1
|
Peng Q, Zheng H, Xu H, Cheng S, Yu C, Wu J, Meng K, Xie G. Response of soil fungi to textile dye contamination. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124577. [PMID: 39032546 DOI: 10.1016/j.envpol.2024.124577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/30/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
This study examines the impact of textile dye contamination on the structure of soil fungal communities near a Shaoxing textile dye factory. We quantified the concentrations of various textile dyes, including anthraquinone azodye and phthalocyanine, which ranged from 20.20 to 140.62 mg kg^-1, 102.01-698.12 mg kg^-1, and 7.78-42.65 mg kg^-1, respectively, within a 1000 m radius of the factory. Our findings indicate that as dye concentration increases, the biodiversity of soil fungi, as measured by the Chao1 index, decreases significantly, highlighting the profound influence of dye contamination on fungal community structure. Additionally, microbial correlation network analysis revealed a reduction in fungal interactions correlating with increased dye concentrations. We also observed that textile dyes suppressed carbon and nitrogen metabolism in fungi while elevating the transcription levels of antioxidant-related genes. Enzymes such as lignin peroxidase (LiP), manganese peroxidase (MnP), laccase (Lac), dye-decolorizing peroxidases (DyPs), and versatile peroxidase (VP) were upregulated in contaminated soils, underscoring the critical role of fungi in dye degradation. These insights contribute to the foundational knowledge required for developing in situ bioremediation technologies for contaminated farmlands.
Collapse
Affiliation(s)
- Qi Peng
- National Engineering Research Center for Chinese CRW (branch center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing, 312000, China
| | - Huajun Zheng
- National Engineering Research Center for Chinese CRW (branch center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing, 312000, China
| | - Hangxi Xu
- National Engineering Research Center for Chinese CRW (branch center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing, 312000, China
| | - Shuangqi Cheng
- National Engineering Research Center for Chinese CRW (branch center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing, 312000, China
| | - Chaohua Yu
- Shaoxing Testing Institute of Food and Drug, National Center for Quality Inspection and Testing of Chinese Rice Wine, Shaoxing, 312000, China
| | - Jianjiang Wu
- Shaoxing Testing Institute of Quality and Technical Supervision, Shaoxing, 312000, China
| | - Kai Meng
- National Engineering Research Center for Chinese CRW (branch center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing, 312000, China
| | - Guangfa Xie
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology8and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China.
| |
Collapse
|
2
|
Blanc DC, Duarte JA, Fiaux SB. Indigenous fungi with the ability to biodegrade hydrocarbons in diesel-contaminated soil are isolated and selected using a simple methodology. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124431. [PMID: 38925214 DOI: 10.1016/j.envpol.2024.124431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/17/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Soil contamination by hydrocarbons is a problem that causes severe damage to the environment and public health. Technologies such as bioremediation using native microbial species represent a promising and environmentally friendly alternative for decontamination. This study aimed to isolate indigenous fungi species from the State of Rio de Janeiro, Brazil and evaluate their diesel degrading capacity in soils contaminated with crude oil. Seven filamentous fungi were isolated after enrichment cultivation from soils collected from contaminated sites and subjected to growth analysis on diesel nutrient media. Two fungal species were pre-selected and identified by morphological genus analysis and molecular techniques as Trichoderma asperellum and Penicillium pedernalense. The microdilution test showed that T. asperellum presented better fungal growth in high diesel concentrations than P. pedernalense. In addition, T. asperellum was able to degrade 41 and 54% of the total petroleum hydrocarbon (TPH) content present in soil artificially contaminated with diesel (10 g/kg of soil) in 7 and 14 days of incubation, respectively. In higher diesel concentration (1000 g of diesel/kg of soil) the TPH degradation reached 26%, 45%, and 48%, in 9, 16, and 30 d, respectively. The results demonstrated that the selected species was suitable for diesel degradation. We can also conclude that the isolation and selection process proposed in this work was successful and represents a simple alternative for obtaining native species with hydrocarbon degradation capacity, for use in the bioremediation process in the recovery of contaminated areas in an ecologically acceptable way.
Collapse
Affiliation(s)
- Daniele C Blanc
- Graduate Program in Biosystems Engineering, School of Engineering, Federal Fluminense University, 156 Passos da Pátria, Niteroi, RJ, 24210-240, Brazil.
| | - Jorge Andrés Duarte
- Graduate Program in Sciences and Biotechnology - PPBI, Block M, Institute of Biology, Federal Fluminense University, Professor Marcos Waldemar de Freitas Reis Street, Niteroi, RJ, 24210-201, Brazil.
| | - Sorele B Fiaux
- Graduate Program in Biosystems Engineering, School of Engineering, Federal Fluminense University, 156 Passos da Pátria, Niteroi, RJ, 24210-240, Brazil; Microbial Technology Laboratory, Department of Pharmaceutical Technology, Faculty of Pharmacy, Fluminense Federal University, 523 Mario Viana, Niterói, RJ, 24241-001, Brazil.
| |
Collapse
|
3
|
Gizaw B, Alemu T, Ebsa G. Screening and identification of microbes from polluted environment for azodye (Turquoise blue) decolorization. Heliyon 2024; 10:e32769. [PMID: 39183885 PMCID: PMC11341286 DOI: 10.1016/j.heliyon.2024.e32769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/04/2024] [Accepted: 06/08/2024] [Indexed: 08/27/2024] Open
Abstract
Turquoise blue dye is frequently used for industrial dyeing applications. But the release of untreated colored wastewater became an environmental and public health hazard. Microbial remediation of Azodye is environmentally safe and an alternative to a physicochemical approach. The aim of this research is to isolate and characterize turquoise blue dye degrading microbes from polluted environment. Microbial isolation and purification from soil and effluent sample was done on PDA and NA. Turquoise blue dye degrading test was investigated under optimized conditions using -the definitive screening design method. UV-Vis spectrophotometer used to measure the degradation percentage at 620 nm and 25 °C. The results revealed that 24 fungi and 6 bacterial species were identified from the contaminated site using Biolog Microstation and MALDI-TOF. Among all identified microbial species Pencilium citrinum Thom BCA & Penicillium heriquei show the highest percentage decolorization of turquoise blue dye up to 300 ppm with 90 % removal at pH4 and 87 % at pH 7 up to 400 ppm respectively. The azodye degradation ability of these fungi species used in the development of mycoremediation technologies provide an alternative option for Azodye removal after HPLC analysis, molecular characterization, and toxic analysis.
Collapse
Affiliation(s)
- Birhanu Gizaw
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, P. O. Box: 1176, Ethiopia
| | - Tesfaye Alemu
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, P. O. Box: 1176, Ethiopia
| | - Girma Ebsa
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, P. O. Box: 1176, Ethiopia
| |
Collapse
|
4
|
Wadaan MA, Baabbad A, Chakraborty S, V DR. Interpretation of adsorption isotherm and kinetics behind fluorene degradation. CHEMOSPHERE 2024; 357:141797. [PMID: 38537713 DOI: 10.1016/j.chemosphere.2024.141797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/26/2023] [Accepted: 03/23/2024] [Indexed: 04/29/2024]
Abstract
The gradual release of slow-degrading polycyclic aromatic hydrocarbons into the environment creates a high level of threat to aquatic and terrestrial life worldwide. Remediation of these PAHs should be designed in such a way that it poses as few or no environmental hazards as possible. In our study, we examined the degradation ability of the synthesized MnO2 nanoparticles against fluorene. The MnO2 nanoparticle prepared was found to be spherical from the SEM analysis. XRD analysis confirms the average crystallite size as 31.8652 nm. Further, the characterization of nanoparticles was confirmed by UV-DRS, FT-IR, DLS, and HPLC techniques. The extent of adsorption potential of the synthesized nanoparticles was established from the batch adsorption studies and the kinetic and isotherm model was interpreted. The antimicrobial properties of the synthesized MnO2 nanoparticles were analyzed.
Collapse
Affiliation(s)
- Mohammad Ahmad Wadaan
- Bioproducts Research Chair, Department of Zoology, College of Science, King Saud University, P.O. Box. 2455, Riyadh,11451, Saudi Arabia
| | - Almohannad Baabbad
- Bioproducts Research Chair, Department of Zoology, College of Science, King Saud University, P.O. Box. 2455, Riyadh,11451, Saudi Arabia
| | - Shreya Chakraborty
- Department of Bio-Medical Sciences, School of Biosciences and Technology, VIT, Vellore-14, Tamil Nadu, India
| | - Devi Rajeswari V
- Department of Bio-Medical Sciences, School of Biosciences and Technology, VIT, Vellore-14, Tamil Nadu, India.
| |
Collapse
|
5
|
Yamini V, Rajeswari VD. Metabolic capacity to alter polycyclic aromatic hydrocarbons and its microbe-mediated remediation. CHEMOSPHERE 2023; 329:138707. [PMID: 37068614 DOI: 10.1016/j.chemosphere.2023.138707] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
The elimination of contaminants caused by anthropogenic activities and rapid industrialization can be accomplished using the widely used technology of bioremediation. Recent years have seen significant advancement in our understanding of the bioremediation of coupled polycyclic aromatic hydrocarbon contamination caused by microbial communities including bacteria, algae, fungi, yeast, etc. One of the newest techniques is microbial-based bioremediation because of its greater productivity, high efficiency, and non-toxic approach. Microbes are appealing candidates for bioremediation because they have amazing metabolic capacity to alter most types of organic material and can endure harsh environmental conditions. Microbes have been characterized as extremophiles that can survive in a variety of environmental circumstances, making them the treasure troves for environmental cleanup and the recovery of contaminated soil. In this study, the mechanisms underlying the bioremediation process as well as the current situation of microbial bioremediation of polycyclic aromatic hydrocarbon are briefly described.
Collapse
Affiliation(s)
- V Yamini
- Department of Biomedical Sciences, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - V Devi Rajeswari
- Department of Biomedical Sciences, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India.
| |
Collapse
|
6
|
Bonatti E, Dos Santos A, Birolli WG, Rodrigues-Filho E. Endophytic, extremophilic and entomophilic fungi strains biodegrade anthracene showing potential for bioremediation. World J Microbiol Biotechnol 2023; 39:152. [PMID: 37029326 DOI: 10.1007/s11274-023-03590-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/21/2023] [Indexed: 04/09/2023]
Abstract
Anthropogenic activities have been increasing Polycyclic Aromatic Hydrocarbons (PAHs) release, promoting an urgent need for decontamination methods. Therefore, anthracene biodegradation by endophytic, extremophilic, and entomophilic fungi was studied. Moreover, a salting-out extraction methodology with the renewable solvent ethanol and the innocuous salt K2HPO4 was employed. Nine of the ten employed strains biodegraded anthracene in liquid medium (19-56% biodegradation) after 14 days at 30 °C, 130 rpm, and 100 mg L-1. The most efficient strain Didymellaceae sp. LaBioMMi 155, an entomophilic strain, was employed for optimized biodegradation, aiming at a better understanding of how factors like pollutant initial concentration, pH, and temperature affected this process. Biodegradation reached 90 ± 11% at 22 °C, pH 9.0, and 50 mg L-1. Futhermore, 8 different PAHs were biodegraded and metabolites were identified. Then, experiments with anthracene in soil ex situ were performed and bioaugmentation with Didymellaceae sp. LaBioMMi 155 presented better results than natural attenuation by the native microbiome and biostimulation by the addition of liquid nutrient medium into soil. Therefore, an expanded knowledge about PAHs biodegradation processes was achieved with emphasis to the action of Didymellaceae sp. LaBioMMi 155, which can be further employed for in situ biodegradation (after strain security test), or for enzyme identification and isolation aiming at oxygenases with optimal activity under alkaline conditions.
Collapse
Affiliation(s)
- Erika Bonatti
- Laboratory of Micromolecular Biochemistry of Microorganisms (LaBioMMi), Center for Exact Sciences and Technology, Federal University of São Carlos, Via Washington Luiz, Km 235, P.O. Box 676, São Carlos, SP, 13.565-905, Brazil
| | - Alef Dos Santos
- Laboratory of Micromolecular Biochemistry of Microorganisms (LaBioMMi), Center for Exact Sciences and Technology, Federal University of São Carlos, Via Washington Luiz, Km 235, P.O. Box 676, São Carlos, SP, 13.565-905, Brazil
| | - Willian Garcia Birolli
- Laboratory of Micromolecular Biochemistry of Microorganisms (LaBioMMi), Center for Exact Sciences and Technology, Federal University of São Carlos, Via Washington Luiz, Km 235, P.O. Box 676, São Carlos, SP, 13.565-905, Brazil.
| | - Edson Rodrigues-Filho
- Laboratory of Micromolecular Biochemistry of Microorganisms (LaBioMMi), Center for Exact Sciences and Technology, Federal University of São Carlos, Via Washington Luiz, Km 235, P.O. Box 676, São Carlos, SP, 13.565-905, Brazil.
| |
Collapse
|
7
|
Production of Minor Ginsenosides from Panax notoginseng Flowers by Cladosporium xylophilum. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196615. [PMID: 36235151 PMCID: PMC9572572 DOI: 10.3390/molecules27196615] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/06/2022]
Abstract
Panax notoginseng flowers have the highest content of saponins compared to the other parts of Panax notoginseng, but minor ginsenosides have higher pharmacological activity than the main natural ginsenosides. Therefore, this study focused on the transformation of the main ginsenosides in Panax notoginseng flowers to minor ginsenosides using the fungus of Cladosporium xylophilum isolated from soil. The main ginsenosides Rb1, Rb2, Rb3, and Rc and the notoginsenoside Fa in Panax notoginseng flowers were transformed into the ginsenosides F2 and Rd2, the notoginsenosides Fd and Fe, and the ginsenoside R7; the conversion rates were 100, 100, 100, 88.5, and 100%, respectively. The transformation products were studied by TLC, HPLC, and MS analyses, and the biotransformation pathways of the major ginsenosides were proposed. In addition, the purified enzyme of the fungus was prepared with the molecular weight of 66.4 kDa. The transformation of the monomer ginsenosides by the crude enzyme is consistent with that by the fungus. Additionally, three saponins were isolated from the transformation products and identified as the ginsenoside Rd2 and the notoginsenosides Fe and Fd by NMR and MS analyses. This study provided a unique and powerful microbial strain for efficiently transformating major ginsenosides in P. notoginseng flowers to minor ginsenosides, which will help raise the functional and economic value of the P. notoginseng flower.
Collapse
|
8
|
Miglani R, Parveen N, Kumar A, Ansari MA, Khanna S, Rawat G, Panda AK, Bisht SS, Upadhyay J, Ansari MN. Degradation of Xenobiotic Pollutants: An Environmentally Sustainable Approach. Metabolites 2022; 12:818. [PMID: 36144222 PMCID: PMC9505297 DOI: 10.3390/metabo12090818] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/21/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
The ability of microorganisms to detoxify xenobiotic compounds allows them to thrive in a toxic environment using carbon, phosphorus, sulfur, and nitrogen from the available sources. Biotransformation is the most effective and useful metabolic process to degrade xenobiotic compounds. Microorganisms have an exceptional ability due to particular genes, enzymes, and degradative mechanisms. Microorganisms such as bacteria and fungi have unique properties that enable them to partially or completely metabolize the xenobiotic substances in various ecosystems.There are many cutting-edge approaches available to understand the molecular mechanism of degradative processes and pathways to decontaminate or change the core structure of xenobiotics in nature. These methods examine microorganisms, their metabolic machinery, novel proteins, and catabolic genes. This article addresses recent advances and current trends to characterize the catabolic genes, enzymes and the techniques involved in combating the threat of xenobiotic compounds using an eco-friendly approach.
Collapse
Affiliation(s)
- Rashi Miglani
- Department of Zoology, D.S.B Campus, Kumaun University, Nainital 263002, Uttarakhand, India
| | - Nagma Parveen
- Department of Zoology, D.S.B Campus, Kumaun University, Nainital 263002, Uttarakhand, India
| | - Ankit Kumar
- Department of Pharmaceutical Sciences, Sir J. C Bose Technical Campus, Bhimtal, Nainital 263136, Uttarakhand, India
| | - Mohd. Arif Ansari
- Department of Forestry and Environmental Science, D.S.B Campus, Kumaun University, Nainital 263002, Uttarakhand, India
| | - Soumya Khanna
- Department of Anatomy, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Gaurav Rawat
- Department of Zoology, D.S.B Campus, Kumaun University, Nainital 263002, Uttarakhand, India
| | - Amrita Kumari Panda
- Department of Biotechnology, Sant Gahira Guru University, Ambikapur 497001, Chhattisgarh, India
| | - Satpal Singh Bisht
- Department of Zoology, D.S.B Campus, Kumaun University, Nainital 263002, Uttarakhand, India
| | - Jyoti Upadhyay
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Energy Acre Campus Bidholi, Dehradun 248007, Uttarakhand, India
| | - Mohd Nazam Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
9
|
Al-Otibi F, Al-Zahrani RM, Marraiki N. The crude oil biodegradation activity of Candida strains isolated from oil-reservoirs soils in Saudi Arabia. Sci Rep 2022; 12:10708. [PMID: 35739163 PMCID: PMC9226172 DOI: 10.1038/s41598-022-14836-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/13/2022] [Indexed: 11/15/2022] Open
Abstract
Crude oil (petroleum) is a naturally occurring complex composed of hydrocarbon deposits and other organic materials. Bioremediation of crude oil-polluted sites is restricted by the biodiversity of indigenous microflora. They possess complementary substrates required for degrading the different hydrocarbons. In the current study, four yeast strains were isolated from different oil reservoirs in Riyadh, Saudi Arabia. The oil-biodegradation ability of these isolates showed variable oxidation effects on multiple hydrocarbons. The scanning electron microscopy (SEM) images showed morphological changes in Candida isolates compared to the original structures. The drop-collapse and oil emulsification assays showed that yeast strains affected the physical properties of tested hydrocarbons. The content of biosurfactants produced by isolated strains was quantified in the presence of different hydrocarbons to confirm the oil displacement activity. The recovery assays included acid precipitation, solvent extraction, ammonium sulfate, and zinc sulfate precipitation methods. All these methods revealed that the amount of biosurfactants correlates to the type of tested hydrocarbons, where the highest amount was produced in crude oil contaminated samples. In conclusion, the study highlights the importance of Candida isolated from contaminated soils for bioremediation of petroleum oil pollution. That raises the need for further analyses on the microbes/hydrocarbon degradation dynamics.
Collapse
Affiliation(s)
- Fatimah Al-Otibi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia.
| | - Rasha M Al-Zahrani
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Najat Marraiki
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| |
Collapse
|
10
|
Efficiency of Penicillium canescens in Dissipating PAH in Industrial Aged Contaminated Soil Microcosms and Its Impact on Soil Organic Matter and Ecotoxicity. Processes (Basel) 2022. [DOI: 10.3390/pr10030532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
The filamentous fungus Penicillium canescens, isolated from oil-polluted soil, was evaluated for its ability to dissipate high-molecular-weight polycyclic aromatic hydrocarbons (PAH). The study was conducted in a microcosm containing 180 g of historical PAH-contaminated soil under non-sterile conditions with two incubation temperatures (14 °C and 18 °C) on a 12-h cycle. The experiment was conducted over 8 months, with four experimental conditions created by varying the volumes of the bulking agent and vegetable oil (olive oil) and the time of addition of these compounds. The PAH dissipation performance of the fungal augmentation treatment was compared with that achieved with a biostimulated soil (bulking agent and vegetable oil) and with the untreated soil as control. The greatest PAH dissipation was obtained with P. canescens bioaugmentation (35.71% ± 1.73), with 13 of the 16 US EPA PAH significantly dissipated, at rates above 18%, and particularly high-molecular-weight PAH, composed of more than three fused aromatic rings. Nematode toxicity tests indicated a significant decrease in the toxicity of soil bioaugmented by this fungus. Fulvic and humic contents were significantly increased by this treatment. All these results suggest that bioaugmentation with P. canescens can be used to restore soils with long-term PAH contamination.
Collapse
|
11
|
González-Rodríguez S, Lu-Chau TA, Trueba-Santiso A, Eibes G, Moreira MT. Bundling the removal of emerging contaminants with the production of ligninolytic enzymes from residual streams. Appl Microbiol Biotechnol 2022; 106:1299-1311. [PMID: 35075520 PMCID: PMC8816780 DOI: 10.1007/s00253-022-11776-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/09/2021] [Accepted: 01/09/2022] [Indexed: 12/20/2022]
Abstract
Abstract Enzymes offer interesting features as biological catalysts for industry: high specificity, activity under mild conditions, accessibility, and environmental friendliness. Being able to produce enzymes in large quantities and having them available in a stable and reusable form reduces the production costs of any enzyme-based process. Agricultural residues have recently demonstrated their potential as substrates to produce ligninolytic enzymes by different white rot fungi. In this study, the biotechnological production of a manganese peroxidase (MnP) by Irpex lacteus was conducted through solid-state fermentation (SSF) with wheat straw as substrate and submerged fermentation (SmF) employing wheat straw extract (WSE). The obtained enzyme cocktail also showed manganese-independent activity (MiP), related to the presence of a short MnP and a dye-decolorizing peroxidase (DyP) which was confirmed by shotgun proteomic analyses. In view of the enhanced production of ligninolytic enzymes in SmF, different parameters such as WSE concentration and nitrogen source were evaluated. The highest enzyme titers were obtained with a medium formulated with glucose and peptone (339 U/L MnP and 15 U/L MiP). The scale-up to a 30 L reactor achieved similar activities, demonstrating the feasibility of enzyme production from the residual substrate at different production scales. Degradation of five emerging pollutants was performed to demonstrate the high oxidative capacity of the enzyme. Complete removal of hormones and bisphenol A was achieved in less than 1 h, whereas almost 30% degradation of carbamazepine was achieved in 24 h, which is a significant improvement compared to previous enzymatic treatments of this compound. Key points • Wheat straw extract is suitable for the growth of I. lacteus. • The enzyme cocktail obtained allows the degradation of emerging contaminants. • Mn-dependent and Mn-independent activities increases the catalytic potential. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s00253-022-11776-7.
Collapse
|
12
|
Cheng J, Jin H, Zhang J, Xu Z, Yang X, Liu H, Xu X, Min D, Lu D, Qin B. Effects of Allelochemicals, Soil Enzyme Activities, and Environmental Factors on Rhizosphere Soil Microbial Community of Stellera chamaejasme L. along a Growth-Coverage Gradient. Microorganisms 2022; 10:microorganisms10010158. [PMID: 35056607 PMCID: PMC8781187 DOI: 10.3390/microorganisms10010158] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/08/2022] [Accepted: 01/08/2022] [Indexed: 02/06/2023] Open
Abstract
Allelochemicals released from the root of Stellera chamaejasme L. into rhizosphere soil are an important factor for its invasion of natural grasslands. The aim of this study is to explore the interactions among allelochemicals, soil physicochemical properties, soil enzyme activities, and the rhizosphere soil microbial communities of S. chamaejasme along a growth-coverage gradient. High-throughput sequencing was used to determine the microbial composition of the rhizosphere soil sample, and high-performance liquid chromatography was used to detect allelopathic substances. The main fungal phyla in the rhizosphere soil with a growth coverage of 0% was Basidiomycetes, and the other sample plots were Ascomycetes. Proteobacteria and Acidobacteria were the dominant bacterial phyla in all sites. RDA analysis showed that neochamaejasmin B, chamaechromone, and dihydrodaphnetin B were positively correlated with Ascomycota and Glomeromycota and negatively correlated with Basidiomycota. Neochamaejasmin B and chamaechromone were positively correlated with Proteobacteria and Actinobacteria and negatively correlated with Acidobacteria and Planctomycetes. Allelochemicals, soil physicochemical properties, and enzyme activity affected the composition and diversity of the rhizosphere soil microbial community to some extent. When the growth coverage of S. chamaejasme reached the primary stage, it had the greatest impact on soil physicochemical properties and enzyme activities.
Collapse
Affiliation(s)
- Jinan Cheng
- Key Laboratory of Chemistry of Northwestern Plant Resources of Chinese Academy of Sciences/Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (J.C.); (X.Y.); (H.L.); (X.X.); (D.M.)
- Center of Grassland Microbiome, State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou 730000, China;
| | - Hui Jin
- Key Laboratory of Chemistry of Northwestern Plant Resources of Chinese Academy of Sciences/Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (J.C.); (X.Y.); (H.L.); (X.X.); (D.M.)
- Correspondence: (H.J.); (B.Q.); Tel.: +86-931-4968371 (H.J.); +86-931-4968372 (B.Q.)
| | - Jinlin Zhang
- Center of Grassland Microbiome, State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou 730000, China;
| | - Zhongxiang Xu
- Animal, Plant & Food Inspection Center of Nanjing Customs, Nanjing 210000, China;
| | - Xiaoyan Yang
- Key Laboratory of Chemistry of Northwestern Plant Resources of Chinese Academy of Sciences/Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (J.C.); (X.Y.); (H.L.); (X.X.); (D.M.)
| | - Haoyue Liu
- Key Laboratory of Chemistry of Northwestern Plant Resources of Chinese Academy of Sciences/Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (J.C.); (X.Y.); (H.L.); (X.X.); (D.M.)
| | - Xinxin Xu
- Key Laboratory of Chemistry of Northwestern Plant Resources of Chinese Academy of Sciences/Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (J.C.); (X.Y.); (H.L.); (X.X.); (D.M.)
| | - Deng Min
- Key Laboratory of Chemistry of Northwestern Plant Resources of Chinese Academy of Sciences/Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (J.C.); (X.Y.); (H.L.); (X.X.); (D.M.)
| | - Dengxue Lu
- Institute of Biology, Gansu Academy of Sciences, Lanzhou 730000, China;
| | - Bo Qin
- Key Laboratory of Chemistry of Northwestern Plant Resources of Chinese Academy of Sciences/Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (J.C.); (X.Y.); (H.L.); (X.X.); (D.M.)
- Correspondence: (H.J.); (B.Q.); Tel.: +86-931-4968371 (H.J.); +86-931-4968372 (B.Q.)
| |
Collapse
|
13
|
Ureta Suelgaray FJ, Aguilar Beltramo DM, Lavado RS, Chiocchio VM. Dark septate endophytes (DSE): potential bioremedial promoters of oil derivatives. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:255-262. [PMID: 34297649 DOI: 10.1080/15226514.2021.1932733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Oil spills are a global environmental problem. One of the management tools used to solve this problem is phytoremediation, a process that uses the capacity of plants and microorganisms to metabolize the components of the oil. The aims of the present study were to isolate, identify and characterize the fungi obtained from plants growing in an oil-contaminated area and evaluate their growth response and emulsifying and degrading capacity in two petroleum derivatives (kerosene and lube oil). Four dark septate endophytes (DSE) strains were isolated and identified: Exserohilum pedicellatum, Ophiosphaerella sp., and two Alternaria alternata strains. E. pedicellatum was found in an oil-contaminated environment for the first time. All strains were grown in kerosene, although some showed inhibition, whereas in lube oil, all showed growth induction. Ophiosphaerella sp. showed "drops" in kerosene, but the four strains showed surfactant capacity in lube oil. Ophiosphaerella sp. showed the highest emulsifying activity index but both A. alternata strains presented the highest lube oil degradation, which was directly related to the weight of the fungal biomass. There was not relationship between emulsifying capacity and oil degradation. However, these fungi show technological potential for application in phytoremediation processes.
Collapse
Affiliation(s)
- Fernando J Ureta Suelgaray
- Cátedra de Microbiología Agrícola, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Dafne M Aguilar Beltramo
- Cátedra de Microbiología Agrícola, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Raul S Lavado
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA) (CONICET/UBA), Facultad de Agronomía, Universidad de Buenos Aires. Av, Buenos Aires, Argentina
| | - Viviana M Chiocchio
- Cátedra de Microbiología Agrícola, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA) (CONICET/UBA), Facultad de Agronomía, Universidad de Buenos Aires. Av, Buenos Aires, Argentina
| |
Collapse
|
14
|
Conejo-Saucedo U, Ledezma-Villanueva A, Ángeles de Paz G, Herrero-Cervera M, Calvo C, Aranda E. Evaluation of the Potential of Sewage Sludge Mycobiome to Degrade High Diclofenac and Bisphenol-A Concentrations. TOXICS 2021; 9:115. [PMID: 34071049 PMCID: PMC8224792 DOI: 10.3390/toxics9060115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022]
Abstract
One of the most challenging environmental threats of the last two decades is the effects of emerging pollutants (EPs) such as pharmaceutical compounds or industrial additives. Diclofenac and bisphenol A have regularly been found in wastewater treatment plants, and in soils and water bodies because of their extensive usage and their recalcitrant nature. Due to the fact of this adversity, fungal communities play an important role in being able to safely degrade EPs. In this work, we obtained a sewage sludge sample to study both the culturable and non-culturable microorganisms through DNA extraction and massive sequencing using Illumina MiSeq techniques, with the goal of finding degraders adapted to polluted environments. Afterward, degradation experiments on diclofenac and bisphenol A were performed with the best fungal degraders. The analysis of bacterial diversity showed that Dethiosulfovibrionaceae, Comamonadaceae, and Isosphaeraceae were the most abundant families. A predominance of Ascomycota fungi in the culturable and non-culturable population was also detected. Species such as Talaromyces gossypii, Syncephalastrum monosporum, Aspergillus tabacinus, and Talaromyces verruculosus had remarkable degradation rates, up to 80% of diclofenac and bisphenol A was fully degraded. These results highlight the importance of characterizing autochthonous microorganisms and the possibility of selecting native fungal microorganisms to develop tailored biotransformation technologies for EPs.
Collapse
Affiliation(s)
- Ulises Conejo-Saucedo
- Institute of Water Research, University of Granada, Ramón y Cajal, 4, Fray Luis Bldg, 18071 Granada, Spain; (U.C.-S.); (A.L.-V.); (G.Á.d.P.); (M.H.-C.); (C.C.)
| | - Alejandro Ledezma-Villanueva
- Institute of Water Research, University of Granada, Ramón y Cajal, 4, Fray Luis Bldg, 18071 Granada, Spain; (U.C.-S.); (A.L.-V.); (G.Á.d.P.); (M.H.-C.); (C.C.)
| | - Gabriela Ángeles de Paz
- Institute of Water Research, University of Granada, Ramón y Cajal, 4, Fray Luis Bldg, 18071 Granada, Spain; (U.C.-S.); (A.L.-V.); (G.Á.d.P.); (M.H.-C.); (C.C.)
| | - Mario Herrero-Cervera
- Institute of Water Research, University of Granada, Ramón y Cajal, 4, Fray Luis Bldg, 18071 Granada, Spain; (U.C.-S.); (A.L.-V.); (G.Á.d.P.); (M.H.-C.); (C.C.)
| | - Concepción Calvo
- Institute of Water Research, University of Granada, Ramón y Cajal, 4, Fray Luis Bldg, 18071 Granada, Spain; (U.C.-S.); (A.L.-V.); (G.Á.d.P.); (M.H.-C.); (C.C.)
- Department of Microbiology, University of Granada, 18071 Granada, Spain
| | - Elisabet Aranda
- Institute of Water Research, University of Granada, Ramón y Cajal, 4, Fray Luis Bldg, 18071 Granada, Spain; (U.C.-S.); (A.L.-V.); (G.Á.d.P.); (M.H.-C.); (C.C.)
- Department of Microbiology, University of Granada, 18071 Granada, Spain
| |
Collapse
|
15
|
Álvarez-Barragán J, Cravo-Laureau C, Wick LY, Duran R. Fungi in PAH-contaminated marine sediments: Cultivable diversity and tolerance capacity towards PAH. MARINE POLLUTION BULLETIN 2021; 164:112082. [PMID: 33524832 DOI: 10.1016/j.marpolbul.2021.112082] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
The cultivable fungal diversity from PAH-contaminated sediments was examined for the tolerance to polycyclic aromatic hydrocarbon (PAH). The 85 fungal strains, isolated in non-selective media, revealed a large diversity by ribosomal internal transcribed spacer (ITS) sequencing, even including possible new species. Most strains (64%) exhibited PAH-tolerance, indicating that sediments retain diverse cultivable PAH-tolerant fungi. The PAH-tolerance was linked neither to a specific taxon nor to the peroxidase genes (LiP, MnP and Lac). Examining the PAH-removal (degradation and/or sorption), Alternaria destruens F10.81 showed the best capacity with above 80% removal for phenanthrene, pyrene and fluoranthene, and around 65% for benzo[a]pyrene. A. destruens F10.81 internalized pyrene homogenously into the hyphae that contrasted with Fusarium pseudoygamai F5.76 in which PAH-vacuoles were observed but PAH removal was below 20%. Thus, our study paves the way for the exploitation of fungi in remediation strategies to mitigate the effect of PAH in coastal marine sediments.
Collapse
Affiliation(s)
- Joyce Álvarez-Barragán
- Université de Pau et des Pays de l'Adour, UPPA/E2S, IPREM UMR CNRS 5254, Bat. IBEAS, Pau, France
| | - Cristiana Cravo-Laureau
- Université de Pau et des Pays de l'Adour, UPPA/E2S, IPREM UMR CNRS 5254, Bat. IBEAS, Pau, France
| | - Lukas Y Wick
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Microbiology, Leipzig, 04318, Germany
| | - Robert Duran
- Université de Pau et des Pays de l'Adour, UPPA/E2S, IPREM UMR CNRS 5254, Bat. IBEAS, Pau, France.
| |
Collapse
|
16
|
Ni N, Li X, Yao S, Shi R, Kong D, Bian Y, Jiang X, Song Y. Biochar applications combined with paddy-upland rotation cropping systems benefit the safe use of PAH-contaminated soils: From risk assessment to microbial ecology. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124123. [PMID: 33049639 DOI: 10.1016/j.jhazmat.2020.124123] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/01/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to establish a method allowing the safe use of polycyclic aromatic hydrocarbon (PAH)-contaminated soils through the combination of biochar applications and different cropping systems. The impact of biochar applications under different cropping systems on the human health risks of PAHs and soil microbiology was elucidated. The residual PAHs were the lowest in rhizosphere soils amended with 2% corn straw-derived biochar pyrolyzed at 300 °C (CB300) under the paddy-upland rotation cropping (PURC) system. Human health risks resulting from the ingestion of PAH-contaminated carrot roots / rice grains under the PURC system were significantly lower than those under continuous upland cropping systems. The greatest diversity, richness and network complexity of soil microbial communities occurred under the PURC system combined with the 2% CB300 treatment. Soil microbial functions associated with soil health and PAH biodegradation were enhanced under this strategy, while the pathogen group was inhibited. Primarily owing to its high sorption capacity, bamboo-derived biochar pyrolyzed at 700 °C realized in the reduction of PAHs, but weakly influenced shifts in soil microbial communities. Overall, the combination of PURC systems and low-temperature-pyrolyzed nutrient-rich biochar could efficiently reduce the human health risks of PAHs and improve soil microbial ecology in agricultural fields.
Collapse
Affiliation(s)
- Ni Ni
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, PR China; CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 210008, PR China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, PR China
| | - Xiaona Li
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 210008, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shi Yao
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 210008, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Renyong Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Deyang Kong
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, PR China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, PR China
| | - Yongrong Bian
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 210008, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xin Jiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 210008, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yang Song
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 210008, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
17
|
de la Cruz-Izquierdo RI, Paz-González AD, Reyes-Espinosa F, Vazquez-Jimenez LK, Salinas-Sandoval M, González-Domínguez MI, Rivera G. Analysis of phenanthrene degradation by Ascomycota fungi isolated from contaminated soil from Reynosa, Mexico. Lett Appl Microbiol 2021; 72:542-555. [PMID: 33423286 DOI: 10.1111/lam.13451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 02/06/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are organic compounds generated mainly by anthropogenic sources. They are considered toxic to mammals, since they have carcinogenic, mutagenic and genotoxic properties, among others. Although mycoremediation is an efficient, economical and eco-friendly technique for degrading PAHs, the fungal degradation potential of the phylum Ascomycota has not been widely studied. In this work, we evaluated different fungal strains from the polluted soil of 'La Escondida' lagoon in Reynosa, Mexico to know their potential to degrade phenanthrene (PHE). Forty-three soil isolates with the capacity to grow in the presence of PHE (0·1% w/v) were obtained. The fungi Aspergillus oryzae MF13 and Aspergillus flavipes QCS12 had the best potential to degrade PHE. Both fungi germinated and grew at PHE concentrations of up to 5000 mg l-1 and degraded 235 mg l-1 of PHE in 28 days, with and without an additional carbon source. These characteristics indicate that A. oryzae MF13 and A. flavipes QCS12 could be promising organisms for the remediation of sites contaminated with PAHs and detoxification of recalcitrant xenobiotics.
Collapse
Affiliation(s)
- R I de la Cruz-Izquierdo
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Mexico
| | - A D Paz-González
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Mexico
| | - F Reyes-Espinosa
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Mexico.,Tecnológico Nacional de México, ITS de Comalcalco, División de Ingeniería Ambiental, Tabasco, Mexico
| | - L K Vazquez-Jimenez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Mexico
| | - M Salinas-Sandoval
- Laboratorios de Ingeniería en Nanotecnología, Universidad de La Ciénega del Estado de Michoacán de Ocampo, Sahuayo, Mexico
| | - M I González-Domínguez
- Laboratorios de Ingeniería en Nanotecnología, Universidad de La Ciénega del Estado de Michoacán de Ocampo, Sahuayo, Mexico
| | - G Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Mexico
| |
Collapse
|
18
|
|
19
|
Enzymatic Potential of Bacteria and Fungi Isolates from the Sewage Sludge Composting Process. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10217763] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The aim of this study was the isolation and characterisation of the fungi and bacteria during the composting process of sewage sludge under a semipermeable membrane system at full scale, in order to find isolates with enzymatic activities of biotechnological interest. A total of 40 fungi were isolated and enzymatically analysed. Fungal culture showed a predominance of members of Ascomycota and Basidiomycota division and some representatives of Mucoromycotina subdivision. Some noticeable fungi isolated during the mesophilic and thermophilic phase were Aspergillus, Circinella, and Talaromyces. During the maturation phase, some lignin modifying enzyme producers, like Purpureocillium, Thielavia, Bjerkandera, or Dichotomyces, were found. Within this group, Thielavia and Bjerkandera showed high activity with production of laccases and peroxidases. In the bacterial culturome, a total of 128 strains were selected and enzymatically analysed. Bacillales, Actinomycetales, Pseudomonadales, and Lactobacillales were the orders most represented in culture-bacteria. Bacillus pumilus, B. stratosphericus, B. safensis, and Pseudomonas formosensis were the species most efficient in enzyme production, particularly peroxidases, polyphenol oxidases ammonifying activity, and amylases. These results showed that sewage sludge composting piles could represent a source of microorganisms which have adapted to adverse conditions.
Collapse
|
20
|
Peidro-Guzmán H, Pérez-Llano Y, González-Abradelo D, Fernández-López MG, Dávila-Ramos S, Aranda E, Hernández DRO, García AO, Lira-Ruan V, Pliego OR, Santana MA, Schnabel D, Jiménez-Gómez I, Mouriño-Pérez RR, Aréchiga-Carvajal ET, Del Rayo Sánchez-Carbente M, Folch-Mallol JL, Sánchez-Reyes A, Vaidyanathan VK, Cabana H, Gunde-Cimerman N, Batista-García RA. Transcriptomic analysis of polyaromatic hydrocarbon degradation by the halophilic fungus Aspergillus sydowii at hypersaline conditions. Environ Microbiol 2020; 23:3435-3459. [PMID: 32666586 DOI: 10.1111/1462-2920.15166] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/11/2020] [Accepted: 07/12/2020] [Indexed: 01/22/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are among the most persistent xenobiotic compounds, with high toxicity effects. Mycoremediation with halophilic Aspergillus sydowii was used for their removal from a hypersaline medium (1 M NaCl). A. sydowii metabolized PAHs as sole carbon sources, resulting in the removal of up to 90% for both PAHs [benzo [a] pyrene (BaP) and phenanthrene (Phe)] after 10 days. Elimination of Phe and BaP was almost exclusively due to biotransformation and not adsorption by dead mycelium and did not correlate with the activity of lignin modifying enzymes (LME). Transcriptomes of A. sydowii grown on PAHs, or on glucose as control, both at hypersaline conditions, revealed 170 upregulated and 76 downregulated genes. Upregulated genes were related to starvation, cell wall remodelling, degradation and metabolism of xenobiotics, DNA/RNA metabolism, energy generation, signalling and general stress responses. Changes of LME expression levels were not detected, while the chloroperoxidase gene, possibly related to detoxification processes in fungi, was strongly upregulated. We propose that two parallel metabolic pathways (mitochondrial and cytosolic) are involved in degradation and detoxification of PAHs in A. sydowii resulting in intracellular oxidation of PAHs. To the best of our knowledge, this is the most comprehensive transcriptomic analysis on fungal degradation of PAHs.
Collapse
Affiliation(s)
- Heidy Peidro-Guzmán
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Yordanis Pérez-Llano
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Deborah González-Abradelo
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Maikel Gilberto Fernández-López
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Sonia Dávila-Ramos
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Elisabet Aranda
- Instituto Universitario de Investigación del Agua, Universidad de Granada, Granada, Spain
| | | | - Angélica Ortega García
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Verónica Lira-Ruan
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Oscar Ramírez Pliego
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - María Angélica Santana
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Denhi Schnabel
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Irina Jiménez-Gómez
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Rosa R Mouriño-Pérez
- Centro de Investigación Cientifica y Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Elva T Aréchiga-Carvajal
- Facultad de Ciencias Biológicas, Unidad de Manipulación Genética, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | | | - Jorge Luis Folch-Mallol
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Ayixon Sánchez-Reyes
- Cátedras Conacyt - Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | | | - Hubert Cabana
- Faculté de Genié, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Nina Gunde-Cimerman
- Departament of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Ramón Alberto Batista-García
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| |
Collapse
|
21
|
Highlighting the Crude Oil Bioremediation Potential of Marine Fungi Isolated from the Port of Oran (Algeria). DIVERSITY 2020. [DOI: 10.3390/d12050196] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
While over hundreds of terrestrial fungal genera have been shown to play important roles in the biodegradation of hydrocarbons, few studies have so far focused on the fungal bioremediation potential of petroleum in the marine environment. In this study, the culturable fungal communities occurring in the port of Oran in Algeria, considered here as a chronically-contaminated site, have been mainly analyzed in terms of species richness. A collection of 84 filamentous fungi has been established from seawater samples and then the fungi were screened for their ability to utilize and degrade crude oil. A total of 12 isolates were able to utilize crude oil as a unique carbon source, from which 4 were defined as the most promising biodegrading isolates based on a screening test using 2,6-dichlorophenol indophenol as a proxy to highlight their ability to metabolize crude oil. The biosurfactant production capability was also tested and, interestingly, the oil spreading and drop-collapse tests highlighted that the 4 most promising isolates were also those able to produce the highest quantity of biosurfactants. The results generated in this study demonstrate that the most promising fungal isolates, namely Penicillium polonicum AMF16, P. chrysogenum AMF47 and 2 isolates (AMF40 and AMF74) affiliated to P. cyclopium, appear to be interesting candidates for bioremediation of crude oil pollution in the marine environment within the frame of bioaugmentation or biostimulation processes.
Collapse
|
22
|
Mycoremediation of Old and Intermediate Landfill Leachates with an Ascomycete Fungal Isolate, Lambertella sp. WATER 2020. [DOI: 10.3390/w12030800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the present study, an Ascomycete fungal strain, Lambertella sp., isolated from environmental polluted matrices, was tested for the capacity to reduce the contamination and the toxicity of intermediate and old landfill leachates. Batch tests in flasks, under co-metabolic conditions, were performed with two different old leachates, with suspended and immobilized Lambertella sp. biomass, resulting in a soluble chemical oxygen demand depletion of 70% and 45%, after 13 and 30 days, respectively. An intermediate landfill leachate was treated in lab-scale reactors operating in continuous conditions for three months, inoculated with immobilized Lambertella sp. biomass, in absence of co-substrates. The Lambertella sp. depleted the corresponding total organic carbon by 90.2%. The exploitability of the Lambertella sp. strain was evaluated also in terms of reduction of phyto-, cyto-, and mutagenicity of the different Landfill Leachates at the end of the myco-based treatment, resulting in an efficient depletion of leachate clastogenicity.
Collapse
|
23
|
Basak G, Hazra C, Sen R. Biofunctionalized nanomaterials for in situ clean-up of hydrocarbon contamination: A quantum jump in global bioremediation research. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 256:109913. [PMID: 31818738 DOI: 10.1016/j.jenvman.2019.109913] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 11/18/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
Interfacing organic or inorganic nanoparticles with biological entities or molecules or systems with the aim of developing functionalized nano-scale materials or composites for remediation of persistent organic hydrocarbon pollutants (such as monocyclic and polycyclic aromatic hydrocarbons, MAH/PAH) has generated great interest and continues to grow almost unabated. However, the usefulness and potency of these materials or conjugates hinges over several key barriers, including structural assembly with fine-tuned control over nanoparticle/biomolecule ratio, spatial orientation and activity of biomolecules, the nano/bio-interface strategy and hierarchical architecture, water-dispersibility and long term colloidal stability in environmental media, and non-specific toxicity. The present review thus critically analyses, discusses and interprets recently reported attempts and approaches to functionalize nanoparticles with biomolecules. Since there is no comprehensive and critical reviews on the applications of nanotechnology in bioremediation of MAHs/PAHs, this overview essentially captures the current global scenario and vision on the use and future prospects of biofunctionalized nanomaterials with respect to their strategic interactions involved at the nano/bio-interface essential to understand and decipher the structural and functional relationships and their impact on persistent hydrocarbon remediation.
Collapse
Affiliation(s)
- Geetanjali Basak
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Chinmay Hazra
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Ramkrishna Sen
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
24
|
Bioremediation of Dichlorodiphenyltrichloroethane (DDT)-Contaminated Agricultural Soils: Potential of Two Autochthonous Saprotrophic Fungal Strains. Appl Environ Microbiol 2019; 85:AEM.01720-19. [PMID: 31444208 DOI: 10.1128/aem.01720-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 08/19/2019] [Indexed: 12/16/2022] Open
Abstract
DDT (dichlorodiphenyltrichloroethane) was used worldwide as an organochlorine insecticide to control agricultural pests and vectors of several insect-borne human diseases. It was banned in most industrialized countries; however, due to its persistence in the environment, DDT residues remain in environmental compartments, becoming long-term sources of exposure. To identify and select fungal species suitable for bioremediation of DDT-contaminated sites, soil samples were collected from DDT-contaminated agricultural soils in Poland, and 38 fungal taxa among 18 genera were isolated. Two of them, Trichoderma hamatum FBL 587 and Rhizopus arrhizus FBL 578, were tested for tolerance in the presence of 1-mg liter-1 DDT concentration by using two indices based on fungal growth rate and biomass production (the tolerance indices Rt:Rc and TI), showing a clear tolerance to DDT. The two selected strains were studied to evaluate catabolic versatility on 95 carbon sources with or without DDT by using the Phenotype MicroArray system and to investigate the induced oxidative stress responses. The two strains were able to use most of the substrates provided, resulting in both high metabolic versatility and ecological functionality in the use of carbon sources, despite the presence of DDT. The activation of specific metabolic responses with species-dependent antioxidant enzymes to cope with the induced chemical stress has been hypothesized, since the presence of DDT promoted a higher formation of reactive oxygen species in fungal cells than the controls. The tested fungi represent attractive potential candidates for bioremediation of DDT-contaminated soil and are worthy of further investigations.IMPORTANCE The spread and environmental accumulation of DDT over the years represent not only a threat to human health and ecological security but also a major challenge because of the complex chemical processes and technologies required for remediation. Saprotrophic fungi, isolated from contaminated sites, hold promise for their bioremediation potential toward toxic organic compounds, since they might provide an environment-friendly solution to contamination. Once we verified the high tolerance of autochthonous fungal strains to high concentrations of DDT, we showed how fungi from different phyla demonstrate a high metabolic versatility in the presence of DDT. The isolates showed the singular ability to keep their functionality, despite the DDT-induced production of reactive oxygen species.
Collapse
|
25
|
Russo F, Ceci A, Maggi O, Siciliano A, Guida M, Petrangeli Papini M, Černík M, Persiani AM. Understanding fungal potential in the mitigation of contaminated areas in the Czech Republic: tolerance, biotransformation of hexachlorocyclohexane (HCH) and oxidative stress analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:24445-24461. [PMID: 31228071 DOI: 10.1007/s11356-019-05679-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 06/04/2019] [Indexed: 06/09/2023]
Abstract
The study of the soil microbial community represents an important step in better understanding the environmental context. Therefore, biological characterisation and physicochemical integration are keys when defining contaminated sites. Fungi play a fundamental role in the soil, by providing and supporting ecological services for ecosystems and human wellbeing. In this research, 52 soil fungal taxa were isolated from in situ pilot reactors installed to a contaminated site in Czech Republic with a high concentration of hexachlorocyclohexane (HCH). Among the identified isolates, 12 strains were selected to evaluate their tolerance to different isomers of HCH by using specific indices (Rt:Rc; T.I.) and to test their potential in xenobiotic biotransformation. Most of the selected taxa was not significantly affected by exposure to HCH, underlining the elevated tolerance of all the tested fungal taxa, and different metabolic intermediates of HCH dechlorination were observed. The oxidative stress responses to HCH for two selected species, Penicillium simplicissimum and Trichoderma harzianum, were investigated in order to explore their toxic responses and to evaluate their potential functioning in bioremediation of contaminated environments. This research suggests that the isolated fungal species may provide opportunities for new eco-friendly, integrated and cost-effective solutions for environmental management and remediation, considering their efficient adaptation to stressful conditions.
Collapse
Affiliation(s)
- Fabiana Russo
- Department of Environmental Biology, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy.
| | - Andrea Ceci
- Department of Environmental Biology, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Oriana Maggi
- Department of Environmental Biology, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Antonietta Siciliano
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126, Naples, Italy
| | - Marco Guida
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126, Naples, Italy
| | - Marco Petrangeli Papini
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Miroslav Černík
- Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17, Liberec 1, Czech Republic
| | - Anna Maria Persiani
- Department of Environmental Biology, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| |
Collapse
|
26
|
Sun Y, Zhao L, Li X, Hao Y, Xu H, Weng L, Li Y. Stimulation of earthworms (Eisenia fetida) on soil microbial communities to promote metolachlor degradation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:219-228. [PMID: 30798023 DOI: 10.1016/j.envpol.2019.01.058] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/12/2019] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
Degradation of metolachlor in surface soil is extremely important to its potential mobility and overall persistence. In this study, the effects of earthworms (Eisenia fetida) on the degradation of metolachlor at two concentration levels (5 and 20 mg kg-1) in soil were investigated via the column experiment. The degradation kinetics of metolachlor indicate that addition of earthworms enhances metolachlor degradation significantly (P < 0.05), with the enhanced degradation rate of 30% and 63% in the low and high concentration treatments at the 15th day, respectively. Fungi rather than bacteria are primarily responsible for metolachlor degradation in soil, and earthworms stimulate metolachlor degradation mainly by stimulating the metolachlor-degrading functional microorganisms and improving fungal community structure. Earthworms prefer to promote the possible fungal degraders like order Sordariales, Microascales, Hypocreales and Mortierellales and the possible bacteria genus Rubritalea and strengthen the relationships between these primary fungi. Two metabolites metolachlor oxanilic (MOXA) and moetolachlor ethanesulfonic acid (MESA) are detected in soil and earthworms in the high concentration treatments. Earthworms stimulate the formation of MOXA and yet inhibit the formation of MESA in soil. Another metabolite metolachlor-2-hydroxy (M2H) is also detected in earthworms, which is reported firstly. The study provides an important information for the remediation of metolachlor-polluted soil.
Collapse
Affiliation(s)
- Yang Sun
- Agro-Environmental Protection Institute, Ministry of Agriculture, MOA Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Tianjin, 300191, China; Land and Environmental College, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Lixia Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture, MOA Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Tianjin, 300191, China
| | - Xiaojing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture, MOA Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Tianjin, 300191, China
| | - Yueqi Hao
- Agro-Environmental Protection Institute, Ministry of Agriculture, MOA Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Tianjin, 300191, China
| | - Huijuan Xu
- College of Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Liping Weng
- Agro-Environmental Protection Institute, Ministry of Agriculture, MOA Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Tianjin, 300191, China
| | - Yongtao Li
- College of Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
27
|
Yi Z, Jin Y, Xiao Y, Chen L, Tan L, Du A, He K, Liu D, Luo H, Fang Y, Zhao H. Unraveling the Contribution of High Temperature Stage to Jiang-Flavor Daqu, a Liquor Starter for Production of Chinese Jiang-Flavor Baijiu, With Special Reference to Metatranscriptomics. Front Microbiol 2019; 10:472. [PMID: 30930875 PMCID: PMC6423406 DOI: 10.3389/fmicb.2019.00472] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/22/2019] [Indexed: 12/27/2022] Open
Abstract
Jiang-flavor (JF) daqu is a liquor starter used for production of JF baijiu, a well-known distilled liquor in China. Although a high temperature stage (70°C) is necessary for qualifying JF daqu, little is known regarding its active microbial community and functional enzymes, along with its role in generating flavor precursors for JF baijiu aroma. In this investigation, based on metatranscriptomics, fungi, such as Aspergillus and Penicillium, were identified as the most active microbial members and 230 carbohydrate-active enzymes were identified as potential saccharifying enzymes at 70°C of JF daqu. Notably, most of enzymes in identified carbohydrate and energy pathways showed lower expression levels at 70°C of JF daqu than those at the high temperature stage (62°C) of Nong-flavor (NF) daqu, indicating lowering capacities of saccharification and fermentation by high temperature stage. Moreover, many enzymes, especially those related to the degradation of aromatic compounds, were only detected with low expression levels at 70°C of JF daqu albeit not at 62°C of NF daqu, indicating enhancing capacities of generating special trace aroma compounds in JF daqu by high temperature stage. Additionally, most of enzymes related to those capacities were highly expressed at 70°C by fungal genus of Aspergillus, Coccidioides, Paracoccidioides, Penicillium, and Rasamsonia. Therefore, this study not only sheds light on the crucial functions of high temperature stage but also paves the way to improve the quality of JF baijiu and provide active community and functional enzymes for other fermentation industries.
Collapse
Affiliation(s)
- Zhuolin Yi
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Yanling Jin
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Yao Xiao
- Analytical and Testing Center, Sichuan University of Science and Engineering, Zigong, China
| | - Lanchai Chen
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, China
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Li Tan
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Anping Du
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Kaize He
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Dayu Liu
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Huibo Luo
- Bioengineering College, Sichuan University of Science and Engineering, Zigong, China
| | - Yang Fang
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Hai Zhao
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
28
|
Salam LB, Ishaq A. Biostimulation potentials of corn steep liquor in enhanced hydrocarbon degradation in chronically polluted soil. 3 Biotech 2019; 9:46. [PMID: 30729070 DOI: 10.1007/s13205-019-1580-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/17/2019] [Indexed: 12/16/2022] Open
Abstract
The effects of corn steep liquor (CSL) on hydrocarbon degradation and microbial community structure and function was evaluated in field-moist soil microcosms. Chronically polluted soil treated with CSL (AB4) and an untreated control (3S) was compared over a period of 6 weeks. Gas chromatographic fingerprints of residual hydrocarbons revealed removal of 95.95% and 94.60% aliphatic and aromatic hydrocarbon fractions in AB4 system with complete disappearance of nC1-nC8, nC10, nC15, nC20-nC23 aliphatics and aromatics such as naphthalene, acenaphthylene, fluorene, phenanthrene, pyrene, benzo(a)anthracene, and indeno(123-cd)pyrene in 42 days. In 3S system, there is removal of 61.27% and 66.58% aliphatic and aromatic fractions with complete disappearance of nC2 and nC21 aliphatics and naphthalene, acenaphthylene, fluorene, phenanthrene, pyrene, and benzo(a)anthracene aromatics in 42 days. Illumina shotgun sequencing of the DNA extracted from the two systems showed the preponderance of Actinobacteria (31.46%) and Proteobacteria (38.95%) phyla in 3S and AB4 with the dominance of Verticillium (22.88%) and Microbacterium (8.16%) in 3S, and Laceyella (24.23%), Methylosinus (8.93%) and Pedobacter (7.73%) in AB4. Functional characterization of the metagenomic reads revealed diverse metabolic potentials and adaptive traits of the microbial communities in the two systems to various environmental stressors. It also revealed the exclusive detection of catabolic enzymes in AB4 system belonging to the aldehyde dehydrogenase superfamily. The results obtained in this study showed that CSL is a potential resource for bioremediation of hydrocarbon-polluted soils.
Collapse
Affiliation(s)
- Lateef B Salam
- Department of Biological Sciences, Microbiology Unit Al-Hikmah University, Ilorin, Kwara Nigeria
| | - Aisha Ishaq
- Department of Biological Sciences, Microbiology Unit Al-Hikmah University, Ilorin, Kwara Nigeria
| |
Collapse
|
29
|
Hydrocarbonoclastic Ascomycetes to enhance co-composting of total petroleum hydrocarbon (TPH) contaminated dredged sediments and lignocellulosic matrices. N Biotechnol 2019; 50:27-36. [PMID: 30654133 DOI: 10.1016/j.nbt.2019.01.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 01/09/2019] [Accepted: 01/13/2019] [Indexed: 02/06/2023]
Abstract
Four new Ascomycete fungi capable of degrading diesel oil were isolated from sediments of a river estuary mainly contaminated by shipyard fuels or diesel oil. The isolates were identified as species of Lambertella, Penicillium, Clonostachys, and Mucor. The fungal candidates degraded and adsorbed the diesel oil in suspension cultures. The Lambertella sp. isolate displayed the highest percentages of oxidation of diesel oil and was characterised by the capacity to utilise the latter as a sole carbon source. This isolate showed extracellular laccase and Mn-peroxidase activities in the presence of diesel oil. It was tested for capacity to accelerate the process of decontamination of total petroleum hydrocarbon contaminated sediments, co-composted with lignocellulosic residues and was able to promote the degradation of 47.6% of the TPH contamination (54,074 ± 321 mg TPH/Kg of sediment) after two months of incubation. The response of the bacterial community during the degradation process was analysed by 16S rRNA gene meta-barcoding.
Collapse
|
30
|
Ceci A, Pinzari F, Russo F, Persiani AM, Gadd GM. Roles of saprotrophic fungi in biodegradation or transformation of organic and inorganic pollutants in co-contaminated sites. Appl Microbiol Biotechnol 2018; 103:53-68. [PMID: 30362074 DOI: 10.1007/s00253-018-9451-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 01/14/2023]
Abstract
For decades, human activities, industrialization, and agriculture have contaminated soils and water with several compounds, including potentially toxic metals and organic persistent xenobiotics. The co-occurrence of those toxicants poses challenging environmental problems, as complicated chemical interactions and synergies can arise and lead to severe and toxic effects on organisms. The use of fungi, alone or with bacteria, for bioremediation purposes is a growing biotechnology with high potential in terms of cost-effectiveness, an environmental-friendly perspective and feasibility, and often representing a sustainable nature-based solution. This paper reviews different ecological, metabolic, and physiological aspects involved in fungal bioremediation of co-contaminated soils and water systems, not only addressing best methods and approaches to assess the simultaneous presence of metals and organic toxic compounds and their consequences on provided ecosystem services but also the interactions between fungi and bacteria, in order to suggest further study directions in this field.
Collapse
Affiliation(s)
- Andrea Ceci
- Laboratorio di Biodiversità dei Funghi, Dipartimento di Biologia Ambientale, Sapienza Università di Roma, 00185, Rome, Italy
| | - Flavia Pinzari
- Centro di Ricerca Agricoltura e Ambiente, Consiglio per la Ricerca in agricoltura e l'analisi dell'Economia Agraria (CREA-AA), 00184, Rome, Italy.,Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Fabiana Russo
- Laboratorio di Biodiversità dei Funghi, Dipartimento di Biologia Ambientale, Sapienza Università di Roma, 00185, Rome, Italy
| | - Anna Maria Persiani
- Laboratorio di Biodiversità dei Funghi, Dipartimento di Biologia Ambientale, Sapienza Università di Roma, 00185, Rome, Italy.
| | - Geoffrey Michael Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK
| |
Collapse
|
31
|
Mtibaà R, Olicón-Hernández DR, Pozo C, Nasri M, Mechichi T, González J, Aranda E. Degradation of bisphenol A and acute toxicity reduction by different thermo-tolerant ascomycete strains isolated from arid soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 156:87-96. [PMID: 29533211 DOI: 10.1016/j.ecoenv.2018.02.077] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/28/2018] [Accepted: 02/28/2018] [Indexed: 05/20/2023]
Abstract
Four different laccase-producing strains were isolated from arid soils and used for bisphenol A (BPA) degradation. These strains were identified as Chaetomium strumarium G5I, Thielavia arenaria CH9, Thielavia arenaria HJ22 and Thielavia arenaria SM1(III) by internal transcribed spacer 5.8 S rDNA analysis. Residual BPA was evaluated by HPLC analysis during 48 h of incubation. A complete removal of BPA was observed by the whole cell fungal cultures within different times, depending on each strain. C. strumarium G5I was the most efficient degrader, showing 100% of removal within 8 h of incubation. The degradation of BPA was accompanied by the production of laccase and dye decolorizing peroxidase (DyP) under degradation conditions. The presence of aminobenzotriazole (ABT) as an inhibitor of cytochrome P450s monooxygenases (CYP) demonstrated a slight decrease in BPA removal rate, suggesting the effective contribution of CYP in the conversion. The great involvement of laccase in BPA transformation together with cell-associated enzymes, such as CYP, was supported by the identification of hydroxylated metabolites by ultra-high performance liquid chromatography-mass spectroscopy (UHPLC-MS). The metabolic pathway of BPA transformation was proposed based on the detected metabolites. The acute toxicity of BPA and its products was investigated and showed a significant reduction, except for T. arenaria SM1(III) that did not caused reduction of toxicity (IC50 < 8%), possibly due to the presence of toxic metabolites. The results of the present study point out the potential application of the isolated ascomycetes in pollutant removal processes, especially C. strumarium G5I as an efficient degrader of BPA.
Collapse
Affiliation(s)
- Rim Mtibaà
- Laboratory of Enzyme Engineering and Microbiology, Ecole Nationale d'Ingenieurs de Sfax, University of Sfax, Route de Soukra Km 4.5, BP 1173, 3038 Sfax, Tunisia.
| | | | - Clementina Pozo
- Department of Microbiology, University of Granada, Campus Cartuja E-18071, Granada, Spain; Institute of Water Research, University of Granada, Ramón y Cajal 4, E-18071 Granada, Spain
| | - Moncef Nasri
- Laboratory of Enzyme Engineering and Microbiology, Ecole Nationale d'Ingenieurs de Sfax, University of Sfax, Route de Soukra Km 4.5, BP 1173, 3038 Sfax, Tunisia
| | - Tahar Mechichi
- Laboratory of Enzyme Engineering and Microbiology, Ecole Nationale d'Ingenieurs de Sfax, University of Sfax, Route de Soukra Km 4.5, BP 1173, 3038 Sfax, Tunisia
| | - Jesus González
- Department of Microbiology, University of Granada, Campus Cartuja E-18071, Granada, Spain; Institute of Water Research, University of Granada, Ramón y Cajal 4, E-18071 Granada, Spain
| | - Elisabet Aranda
- Department of Microbiology, University of Granada, Campus Cartuja E-18071, Granada, Spain; Institute of Water Research, University of Granada, Ramón y Cajal 4, E-18071 Granada, Spain
| |
Collapse
|