pepper was susceptible for reuse; hence, we conclude that bacterial consortium-treated hospital wastewater is safe for reuse for the irrigation of cauliflower, radish, wheat and rice. We further conclude that turbidity is the most influential parameter for predicting bio-treatment efficiency prior to water reuse. This method, therefore, could represent a low-cost, low-tech and safe means for farmers to grow crops in water stressed areas.
Collapse
|
16
|
Siddiqui ZH, Abbas ZK. Assessment of phytotoxicity of treated water of Tabuk wastewater plant by different technologies on seed germination of chick pea (Cicer arietinum). WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:2968-2979. [PMID: 34850707 PMCID: wst_2021_287 DOI: 10.2166/wst.2021.287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The use of reclaimed water as an alternative source is a sustainable way forward for an arid country like The Kingdom of Saudi Arabia. The sewage contains organic and inorganic pollutants from households and industrial sources that may not be removed during treatment. In this study, seeds of Cicer arietinum were germinated using six different concentrations of treated water from the Tabuk wastewater treatment plant and tap water was used as control. The physicochemical properties such as total dissolved solids, electrical conductivity, total suspended solids, and turbidity values of treated water were higher, which gradually decreased on dilution with tap water. The amount of ammonia, nitrite, nitrate, and phosphate was in higher concentration in treated water as compared to control. The use of 40% treated water (T3) improved the germination percentage, speed of germination and germination index of C. arietinum. The phytotoxicity test reveals that undiluted treated water (T6) is not fit for direct use on plants. All the investigated treatments confirmed that the use of more than 40% of treated water decreased the fresh weight and dry weight of the seedlings as compared to control. The results are encouraging and help in attaining water sustainability in the Tabuk region.
Collapse
Affiliation(s)
- Zahid Hameed Siddiqui
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, KSA E-mail: ;
| | - Zahid Khorshid Abbas
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, KSA E-mail: ;
| |
Collapse
|
17
|
Kumar V, Shahi SK, Romanholo Ferreira LF, Bilal M, Biswas JK, Bulgariu L. Detection and characterization of refractory organic and inorganic pollutants discharged in biomethanated distillery effluent and their phytotoxicity, cytotoxicity, and genotoxicity assessment using Phaseolus aureus L. and Allium cepa L. ENVIRONMENTAL RESEARCH 2021; 201:111551. [PMID: 34192556 DOI: 10.1016/j.envres.2021.111551] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/26/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
The color effluent discharged by alcohol distilleries comprises very high pollution loads due to the plethora of refractory chemicals even after anaerobic treatment and causing adverse effects to the environment. The present study aimed to examine the phytotoxic, cytotoxic, and genotoxic potential of the identified refractory organic and inorganic pollutants discharged in bio-methanated distillery effluent (BMDE). Physico-chemical analyses revealed that BMDE retains high BOD, COD, TDS along with heavy metals like Fe (572.64 mg L-1), Mn (4.269 mg L-1), Cd (1.631 mg L-1), Zn (2.547 mg L-1), Pb (1.262 mg L-1), (Cr 1.257 mg L-1), and Ni (0.781 mg L-1) beyond the permissible limits for effluent discharge. GC-MS analysis revelaed the presence of hexadecanoic acid, TMS ester; octadecanoic acid, TMS ester; 2,3 bis[(TMS)oxy]propyl ester; stigmasterol TMS ether; β-sitosterol TMS ester; hexacosanoic acid; and tetradecanoic acid, TMS ester as major refractory organic pollutants, which are listed as potential endocrine disruptor chemicals (EDCs) as per USEPA. Furthermore, phytotoxicity assessment with Phaseolus aureus L. showed the toxic nature of BMDE as it inhibited various seedling growth parameters, seed germination, and suppression of α-amylase activity in seed germination experiment. Moreover, genotoxicity and cytotoxicity evaluation of the discharged BMDE evidenced in root-tip meristematic cells of Allium cepa L. where chromosomal aberration such as disturbed metaphase, c-mitosis, laggard chromosomes, sticky chromosomes, prolonged prophase, polyploid cells, and apoptotic bodies etc. were observed. Thus, this study's results suggested that BMDE discharged without adequate treatment poses potential risk to environment and may cause a variety of serious health threats in living beings upon exposure.
Collapse
Affiliation(s)
- Vineet Kumar
- Department of Botany, School of Life Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, 495009, India.
| | - Sushil Kumar Shahi
- Department of Botany, School of Life Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, 495009, India
| | - Luiz Fernando Romanholo Ferreira
- Waste and Effluent Treatment Laboratory, Institute of Technology and Research (ITR), Tiradentes University, Farolândia, Aracaju, SE, 49032-490, Brazil; Graduate Program in Process Engineering, Tiradentes University, Murilo Dantas Avenue, 300, Farolândia, 49032-490, Aracaju, Sergipe, Brazil
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Jayanta Kumar Biswas
- Department of Ecological Studies & International Centre for Ecological Engineering, University of Kalyani Kalyani, Nadia, 741235, West Bengal, India
| | - Laura Bulgariu
- Technical University Gheorghe Asachi of Iaşi, "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, Department of Environmental Engineering and Management, Iaşi, Romania
| |
Collapse
|
18
|
Rashid A, Mirza SA, Keating C, Ali S, Campos LC. Hospital wastewater treated with a novel bacterial consortium (Alcaligenes faecalis and Bacillus paramycoides spp.) for phytotoxicity reduction in Berseem clover and tomato crops. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:1764-1780. [PMID: 33843758 DOI: 10.2166/wst.2021.079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hospital wastewaters are produced in large volumes in Pakistan (∼362-745 L/bed.day) and are discharged without proper treatment. They are widely used by farmers for crop irrigation and induce a phytotoxic effect on plant growth. The study was conducted to evaluate the effect of untreated and treated hospital wastewater on seed germination of a fodder crop Trifolium alexandrinum (Berseem clover) and a food crop Solanum lycopersicum (tomato). A bacterial consortium was formed with three bacterial strains, i.e., Alcaligenes faecalis and Bacillus paramycoides spp., which were individually proven efficient in previous studies. The concentrations of untreated and treated hospital wastewater (25, 50, 75 and 100%) were used to irrigate these crop seeds. To assess the efficiency of treatment, the germination percentage, delay index, germination index, stress tolerance indices, seedling vigour index and phytotoxicity index were calculated and were statistically proven significant. The seeds grown in treated wastewater concentrations showed negative values of phytotoxicity indices (tomato: -0.36, -0.47, -0.78 and -1.11; Berseem clover: -0.23) which indicate a stimulatory or non-toxic effect on seedling growth. Our work proposes that this bacterial consortium is efficient for hospital wastewater treatment before crop irrigation.
Collapse
Affiliation(s)
- Aneeba Rashid
- Department of Botany, GC University Lahore, Lahore 54000, Pakistan; Department of Civil, Environmental and Geomatic Engineering, University College London, London WC1E 6BT, United Kingdom E-mail:
| | - Safdar A Mirza
- Department of Botany, GC University Lahore, Lahore 54000, Pakistan
| | - Ciara Keating
- Division of Infrastructure and Environment, James Watt School of Engineering, University of Glasgow, Glasgow G12 8LT, United Kingdom
| | - Sikander Ali
- Institute of Industrial Biotechnology (IIB), GC University Lahore, Lahore 54000, Pakistan
| | - Luiza C Campos
- Department of Civil, Environmental and Geomatic Engineering, University College London, London WC1E 6BT, United Kingdom E-mail:
| |
Collapse
|
19
|
Olive Mill Wastes: A Source of Bioactive Molecules for Plant Growth and Protection against Pathogens. BIOLOGY 2020; 9:biology9120450. [PMID: 33291288 PMCID: PMC7762183 DOI: 10.3390/biology9120450] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/28/2022]
Abstract
Simple Summary Olive oil is the most common vegetable oil used for human nutrition, and its production represents a major economic sector in Mediterranean countries. The milling industry generates large amounts of liquid and solid residues, whose disposal is complicated and costly due to their polluting properties. However, olive mill waste (OMW) may also be seen as a source of valuable biomolecules including plant nutrients, anthocyanins, flavonoids, polysaccharides, and phenolic compounds. This review describes recent advances and multidisciplinary approaches in the identification and isolation of valuable natural OMW-derived bioactive molecules. Such natural compounds may be potentially used in numerous sustainable applications in agriculture such as fertilizers, biostimulants, and biopesticides in alternative to synthetic substances that have a negative impact on the environment and are harmful to human health. Abstract Olive oil production generates high amounts of liquid and solid wastes. For a long time, such complex matrices were considered only as an environmental issue, due to their polluting properties. On the other hand, olive mill wastes (OMWs) exert a positive effect on plant growth when applied to soil due to the high content of organic matter and mineral nutrients. Moreover, OMWs also exhibit antimicrobial activity and protective properties against plant pathogens possibly due to the presence of bioactive molecules including phenols and polysaccharides. This review covers the recent advances made in the identification, isolation, and characterization of OMW-derived bioactive molecules able to influence important plant processes such as plant growth and defend against pathogens. Such studies are relevant from different points of view. First, basic research in plant biology may benefit from the isolation and characterization of new biomolecules to be potentially applied in crop growth and protection against diseases. Moreover, the valorization of waste materials is necessary for the development of a circular economy, which is foreseen to drive the future development of a more sustainable agriculture.
Collapse
|
20
|
El Hanandeh A, Albalasmeh A, Gharaibeh M, Alajlouni M. Modification of biochar prepared from olive oil processing waste to enhance phenol removal from synthetic and olive mill wastewater. SEP SCI TECHNOL 2020. [DOI: 10.1080/01496395.2020.1794897] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ali El Hanandeh
- School of Engineering and Built Environment, Griffith University, Nathan, Australia
| | - Ammar Albalasmeh
- Department of Natural Resources and Environment, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Mamoun Gharaibeh
- Department of Natural Resources and Environment, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohammad Alajlouni
- Department of Natural Resources and Environment, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
21
|
Gu L, Tang X, Sun Y, Kou H. Bioavailability of dissolved organic matter in biogas slurry enhanced by catalytic ozonation combined with membrane separation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 196:110547. [PMID: 32244119 DOI: 10.1016/j.ecoenv.2020.110547] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Large molecular weight pig biogas slurry (L-PBS) and small molecular weight pig biogas slurry (S-PBS) were separated from original pig biogas slurry (O-PBS) using a 100 kDa membrane. The original bioavailability and biosafety of L-PBS was very low. In order to enhance the total bioavailable dissolved organic nitrogen (TB-DON) and total bioavailable dissolved organic phosphorus (TB-DOP), optimum catalytic ozonation of L-PBS conditions were determined using Box-behnken design models (P < 0.0001) and intersection tests. The optimal values for ozone concentration, pH value, active catalyst concentration and reaction time were 2.63 mg·L-1, 6.48, 1.43 g·L-1 and 40 min, respectively. Catalytic ozonation can effectively decompose and transform 68.07% of L-PBS into S-PBS to improve content organic bioavailability, with a molecular weight distribution of 0-1 kDa (13.53%), 1-5 kDa (16.62%), 5-10 kDa (11.16%), 10-30 kDa (11.73%), 30-100 kDa (15.04%). Catalytic ozonation of L-PBS can reduce protein levels from 85.28% to 47.18%, but increases the proportion of fulvic and humic components from 10.22% to 32.67% and 4.51%-20.15%, respectively. Because catalytic ozonation changes the internal components and molecular weights of L-PBS, both saw increases in TB-DON and TB-DOP from 3.33% to 41.12% and 2.43%-37.88%, respectively, with a large number of TB-DON and TB-DOP derived from hydrophilic organic components during catalytic ozonation. These important internal mechanisms changed by catalytic ozonation can effectively reduce the ecotoxicity (IR, from 76.5% to 33.1%) and phytotoxicity (GI, enhanced from 35.4% to 70.3%) of L-PBS. Therefore, catalytic ozonation combined with membrane separation is a choice technology in improving the nutrition of biogas slurry and reduce its ecological risk.
Collapse
Affiliation(s)
- Lipeng Gu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Xin Tang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Ying Sun
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| | - Huijuan Kou
- Ulanqab Animal Husbandry Station of Inner Mongolia Autonomous Region, Inner Mongolia, 012000, China
| |
Collapse
|
22
|
Sustainable Environmental Management and Valorization Options for Olive Mill Byproducts in the Middle East and North Africa (MENA) Region. Processes (Basel) 2020. [DOI: 10.3390/pr8060671] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cultivation of olive trees and olive oil production have been considered as a legacy for the Mediterranean region. This custom represents a very important benefit for many nations in terms of wealth and health. However, huge amounts of by-products and waste are generated during olive oil production. This represents a serious environmental impact on land and water bodies if not properly handled. Olive oil extraction generates two waste streams, a solid waste called pomace and olive mill wastewater (OMWW), which has been considered as highly pollutant and phytotoxic waste. These wastes have high disposal costs and predominantly generated from small-scale enterprises that have limited financial resources to treat them properly before discharge to the environment. Besides being a serious environmental problem, OMWW has potential economic value that remains to be utilized such as: fertilizers, valuable antioxidants agents and fatty acids needed in human diet. Also, Olive pomace is a valuable renewable energy source with an energy density of 23 MJ/kg and has become an inexpensive alternative for fossil fuels. Aiming at adding value to the olive production sectors and potential valorization options for byproducts in the MENA region, international practices applied in olive mills wastes management’s and treatment methods used in major oil producing countries are presented.
Collapse
|
23
|
Enaime G, Baçaoui A, Yaacoubi A, Belaqziz M, Wichern M, Lübken M. Phytotoxicity assessment of olive mill wastewater treated by different technologies: effect on seed germination of maize and tomato. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:8034-8045. [PMID: 31897978 DOI: 10.1007/s11356-019-06672-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
The phytotoxicity effect of olive mill wastewater (OMWW) treated in a combined system regrouping pretreatment by filtration on olive stones and coagulation-flocculation, and anaerobic digestion (AD) on seed germination of maize and tomato was evaluated through germination tests in petri dishes and growth tests in pots. Three samples, referenced as AD-40, AD-60, and AD-80, were collected from the anaerobic reactor operating with an influent at 40, 60, and 80% OMWW/water (% v/v). Concentrations between 25 and 100% were used for maize and between 5 and 25% were used for tomato using raw and pretreated samples, while anaerobic samples were used without dilution. For maize, 100% and 75% OMWW were very phytotoxic and completely prohibited seed germination, while phytotoxicity was decreased following dilution at 25% and 50% OMWW. Maize germinability was found highly enhanced when watered with anaerobic samples. For tomato, high dilution was required to reduce the phytotoxicity of raw and pretreated OMWW and a high relative germination percentage was registered at 5, 10, and 15% OMWW, while for samples anaerobically treated, a high phytotoxicity is still observed. Growth tests, showed more favorable results for maize watered with raw and pretreated samples at 25% OMWW and with biological samples. For tomato and with the exception of 25% OMWW and AD-80, seeds respond positively to all samples. It was concluded that if the OMWW will be used for irrigating maize, it could be directly used after anaerobic digestion, while for tomato further dilution is required. The phenolic profile analysis of the tested samples coupled with the results of the germination tests showed that the OMWW phytotoxicity appears to be determined by not only the monomeric phenols but also by other toxic components unaffected by the applied treatments.
Collapse
Affiliation(s)
- Ghizlane Enaime
- Laboratory of Applied Chemistry, Unity of Methodology and Environment, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P 2390, Marrakech, Morocco.
| | - Abdelaziz Baçaoui
- Laboratory of Applied Chemistry, Unity of Methodology and Environment, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P 2390, Marrakech, Morocco
| | - Abdelrani Yaacoubi
- Laboratory of Applied Chemistry, Unity of Methodology and Environment, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P 2390, Marrakech, Morocco
| | - Majdouline Belaqziz
- Polyvalent Laboratory of Research and Development, Polydisciplinary Faculty, Sultan Moulay Slimane University, Béni Mellal, Morocco
| | - Marc Wichern
- Institute of Urban Water Management and Environmental Engineering, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Manfred Lübken
- Institute of Urban Water Management and Environmental Engineering, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| |
Collapse
|
24
|
Luo Y, Liang J, Zeng G, Li X, Chen M, Jiang L, Xing W, Tang N. Responses of seeds of typical Brassica crops to tetracycline stress: Sensitivity difference and source analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 184:109597. [PMID: 31465956 DOI: 10.1016/j.ecoenv.2019.109597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/06/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
Antibiotics can induce adverse effects on plants. Brassica crop seeds, for their advantages, are used widely in seed germination test to investigate phytotoxicity of substances. However, their performances on evaluating antibiotics remain to be studied to select sensitive species for control of potential risks. In this work, common species of Chinese cabbage (Brassica rapa L.), edible rape (Brassica napus L.), and cabbage (Brassica oleracea L.) with three cultivars each were selected to compare and analyze the sensitivity difference of their seeds to tetracycline (TC) stress. Results showed that the ratio of axis to cotyledon (RAC) by fresh weight was an alternative endpoint besides radicle length (RL) in the test. The species sensitivity distribution (SSD) based on the effective concentrations causing x% inhibition (ECx) in RL of seeds exposed to TC was applied to compare the sensitivity of seeds and estimate the hazardous concentration for x% species (HCx). From the species-dependent sensitivity and the sensitivity difference of cultivars in the same species of seeds to TC, the performance of Chinese cabbage was the best in the study. The sensitivity of seeds to TC could be evaluated by EC20 related to seed physical traits and germination indices, while the extent of seeds affected by TC could be evaluated by EC50 related to the composition of seed storage reserves. We recommended that it was a new idea to analyze responses of different seeds to TC at large scale according to seed innate characteristics.
Collapse
Affiliation(s)
- Yuan Luo
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Jie Liang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Xiaodong Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Ming Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Longbo Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Wenle Xing
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Ning Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| |
Collapse
|
25
|
Babić S, Malev O, Pflieger M, Lebedev AT, Mazur DM, Kužić A, Čož-Rakovac R, Trebše P. Toxicity evaluation of olive oil mill wastewater and its polar fraction using multiple whole-organism bioassays. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 686:903-914. [PMID: 31412527 DOI: 10.1016/j.scitotenv.2019.06.046] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/09/2019] [Accepted: 06/03/2019] [Indexed: 06/10/2023]
Abstract
Olive mill wastewater (OMW) as a by-product of olive oil extraction process has significant polluting properties mainly related to high organic load, increased COD/BOD ratio, high phenolic content and relatively acidic pH. Raw OMW from Slovenian Istria olive oil mill and its polar fraction were investigated in this study. Chemical characterization of OMW polar fraction identified tyrosol as the most abundant phenolic product, followed by catechol. Lethal and sub-lethal effects of OMW matrix and its polar fraction were tested using a battery of bioassays with model organisms: bacteria Vibrio fischeri, algae Chlorella vulgaris, water fleas Daphnia magna, zebrafish Danio rerio embryos, clover Trifolium repens and wheat Triticum aestivum. Raw OMW sample was the most toxic to V. fischeri (EC50 = 0.24% of OMW sample final concentration), followed by D. magna (EC50 = 1.43%), C. vulgaris (EC50 = 5.20%), D. rerio (EC50 = 7.05%), seeds T. repens (EC50 = 8.68%) and T. aestivum (EC50 = 11.58%). Similar toxicity trend was observed during exposure to OMW polar fraction, showing EC50 values 2.75-4.11 times lower comparing to raw OMW. Tested samples induced also sub-acute effects to clover and wheat (decreased roots, sprouts elongation); and to zebrafish embryos (increased mortality, higher abnormality rate, decreased hatching and pigmentation formation rate). A comprehensive approach using a battery of bioassays, like those used in this study should be applied during ecotoxicity monitoring of untreated and treated OMW.
Collapse
Affiliation(s)
- Sanja Babić
- Ruđer Bošković Institute, Division of Materials Chemistry, Laboratory for Aquaculture Biotechnology, Bijenička cesta 54, Zagreb, Croatia; Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia
| | - Olga Malev
- Srebrnjak Children's Hospital, Department for Translational Medicine, Srebrnjak 100, Zagreb, Croatia; University of Zagreb, Faculty of Science, Department of Biology, Division of Zoology, Rooseveltov trg 6, Zagreb, Croatia
| | - Maryline Pflieger
- Faculty of Health Sciences, Biochemistry in Medical Science, Department for Sanitary Engineering, Zdravstvena pot 5, Ljubljana, Slovenia
| | - Albert T Lebedev
- Lomonosov Moscow State University, Department of Organic Chemistry, Moscow, Russia
| | - Dmitry M Mazur
- Lomonosov Moscow State University, Department of Organic Chemistry, Moscow, Russia
| | - Anita Kužić
- TAPI/Analytical R&D, Pliva Croatia Ltd., prilaz Baruna Filipovića 28, Zagreb, Croatia
| | - Rozelindra Čož-Rakovac
- Ruđer Bošković Institute, Division of Materials Chemistry, Laboratory for Aquaculture Biotechnology, Bijenička cesta 54, Zagreb, Croatia; Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia
| | - Polonca Trebše
- Faculty of Health Sciences, Biochemistry in Medical Science, Department for Sanitary Engineering, Zdravstvena pot 5, Ljubljana, Slovenia.
| |
Collapse
|
26
|
Luo Y, Liang J, Zeng G, Li X, Chen M, Jiang L, Xing W, Tang N, Fang Y, Chen X. Evaluation of tetracycline phytotoxicity by seed germination stage and radicle elongation stage tests: A comparison of two typical methods for analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:257-263. [PMID: 31082610 DOI: 10.1016/j.envpol.2019.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/23/2019] [Accepted: 05/01/2019] [Indexed: 06/09/2023]
Abstract
Biological tests with plant seeds have been adopted in many studies to investigate the phytotoxicity of pollutants to facilitate the control of risks and remain to be optimized. In this work, the experiment with a small sample size (Experiment 1) and the experiment with a large one (Experiment 2) were designed to study the effect of tetracycline (TC) on Chinese cabbage (Brassica rapa L.) at seed germination and radicle elongation stages. At the former stage, germination number data were obtained to analyze the germination energy (GE) and to judge the probability of the number of germinated seeds (Pn) by the binomial distribution model in Experiment 1. While germination time-to-number data were obtained to analyze the mean time to germination (MGT), the estimate of mean time to germination (EMGT) by survival analysis method, the time to germination for 50% of total seeds (T50) and the germination rate (GR) besides GE in Experiment 2. At the latter stage, the data of radicle length (RL) were obtained in all the experiments and the influence from the former stage on this stage was excluded in Experiment 2 but not in Experiment 1. Results showed that TC had universal adverse effects on the latter stage but not on the former stage in the experiments. Considering the availability of germination data for statistical analysis and the robustness of RL data, the methods adopted in Experiment 2 were more feasible than those in Experiment 1. In addition, Chinese cabbage seeds with medium size have the character of rapid germination compared with the commonly used crop species and can be used to shorten the experimental cycle to study the responses of seeds to pollutants to evaluate the phytotoxicity. We introduced survival analysis method to analyze the germination time-to-number data obtained in seed germination test to evaluate the phytotoxicity of tetracycline.
Collapse
Affiliation(s)
- Yuan Luo
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Jie Liang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Xiaodong Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Ming Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Longbo Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Wenle Xing
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Ning Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Yilong Fang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Xuwu Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| |
Collapse
|
27
|
Yadav A, Raj A, Purchase D, Ferreira LFR, Saratale GD, Bharagava RN. Phytotoxicity, cytotoxicity and genotoxicity evaluation of organic and inorganic pollutants rich tannery wastewater from a Common Effluent Treatment Plant (CETP) in Unnao district, India using Vigna radiata and Allium cepa. CHEMOSPHERE 2019; 224:324-332. [PMID: 30826702 DOI: 10.1016/j.chemosphere.2019.02.124] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 05/09/2023]
Abstract
The leather industry is a major source of environmental pollution in India. The wastewater generated by leather industries contains very high pollution parameters due to the presence of a complex mixture of organic and inorganic pollutants even after the treatment at a Common Effluent Treatment Plant (CETP) and disturbs the ecological flora and fauna. The nature, characteristics and toxicity of CETP treated wastewater is yet to be fully elucidated. Thus, this study aims to characterize and evaluate the toxicity of CETP treated tannery wastewater collected from the Unnao district of Uttar Pradesh, India. In addition to measuring the physico-chemical parameters, the residual organic pollutants was identified by GC-MS analysis and phytotoxicity, cytotoxicity and genotoxicity of the treated wastewater was evaluated using Vigna radiata L. and Allium cepa L. Results showed that the treated wastewater contained very high pollution parameters (TDS 3850 mg/L, BOD 680 mg/L, COD-1300 mg/L). GC-MS analysis revealed the presence of various types of residual organic pollutants including benzoic acid, 3-[4,-(T-butyl) Phenyl] furan-2-5-dione, benzeneacetamide, resorcinol, dibutyl phthalate, and benzene-1,2,4-triol. Further, toxicological studies showed the phytotoxic nature of the wastewater as it inhibited seed germination in V. radiata L. and root growth of A. cepa. Genotoxicity was evidenced in the root tip cell of A. cepa where chromosomal aberrations (stickiness, chromosome loss, C-mitosis, and vagrant chromosome) and nuclear abnormalities like micronucleated and binucleated cells were observed. Thus, results suggested that it is not safe to discharge these wastewater into the environment.
Collapse
Affiliation(s)
- Ashutosh Yadav
- Laboratory for Bioremediation and Metagenomics Research (LBMR), Department of Microbiology (DM), Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, 226 025, Uttar Pradesh, India
| | - Abhay Raj
- Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India
| | - Diane Purchase
- Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, The Burroughs, Hendon, London, NW4 4BT, England, United Kingdom
| | - Luiz Fernando R Ferreira
- Institute of Technology and Research, Murilo Dantas Avenue, 300, Farolândia, 49.032-490, Aracaju, Sergipe, Brazil; Post‑Graduated Program on Process Engineering, Tiradentes University, Murilo Dantas Avenue, 300, Farolândia, 49.032-490, Aracaju, Sergipe, Brazil
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Ram Naresh Bharagava
- Laboratory for Bioremediation and Metagenomics Research (LBMR), Department of Microbiology (DM), Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, 226 025, Uttar Pradesh, India.
| |
Collapse
|
28
|
Arous F, Hamdi C, Kmiha S, Khammassi N, Ayari A, Neifar M, Mechichi T, Jaouani A. Treatment of olive mill wastewater through employing sequencing batch reactor: performance and microbial diversity assessment. 3 Biotech 2018; 8:481. [PMID: 30456015 DOI: 10.1007/s13205-018-1486-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/19/2018] [Indexed: 11/25/2022] Open
Abstract
This work describes the performance of a sequencing batch reactor (SBR) and the involvement of a novel reconstituted bacterial consortium in olive mill wastewater (OMW) treatment. The organic loading rate applied to the SBR was serially increased in terms of initial COD from 10 to 75 g L-1 to allow gradual acclimatization of activated sludge to high concentrations of toxic compounds in OMW. After the acclimatization period, up to 60% of the total COD content were effectively biodegraded from OMW at 75 g L-1 COD within 30 day hydraulic retention time. The diversity and community composition of cultivable bacteria participating in the aerobic process of treating OMW were further assessed. A total of 91 bacterial strains were isolated from the reactor and analyzed by amplification of the 16S-23S rRNA internal transcribed spacer (ITS) region and by 16S rRNA gene sequencing. The most abundant phylum was Firmicutes (57.1%) followed by Proteobacteria (35.2%) and Actinobacteria (7.7%). The use of the Biolog® Phenotype Microarray system to evaluate the ability of isolated strains to utilize OMW phenolic compounds is reported in this work for the first time. Interestingly, results showed that all species tested were able to utilize phenolics as sole carbon and energy sources. The removals of COD and phenolics from undiluted OMW by the reconstituted bacterial consortium were almost similar to those obtained by the acclimatized activated sludge, which suggest that cultivable bacteria play the major role in OMW biodegradation. Phytotoxicity assays using tomato seeds showed a significant improvement of seed germination values for treated OMW. Our overall results suggest that the novel developed bacterial consortium could be considered as a good prospect for phenolics-rich wastewaters bioremediation applications.
Collapse
Affiliation(s)
- Fatma Arous
- 1Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, Institut Supérieur des Sciences Biologiques Appliquées de Tunis, University of Tunis El Manar, 9, Rue Zouhair Essafi, 1007 Tunis, Tunisia
| | - Chadlia Hamdi
- 1Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, Institut Supérieur des Sciences Biologiques Appliquées de Tunis, University of Tunis El Manar, 9, Rue Zouhair Essafi, 1007 Tunis, Tunisia
| | - Souhir Kmiha
- 1Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, Institut Supérieur des Sciences Biologiques Appliquées de Tunis, University of Tunis El Manar, 9, Rue Zouhair Essafi, 1007 Tunis, Tunisia
| | - Nadia Khammassi
- 1Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, Institut Supérieur des Sciences Biologiques Appliquées de Tunis, University of Tunis El Manar, 9, Rue Zouhair Essafi, 1007 Tunis, Tunisia
| | - Amani Ayari
- 1Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, Institut Supérieur des Sciences Biologiques Appliquées de Tunis, University of Tunis El Manar, 9, Rue Zouhair Essafi, 1007 Tunis, Tunisia
| | - Mohamed Neifar
- 2University of Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Ariana, Tunisia
| | - Tahar Mechichi
- 3Laboratoire de Biochimie et de Genie Enzymatique des Lipases, ENIS, Route de Soukra, BPW 1173-3038, Sfax, Tunisia
| | - Atef Jaouani
- 1Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, Institut Supérieur des Sciences Biologiques Appliquées de Tunis, University of Tunis El Manar, 9, Rue Zouhair Essafi, 1007 Tunis, Tunisia
| |
Collapse
|
29
|
Orescanin V, Durgo K, Mikelic IL, Halkijevic I, Kuspilic M. Toxicity assessment of untreated/treated electroplating sludge using human and plant bioassay. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2018; 53:925-930. [PMID: 29708842 DOI: 10.1080/10934529.2018.1462911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The purpose of this work was to assess the risk to the environment arising from the electroplating sludge from both chemical and toxicological point of view. Both approaches were used for the assessment of the treatment efficiency which consisted of CaO based solidification followed by thermal treatment at 400°C. The elemental composition was determined in the bulk samples and the leachates of untreated sludge. The toxicity of the leachate was determined using two human colorectal adenocarcinoma cell lines (Caco-2 and SW 480) and Hordeum vulgare L. based plant bioassay. The same toxicity tests were employed to the leachate of the treated sludge. Untreated sludge showed extremely high cytotoxic effect to both human and plant bio-system in dose-dependent manner. The percentages higher than 0.5% and 0.05% of the leachate caused significant cytotoxic effect on Caco-2 and SW 480 cells, respectively. The percentages of the leachate higher than 0.05% also showed significant toxic effect to H. vulgare L. bio-system with complete arrest of seed germination following the treatment with 100% to 5% of the leachate. The leachate of the treated sludge showed no toxicity to any of the test systems confirming the efficiency and justification of the employed procedures for the detoxification of electroplating sludge.
Collapse
Affiliation(s)
| | - Ksenija Durgo
- b Faculty of Food Technology and Biotechnology, Laboratory for Biology and Microbial Genetics , Kršnjavoga, Zagreb , Croatia
| | - Ivanka Lovrencic Mikelic
- c Laboratory for Low-Level Radioactivities, Ruder Boskovic Institute , Bijenicka cesta, Zagreb , Croatia
| | - Ivan Halkijevic
- d Department of Water Research , Faculty of Civil Engineering, Fra Andrije Kačića-Miošića , Zagreb , Croatia
| | - Marin Kuspilic
- d Department of Water Research , Faculty of Civil Engineering, Fra Andrije Kačića-Miošića , Zagreb , Croatia
| |
Collapse
|
30
|
Salian R, Wani S, Reddy R, Patil M. Effect of brewery wastewater obtained from different phases of treatment plant on seed germination of chickpea (Cicer arietinum), maize (Zea mays), and pigeon pea (Cajanus cajan). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:9145-9154. [PMID: 29340862 DOI: 10.1007/s11356-018-1218-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/03/2018] [Indexed: 06/07/2023]
Abstract
Brewing industry releases large quantities of wastewater after product generation. Brewery wastewater contains organic compounds which are biodegradable in nature. These biodegradable wastes can be recycled and reused and hence considered as suitable products for agriculture. But before using wastewater for agriculture, it is better to evaluate the phytotoxic effects of wastewater on crops. Hence, the main objective of this study is to evaluate the effects of brewery effluent on seed germination and growth parameters of selected crop species like chickpea (Cicer arietinum), maize (Zea mays), and pigeon pea (Cajanus cajan). Study comprised seven types of water treatments-tap water as control, diluted UASBR effluent (50% effluent + 50% distilled water): UASBR50, undiluted UASBR effluent: UASBR100, diluted TC effluent (50% effluent + 50% distilled water): ETP50,TC effluent without dilution: ETP100, 10% diluted reverse osmosis (RO10) reject (10% RO reject + 90% distilled water), and 25% diluted reverse osmosis(RO25) reject (25% RO reject + 75% distilled water) with three replications in completely randomized design. Germination test was performed in petri plates for 5 days. Parameters like germination percentage, germination rate index, seedling length, phytotoxicity index, seed vigor index, and biomass were calculated. All parameters decreased with increase in respective effluent concentration. Among all treatments, RO25 showed highest inhibitory effect on all three crops. Even though undiluted effluent of UASBR and ETP effluent showed positive effect on germination, seedling growth of three crops was promoted to the maximum by UASBR50 and ETP50. Hence, from the study, it was concluded that dilution of brewery effluent can be recommended before using it for irrigational purpose.
Collapse
Affiliation(s)
- Rupa Salian
- Center for Water Resources, Institute of Science and Technology, JNTU Hyderabad, Kukatpally, Hyderabad, 500085, India.
| | - Suhas Wani
- Research Program- Asia, International Crops Research Institute for the Semi-arid Tropics, Patancheru, Medak, 502324, India
| | - Ramamohan Reddy
- Center for Water Resources, Institute of Science and Technology, JNTU Hyderabad, Kukatpally, Hyderabad, 500085, India
| | - Mukund Patil
- Research Program- Asia, International Crops Research Institute for the Semi-arid Tropics, Patancheru, Medak, 502324, India
| |
Collapse
|
31
|
Ioannou-Ttofa L, Michael-Kordatou I, Fattas SC, Eusebio A, Ribeiro B, Rusan M, Amer ARB, Zuraiqi S, Waismand M, Linder C, Wiesman Z, Gilron J, Fatta-Kassinos D. Treatment efficiency and economic feasibility of biological oxidation, membrane filtration and separation processes, and advanced oxidation for the purification and valorization of olive mill wastewater. WATER RESEARCH 2017; 114:1-13. [PMID: 28214720 DOI: 10.1016/j.watres.2017.02.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 02/01/2017] [Accepted: 02/10/2017] [Indexed: 06/06/2023]
Abstract
Olive mill wastewater (OMW) is a major waste stream resulting from numerous operations that occur during the production stages of olive oil. The resulting effluent contains various organic and inorganic contaminants and its environmental impact can be notable. The present work aims at investigating the efficiency of (i) jet-loop reactor with ultrafiltration (UF) membrane system (Jacto.MBR), (ii) solar photo-Fenton oxidation after coagulation/flocculation pre-treatment and (iii) integrated membrane filtration processes (i.e. UF/nanofiltration (NF)) used for the treatment of OMW. According to the results, the efficiency of the biological treatment was high, equal to 90% COD and 80% total phenolic compounds (TPh) removal. A COD removal higher than 94% was achieved by applying the solar photo-Fenton oxidation process as post-treatment of coagulation/flocculation of OMW, while the phenolic fraction was completely eliminated. The combined UF/NF process resulted in very high conductivity and COD removal, up to 90% and 95%, respectively, while TPh were concentrated in the NF concentrate stream (i.e. 93% concentration). Quite important is the fact that the NF concentrate, a valuable and polyphenol rich stream, can be further valorized in various industries (e.g. food, pharmaceutical, etc.). The above treatment processes were found also to be able to reduce the initial OMW phytotoxicity at greenhouse experiments; with the effluent stream of solar photo-Fenton process to be the least phytotoxic compared to the other treated effluents. A SWOT (Strength, Weakness, Opportunities, Threats) analysis was performed, in order to determine both the strengths of each technology, as well as the possible obstacles that need to overcome for achieving the desired levels of treatment. Finally, an economic evaluation of the tested technologies was performed in an effort to measure the applicability and viability of these systems at real scale; highlighting that the cost cannot be regarded as a 'cut off criterion', since the most cost-effective option in not always the optimum one.
Collapse
Affiliation(s)
- L Ioannou-Ttofa
- Nireas-International Water Research Center, University of Cyprus, P.O. Box 20537, CY-1678, Nicosia, Cyprus
| | - I Michael-Kordatou
- Nireas-International Water Research Center, University of Cyprus, P.O. Box 20537, CY-1678, Nicosia, Cyprus
| | - S C Fattas
- Nireas-International Water Research Center, University of Cyprus, P.O. Box 20537, CY-1678, Nicosia, Cyprus
| | - A Eusebio
- Bioenergy Unit, National Laboratory of Energy and Geology, Estrada do Paço do Lumiar, 22, 1649-038, Lisboa, Portugal
| | - B Ribeiro
- Bioenergy Unit, National Laboratory of Energy and Geology, Estrada do Paço do Lumiar, 22, 1649-038, Lisboa, Portugal
| | - M Rusan
- Department of Natural Resources and Environment, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - A R B Amer
- Department of Natural Resources and Environment, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - S Zuraiqi
- Department of Natural Resources and Environment, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - M Waismand
- Ben-Gurion University of the Negev, Departments of Biotechnology, Energy and Environmental Engineering, P.O. Box 653, Beer-Sheva, 84105, Israel
| | - C Linder
- Ben-Gurion University of the Negev, Departments of Biotechnology, Energy and Environmental Engineering, P.O. Box 653, Beer-Sheva, 84105, Israel
| | - Z Wiesman
- Ben-Gurion University of the Negev, Departments of Biotechnology, Energy and Environmental Engineering, P.O. Box 653, Beer-Sheva, 84105, Israel
| | - J Gilron
- Ben-Gurion University of the Negev, Departments of Biotechnology, Energy and Environmental Engineering, P.O. Box 653, Beer-Sheva, 84105, Israel
| | - D Fatta-Kassinos
- Nireas-International Water Research Center, University of Cyprus, P.O. Box 20537, CY-1678, Nicosia, Cyprus; Department of Civil and Environmental Engineering, University of Cyprus, P.O. Box 20537, CY-1678, Nicosia, Cyprus.
| |
Collapse
|
32
|
El Idrissi M, Molina Bacca AE, Frascari D, Corvini PFX, Shahgaldian P. Cyclodextrin-based polymeric materials for the specific recovery of polyphenolic compounds through supramolecular host–guest interactions. J INCL PHENOM MACRO 2017. [DOI: 10.1007/s10847-017-0708-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Rekik I, Chaabane Z, Missaoui A, Bouket AC, Luptakova L, Elleuch A, Belbahri L. Effects of untreated and treated wastewater at the morphological, physiological and biochemical levels on seed germination and development of sorghum (Sorghum bicolor (L.) Moench), alfalfa (Medicago sativa L.) and fescue (Festuca arundinacea Schreb.). JOURNAL OF HAZARDOUS MATERIALS 2017; 326:165-176. [PMID: 28013160 DOI: 10.1016/j.jhazmat.2016.12.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 06/06/2023]
Abstract
Wastewater reuse in agriculture may help mitigate water scarcity. This may be reached if high quality treatments removing harmful pollutants are applied. The aim of the present study was to compare the effect of untreated (UTW) and treated wastewater (TW) on germination and seedlings development of alfalfa (Medicago sativa L.), fescue (Festuca arundinacea Schreb.) and sorghum (Sorghum bicolor (L.) Moench). UTW presented high turbidity (130 NTU), chemical and biological oxygen demand (COD, 719mgL-1, BOD5, 291mgL-1) and metal concentrations. These levels caused mortality (18% for fescue), decreased germination speed in seeds (37.5% for alfalfa) and reductions of root and stem length in seedlings (80% and 22% respectively for alfalfa). Adverse effects on seeds germination were reflected at the biochemical level by increased H2O2 levels (6 times for sorghum after 5days) and by increased Malondialdehyde (MDA) levels (more than 600 times for sorghum roots) during seedlings development. When TW was used, these parameters were close to control seeds ones. They were also dependent on plant species and developmental stage. Therefore, for efficient reclaimed wastewater reuse in irrigation, suitable crops, displaying wide tolerance to toxic contents during germination and later seedling development stages have to be selected.
Collapse
Affiliation(s)
- Imen Rekik
- Laboratory of Plant Biotechnology, Faculty of Sciences of Sfax, University of Sfax, Tunisia; NextBiotech, 98 Rue Ali Belhouane, 3030 Agareb, Tunisia
| | - Zayneb Chaabane
- Laboratory of Plant Biotechnology, Faculty of Sciences of Sfax, University of Sfax, Tunisia
| | - Amara Missaoui
- Laboratory of Plant Biotechnology, Faculty of Sciences of Sfax, University of Sfax, Tunisia
| | - Ali Chenari Bouket
- NextBiotech, 98 Rue Ali Belhouane, 3030 Agareb, Tunisia; Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Sakai, Japan
| | - Lenka Luptakova
- NextBiotech, 98 Rue Ali Belhouane, 3030 Agareb, Tunisia; University of Veterinary Med. and Pharmacy, Institute of Biology, Zoology and Radiobiology, Department of Biology and Genetics, Komenského 73, 04181 Kosice, Slovakia
| | - Amine Elleuch
- Laboratory of Plant Biotechnology, Faculty of Sciences of Sfax, University of Sfax, Tunisia
| | - Lassaad Belbahri
- NextBiotech, 98 Rue Ali Belhouane, 3030 Agareb, Tunisia; Laboratory of Soil Biodiversity, University of Neuchatel, 11 Rue Emile Argand, CH-2000, Neuchatel, Switzerland.
| |
Collapse
|
34
|
Assessment of a New Silicon Carbide Tubular Honeycomb Membrane for Treatment of Olive Mill Wastewaters. MEMBRANES 2017; 7:membranes7010012. [PMID: 28264453 PMCID: PMC5371973 DOI: 10.3390/membranes7010012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/20/2017] [Accepted: 02/22/2017] [Indexed: 11/16/2022]
Abstract
Extremely high removals of total suspended solids and oil and grease were obtained when olive mill wastewaters were filtered using new silicon carbide tubular membranes. These new membranes were used at constant permeate flux to treat real olive mill wastewaters at pilot scale. The filtration conditions were evaluated and optimized in terms of the selection of the permeate flux and flux maintenance strategies employed-backpulsing and backwashing-in order to reduce fouling formation. The results obtained reveal that the combination of backpulses and backwashes helps to maintain the permeate flux, avoids transmembrane pressure increase and decreases the cake resistance. Moreover, membrane cleaning procedures were compared and the main agents responsible for fouling formation identified. Results also show that, under total recirculation, despite an increased concentration of pollutants in the feed stream, the quality of the permeate is maintained. Membrane filtration using silicon carbide membranes is an effective alternative to dissolved air flotation and can be applied efficiently to remove total suspended solids and oil and grease from olive mill wastewaters.
Collapse
|