1
|
Kang F, Meng Y, Ge Y, Zhang Y, Gao H, Ren X, Wang J, Hu S. Calcium-based polymers for suppression of soil acidification by improving acid-buffering capacity and inhibiting nitrification. J Environ Sci (China) 2024; 139:138-149. [PMID: 38105042 DOI: 10.1016/j.jes.2023.05.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 12/19/2023]
Abstract
Soil acidification is a major threat to agricultural sustainability in tropical and subtropical regions. Biodegradable and environmentally friendly materials, such as calcium lignosulfonate (CaLS), calcium poly(aspartic acid) (PASP-Ca), and calcium poly γ-glutamic acid (γ-PGA-Ca), are known to effectively ameliorate soil acidity. However, their effectiveness in inhibiting soil acidification has not been studied. This study aimed to evaluate the effect of CaLS, PASP-Ca, and γ-PGA-Ca on the resistance of soil toward acidification as directly and indirectly (i.e., via nitrification) caused by the application of HNO3 and urea, respectively. For comparison, Ca(OH)2 and lignin were used as the inorganic and organic controls, respectively. Among the materials, γ-PGA-Ca drove the substantial improvements in the pH buffering capacity (pHBC) of the soil and exhibited the greatest potential in inhibiting HNO3-induced soil acidification via protonation of carboxyl, complexing with Al3+, and cation exchange processes. Under acidification induced by urea, CaLS was the optimal one in inhibiting acidification and increasing exchangeable acidity during incubation. Furthermore, the sharp reduction in the population sizes of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) confirmed the inhibition of nitrification via CaLS application. Therefore, compared to improving soil pHBC, CaLS may play a more important role in suppressing indirect acidification. Overall, γ-PGA-Ca was superior to PASP-Ca and CaLS in enhancing the soil pHBC and the its resistance to acidification induced by HNO3 addition, whereas CaLS was the best at suppressing urea-driven soil acidification by inhibiting nitrification. In conclusion, these results provide a reference for inhibiting soil re-acidification in intensive agricultural systems.
Collapse
Affiliation(s)
- Fei Kang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yunshan Meng
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yanning Ge
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yun Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Haixiang Gao
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Xueqin Ren
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jie Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| | - Shuwen Hu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Yang Y, Liu H, Chen Y, Wu L, Huang G, Lv J. Soil nitrogen cycling gene abundances in response to organic amendments: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171048. [PMID: 38387590 DOI: 10.1016/j.scitotenv.2024.171048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Quantification of nitrogen (N) cycling genes contributes to our best understanding of N transformation processes. The application of organic amendment (OA) is widely recognized as an effective measure to improve N management and soil fertility in various ecosystems. However, our understanding of N-cycling gene abundances in response to OA application remains deficient. We performed a meta-analysis embracing 124 sets of observation data to study the impact of OA application on the main N-cycling gene abundances, including nifH, amoA, nirS, nirK and nosZ. We found that the significantly positive response of N-cycling gene abundances to OA application was attributed to the rotation cropping system (by 6.45 %-104.20 %) in the field experiment (by 19.43 %-52.56 %), OA application alone (by 8.29 %-111.70 %) especially manure addition (by 33.43 %-98.70 %), application dose of OAs within 10-20 t ha-1 (by 45.33 %-381.90 %), fertilization duration <5 years (by 43.69 %-112.63 %), C/N of OA <25 (by 37.87 %-160.90 %), SOC lower than 1.2 % (by 41.44 %-157.89 %) and application to alkaline soil (by 32.24 %-134.40 %). Moreover, soil organic carbon (SOC) and pH were the most essential regulators associated with N-cycling gene abundances with OA application. Identification of key driving factors of the abundance of N-cycling functional genes will help remedy strategies for managing OAs in ecosystems.
Collapse
Affiliation(s)
- Yajun Yang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation Chinese Academy of Sciences & College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| | - Hexiang Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation Chinese Academy of Sciences & College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yi Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation Chinese Academy of Sciences & College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Lijuan Wu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation Chinese Academy of Sciences & College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Guan Huang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation Chinese Academy of Sciences & College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Jialong Lv
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation Chinese Academy of Sciences & College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| |
Collapse
|
3
|
Yessoufou MW, Tovihoudji PG, Zakari S, Adjogboto A, Djenontin AJ, Akponikpè PI. Hill-placement of manure and fertilizer for improving maize nutrient- and water-use efficiencies in the northern Benin. Heliyon 2023; 9:e17823. [PMID: 37483831 PMCID: PMC10362180 DOI: 10.1016/j.heliyon.2023.e17823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/25/2023] Open
Abstract
Optimizing the use of organic and mineral fertilizer in rain-fed maize production is crucial for sustainable food production in sub-Saharan Africa. This study investigates the effect of hill-placement of two nutrient sources (farmyard manure and synthetic fertilizer) on nutrient- and water-use efficiencies of maize crops i.e. recovery efficiency (NUEre), internal utilization efficiency (NUEie) and water use efficiency (WUE). A four-year trial was conducted in the tropical sub-humid zone of the northern Benin with a factorial combination of farmyard manure at three levels (0, 3 and 6 t ha-1, hereafter NM, 3M and 6M, respectively) and three levels of fertilizer [0% (NF), 50% (50F) and 100% (100F) of the recommended rate (76 kg N + 13.1 kg P + 24.9 kg K ha-1) by the national center for agricultural research. The NUEre decreased with increasing rate of manure and/or fertilizer, but the decreasing rate was lower under combined manure and fertilizer application. However, the NUEie increased with the increasing manure and fertilizer amounts. The WUE was significantly higher in 3M and 6M treatments than in NM treatment, and higher in 50F and in 100F than in NF treatments. The combination of 3000 kg ha-1 farmyard manure with half recommended fertilizer rate (100 kg ha-1) could be suggested as an optimal nutrient management practice for maize production in the Northern Benin. Future studies should target the other agro-ecological zones in Benin, and also consider other widely cultivated crops in the study area for reducing yield gaps and promote food security.
Collapse
|
4
|
Yang X, Liu K, Wen Y, Huang Y, Zheng C. Application of Natural and Calcined Oyster Shell Powders to Improve Latosol and Manage Nitrogen Leaching. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3919. [PMID: 36900930 PMCID: PMC10002008 DOI: 10.3390/ijerph20053919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Excessive N fertilizer application has aggravated soil acidification and loss of N. Although oyster shell powder (OSP) can improve acidic soil, few studies have investigated its ability to retain soil N. Here, the physicochemical properties of latosol after adding OSP and calcined OSP (COSP) and the dynamic leaching patterns of ammonium N (NH4+-N), nitrate N (NO3--N), and Ca in seepage, were examined through indoor culture and intermittent soil column simulation experiments. Various types of N fertilizer were optimized through the application of 200 mg/kg of N, urea (N 200 mg/kg) was the control treatment (CK), and OSP and COSPs prepared at four calcination temperatures-500, 600, 700, and 800 °C-were added to the latosol for cultivation and leaching experiments. Under various N application conditions, the total leached N from the soil followed ammonium nitrate > ammonium chloride > urea. The OSP and COSPs had a urea adsorption rate of 81.09-91.29%, and the maximum reduction in cumulative soil inorganic N leached was 18.17%. The ability of COSPs to inhibit and control N leaching improved with increasing calcination temperature. Applying OSP and COSPs increased soil pH, soil organic matter, total N, NO3--N, exchangeable Ca content, and cation exchange capacity. Although all soil enzyme activities related to N transformation decreased, the soil NH4+-N content remained unchanged. The strong adsorption capacities for NH4+-N by OSP and COSPs reduced the inorganic N leaching, mitigating the risk of groundwater contamination.
Collapse
Affiliation(s)
- Xiaofei Yang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Kexing Liu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yanmei Wen
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yongxiang Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chao Zheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center Zhanjiang, Zhanjiang 524088, China
| |
Collapse
|
5
|
Lu Y, Hua Y, Lv N, Zu W, Kronzucker HJ, Dong G, Shi W. Syringic acid from rice roots inhibits soil nitrification and N 2O emission under red and paddy soils but not a calcareous soil. FRONTIERS IN PLANT SCIENCE 2022; 13:1099689. [PMID: 36605956 PMCID: PMC9808040 DOI: 10.3389/fpls.2022.1099689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Syringic acid (SA) is a novel biological nitrification inhibitor (BNIs) discovered in rice root exudates with significant inhibition of Nitrosomonas strains. However, the inhibitory effect of SA on nitrification and nitrous oxide (N2O) emissions in different soils and the environmental factors controlling the degree of inhibition have not been studied. Using 14-day microcosm incubation, we investigated the effects of different concentrations of SA on nitrification activity, abundance of ammonia-oxidizing microorganisms, and N2O emissions in three typical agricultural soils. The nitrification inhibitory efficacy of SA was strongest in acidic red soil, followed by weakly acidic paddy soil, with no significant effect in an alkaline calcareous soil. Potential nitrification activity (PNA) were also greatly reduced by SA additions in paddy and red soil. Pearson correlation analysis showed that the inhibitory efficacy of SA might be negatively correlated with soil pH and positively correlated with clay percentage. SA treatments significantly reduced N2O emissions by 69.1-79.3% from paddy soil and by 40.8%-46.4% from red soil, respectively, but no effect was recorded in the calcareous soil. SA addition possessed dual inhibition of both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) abundance in paddy and red soil. Structural equation modelling revealed that soil ammonium (NH4 +) and dissolved organic carbon content (DOC) were the key variables explaining AOA and AOB abundance and subsequent N2O emissions. Our results support the potential for the use of the BNI SA in mitigating N2O emissions and enhancing N utilization in red and paddy soils.
Collapse
Affiliation(s)
- Yufang Lu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yao Hua
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Na Lv
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Weijun Zu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Herbert J. Kronzucker
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada
| | | | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Zhang H, Fang Y, Chen Y, Li Y, Lin Y, Wu J, Cai Y, Chang SX. Enhanced soil potential N 2O emissions by land-use change are linked to AOB-amoA and nirK gene abundances and denitrifying enzyme activity in subtropics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:158032. [PMID: 35970464 DOI: 10.1016/j.scitotenv.2022.158032] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Conversion of forestland to intensively managed agricultural land occurs worldwide and can increase soil nitrous oxide (N2O) emissions by altering the transformation processes of nitrogen (N) cycling related microbes and environmental conditions. However, little research has been conducted to assess the relationships between nitrifying and denitrifying functional genes and enzyme activities, the altered soil environment and N2O emissions under forest conversion in subtropical China. Here, we investigated the long-term (two decades) effect of converting natural forests to intensively managed tea (Camellia sinensis L.) plantations on soil potential N2O emissions, inorganic N concentrations, functional gene abundances of nitrifying and denitrifying bacteria, as well as nitrifying and denitrifying enzyme activities in subtropical China. The conversion significantly increased soil potential N2O emissions, which were regulated directly by increased denitrifying enzyme activity (52 %) and nirS + nirK gene abundance (38 %) as shown by structural equation modeling, and indirectly by AOB-amoA gene abundance and inorganic N concentration. Our results indicate that converting natural forests to tea plantations directly increases soil inorganic N concentration, resulting in increases in the abundance of soil nitrifying and denitrifying microorganisms and the associated N2O emissions. These findings are crucial for disentangling the factors that directly and indirectly affect soil potential N2O emissions respond to the conversion of forest to tea plantation.
Collapse
Affiliation(s)
- Haikuo Zhang
- State Key Laboratory of Subtropical Silviculture, College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Yunying Fang
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW 2568, Australia
| | - Youchao Chen
- State Key Laboratory of Subtropical Silviculture, College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Yong Li
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Yongxin Lin
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Jiasen Wu
- State Key Laboratory of Subtropical Silviculture, College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Yanjiang Cai
- State Key Laboratory of Subtropical Silviculture, College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China.
| | - Scott X Chang
- State Key Laboratory of Subtropical Silviculture, College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China; Department of Renewable Resources, University of Alberta, Edmonton T6G 2E3, Canada
| |
Collapse
|
7
|
Zhang X, Shan X, Fu H, Sun Z. Effects of artificially-simulated acidification on potential soil nitrification activity and ammonia oxidizing microbial communities in greenhouse conditions. PeerJ 2022; 10:e14088. [PMID: 36213504 PMCID: PMC9536323 DOI: 10.7717/peerj.14088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/29/2022] [Indexed: 01/20/2023] Open
Abstract
Background Nitrification can lead to large quantities of nitrate leaching into the soil during vegetable production, which may result in soil acidification in a greenhouse system. A better understanding is needed of the nitrification process and its microbial mechanisms in soil acidification. Materials and Methods A simulated acidification experiment with an artificially manipulated pH environment (T1: pH 7.0; T2: pH 6.5; T3: pH 6.0; T4: pH 5.5; T5: pH 4.5) was conducted in potted tomatoes grown in greenhouse conditions. The abundance and community structures of ammonia oxidizers under different pH environment were analyzed using q-PCR and high-throughput sequencing methods, respectively. Results and discussions Soil acidification was accompanied by a reduction of soil organic matter (SOM), total nitrogen (TN), NH3 concentration, and enzyme activities. The abundance of ammonia-oxidizing archaea (AOA) in the soil was higher than that of ammonia-oxidizing bacteria (AOB) in soils with a pH of 6.93 to 5.33. The opposite trend was observed when soil pH was 4.21. In acidified soils, the dominant strain of AOB was Nitrosospira, while the dominant strain of AOA was Nitrososphaera. The abundance and community structure of ammonia oxidizers were mainly affected by soil pH, NH4 + content, and microbial biomass. Soil nitrification activity (PNA) has a relationship with both AOA and AOB, in which the abundance of AOA was the crucial factor affecting PNA. Conclusions PNA was co-dominated by AOA and AOB in soils with simulated acidification. Changes of soil pH, NH4 +, and microbial biomass caused by acidification were the main factors for the differences in the ammonia-oxidizing microbial community in greenhouse soils. Under acidic conditions (pH < 5), the pH significantly inhibited nitrification and had a strong negative effect on the production of tomatoes in greenhouse conditions.
Collapse
|
8
|
Bhaduri D, Sihi D, Bhowmik A, Verma BC, Munda S, Dari B. A review on effective soil health bio-indicators for ecosystem restoration and sustainability. Front Microbiol 2022; 13:938481. [PMID: 36060788 PMCID: PMC9428492 DOI: 10.3389/fmicb.2022.938481] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/29/2022] [Indexed: 11/30/2022] Open
Abstract
Preventing degradation, facilitating restoration, and maintaining soil health is fundamental for achieving ecosystem stability and resilience. A healthy soil ecosystem is supported by favorable components in the soil that promote biological productivity and provide ecosystem services. Bio-indicators of soil health are measurable properties that define the biotic components in soil and could potentially be used as a metric in determining soil functionality over a wide range of ecological conditions. However, it has been a challenge to determine effective bio-indicators of soil health due to its temporal and spatial resolutions at ecosystem levels. The objective of this review is to compile a set of effective bio-indicators for developing a better understanding of ecosystem restoration capabilities. It addresses a set of potential bio-indicators including microbial biomass, respiration, enzymatic activity, molecular gene markers, microbial metabolic substances, and microbial community analysis that have been responsive to a wide range of ecosystem functions in agricultural soils, mine deposited soil, heavy metal contaminated soil, desert soil, radioactive polluted soil, pesticide polluted soil, and wetland soils. The importance of ecosystem restoration in the United Nations Sustainable Development Goals was also discussed. This review identifies key management strategies that can help in ecosystem restoration and maintain ecosystem stability.
Collapse
Affiliation(s)
- Debarati Bhaduri
- ICAR-National Rice Research Institute, Cuttack, India
- *Correspondence: Debarati Bhaduri
| | - Debjani Sihi
- Department of Environmental Sciences, Emory University, Atlanta, GA, United States
| | - Arnab Bhowmik
- Department of Natural Resources and Environmental Design, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
- Arnab Bhowmik
| | - Bibhash C. Verma
- Central Rainfed Upland Rice Research Station (ICAR-NRRI), Hazaribagh, India
| | | | - Biswanath Dari
- Agriculture and Natural Resources, Cooperative Extension at North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| |
Collapse
|
9
|
Bacterial Diversity and Potential Functions in Response to Long-Term Nitrogen Fertilizer on the Semiarid Loess Plateau. Microorganisms 2022; 10:microorganisms10081579. [PMID: 36013997 PMCID: PMC9412673 DOI: 10.3390/microorganisms10081579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Bacterial diversity and its functions are essential to soil health. N fertilization changes bacterial communities and interferes with the soil biogeochemical N cycle. In this study, bacterial community and soil physicochemical properties were studied in 2018 after applying N fertilizers (0, 52.5, 105, 157.5, and 210 kg N ha−1) for a long (2003–2018) and a short (2003–2004) duration in a wheat field on the Loess Plateau of China. Soil bacteria were determined using 16S rRNA Illumina-MiSeq®, and the prediction function was analyzed through PICRUSt. The study showed that N fertilizer significantly changed the diversity and abundance of bacterial communities. The phyla Proteobacteria, Actinobacteria, Acidobacteria, and Chloroflexi were most abundant, accounting for 74–80% of the bacterial community abundance. The optimum rates of N fertilizer application (N105) maintain soil health by promoting soil microbial diversity and abundance. The bacterial population abundance was higher after short-term N application than after N application for a long duration and lowest with the high N-fertilizer treatment (N210). High N enrichment led to more heterotrophic N-fixing microorganisms (Alphaproteobacteria), in which metabolism and genetic information processing dominated, while cellular processes, genetic information processing, metabolism, and organismal systems were the main functional categories under low N. The phyla Gemmatimonadetes, Actinobacteria, Bacteroidetes, and Chloroflexi were the key bacteria in the co-occurrence network. The genus Saccharimonadales of the superphylum Patescibacteria has a more significant impact under low N treatment. Long-term N fertilization affected the soil pH, NO3-N, and other physicochemical properties, and soil NO3-N was the highest indicator, contributing 81% of the bacterial community function under different N fertilizer treatments.
Collapse
|
10
|
Song Q, Fu H, Shi Q, Shan X, Wang Z, Sun Z, Li T. Overfertilization reduces tomato yield under long-term continuous cropping system via regulation of soil microbial community composition. Front Microbiol 2022; 13:952021. [PMID: 35992643 PMCID: PMC9386239 DOI: 10.3389/fmicb.2022.952021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/11/2022] [Indexed: 12/02/2022] Open
Abstract
Long-term monoculture cropping and overfertilization degrade soil fertility, which reduces crop growth and promotes the development of soil-borne diseases. However, it remains unclear what the temporal effects of the above factors are on the tomato yield and microbial community structure. Thus, a greenhouse experiment with different amounts of fertilization [2,196 kg ha−1 (control) and 6,588 kg ha−1 (overfertilization) of inorganic fertilizers (NPK)] was carried out with the soils used previously for 1, 2, and 12 years under monoculture of tomato. A 12-year overfertilization decreased soil pH by 1.37 units. Soil electrical conductivity (EC) and concentrations of soil nutrients are enhanced with the increase in tomato cropping duration. Higher content of soil nutrients was found under overfertilization compared to the control in the 12-year soil. Overfertilization decreased the activity of β-1,4-glucosidase (BG) and oxidase compared to the control in the 12-year soil. Bacterial diversity and richness decreased by 6 and 31%, respectively, under overfertilization in 12-year soil compared to the control. The relative abundance of Gemmatimonas and Gp6 in 12-year soil under overfertilization was 17 and 78%, respectively, lower than in control soil. Soil pH and total carbon (TC) were the major factors explaining changes in microbial composition. A 38% decrease in yield was caused by overfertilization in 12-year soil compared to the control. Microbial community composition was the main factor that moderated tomato yield. In addition, fertilization rather than cropping duration had a greater impact on tomato yield. Therefore, our results suggest that long-term overfertilization influenced soil pH, soil TC, and soil microbial community composition to regulate tomato yield.
Collapse
Affiliation(s)
- Qiaobo Song
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agriculture University, Shenyang, China
| | - Hongdan Fu
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agriculture University, Shenyang, China
- *Correspondence: Hongdan Fu
| | - Qingwen Shi
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agriculture University, Shenyang, China
| | - Xuan Shan
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agriculture University, Shenyang, China
| | - Zhen Wang
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agriculture University, Shenyang, China
| | - Zhouping Sun
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agriculture University, Shenyang, China
| | - Tianlai Li
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, China
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agriculture University, Shenyang, China
- Tianlai Li
| |
Collapse
|
11
|
Kou Y, Li C, Tu B, Li J, Li X. The Responses of Ammonia-Oxidizing Microorganisms to Different Environmental Factors Determine Their Elevational Distribution and Assembly Patterns. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02076-8. [PMID: 35842525 DOI: 10.1007/s00248-022-02076-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
The assembly mechanisms shaping the elevational patterns of diversity and community structure in ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) are not well understood. We investigated the diversities, co-occurrence network patterns, key drivers, and potential activities of AOA and AOB communities along a large altitudinal gradient. The α-diversity of the AOA communities exhibited a monotonically decreasing pattern with increasing elevation, whereas a sinusoidal pattern was observed for the AOB communities. The mean annual temperature was the single factor that most strongly influenced the α-diversity of the AOA communities; however, the interactions of plant richness, soil conductivity, and total nitrogen made comparable contributions to the α-diversity of the AOB communities. Moreover, the β-diversities of the AOA and AOB communities were divided into two distinct clusters by elevation, i.e., low- (1800-2600 m) and high-altitude (2800-4100 m) sections. These patterns were attributed mainly to the soil pH, followed by variations in plant richness along the altitudinal gradient. In addition, the AOB communities were more important to the soil nitrification potential in the low-altitude section, whereas the AOA communities contributed more to the soil nitrification potential in the high-altitude section. Overall, this study revealed the key factors shaping the elevational patterns of ammonia-oxidizing communities and might predict the consequences of changes in ammonia-oxidizing communities.
Collapse
Affiliation(s)
- Yongping Kou
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China
| | - Chaonan Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China
| | - Bo Tu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China
| | - Jiabao Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China.
| | - Xiangzhen Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
12
|
Fang X, Zhao J, Wu S, Yu K, Huang J, Ding Y, Hu T, Xiao S, Liu S, Zou J. A two-year measurement of methane and nitrous oxide emissions from freshwater aquaculture ponds: Affected by aquaculture species, stocking and water management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:151863. [PMID: 34843757 DOI: 10.1016/j.scitotenv.2021.151863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Aquaculture ponds are of increasing worldwide concerns as critical sources of atmospheric methane (CH4) and nitrous oxide (N2O), but little is known about these gases emissions as affected by aquaculture species, stocking and water management in aquaculture ponds. Here, a two-year study was carried out to quantify CH4 and N2O emissions from freshwater crab and fish aquaculture ponds in subtropical China. We further explored how the microbial functional genes [CH4: mcrA and pmoA; N2O: archaeal and bacterial amoA (AOA + AOB), nirS, nirK, nosZ] may drive CH4 and N2O release in the crab aquaculture pond typically undergoing flooding-to-drainage alteration. Over the two-year period, annual CH4 and N2O fluxes averaged 0.95 mg m-2 h-1 and 20.94 μg m-2 h-1 in the fish aquaculture, and 0.78 mg m-2 h-1and 28.48 μg m-2 h-1 in the crab aquaculture, respectively. The direct N2O emission factors were estimated to be 0.77% and 0.36% of the total N input by feed or 1.59 g N2O-N kg-1 and 1.06 g N2O-N kg-1 aquaculture yield in the crab and fish ponds, respectively. Among three functional stocking areas, CH4 and N2O emissions were consistently the highest at the feeding area (FA) in the both aquaculture ponds, followed by at the undisturbed area (UA) and aerated area (AA). The shift in sediment soil moisture from waterlogging to drainage conditions significantly increased the abundance of AOB relative to AOA and pmoA, decreased those of denitrifying functional genes (nirS, nirK, nosZ) and mcrA, while did not alter the functional group ratio of nirS + nirK relative to nosZ. Our results highlight that a better understanding of CH4 and N2O emissions from aquaculture ponds requires taking into consideration of data sourced from more diverse aquaculture systems with different management patterns. In addition, a deep analysis of the microbial processes that drive CH4 and N2O production and consumption from aquaculture ponds remains to be addressed in future studies.
Collapse
Affiliation(s)
- Xiantao Fang
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jianting Zhao
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Shuang Wu
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Kai Yu
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jian Huang
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ying Ding
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Tao Hu
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Shuqi Xiao
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Shuwei Liu
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China; Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China.
| | - Jianwen Zou
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China; Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
13
|
Changes in Ammonia-Oxidizing Archaea and Bacterial Communities and Soil Nitrogen Dynamics in Response to Long-Term Nitrogen Fertilization. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19052732. [PMID: 35270425 PMCID: PMC8910298 DOI: 10.3390/ijerph19052732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 11/16/2022]
Abstract
Ammonia oxidizing archaea (AOA) and bacteria (AOB) mediate a crucial step in nitrogen (N) metabolism. The effect of N fertilizer rates on AOA and AOB communities is less studied in the wheat-fallow system from semi-arid areas. Based on a 17-year wheat field experiment, we explored the effect of five N fertilizer rates (0, 52.5, 105, 157.5, and 210 kg ha-1 yr-1) on the AOA and AOB community composition. This study showed that the grain yield of wheat reached the maximum at 105 kg N ha-1 (49% higher than control), and no further significant increase was observed at higher N rates. With the increase of N, AOA abundance decreased in a regular trend from 4.88 × 107 to 1.05 × 107 copies g-1 dry soil, while AOB abundance increased from 3.63 × 107 up to a maximum of 8.24 × 107 copies g-1 dry soil with the N105 treatment (105 kg N ha-1 yr-1). Application rates of N fertilizer had a more significant impact on the AOB diversity than on AOA diversity, and the highest AOB diversity was found under the N105 treatment in this weak alkaline soil. The predominant phyla of AOA and AOB were Thaumarchaeota and Proteobacteria, respectively, and higher N treatment (N210) resulted in a significant decrease in the relative abundance of genus Nitrosospira. In addition, AOA and AOB communities were significantly associated with grain yield of wheat, soil potential nitrification activity (PNA), and some soil physicochemical parameters such as pH, NH4-N, and NO3-N. Among them, soil moisture was the most influential edaphic factor for structuring the AOA community and NH4-N for the AOB community. Overall, 105 kg N ha-1 yr-1 was optimum for the AOB community and wheat yield in the semi-arid area.
Collapse
|
14
|
Li L, Konkel J, Jin VL, Schaeffer SM. Conservation management improves agroecosystem function and resilience of soil nitrogen cycling in response to seasonal changes in climate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146457. [PMID: 34030284 DOI: 10.1016/j.scitotenv.2021.146457] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Understanding how conservation agricultural management improves soil nitrogen (N) stability in the face of climate change can help increase agroecosystem productivity and mitigate runoff, leaching and downstream water quality issues. We conducted a 2-year field study in a 36-year-old rain-fed cotton production system to evaluate the impacts of changing climatic factors (temperature and precipitation) on soil N under conservation management, including moderate inorganic N fertilizer application (0 and 67 kg N ha-1), winter cover crops (fallow; winter wheat, Triticum aestivum L.; hairy vetch, Vicia villosa Roth), and reduced tillage (no-till; disk tillage). Structural equation modeling (SEM) was used to quantify and compare the effects of conservation management and climatic factors on soil N concentrations. Fertilizer and vetch cover crops increased soil total N concentration by 16% and 18%, respectively, and also increased microbial N transformation rate by 41% and 168%. In addition, vetch cover crops also increased soil labile N concentrations by 57%, 21%, and 79%, i.e., extractable organic N, ammonium, and nitrate, respectively. The highest soil δ15N value (6.4 ± 0.3‰) was observed under the 67 kg N ha-1 fertilizer-wheat-disk tillage treatment, and the lowest value (4.8 ± 0.3‰) under the zero-fertilizer-wheat-no-till treatment, indicating fertilizer and tillage might accelerate microbial N transformation. The SEM showed positive effects of temperature and precipitation on labile N concentrations, suggesting destabilization of soil N and the potential for soil N loss under increased temperature and intensified precipitation. Fertilizer and vetch use might mitigate some of the effects of temperature by accelerating microbial N transformations, with vetch having a larger effect than fertilizer (0.35 vs. 0.15, Table 1). No-till can reduce some of the effects of precipitation on soil labile N by maintaining soil structure. Our study suggests that fertilizer, vetch cover crop, and no-till might help improve function and resilience of agroecosystems in relation to soil N cycling. Soil N stabilization in cropping systems can be enhanced by adjusting agricultural management.
Collapse
Affiliation(s)
- Lidong Li
- University of Tennessee-Knoxville, Department of Biosystems Engineering and Soil Science, 2506 E. J. Chapman Drive, Knoxville, TN 37996, USA; USDA-ARS, Agroecosystem Management Research Unit, 251 Filley Hall, UNL-East Campus, Lincoln, NE 68583, USA.
| | - Julie Konkel
- University of Tennessee-Knoxville, Department of Biosystems Engineering and Soil Science, 2506 E. J. Chapman Drive, Knoxville, TN 37996, USA; Blount County Soil Conservation District, 1217 McArthur Rd, Maryville, TN 37804, USA
| | - Virginia L Jin
- USDA-ARS, Agroecosystem Management Research Unit, 251 Filley Hall, UNL-East Campus, Lincoln, NE 68583, USA
| | - Sean M Schaeffer
- University of Tennessee-Knoxville, Department of Biosystems Engineering and Soil Science, 2506 E. J. Chapman Drive, Knoxville, TN 37996, USA.
| |
Collapse
|
15
|
Wang L, Huang D. Soil ammonia-oxidizing archaea in a paddy field with different irrigation and fertilization managements. Sci Rep 2021; 11:14563. [PMID: 34267287 PMCID: PMC8282617 DOI: 10.1038/s41598-021-93898-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/30/2021] [Indexed: 11/09/2022] Open
Abstract
Because ammonia-oxidizing archaea (AOA) are ubiquitous and highly abundant in almost all terrestrial soils, they play an important role in soil nitrification. However, the changes in the structure and function of AOA communities and their edaphic drivers in paddy soils under different fertilization and irrigation regimes remain unclear. In this study, we investigated AOA abundance, diversity and activity in acid paddy soils by a field experiment. Results indicated that the highest potential ammonia oxidation (PAO) (0.011 μg NO2- –N g-1 d.w.day-1) was found in T2 (optimal irrigation and fertilization)—treated soils, whereas the lowest PAO (0.004 μg NO2- –N g-1 d.w.day-1) in T0 (traditional irrigation)- treated soils. Compared with the T0—treated soil, the T2 treatment significantly (P < 0.05) increased AOA abundances. Furthermore, the abundance of AOA was significantly (P < 0.01) positively correlated with pH, soil organic carbon (SOC), and PAO. Meanwhile, pH and SOC content were significantly (P < 0.05) higher in the T2—treated soil than those in the T1 (traditional irrigation and fertilization)- treated soil. In addition, these two edaphic factors further influenced the AOA community composition. The AOA phylum Crenarchaeota was mainly found in the T2—treated soils. Phylogenetic analysis revealed that most of the identified OTUs of AOA were mainly affiliated with Crenarchaeota. Furthermore, the T2 treatment had higher rice yield than the T0 and T1 treatments. Together, our findings confirm that T2 might ameliorate soil chemical properties, regulate the AOA community structure, increase the AOA abundance, enhance PAO and consequently maintain rice yields in the present study.
Collapse
Affiliation(s)
- Limin Wang
- Soil and Fertilizer Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350012, People's Republic of China.,Fujian Key Laboratory of Agro - Products Quality and Safety, Fujian Academy of Agricultural Sciences, Fuzhou, 350000, People's Republic of China
| | - Dongfeng Huang
- Soil and Fertilizer Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350012, People's Republic of China. .,Fujian Key Laboratory of Agro - Products Quality and Safety, Fujian Academy of Agricultural Sciences, Fuzhou, 350000, People's Republic of China.
| |
Collapse
|
16
|
Wang J, Cui W, Che Z, Liang F, Wen Y, Zhan M, Dong X, Jin W, Dong Z, Song H. Effects of synthetic nitrogen fertilizer and manure on fungal and bacterial contributions to N 2O production along a soil acidity gradient. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:142011. [PMID: 32890881 DOI: 10.1016/j.scitotenv.2020.142011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Reactive nitrogen (Nr) input often induces soil acidification, which may in turn affect bacterial and fungal nitrogen (N) transformations in soil and nitrous oxide (N2O) emissions. However, the interactive effects of soil acidity and Nr on the contributions of bacteria and fungi to N2O emissions remain unclear. We conducted a field experiment to assess the effects of anthropogenic Nr forms (i.e., synthetic N fertilizer and manure) on bacterial and fungal N2O emissions along a soil acidity gradient (soil pH = 6.8, 6.1, 5.2, and 4.2). The abundances and structure of bacterial and fungal communities were analyzed by real-time polymerase chain reaction and high-throughput sequencing techniques, respectively. Soil acidification reduced bacterial but increased fungal contributions to N2O production, corresponding respectively to changes in bacterial and fungal abundance. It also altered bacterial and fungal community structures and soil chemical properties, such as dissolved organic carbon and ammonia concentrations. Structural equation modeling (SEM) analyses showed that the soil properties and fungal community were the most important factors determining bacterial and fungal contributions to N2O emissions, respectively. The fertilizer form markedly affected N2O emissions from bacteria but not from fungi. Compared with synthetic N fertilizer, manure significantly lowered the bacterial contribution to N2O emissions in the soils with pH of 5.2 and 4.2. The manure application significantly increased soil pH but reduced nitrate concentration. The fertilizer form did not significantly alter the bacterial and fungal community structures. The SEM revealed that the fertilizer form affected the bacterial contribution to N2O production by changing the soil chemical properties. Together, these results indicated that soil acidification enhanced fungal dominance for N2O emission, and manure application has limited effects on fungal N2O emission, highlighting the challenges for mitigation of soil N2O emissions under future acid deposition and N enrichment scenarios.
Collapse
Affiliation(s)
- Jun Wang
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Wenli Cui
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Zhao Che
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Fei Liang
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Yongkang Wen
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Meimei Zhan
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Xiao Dong
- School of Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Wenjun Jin
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Zhaorong Dong
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - He Song
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
17
|
Tao R, Li J, Hu B, Chu G. Mitigating N 2O emission by synthetic inhibitors mixed with urea and cattle manure application via inhibiting ammonia-oxidizing bacteria, but not archaea, in a calcareous soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116478. [PMID: 33453701 DOI: 10.1016/j.envpol.2021.116478] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/23/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Synthetic inhibitors and organic amendment have been proposed for mitigating greenhouse gas N2O emissions. However, their combined effect on the N2O emissions and ammonia-oxidizer (ammonia-oxidizing bacteria and archaea, AOB and AOA) communities remains unclear in calcareous soils under climate warming. We conducted two incubation experiments (25 and 35 °C) to examine how N2O emissions and AOA and AOB communities responded to organic amendment (urea plus cattle manure, UCM), and in combination with urease (N-(n-butyl) thiophosphoric triamide, NBPT) and nitrification inhibitor (nitrapyrin). The treatments of UCM + nitrapyrin and UCM + nitrapyrin + NBPT significantly lowered total N2O emissions by average 64.5 and 71.05% at 25 and 35 °C, respectively, compared with UCM treatment. AOB gene abundance and α-diversity (Chao1 and Shannon indices) were significantly increased by the application of urea and manure (P < 0.05). However, relative to UCM treatment, nitrapyrin addition treatments decreased AOB gene abundance and Chao 1 index by average 115.4 and 30.4% at 25 and 35 °C, respectively. PCA analysis showed that UCM or UCM plus nitrapyrin notably shifted AOB structure at both temperatures. However, fertilization had little effects on AOA community (P > 0.05). Potential nitrification rate (PNR) was greatly decreased by nitrapyrin addition, and PNR significantly positively correlated with AOB gene abundance (P = 0.0179 at 25 °C and P = 0.0029 at 35 °C) rather than AOA (P > 0.05). Structural equation model analysis showed that temperature directly increased AOA abundance but decrease AOB abundance, while fertilization indirectly influenced AOB community by altering soil NH4+, pH and SOC. In conclusion, the combined application of organic amendment, NBPT and nitrapyrin significantly lowered N2O emissions via reducing AOB community in calcareous soil even at high temperature. Our findings provide a solid theoretical basis in mitigating N2O emissions from calcareous soil under climate warming.
Collapse
Affiliation(s)
- Rui Tao
- School of Life Science, Shaoxing University, Shaoxing, 312000, PR China
| | - Jun Li
- School of Life Science, Shaoxing University, Shaoxing, 312000, PR China
| | - Baowei Hu
- School of Life Science, Shaoxing University, Shaoxing, 312000, PR China
| | - Guixin Chu
- School of Life Science, Shaoxing University, Shaoxing, 312000, PR China.
| |
Collapse
|
18
|
Shen Z, Wang Y, Chen W, Xu H, Zhang L, Lin C, Lin T, Tao H, Mei C, Lu C. Investigation of nitrogen pollutants transformation and its pathways along the long-distance prechlorinated raw water distribution system. CHEMOSPHERE 2020; 255:126833. [PMID: 32387724 DOI: 10.1016/j.chemosphere.2020.126833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/11/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Understanding the transformation pattern of nitrogen (N) pollutants and its pathways in the prechlorinated raw water distribution system (PRWDS) is vital for controlling the stablitiy and safety of raw water qulity. This study investigated the N transformation, N functional genes and their correlations to find the N transformation pathways along the PRWDS. Results suggested that simultaneous nitrification, anaerobic ammonium oxidation and denitrification (SNAD) contribute to the N transformationin the PRWDS. Along the pipeline, anammox 16S rRNA (9.18 × 107-8.41 × 108 copies/g), limited by prechlorination, was the most abundant N functional genes and anammox process was the main pathway of ammonia nitrogen (NH4+-N). The decreasing NH4+-N was connected with Planctomycetes, Nitrospira and abundance of nxrA attributing to the joint effort of anammox and declined nitrification. The concentration of nitrate (NO3--N) increasing at first and then decreasing, was correlated positively with Sphingomonas. because of the declined nitritication and increased denitrification. Besides, the NO3--N→NO2--N process was considered to be primary NO3--N transformation pathways. Increases in the concentration of dissolved organic nitrogen (DON) and nitrite (NO2--N) observed in the PRWDS had positive correlation with relative abundance of Pseudomonas. We believe that prechlorination shaped the particular bacterialcharacteristics in biofilms and influenced the N transformation pathways indirectly, resulting in the varying N transformation rules in PRWDSs. Moreover, systematic and extended research is particularly vital for determining the effects of changes in source water quality and environmental conditions on bacterial community structure and N conversion along PRWDSs.
Collapse
Affiliation(s)
- Zhen Shen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China; Wanjiang University of Technology, Maanshan, 243031, China.
| | - Yueting Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China.
| | - Wei Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China.
| | - Hang Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China.
| | - Lei Zhang
- College of Civil and Architechure Engineering, Chuzhou University, 1 West Huifeng Road, Chuzhou, 239000, China.
| | - Chenshuo Lin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China.
| | - Tao Lin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China.
| | - Hui Tao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China.
| | - Caihua Mei
- College of Civil and Architechure Engineering, Chuzhou University, 1 West Huifeng Road, Chuzhou, 239000, China.
| | - Chunhui Lu
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, China.
| |
Collapse
|
19
|
Yang D, Xiao X, He N, Zhu W, Liu M, Xie G. Effects of reducing chemical fertilizer combined with organic amendments on ammonia-oxidizing bacteria and archaea communities in a low-fertility red paddy field. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:29422-29432. [PMID: 32440868 DOI: 10.1007/s11356-020-09120-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Ammonia oxidation process in soil has a great contribution to the emission of nitrous oxide, which is a hot issue in the study of N cycle of rice field ecosystem. Organic amendments which partially substitute chemical nitrogen fertilizer are widely adopted to optimizing N management and reduce the use of chemical nitrogen fertilizers in the paddy ecosystem, but their long-term effects on ammonia-oxidizing archaea (AOA) and bacteria (AOB) were not well understood. Thus, based on a 6-year field trial that comprised four fertilization strategies (CF, chemical fertilizer; PM, pig manure substituting for 20% chemical N; BF, biogas slurry substituting for 20% chemical N; and GM, milk vetch substituting for 20% chemical N) and no N fertilizer application as CK, the abundance and community structure of ammonia oxidizers were examined by using qPCR and Illumina Miseq sequencing approaches based on the functional marker genes (amoA) in a low-fertility paddy field. The results revealed that 6 years of organic-substitute fertilization significantly increased AOA abundance in comparison with NF and CF. However, only CF and PM had a higher AOB abundance than those in NF and no significant difference between CF and organic-substitute treatments was observed. Both AOA and AOB were significantly correlated with soil potential nitrification rate (PNR). Moreover, organic-substitute treatments showed the evident changes in the AOA community, while little were observed in the AOB community. Soil pH was the main predictor for AOA abundance, while NH4+-N and NO3--N were the main predictors for AOB abundance. This study suggests that both AOA and AOB were jointly contributed to the variation of soil potential nitrification rate, while the AOA community was shown to be more responsive to organic-substitute fertilization strategies than AOB in the tested soils.
Collapse
Affiliation(s)
- Dan Yang
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Xun Xiao
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Na He
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Wenbo Zhu
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Mingda Liu
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.
| | - Guixian Xie
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China.
| |
Collapse
|
20
|
Sepperer T, Tondi G, Petutschnigg A, Young TM, Steiner K. Mitigation of Ammonia Emissions from Cattle Manure Slurry by Tannins and Tannin-Based Polymers. Biomolecules 2020; 10:biom10040581. [PMID: 32290040 PMCID: PMC7225981 DOI: 10.3390/biom10040581] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 11/16/2022] Open
Abstract
With the extensive use of nitrogen-based fertilizer in agriculture, ammonia emissions, especially from cattle manure, are a serious environmental threat for soil and air. The European community committed to reduce the ammonia emissions by 30% by the year 2030 compared to 2005. After a moderate initial reduction, the last report showed no further improvements in the last four years, keeping the 30% reduction a very challenging target for the next decade. In this study, the mitigation effect of different types of tannin and tannin-based adsorbent on the ammonia emission from manure was investigated. Firstly, we conducted a template study monitoring the ammonia emissions registered by addition of the tannin-based powders to a 0.1% ammonia solution and then we repeated the experiments with ready-to-spread farm-made manure slurry. The results showed that all tannin-based powders induced sensible reduction of pH and ammonia emitted. Reductions higher than 75% and 95% were registered for ammonia solution and cattle slurry, respectively, when using flavonoid-based powders. These findings are very promising considering that tannins and their derivatives will be extensively available due to the increasing interest on their exploitation for the synthesis of new-generation “green” materials.
Collapse
Affiliation(s)
- Thomas Sepperer
- Forest Products Technology and Timber Construction Department, Salzburg University of Applied Sciences, Markt 136a, Kuchl 5431, Austria; (T.S.); (A.P.)
- Salzburg Center for Smart Materials, Jakob-Haringerstraße 2a, Salzburg 5020, Austria
| | - Gianluca Tondi
- Forest Products Technology and Timber Construction Department, Salzburg University of Applied Sciences, Markt 136a, Kuchl 5431, Austria; (T.S.); (A.P.)
- Land, Environment, Agriculture and Forestry Department, University of Padua, Viale dell’Università 16, 35020 Legnaro (PD), Italy
- Correspondence: ; Tel.: +39-049-827-2776
| | - Alexander Petutschnigg
- Forest Products Technology and Timber Construction Department, Salzburg University of Applied Sciences, Markt 136a, Kuchl 5431, Austria; (T.S.); (A.P.)
- Salzburg Center for Smart Materials, Jakob-Haringerstraße 2a, Salzburg 5020, Austria
| | - Timothy M. Young
- Center for Renewable Carbon, University of Tennessee, Knoxville, TN 37996, USA;
| | - Konrad Steiner
- Höhere Bundeslehranstalt für Landwirtschaft Ursprung, Ursprungstraße 4, Elixhausen 5161, Austria;
| |
Collapse
|
21
|
Ammonia- and Methane-Oxidizing Bacteria: The Abundance, Niches and Compositional Differences for Diverse Soil Layers in Three Flooded Paddy Fields. SUSTAINABILITY 2020. [DOI: 10.3390/su12030953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ammonia oxidizing bacteria (AOB), Ammonia oxidizing archaea (AOA) and methane oxidizing bacteria (MOB) play cogent roles in oxidation and nitrification processes, and hence have important ecological functions in several ecosystems. However, their distribution and compositional differences in different long-term flooded paddy fields (FPFs) management at different soil depths remains under-investigated. Using qPCR and phylogenetic analysis, this study investigated the abundance, niches, and compositional differences of AOA, AOB, and MOB along with their potential nitrification and oxidation rate in three soil layers from three FPFs (ShaPingBa (SPB), HeChuan (HC), and JiDi (JD)) in Chongqing, China. In all the FPFs, CH4 oxidation occurred mainly in the surface (0–3 cm) and subsurface layers (3–5 cm). A significant difference in potential methane oxidation and nitrification rates was observed among the three FPFs, in which SPB had the highest. The higher amoA genes are the marker for abundance of AOA compared to AOB while pmoA genes, which is the marker for MOB abundance and diversity, indicated their significant role in the nitrification process across the three FPFs. The phylogenetic analysis revealed that AOA were mainly composed of Nitrososphaera, Nitrosospumilus, and Nitrosotalea, while the genus Nitrosomonas accounted for the greatest proportion of AOB in the three soil layers. MOB were mainly composed of Methylocaldum and Methylocystis genera. Overall, this finding pointed to niche differences as well as suitability of the surface and subsurface soil environments for the co-occurrence of ammonia oxidation and methane oxidation in FPFs.
Collapse
|
22
|
Cassman NA, Soares JR, Pijl A, Lourenço KS, van Veen JA, Cantarella H, Kuramae EE. Nitrification inhibitors effectively target N 2 O-producing Nitrosospira spp. in tropical soil. Environ Microbiol 2019; 21:1241-1254. [PMID: 30735001 PMCID: PMC6850170 DOI: 10.1111/1462-2920.14557] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 01/09/2019] [Accepted: 02/04/2019] [Indexed: 01/01/2023]
Abstract
The nitrification inhibitors (NIs) 3,4-dimethylpyrazole (DMPP) and dicyandiamide (DCD) can effectively reduce N2 O emissions; however, which species are targeted and the effect of these NIs on the microbial nitrifier community is still unclear. Here, we identified the ammonia oxidizing bacteria (AOB) species linked to N2 O emissions and evaluated the effects of urea and urea with DCD and DMPP on the nitrifying community in a 258 day field experiment under sugarcane. Using an amoA AOB amplicon sequencing approach and mining a previous dataset of 16S rRNA sequences, we characterized the most likely N2 O-producing AOB as a Nitrosospira spp. and identified Nitrosospira (AOB), Nitrososphaera (archaeal ammonia oxidizer) and Nitrospira (nitrite-oxidizer) as the most abundant, present nitrifiers. The fertilizer treatments had no effect on the alpha and beta diversities of the AOB communities. Interestingly, we found three clusters of co-varying variables with nitrifier operational taxonomic units (OTUs): the N2 O-producing AOB Nitrosospira with N2 O, NO3 - , NH4 + , water-filled pore space (WFPS) and pH; AOA Nitrososphaera with NO3 - , NH4 + and pH; and AOA Nitrososphaera and NOB Nitrospira with NH4 + , which suggests different drivers. These results support the co-occurrence of non-N2 O-producing Nitrososphaera and Nitrospira in the unfertilized soils and the promotion of N2 O-producing Nitrosospira under urea fertilization. Further, we suggest that DMPP is a more effective NI than DCD in tropical soil under sugarcane.
Collapse
Affiliation(s)
- Noriko A. Cassman
- Department of Microbial EcologyNetherlands Institute for Ecology NIOO‐KNAWWageningenNetherlands
| | - Johnny R. Soares
- Department of Microbial EcologyNetherlands Institute for Ecology NIOO‐KNAWWageningenNetherlands
- Soil Sciences and Fertility, Soil and Environmental Resources Center, Agronomic Institute of CampinasP.O. Box 28, 13012‐970, CampinasSPBrazil
| | - Agata Pijl
- Department of Microbial EcologyNetherlands Institute for Ecology NIOO‐KNAWWageningenNetherlands
| | - Késia S. Lourenço
- Department of Microbial EcologyNetherlands Institute for Ecology NIOO‐KNAWWageningenNetherlands
- Soil Sciences and Fertility, Soil and Environmental Resources Center, Agronomic Institute of CampinasP.O. Box 28, 13012‐970, CampinasSPBrazil
| | - Johannes A. van Veen
- Department of Microbial EcologyNetherlands Institute for Ecology NIOO‐KNAWWageningenNetherlands
| | - Heitor Cantarella
- Soil Sciences and Fertility, Soil and Environmental Resources Center, Agronomic Institute of CampinasP.O. Box 28, 13012‐970, CampinasSPBrazil
| | - Eiko E. Kuramae
- Department of Microbial EcologyNetherlands Institute for Ecology NIOO‐KNAWWageningenNetherlands
| |
Collapse
|
23
|
Nsenga Kumwimba M, Meng F. Roles of ammonia-oxidizing bacteria in improving metabolism and cometabolism of trace organic chemicals in biological wastewater treatment processes: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 659:419-441. [PMID: 31096373 DOI: 10.1016/j.scitotenv.2018.12.236] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/20/2018] [Accepted: 12/15/2018] [Indexed: 05/27/2023]
Abstract
While there has been a significant recent improvement in the removal of pollutants in natural and engineered systems, trace organic chemicals (TrOCs) are posing a major threat to aquatic environments and human health. There is a critical need for developing potential strategies that aim at enhancing metabolism and/or cometabolism of these compounds. Recently, knowledge regarding biodegradation of TrOCs by ammonia-oxidizing bacteria (AOB) has been widely developed. This review aims to delineate an up-to-date version of the ecophysiology of AOB and outline current knowledge related to biodegradation efficiencies of the frequently reported TrOCs by AOB. The paper also provides an insight into biodegradation pathways by AOB and transformation products of these compounds and makes recommendations for future research of AOB. In brief, nitrifying WWTFs (wastewater treatment facilities) were superior in degrading most TrOCs than non-nitrifying WWTFs due to cometabolic biodegradation by the AOB. To fully understand and/or enhance the cometabolic biodegradation of TrOCs by AOB, recent molecular research has focused on numerous crucial factors including availability of the compounds to AOB, presence of growth substrate (NH4-N), redox potentials, microorganism diversity (AOB and heterotrophs), physicochemical properties and operational parameters of the WWTFs, molecular structure of target TrOCs and membrane-based technologies, may all significantly impact the cometabolic biodegradation of TrOCs. Still, further exploration is required to elucidate the mechanisms involved in biodegradation of TrOCs by AOB and the toxicity levels of formed products.
Collapse
Affiliation(s)
- Mathieu Nsenga Kumwimba
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China; Faculty of Agronomy, Department of Natural Resources and Environmental Management, University of Lubumbashi, Democratic Republic of the Congo
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|
24
|
Tang Y, Yu G, Zhang X, Wang Q, Tian D, Tian J, Niu S, Ge J. Environmental variables better explain changes in potential nitrification and denitrification activities than microbial properties in fertilized forest soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 647:653-662. [PMID: 30092521 DOI: 10.1016/j.scitotenv.2018.07.437] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/30/2018] [Accepted: 07/30/2018] [Indexed: 05/02/2023]
Abstract
Because of increases in atmospheric nitrogen (N) deposition worldwide, nutrient imbalances and phosphorus (P) limitations in soil are aggravated, with the result that P fertilizer applications to terrestrial ecosystems worldwide may increase. Nitrification and denitrification in soil are major sources of nitrous oxide emissions, especially in soils treated with fertilizers. However, few researchers have studied how forest soils respond to nutrient additions, so we are not sure how the potential nitrification and denitrification activities (PNA and PDA, respectively) and microbial communities involved in these processes might respond when N and P are added to temperate and subtropical forest soils. We investigated how the PNA, PDA, the abundances and community compositions of nitrifiers and denitrifiers, and environmental properties, including soil pH, soil total and dissolved organic carbon, total and available N and phosphorus P, changed when N and/or P were added to subtropical and temperate forest soils. We quantified the abundance, and analyzed the composition, of functional marker genes of nitrifiers (ammonia-oxidizing bacteria and archaea amoA) and denitrifiers (nirK and nirS) using quantitative PCR and sequencing, respectively. We found that the PNA and PDA in the subtropical soil increased when P was added and PNA in the temperate forest soil increased when either N or P was added. The PNA and PDA were positively correlated with the abundance of ammonia-oxidizing bacteria and nirK-denitrifiers, respectively, in the subtropical forest soil but were not correlated with changes in corresponding community compositions in either of the forest soils. The soil total N to total P ratio explained most of the variabilities in the PNA and PDA in the subtropical forest soils, and the soil exchangeable ammonium concentrations and pH were the main controls on the PNA and PDA, respectively, in the temperate forest soils. Our results indicate that soil environmental conditions have more influence on variations in the PNA and PDA in forest soils fertilized with N and P than the corresponding microbial properties.
Collapse
Affiliation(s)
- Yuqian Tang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, Beijing Normal University, Beijing 100875, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Guirui Yu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Xinyu Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Qiufeng Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Dashuan Tian
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Tian
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Shuli Niu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Jianping Ge
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Life Science, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
25
|
Nitrosospira Cluster 8a Plays a Predominant Role in the Nitrification Process of a Subtropical Ultisol under Long-Term Inorganic and Organic Fertilization. Appl Environ Microbiol 2018; 84:AEM.01031-18. [PMID: 30006397 DOI: 10.1128/aem.01031-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/04/2018] [Indexed: 11/20/2022] Open
Abstract
Long-term effects of inorganic and organic fertilization on nitrification activity (NA) and the abundances and community structures of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) were investigated in an acidic Ultisol. Seven treatments applied annually for 27 years comprised no fertilization (control), inorganic NPK fertilizer (N), inorganic NPK fertilizer plus lime (CaCO3) (NL), inorganic NPK fertilizer plus peanut straw (NPS), inorganic NPK fertilizer plus rice straw (NRS), inorganic NPK fertilizer plus radish (NR), and inorganic NPK fertilizer plus pig manure (NPM). In nonfertilized soil, the abundance of AOA was 1 order of magnitude higher than that of AOB. Fertilization reduced the abundance of AOA but increased that of AOB, especially in the NL treatment. The AOA communities in the control and the N treatments were dominated by the Nitrososphaera and B1 clades but shifted to clade A in the NL and NPM treatments. Nitrosospira cluster 8a was found to be the most dominant AOB in all treatments. NA was primarily regulated by soil properties, especially soil pH, and the interaction with AOB abundance explained up to 73% of the variance in NA. When NL soils with neutral pH were excluded from the analysis, AOB abundance, especially the relative abundance of Nitrosospira cluster 8a, was positively associated with NA. In contrast, there was no association between AOA abundance and NA. Overall, our data suggest that Nitrosospira cluster 8a of AOB played an important role in the nitrification process in acidic soil following long-term inorganic and organic fertilization.IMPORTANCE The nitrification process is an important step in the nitrogen (N) cycle, affecting N availability and N losses to the wider environment. Ammonia oxidation, which is the first and rate-limiting step of nitrification, was widely accepted to be mainly regulated by AOA in acidic soils. However, in this study, nitrification activity was correlated with the abundance of AOB rather than that of AOA in acidic Ultisols. Nitrosospira cluster 8a, a phylotype of AOB which preferred warm temperatures, and low soil pH played a predominant role in the nitrification process in the test Ultisols. Our results also showed that long-term application of lime or pig manure rather than plant residues altered the community structure of AOA and AOB. Taken together, our findings contribute new knowledge to the understanding of the nitrification process and ammonia oxidizers in subtropical acidic Ultisol under long-term inorganic and organic fertilization.
Collapse
|
26
|
Zeng G, Zhang L, Dong H, Chen Y, Zhang J, Zhu Y, Yuan Y, Xie Y, Fang W. Pathway and mechanism of nitrogen transformation during composting: Functional enzymes and genes under different concentrations of PVP-AgNPs. BIORESOURCE TECHNOLOGY 2018; 253:112-120. [PMID: 29331826 DOI: 10.1016/j.biortech.2017.12.095] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 12/25/2017] [Accepted: 12/27/2017] [Indexed: 06/07/2023]
Abstract
Polyvinylpyrrolidone coated silver nanoparticles (PVP-AgNPs) were applied at different concentrations to reduce total nitrogen (TN) losses and the mechanisms of nitrogen bio-transformation were investigated in terms of the nitrogen functional enzymes and genes. Results showed that mineral N in pile 3 which was treated with AgNPs at a concentration of 10 mg/kg compost was the highest (6.58 g/kg dry weight (DW) compost) and the TN loss (47.07%) was the lowest at the end of composting. Correlation analysis indicated that TN loss was significantly correlated with amoA abundance. High throughput sequencing showed that the dominant family of ammonia-oxidizing bacteria (AOB) was Nitrosomonadaceae, and the number of Operational Taxonomic Units (OTUs) reduced after the beginning of composting when compared with day 1. In summary, treatment with AgNPs at a concentration of 10 mg/kg compost was considerable to reduce TN losses and reserve more mineral N during composting.
Collapse
Affiliation(s)
- Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Lihua Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Haoran Dong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yaoning Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Yuan Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yujie Yuan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yankai Xie
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Wei Fang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|