1
|
Ataollahi F, Amirheidari B, Amirheidari Z, Ataollahi M. Clinical and mechanistic insights into biomedical application of Se-enriched probiotics and biogenic selenium nanoparticles. Biotechnol Lett 2025; 47:18. [PMID: 39826010 DOI: 10.1007/s10529-024-03559-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/13/2024] [Accepted: 12/16/2024] [Indexed: 01/20/2025]
Abstract
Selenium is an essential element with various industrial and medical applications, hence the current considerable attention towards the genesis and utilization of SeNPs. SeNPs and other nanoparticles could be achieved via physical and chemical methods, but these methods would not only require expensive equipment and specific reagents but are also not always environment friendly. Biogenesis of SeNPs could therefore be considered as a less troublesome alternative, which opens an excellent window to the selenium and nanoparticles' world. bSeNPs have proved to exert higher bioavailability, lower toxicity, and broader utility as compared to their non-bio counterparts. Many researchers have reported promising features of bSeNP such as anti-oxidant and anti-inflammatory, in vitro and in vivo. Considering this, bSeNPs have been tried as effective agents for health disorders, especially as constituents of probiotics. This article briefly reviews selenium, selenium nanoparticles, Se-enriched probiotics, and bSeNPs' usage in an array of health disorders. Obviously, there are very many articles on bSeNPs, but we wanted to summarize studies on prominent bSeNPs features published in the twenty-first century. This review is hoped to give an outlook to researchers for their future investigations, ultimately serving better care of health disorders.
Collapse
Affiliation(s)
- Farshid Ataollahi
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Bagher Amirheidari
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Medical University Campus, Haft-Bagh Highway, Kerman, 76169-13555, Iran.
| | - Zohreh Amirheidari
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahshid Ataollahi
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
2
|
Hakami AA, Alorfi HS, Farghaly TA, Hussein MA. A new polyazomethine-based pyrazole moiety and its reinforced nanocomposites @ ZnO for antimicrobial applications. Des Monomers Polym 2024; 27:1-20. [PMID: 38756722 PMCID: PMC11097710 DOI: 10.1080/15685551.2024.2352897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 05/04/2024] [Indexed: 05/18/2024] Open
Abstract
A new class of biologically active polyazomethine/pyrazole and their related nanocomposites, polyazomethine/pyrazole/zinc oxide nanoparticles, have been successfully synthesized through the polycondensation technique in the form of polyazomethine pyrazole (PAZm/Py4-6) and polyazomethine/pyrazole/zinc oxide nanoparticles (PAZm/Py/ZnOa-c). The polymeric nanocomposites were prepared with a 5% loading of zinc oxide nanofiller using the same preparation technique, in addition to the help of ultrasonic radiation. The characteristics of the new polymers, such as solubility, viscometry, and molecular weight, were examined. All the polymers were completely soluble in the following solvents: concentrated sulfuric acid, formic acid, dimethylformamide, dimethyl sulfoxide, and tetrahydrofuran. Furthermore, the weight loss of the polyazomethine pyrazole (4, 5, and 6) at 800 °C was 67%, 95%, and 86%, respectively, which indicates the thermal stability of these polymers. At 800 °C, the polyazomethine/pyrazole/zinc oxide nanoparticles (a, b, and c) lost 74%, 68%, and 75% of their weight, respectively. This shows that adding zinc oxide nanoparticles made these compounds more stable at high temperatures. The X-Ray diffraction pattern of the polyazomethine pyrazole (PAZm/Py4-6) shows a number of sharp peaks with varying intensities. The polymers that were studied had straight crystal structures. Furthermore, the measurements of polyazomethine/pyrazole/zinc oxide nanoparticles (PAZm/Py/ZnOa-c) indicate a good merging of zinc oxide nanoparticles into the matrix of polymers. The antimicrobial activity of polymers and polymer nanocomposites was tested against some selected bacteria and fungi. The synthesized polymer (c) shows the highest activity against the two types of gram-negative bacteria selected. Most tested compounds were found to be effective against gram-positive bacteria except polyazomethine pyrazole (PAZm/Py5) and polyazomethine pyrazole (PAZm/Py6), which do not exhibit any activity. The synthesized polymers and their related nanocomposites were tested for their ability to kill the chosen fungi. All of them were effective against Aspergillus flavus, but only polyazomethine pyrazole (PAZm/Py4) and polyazomethine/pyrazole/zinc oxide (PAZm/Py/ZnOc) were effective against Candida albicans.
Collapse
Affiliation(s)
- Aqilah A. Hakami
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hajar S. Alorfi
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Thoraya A. Farghaly
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukkarramah, Saudi Arabia
| | - Mahmoud A. Hussein
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
| |
Collapse
|
3
|
Bhuin A, Udayakumar S, Gopalarethinam J, Mukherjee D, Girigoswami K, Ponraj C, Sarkar S. Photocatalytic degradation of antibiotics and antimicrobial and anticancer activities of two-dimensional ZnO nanosheets. Sci Rep 2024; 14:10406. [PMID: 38710736 PMCID: PMC11579280 DOI: 10.1038/s41598-024-59842-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/16/2024] [Indexed: 05/08/2024] Open
Abstract
Active pharmaceutical ingredients have emerged as an environmentally undesirable element because of their widespread exploitation and consequent pollution, which has deleterious effects on living things. In the pursuit of sustainable environmental remediation, biomedical applications, and energy production, there has been a significant focus on two-dimensional materials (2D materials) owing to their unique electrical, optical, and structural properties. Herein, we have synthesized 2D zinc oxide nanosheets (ZnO NSs) using a facile and practicable hydrothermal method and characterized them thoroughly using spectroscopic and microscopic techniques. The 2D nanosheets are used as an efficient photocatalyst for antibiotic (herein, end-user ciprofloxacin (CIP) was used as a model antibiotic) degradation under sunlight. It is observed that ZnO NSs photodegrade ~ 90% of CIP within two hours of sunlight illumination. The molecular mechanism of CIP degradation is proposed based on ex-situ IR analysis. Moreover, the 2D ZNO NSs are used as an antimicrobial agent and exhibit antibacterial qualities against a range of bacterial species, including Escherichia coli, Staphylococcus aureus, and MIC of the bacteria are found to be 5 μg/l and 10 μg/l, respectively. Despite having the biocompatible nature of ZnO, as-synthesized nanosheets have also shown cytotoxicity against two types of cancer cells, i.e. A549 and A375. Thus, ZnO nanosheets showed a nontoxic nature, which can be exploited as promising alternatives in different biomedical applications.
Collapse
Affiliation(s)
- Abhik Bhuin
- Physics Division, School of Advanced Sciences, Vellore Institute of Technology Chennai, Vandalur-Kelambakkam Road, Chennai, Tamil Nadu, 600127, India
| | - Saranya Udayakumar
- Medical Bionanotechnology Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chettinad Health City, Kelambakkam, Chennai, 603103, India
| | - Janani Gopalarethinam
- Medical Bionanotechnology Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chettinad Health City, Kelambakkam, Chennai, 603103, India
| | - Debdyuti Mukherjee
- Centre for Fuel Cell Technology (CFCT), International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), IIT-M Research Park, Taramani, Chennai, 600113, India
| | - Koyeli Girigoswami
- Medical Bionanotechnology Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chettinad Health City, Kelambakkam, Chennai, 603103, India
| | - Caroline Ponraj
- Physics Division, School of Advanced Sciences, Vellore Institute of Technology Chennai, Vandalur-Kelambakkam Road, Chennai, Tamil Nadu, 600127, India.
| | - Sujoy Sarkar
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology Chennai, Vandalur-Kelambakkam Road, Chennai, Tamil Nadu, 600127, India.
- Electric Vehicle Incubation, Testing and Research Centre (EVIT-RC), Vellore Institute of Technology Chennai, Vandalur-Kelambakkam Road, Chennai, Tamil Nadu, 600127, India.
| |
Collapse
|
4
|
Brandão Da Silva Assis M, Nestal De Moraes G, De Souza KR. Cerium oxide nanoparticles: Chemical properties, biological effects and potential therapeutic opportunities (Review). Biomed Rep 2024; 20:48. [PMID: 38357238 PMCID: PMC10865297 DOI: 10.3892/br.2024.1736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/18/2023] [Indexed: 02/16/2024] Open
Abstract
The chemistry of pure cerium oxide (CeO2-x) nanoparticles has been widely studied since the 1970s, especially for chemical catalysis. CeO2-x nanoparticles have been included in an important class of industrial metal oxide nanoparticles and have been attributed a range of wide applications, such as ultraviolet absorbers, gas sensors, polishing agents, cosmetics, consumer products, high-tech devices and fuel cell conductors. Despite these early applications in the field of chemistry, the biological effects of CeO2-x nanoparticles were only explored in the 2000s. Since then, CeO2-x nanoparticles have gained a spot in research related to various diseases, especially the ones in which oxidative stress plays a part. Due to an innate oxidation state variation on their surface, CeO2-x nanoparticles have exhibited redox activities in diseases, such as cancer, acting either as an oxidizing agent, or as an antioxidant. In biological models, CeO2-x nanoparticles have been shown to modulate cancer cell viability and, more recently, cell death pathways. However, a deeper understanding on how the chemical structure of CeO2-x nanoparticles (including nanoparticle size, shape, suspension, agglomeration in the medium used, pH of the medium, type of synthesis and crystallite size) influences the cellular effects observed remains to be elucidated. In the present review, the chemistry of CeO2-x nanoparticles and their impact on biological models and modulation of cell signalling, particularly focusing on oxidative and cell death pathways, were investigated. The deeper understanding of the chemical activity of CeO2-x nanoparticles may provide the rationale for further biomedical applications towards disease treatment and drug delivery purposes.
Collapse
Affiliation(s)
- Mariane Brandão Da Silva Assis
- Laboratory of Physical-Chemistry of Materials, Military Institute of Engineering (IME), Rio de Janeiro 22 290 270, Brazil
- Laboratory of Cellular and Molecular Hemato-Oncology, Molecular Hemato-Oncology Program, National Cancer Institute (INCA), Rio de Janeiro 20 230 130, Brazil
| | - Gabriela Nestal De Moraes
- Laboratory of Cellular and Molecular Hemato-Oncology, Molecular Hemato-Oncology Program, National Cancer Institute (INCA), Rio de Janeiro 20 230 130, Brazil
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21 941 599, Brazil
| | - Kátia Regina De Souza
- Laboratory of Physical-Chemistry of Materials, Military Institute of Engineering (IME), Rio de Janeiro 22 290 270, Brazil
| |
Collapse
|
5
|
Shanmugavadivu A, Lekhavadhani S, Miranda PJ, Selvamurugan N. Current approaches in tissue engineering-based nanotherapeutics for osteosarcoma treatment. Biomed Mater 2024; 19:022003. [PMID: 38324905 DOI: 10.1088/1748-605x/ad270b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 02/07/2024] [Indexed: 02/09/2024]
Abstract
Osteosarcoma (OS) is a malignant bone neoplasm plagued by poor prognosis. Major treatment strategies include chemotherapy, radiotherapy, and surgery. Chemotherapy to treat OS has severe adverse effects due to systemic toxicity to healthy cells. A possible way to overcome the limitation is to utilize nanotechnology. Nanotherapeutics is an emerging approach in treating OS using nanoparticulate drug delivery systems. Surgical resection of OS leaves a critical bone defect requiring medical intervention. Recently, tissue engineered scaffolds have been reported to provide physical support to bone defects and aid multimodal treatment of OS. These scaffolds loaded with nanoparticulate delivery systems could also actively repress tumor growth and aid new bone formation. The rapid developments in nanotherapeutics and bone tissue engineering have paved the way for improved treatment efficacy for OS-related bone defects. This review focuses on current bifunctional nanomaterials-based tissue engineered (NTE) scaffolds that use novel approaches such as magnetic hyperthermia, photodynamic therapy, photothermal therapy, bioceramic and polymeric nanotherapeutics against OS. With further optimization and screening, NTE scaffolds could meet clinical applications for treating OS patients.
Collapse
Affiliation(s)
- Abinaya Shanmugavadivu
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Sundaravadhanan Lekhavadhani
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | | | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| |
Collapse
|
6
|
Banerjee D, Adhikary S, Bhattacharya S, Chakraborty A, Dutta S, Chatterjee S, Ganguly A, Nanda S, Rajak P. Breaking boundaries: Artificial intelligence for pesticide detection and eco-friendly degradation. ENVIRONMENTAL RESEARCH 2024; 241:117601. [PMID: 37977271 DOI: 10.1016/j.envres.2023.117601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/21/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
Pesticides are extensively used agrochemicals across the world to control pest populations. However, irrational application of pesticides leads to contamination of various components of the environment, like air, soil, water, and vegetation, all of which build up significant levels of pesticide residues. Further, these environmental contaminants fuel objectionable human toxicity and impose a greater risk to the ecosystem. Therefore, search of methodologies having potential to detect and degrade pesticides in different environmental media is currently receiving profound global attention. Beyond the conventional approaches, Artificial Intelligence (AI) coupled with machine learning and artificial neural networks are rapidly growing branches of science that enable quick data analysis and precise detection of pesticides in various environmental components. Interestingly, nanoparticle (NP)-mediated detection and degradation of pesticides could be linked to AI algorithms to achieve superior performance. NP-based sensors stand out for their operational simplicity as well as their high sensitivity and low detection limits when compared to conventional, time-consuming spectrophotometric assays. NPs coated with fluorophores or conjugated with antibody or enzyme-anchored sensors can be used through Surface-Enhanced Raman Spectrometry, fluorescence, or chemiluminescence methodologies for selective and more precise detection of pesticides. Moreover, NPs assist in the photocatalytic breakdown of various organic and inorganic pesticides. Here, AI models are ideal means to identify, classify, characterize, and even predict the data of pesticides obtained through NP sensors. The present study aims to discuss the environmental contamination and negative impacts of pesticides on the ecosystem. The article also elaborates the AI and NP-assisted approaches for detecting and degrading a wide range of pesticide residues in various environmental and agrecultural sources including fruits and vegetables. Finally, the prevailing limitations and future goals of AI-NP-assisted techniques have also been dissected.
Collapse
Affiliation(s)
- Diyasha Banerjee
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| | - Satadal Adhikary
- Post Graduate Department of Zoology, A. B. N. Seal College, Cooch Behar, West Bengal, India.
| | | | - Aritra Chakraborty
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| | - Sohini Dutta
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| | - Sovona Chatterjee
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| | - Abhratanu Ganguly
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| | - Sayantani Nanda
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| | - Prem Rajak
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| |
Collapse
|
7
|
Fatima A, Zaheer T, Pal K, Abbas RZ, Akhtar T, Ali S, Mahmood MS. Zinc Oxide Nanoparticles Significant Role in Poultry and Novel Toxicological Mechanisms. Biol Trace Elem Res 2024; 202:268-290. [PMID: 37060542 DOI: 10.1007/s12011-023-03651-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/27/2023] [Indexed: 04/16/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) have involved a lot of consideration owing to their distinctive features. The ZnO NPs can be described as particularly synthesized mineral salts via nanotechnology, varying in size from 1 to 100 nm, while zinc oxide (ZnO), it is an inorganic substrate of zinc (Zn). The Zn is a critical trace element necessary for various biological and physiological processes in the body. Studies have revealed ZnO NPs' efficient immuno-modulatory, growth-promoting, and antimicrobial properties in poultry birds. They offer increased bioavailability as compared to their traditional sources, producing better results in terms of productivity and welfare and consequently reducing ecological harm in the poultry sector. However, they have also been reported for their toxicological effects, which are size, shape, concentration, and exposure route dependent. The investigations done so far have yielded inconsistent results, therefore, a lot of additional studies and research are required to clarify the harmful consequences of ZnO NPs and to bring them to a logical end. This review explores an overview of efficient possible role of ZnO NPs, while comparing them with other nutritional Zn sources, in the poultry industry, primarily as dietary supplements that effect the growth, health, and performance of the birds. In addition to the anti-bacterial mechanisms of ZnO NPs and their promising role as antifungal, and anti-colloidal agent, this paper also covers the toxicological mechanisms of ZnO NPs and their consequent toxicological hazards to vital organs and the reproductive system of poultry birds.
Collapse
Affiliation(s)
- Arjmand Fatima
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Tean Zaheer
- Institute of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Kaushik Pal
- University Center for Research and Development (UCRD), Department of Physics, Chandigarh University, Mohali, Gharuan, Punjab, 140413, India.
| | - Rao Zahid Abbas
- Institute of Parasitology, University of Agriculture, Faisalabad, Pakistan.
| | - Tayyaba Akhtar
- KBCMA College of Veterinary and Animal Sciences, Sub-Campus UVAS-Lahore, Narowal, Pakistan
| | - Sultan Ali
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | | |
Collapse
|
8
|
Sisubalan N, Shalini R, Ramya S, Sivamaruthi BS, Chaiyasut C. Recent advances in nanomaterials for neural applications: opportunities and challenges. Nanomedicine (Lond) 2023; 18:1979-1994. [PMID: 38078433 DOI: 10.2217/nnm-2023-0261] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
Nanomedicines are promising for delivering drugs to the central nervous system, though their precision is still being improved. Fortifying nanoparticles with vital molecules can interact with the blood-brain barrier, enabling access to brain tissue. This study summarizes recent advances in nanomedicine to treat neurological complications. The integration of nanotechnology into cell biology aids in the study of brain cells' interactions. Magnetic microhydrogels have exhibited superior neuron activation compared with superparamagnetic iron oxide nanoparticles and hold promise for neuropsychiatric disorders. Nanomaterials have shown notable results, such as tackling neurodegenerative diseases by hindering harmful protein buildup and regulating cellular processes. However, further studies of the safety and effectiveness of nanoparticles in managing neurological diseases and disorders are still required.
Collapse
Affiliation(s)
- Natarajan Sisubalan
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Ramadoss Shalini
- Department of Botany, Bishop Heber College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620017, India
| | - Sakthivel Ramya
- Department of Botany, Bishop Heber College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620017, India
| | - Bhagavathi Sundaram Sivamaruthi
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
9
|
Mahmoodi P, Motavalizadehkakhky A, Darroudi M, Mehrzad J, Zhiani R. Green synthesis of zinc and nickel dual-doped cerium oxide nanoparticles: antioxidant activity and cytotoxicity effects. Bioprocess Biosyst Eng 2023; 46:1569-1578. [PMID: 37700115 DOI: 10.1007/s00449-023-02920-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023]
Abstract
Cerium oxide nanoparticles (CeO2-NPs) and Zn-Ni dual-doped CeO2-NPs were synthesized through a green approach by the implication of zucchini peel (Cucurbita pepo) extract as a capping and reduction agent. All the synthesized samples were studied by the results of FTIR, UV-Vis, XRD, and FESEM/EDAX/PSA analyses. The Zn-Ni dual-doped CeO2-NPs contained a spherical morphology and their size was observed to increase at higher temperatures. The conducted MTT assay on the Huh-7 cell line displayed 50% of cells annihilation as a result of using undoped CeO2-NPs and Zn-Ni dual-doped CeO2-NPs at the inhibitory concentrations (IC50) of 700 and 185.4 μg/mL, respectively. We also evaluated the enzymatic functionality of SOD and CAT of undoped CeO2-NPs and dual-doped NPs and found it to be dose dependent. Moreover, Zn-Ni dual-doped CeO2-NPs intensified the CAT activity without causing any changes in SOD activity in similar concentrations.
Collapse
Affiliation(s)
- Pegah Mahmoodi
- Department of Biochemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Alireza Motavalizadehkakhky
- Department of Chemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran.
- Advanced Research Center for Chemistry, Biochemistry and Nanomaterial, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran.
| | - Majid Darroudi
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| | - Jamshid Mehrzad
- Department of Biochemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
- Advanced Research Center for Chemistry, Biochemistry and Nanomaterial, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Rahele Zhiani
- Advanced Research Center for Chemistry, Biochemistry and Nanomaterial, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
- New Materials Technology and Processing Research Center, Department of Chemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| |
Collapse
|
10
|
Yu T, Cai Z, Chang X, Xing C, White S, Guo X, Jin J. Research Progress of Nanomaterials in Chemotherapy of Osteosarcoma. Orthop Surg 2023; 15:2244-2259. [PMID: 37403654 PMCID: PMC10475694 DOI: 10.1111/os.13806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 05/05/2023] [Accepted: 05/30/2023] [Indexed: 07/06/2023] Open
Abstract
Osteosarcoma (OS) is a common malignant bone tumor that occurs mostly in children and adolescents. At present, surgery after chemotherapy or postoperative adjuvant chemotherapy is the main treatment plan. However, the efficacy of chemotherapeutic drugs is limited by the occurrence of chemotherapeutic resistance, toxicity to normal cells, poor pharmacokinetic performance, and drug delivery failure. The delivery of chemotherapy drugs to the bone to treat OS may fail for a variety of reasons, such as a lack of selectivity for OS cells, initial sudden release, short-term release, and the presence of biological barriers (such as the blood-bone marrow barrier). Nanomaterials are new materials with at least one dimension on the nanometer scale (1-100 nm) in three-dimensional space. These materials have the ability to penetrate biological barriers and can accumulate preferentially in tumor cells. Studies have shown that the effective combination of nanomaterials and traditional chemotherapy can significantly improve the therapeutic effect. Therefore, this article reviews the latest research progress on the use of nanomaterials in OS chemotherapy.
Collapse
Affiliation(s)
- Tianci Yu
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | - Zongyan Cai
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | - Xingyu Chang
- The First Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | - Chengwei Xing
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | - Sylvia White
- Pathology DepartmentYale School of MedicineNew HavenCTUSA
| | - Xiaoxue Guo
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | - Jiaxin Jin
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouChina
- Department of OrthopaedicsThe Second Hospital of Lanzhou UniversityLanzhouChina
| |
Collapse
|
11
|
Wang H, Li J, Li X. Construction and validation of an oxidative-stress-related risk model for predicting the prognosis of osteosarcoma. Aging (Albany NY) 2023; 15:204764. [PMID: 37285835 DOI: 10.18632/aging.204764] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/15/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Osteosarcoma is the most common bone malignancy in teenagers, and warrants effective measures for diagnosis and prognosis. Oxidative stress (OS) is the key driver of several cancers and other diseases. METHODS The TARGET-osteosarcoma database was employed as the training cohort and GSE21257 and GSE39055 was applied for external validation. The patients were classified into the high- and low-risk groups based on the median risk score of each sample. ESTIMATE and CIBERSORT were applied for the evaluation of tumor microenvironment immune infiltration. GSE162454 of single-cell sequencing was employed for analyzing OS-related genes. RESULTS Based on the gene expression and clinical data of 86 osteosarcoma patients in the TARGET database, we identified eight OS-related genes, including MAP3K5, G6PD, HMOX1, ATF4, ACADVL, MAPK1, MAPK10, and INS. In both the training and validation sets, the overall survival of patients in the high-risk group was significantly worse than that in the low-risk group. The ESTIMATE algorithm revealed that patients in the high-risk group had higher tumor purity but lower immune score and stromal score. In addition, the CIBERSORT algorithm showed that the M0 and M2 macrophages were the predominant infiltrating cells in osteosarcoma. Based on the expression analysis of immune checkpoint, CD274(PDL1), CXCL12, BTN3A1, LAG3, and IL10 were identified as potential immune therapy targets. Analysis of the single cell sequencing data also revealed the expression patterns of OS-related genes in different cell types. CONCLUSIONS An OS-related prognostic model can accurately provide the prognosis of osteosarcoma patients, and may help identify suitable candidates for immunotherapy.
Collapse
Affiliation(s)
- Hanning Wang
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, P.R. China
| | - Juntan Li
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, P.R. China
| | - Xu Li
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, P.R. China
| |
Collapse
|
12
|
Sarfraz MH, Muzammil S, Hayat S, Khurshid M, Sayyid AH. Fabrication of chitosan and Trianthema portulacastrum mediated copper oxide nanoparticles: Antimicrobial potential against MDR bacteria and biological efficacy for antioxidant, antidiabetic and photocatalytic activities. Int J Biol Macromol 2023:124954. [PMID: 37211075 DOI: 10.1016/j.ijbiomac.2023.124954] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/26/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023]
Abstract
Biopolymer based metal oxide nanoparticles, prepared by eco-friendly approach, are gaining interest owing to their wide range of applications. In this study, aqueous extract of Trianthema portulacastrum was used for the green synthesis of chitosan base copper oxide (CH-CuO) nanoparticles. The nanoparticles were characterized through UV-Vis Spectrophotometry, SEM, TEM, FTIR and XRD analysis. These techniques provided evidence for the successful synthesis of the nanoparticles, having poly-dispersed spherical shaped morphology with average crystallite size of 17.37 nm. The antibacterial activity for the CH-CuO nanoparticles was determined against multi-drug resistant (MDR), Escherichia coli, Pseudomonas aeruginosa (gram-negative), Enterococcus faecium and Staphylococcus aureus (gram-positive). Maximum activity was obtained against Escherichia coli (24 ± 1.99 mm) while least activity was observed against Staphylococcus aureus (17 ± 1.54 mm). In-vitro analysis for biofilm inhibition, EPS and cell surface hydrophobicity showed >60 % inhibitions for all the bacterial isolates. Antioxidant and photocatalytic assays for the nanoparticles showed significant activities of radical scavenging (81 ± 4.32 %) and dye degradation (88 %), respectively. Antidiabetic activity for the nanoparticles, determined by in-vitro analysis of alpha amylase inhibition, showed enzyme inhibition of 47 ± 3.29 %. The study signifies the potential of CH-CuO nanoparticle as an effective antimicrobial agent against MDR bacteria along with the antidiabetic and photocatalytic activities.
Collapse
Affiliation(s)
| | - Saima Muzammil
- Institute of Microbiology, Government College University, Faisalabad, Pakistan.
| | - Sumreen Hayat
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
| | - Mohsin Khurshid
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
| | - Abid Hussain Sayyid
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
13
|
Fifere N, Airinei A, Doroftei F, Ardeleanu TS, Dobromir M, Tîmpu D, Ursu EL. Phytomediated-Assisted Preparation of Cerium Oxide Nanoparticles Using Plant Extracts and Assessment of Their Structural and Optical Properties. Int J Mol Sci 2023; 24:ijms24108917. [PMID: 37240263 DOI: 10.3390/ijms24108917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/04/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Cerium oxide nanoparticles were obtained using aqueous extracts of Chelidonium majus and Viscum album. X-ray diffractometry analysis confirmed the crystalline structure of the synthesized cerium oxide nanoparticles calcined at 600 °C. Scanning electron microscopy, UV-Vis reflectance and Raman spectroscopy, XPS, and fluorescence studies were utilized to interpret the morphological and optical properties of these nanoparticles. The STEM images revealed the spherical shape of the nanoparticles and that they were predominantly uniform in size. The optical band gap of our cerium nanoparticles was determined to be 3.3 and 3.0 eV from reflectance measurements using the Tauc plots. The nanoparticle sizes evaluated from the Raman band at 464 cm-1 due to the F2g mode of the cubic fluorite structure of cerium oxide are close to those determined from the XRD and STEM data. The fluorescence results showed emission bands at 425, 446, 467, and 480 nm. The electronic absorption spectra have exhibited an absorption band around 325 nm. The antioxidant potential of the cerium oxide nanoparticles was estimated by DPPH scavenging assay.
Collapse
Affiliation(s)
- Nicusor Fifere
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Anton Airinei
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Florica Doroftei
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Tudor Stefan Ardeleanu
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Marius Dobromir
- Department of Exact and Natural Sciences, Institute of Interdisciplinary Research, Alexandru Ioan Cuza University of Iasi, 11 Carol I Blvd., 700506 Iasi, Romania
| | - Daniel Tîmpu
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Elena-Laura Ursu
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
14
|
Maheo A, Vithiya B SM, Arul Prasad T A, Mangesh VL, Perumal T, Al-Qahtani WH, Govindasamy M. Cytotoxic, Antidiabetic, and Antioxidant Study of Biogenically Improvised Elsholtzia blanda and Chitosan-Assisted Zinc Oxide Nanoparticles. ACS OMEGA 2023; 8:10954-10967. [PMID: 37008090 PMCID: PMC10061636 DOI: 10.1021/acsomega.2c07530] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/06/2023] [Indexed: 06/19/2023]
Abstract
In the present study, we have improvised a biogenic method to fabricate zinc oxide nanoparticles (ZnO NPs) using chitosan and an aqueous extract of the leaves of Elsholtzia blanda. Characterization of the fabricated products was carried out with the help of ultraviolet-visible, Fourier transform infrared, X-ray diffraction, field emission scanning electron microscopy, high-resolution transmission electron microscopy, selected area electron diffraction, and energy-dispersive X-ray analyses. The size of the improvised ZnO NP measured between 20 and 70 nm and had a spherical and hexagonal shape. The ZnO NPs proved to be highly effective in the antidiabetic test as the sample showed the highest percentage of enzyme inhibition at 74% ± 3.7, while in the antioxidant test, 78% was the maximum percentage of 2,2-diphenyl-1-picrylhydrazyl hydrate scavenging activity. The cytotoxic effect was investigated against the human osteosarcoma (MG-63) cell line, and the IC50 value was 62.61 μg/mL. Photocatalytic efficiency was studied by the degradation of Congo red where 91% of dye degradation was observed. From the various analyses, it can be concluded that the as-synthesized NPs may be suitable for various biomedical applications as well as for environmental remediation.
Collapse
Affiliation(s)
- Athisa
Roselyn Maheo
- PG
and Research Department of Chemistry, Auxilium
College (Autonomous) (Affiliated to Thiruvalluvar University, Serkadu), Vellore 632006, India
| | - Scholastica Mary Vithiya B
- PG
and Research Department of Chemistry, Auxilium
College (Autonomous) (Affiliated to Thiruvalluvar University, Serkadu), Vellore 632006, India
| | - Augustine Arul Prasad T
- PG
and Research Department of Chemistry, Dwarakadoss
Goverdhandoss Vaishnav College (Autonomous) (Affiliated to University
of Madras), Chennai 600106, India
| | - V. L. Mangesh
- Department
of Mechanical Engineering, Koneru Lakshmaiah
Education Foundation, Vaddeswaram, Guntur 522502, Andhra
Pradesh, India
| | - Tamizhdurai Perumal
- PG
and Research Department of Chemistry, Dwarakadoss
Goverdhandoss Vaishnav College (Autonomous) (Affiliated to University
of Madras), Chennai 600106, India
| | - Wahidah H. Al-Qahtani
- Department
of Food Sciences & Nutrition, College of Food & Agriculture
Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mani Govindasamy
- Faculty,
International Ph.D. Program in Innovative Technology of Biomedical
Engineering and Medical Devices, Ming Chi
University of Technology, New Taipei
City 243303, Taiwan
- Adjunct
Faculty,
Department of Research and Innovation, Saveetha School of Engineering, SIMATS, Thandalam, Chennai 602105, India
- Korea
University of Technology and Education, Cheonan-si 31253, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
15
|
Haq Khan ZU, Khan TM, Khan A, Shah NS, Muhammad N, Tahir K, Iqbal J, Rahim A, Khasim S, Ahmad I, Shabbir K, Gul NS, Wu J. Brief review: Applications of nanocomposite in electrochemical sensor and drugs delivery. Front Chem 2023; 11:1152217. [PMID: 37007050 PMCID: PMC10060975 DOI: 10.3389/fchem.2023.1152217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
The recent advancement of nanoparticles (NPs) holds significant potential for treating various ailments. NPs are employed as drug carriers for diseases like cancer because of their small size and increased stability. In addition, they have several desirable properties that make them ideal for treating bone cancer, including high stability, specificity, higher sensitivity, and efficacy. Furthermore, they might be taken into account to permit the precise drug release from the matrix. Drug delivery systems for cancer treatment have progressed to include nanocomposites, metallic NPs, dendrimers, and liposomes. Materials’ mechanical strength, hardness, electrical and thermal conductivity, and electrochemical sensors are significantly improved using nanoparticles (NPs). New sensing devices, drug delivery systems, electrochemical sensors, and biosensors can all benefit considerably from the NPs’ exceptional physical and chemical capabilities. Nanotechnology is discussed in this article from a variety of angles, including its recent applications in the medical sciences for the effective treatment of bone cancers and its potential as a promising option for treating other complex health anomalies via the use of anti-tumour therapy, radiotherapy, the delivery of proteins, antibiotics, and vaccines, and other methods. This also brings to light the role that model simulations can play in diagnosing and treating bone cancer, an area where Nanomedicine has recently been formulated. There has been a recent uptick in using nanotechnology to treat conditions affecting the skeleton. Consequently, it will pave the door for more effective utilization of cutting-edge technology, including electrochemical sensors and biosensors, and improved therapeutic outcomes.
Collapse
Affiliation(s)
- Zia Ul Haq Khan
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
- *Correspondence: Zia Ul Haq Khan, ; Noor Shad Gul,
| | - Taj Malook Khan
- Drug Discovery Research Center, Southwest Medical University, Luzhou, China
- Department of Pharmacology, Laboratory of Cardiovascular Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Amjad Khan
- Department of Zoology, University of Lakki Marwat, Lakki Marwat, Pakistan
| | - Noor Samad Shah
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Nawshad Muhammad
- Department of Dental Materials, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Kamran Tahir
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan, Pakistan
| | - Jibran Iqbal
- College of Natural and Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates
| | - Abdur Rahim
- Department of Chemistry, COMSATS University Islamabad, Islamabad, Pakistan
| | - Syed Khasim
- Nanotechnology Research Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Department of Physics, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Iftikhar Ahmad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Khadija Shabbir
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Noor Shad Gul
- Drug Discovery Research Center, Southwest Medical University, Luzhou, China
- Department of Pharmacology, Laboratory of Cardiovascular Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, China
- *Correspondence: Zia Ul Haq Khan, ; Noor Shad Gul,
| | - Jianbo Wu
- Drug Discovery Research Center, Southwest Medical University, Luzhou, China
- Department of Pharmacology, Laboratory of Cardiovascular Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
16
|
Mbatha LS, Akinyelu J, Chukwuma CI, Mokoena MP, Kudanga T. Current Trends and Prospects for Application of Green Synthesized Metal Nanoparticles in Cancer and COVID-19 Therapies. Viruses 2023; 15:741. [PMID: 36992450 PMCID: PMC10054370 DOI: 10.3390/v15030741] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Cancer and COVID-19 have been deemed as world health concerns due to the millions of lives that they have claimed over the years. Extensive efforts have been made to develop sophisticated, site-specific, and safe strategies that can effectively diagnose, prevent, manage, and treat these diseases. These strategies involve the implementation of metal nanoparticles and metal oxides such as gold, silver, iron oxide, titanium oxide, zinc oxide, and copper oxide, formulated through nanotechnology as alternative anticancer or antiviral therapeutics or drug delivery systems. This review provides a perspective on metal nanoparticles and their potential application in cancer and COVID-19 treatments. The data of published studies were critically analysed to expose the potential therapeutic relevance of green synthesized metal nanoparticles in cancer and COVID-19. Although various research reports highlight the great potential of metal and metal oxide nanoparticles as alternative nanotherapeutics, issues of nanotoxicity, complex methods of preparation, biodegradability, and clearance are lingering challenges for the successful clinical application of the NPs. Thus, future innovations include fabricating metal nanoparticles with eco-friendly materials, tailor making them with optimal therapeutics for specific disease targeting, and in vitro and in vivo evaluation of safety, therapeutic efficiency, pharmacokinetics, and biodistribution.
Collapse
Affiliation(s)
- Londiwe Simphiwe Mbatha
- Department of Biotechnology and Food Science, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Jude Akinyelu
- Department of Biochemistry, Federal University Oye-Ekiti, Private Mail Bag 373, Ekiti State 370111, Nigeria
| | - Chika Ifeanyi Chukwuma
- Centre for Quality of Health and Living, Faculty of Health and Environmental Sciences, Central University of Technology, Private Bag X20539, Bloemfontein 9301, South Africa
| | - Mduduzi Paul Mokoena
- Department of Pathology, Pre-Clinical Sciences Division, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa
| | - Tukayi Kudanga
- Department of Biotechnology and Food Science, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| |
Collapse
|
17
|
Gupta A, Mehta SK, Kumar A, Singh S. Advent of phytobiologics and nano-interventions for bone remodeling: a comprehensive review. Crit Rev Biotechnol 2023; 43:142-169. [PMID: 34957903 DOI: 10.1080/07388551.2021.2010031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Bone metabolism constitutes the intricate processes of matrix deposition, mineralization, and resorption. Any imbalance in these processes leads to traumatic bone injuries and serious disease conditions. Therefore, bone remodeling plays a crucial role during the regeneration process maintaining the balance between osteoblastogenesis and osteoclastogenesis. Currently, numerous phytobiologics are emerging as the new therapeutics for the treatment of bone-related complications overcoming the synthetic drug-based side effects. They can either target osteoblasts, osteoclasts, or both through different mechanistic pathways for maintaining the bone remodeling process. Although phytobiologics have been widely used since tradition for the treatment of bone fractures recently, the research is accentuated toward the development of osteogenic phytobioactives, constituent-based drug designing models, and efficacious delivery of the phytobioactives. To achieve this, different plant extracts and successful isolation of their phytoconstituents are critical for osteogenic research. Hence, this review emphasizes the phytobioactives based research specifically enlisting the plants and their constituents used so far as bone therapeutics, their respective isolation procedures, and nanotechnological interventions in bone research. Also, the review enlists the vast array of folklore plants and the newly emerging nano-delivery systems in treating bone injuries as the future scope of research in the phytomedicinal orthopedic applications.
Collapse
Affiliation(s)
- Archita Gupta
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Sanjay Kumar Mehta
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, India
| | - Ashok Kumar
- Department of Biological Science and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, India.,Centre for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, India.,The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, India.,Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Sneha Singh
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, India
| |
Collapse
|
18
|
Nandhini SN, Sisubalan N, Vijayan A, Karthikeyan C, Gnanaraj M, Gideon DAM, Jebastin T, Varaprasad K, Sadiku R. Recent advances in green synthesized nanoparticles for bactericidal and wound healing applications. Heliyon 2023; 9:e13128. [PMID: 36747553 PMCID: PMC9898667 DOI: 10.1016/j.heliyon.2023.e13128] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
Nanotechnology has become an exciting area of research in diverse fields, such as: healthcare, food, agriculture, cosmetics, paints, lubricants, fuel additives and other fields. This review is a novel effort to update the practioneers about the most current developments in the widespread use of green synthesized nanoparticles in medicine. Biosynthesis is widely preferred among different modes of nanoparticle synthesis since they do not require toxic chemical usage and they are environment-friendly. In the green bioprocess, plant, algal, fungal and cyanobacterial extract solutions have been utilized as nucleation/capping agents to develop effective nanomaterials for advanced medical applications. Several metal salts, such as silver, zinc, titanium and other inorganic salts, were utilized to fabricate innovative nanoparticles for healthcare applications. Irrespective of the type of wound, infection in the wound area is a widespread problem. Micro-organisms, the prime reason for wound complications, are gradually gaining resistance against the commonly used antimicrobial drugs. This necessitates the need to generate nanoparticles with efficient antimicrobial potential to keep the pathogenic microbes under control. These nanoparticles can be topically applied as an ointment and also be used by incorporating them into hydrogels, sponges or electrospun nanofibers. The main aim of this review is to highlight the recent advances in the Ag, ZnO and TiO2 nanoparticles with possible wound healing applications, coupled with the bactericidal ability of a green synthesis process.
Collapse
Affiliation(s)
- Shankar Nisha Nandhini
- PG and Research Department of Botany, St. Joseph's College (Autonomous), Tiruchirappalli, 620 002, Tamil Nadu, India
| | - Natarajan Sisubalan
- Department of Botany, Bishop Heber College (Autonomous), Affi. to Bharathidasan University, Trichy, 620017, Tamil Nadu, India,Department of Chemical and Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea,Corresponding author. Department of Botany, Bishop Heber College (Autonomous), Affi. to Bharathidasan University, Trichy, 620017, Tamil Nadu, India.;
| | - Arumugam Vijayan
- Department of Microbiology, SRM Institute of Science and Technology, Tiruchirappalli Campus, Tiruchirappalli, 621105, TN, India
| | | | - Muniraj Gnanaraj
- Department of Biotechnology and Bioinformatics, Bishop Heber College (Autonomous), Tiruchirappalli, 620 017, India
| | - Daniel Andrew M. Gideon
- Department of Biochemistry, St. Joseph's University, Langford Road, Bengaluru, 560027, Karnataka, India
| | - Thomas Jebastin
- Department of Biotechnology and Bioinformatics, Bishop Heber College (Autonomous), Tiruchirappalli, 620 017, India
| | - Kokkarachedu Varaprasad
- Facultad de Ingeniería, Arquitectura y Deseno, Universidad San Sebastián, Lientur 1457, Concepción, 4080871, Chile,Corresponding author. Universidad San Sebastián, Lientur 1457, Concepción, 4080871, Chile.;
| | - Rotimi Sadiku
- Institute of Nano Engineering Research (INER), Department of Chemical, Metallurgical and Materials Engineering (Polymer Division), Tshwane University of Technology, Pretoria West Campus, Staatsarillerie Rd, Pretoria, 1083, South Africa
| |
Collapse
|
19
|
Synthesis, biomedical applications, and toxicity of CuO nanoparticles. Appl Microbiol Biotechnol 2023; 107:1039-1061. [PMID: 36635395 PMCID: PMC9838533 DOI: 10.1007/s00253-023-12364-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/27/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023]
Abstract
Versatile nature of copper oxide nanoparticles (CuO NPs) has made them an imperative nanomaterial being employed in nanomedicine. Various physical, chemical, and biological methodologies are in use for the preparation of CuO NPs. The physicochemical and biological properties of CuO NPs are primarily affected by their method of fabrication; therefore, selectivity of a synthetic technique is immensely important that makes these NPs appropriate for a specific biomedical application. The deliberate use of CuO NPs in biomedicine questions their biocompatible nature. For this reason, the present review has been designed to focus on the approaches employed for the synthesis of CuO NPs; their biomedical applications highlighting antimicrobial, anticancer, and antioxidant studies; and most importantly, the in vitro and in vivo toxicity associated with these NPs. This comprehensive overview of CuO NPs is unique and novel as it emphasizes on biomedical applications of CuO NPs along with its toxicological assessments which would be useful in providing core knowledge to researchers working in these domains for planning and conducting futuristic studies. KEY POINTS: • The recent methods for fabrication of CuO nanoparticles have been discussed with emphasis on green synthesis methods for different biomedical approaches. • Antibacterial, antioxidant, anticancer, antiparasitic, antidiabetic, and antiviral properties of CuO nanoparticles have been explained. • In vitro and in vivo toxicological studies of CuO nanoparticles exploited along with their respective mechanisms.
Collapse
|
20
|
Sun H, Zhou X, Zhang Y, Zhang L, Yu X, Ye Z, Laurencin CT. Bone Implants (Bone Regeneration and Bone Cancer Treatments). BIOFABRICATION FOR ORTHOPEDICS 2022:265-321. [DOI: 10.1002/9783527831371.ch10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
21
|
Butt A, Ali JS, Sajjad A, Naz S, Zia M. Biogenic synthesis of cerium oxide nanoparticles using petals of Cassia glauca and evaluation of antimicrobial, enzyme inhibition, antioxidant, and nanozyme activities. BIOCHEM SYST ECOL 2022. [DOI: 10.1016/j.bse.2022.104462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
22
|
Biogenic synthesis of nickel oxide nanoparticles using Averrhoa bilimbi and investigation of its antibacterial, antidiabetic and cytotoxic properties. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Pansambal S, Oza R, Borgave S, Chauhan A, Bardapurkar P, Vyas S, Ghotekar S. Bioengineered cerium oxide (CeO2) nanoparticles and their diverse applications: a review. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02574-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Alqarni LS, Alghamdi MD, Alshahrani AA, Nassar AM. Green Nanotechnology: Recent Research on Bioresource-Based Nanoparticle Synthesis and Applications. J CHEM-NY 2022; 2022:1-31. [DOI: 10.1155/2022/4030999] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
In the last decades, the idea of green nanotechnology has been expanding, and researchers are developing greener and more sustainable techniques for synthesizing nanoparticles (NPs). The major objectives are to fabricate NPs using simple, sustainable, and cost-effective procedures while avoiding the use of hazardous materials that are usually utilized as reducing or capping agents. Many biosources, including plants, bacteria, fungus, yeasts, and algae, have been used to fabricate NPs of various shapes and sizes. The authors of this study emphasized the most current studies for fabricating NPs from biosources and their applications in a wide range of fields. This review addressed studies that cover green techniques for synthesizing nanoparticles of Ag, Au, ZnO, CuO, Co3O4, Fe3O4, TiO2, NiO, Al2O3, Cr2O3, Sm2O3, CeO2, La2O3, and Y2O3. Also, their applications were taken under consideration and discussed.
Collapse
Affiliation(s)
- Laila S. Alqarni
- Department of Chemistry, Faculty of Science, Albaha University, Albaha, Saudi Arabia
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Maha D. Alghamdi
- Department of Chemistry, Faculty of Science, Albaha University, Albaha, Saudi Arabia
| | - Aisha A. Alshahrani
- Department of Chemistry, Faculty of Science, Albaha University, Albaha, Saudi Arabia
| | - Amr M. Nassar
- Chemistry Department, College of Science, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
25
|
Efficacy of Green Cerium Oxide Nanoparticles for Potential Therapeutic Applications: Circumstantial Insight on Mechanistic Aspects. NANOMATERIALS 2022; 12:nano12122117. [PMID: 35745455 PMCID: PMC9227416 DOI: 10.3390/nano12122117] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/05/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022]
Abstract
Green synthesized cerium oxide nanoparticles (GS-CeO2 NPs) have a unique size, shape, and biofunctional properties and are decorated with potential biocompatible agents to perform various therapeutic actions, such as antimicrobial, anticancer, antidiabetic, and antioxidant effects and drug delivery, by acquiring various mechanistic approaches at the molecular level. In this review article, we provide a detailed overview of some of these critical mechanisms, including DNA fragmentation, disruption of the electron transport chain, degradation of chromosomal assemblage, mitochondrial damage, inhibition of ATP synthase activity, inhibition of enzyme catalytic sites, disorganization, disruption, and lipid peroxidation of the cell membrane, and inhibition of various cellular pathways. This review article also provides up-to-date information about the future applications of GS-CeONPs to make breakthroughs in medical sectors for the advancement and precision of medicine and to effectively inform the disease diagnosis and treatment strategies.
Collapse
|
26
|
Therapeutic potential of biogenic and optimized silver nanoparticles using Rubia cordifolia L. leaf extract. Sci Rep 2022; 12:8831. [PMID: 35614187 PMCID: PMC9133087 DOI: 10.1038/s41598-022-12878-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/12/2022] [Indexed: 12/24/2022] Open
Abstract
Rubia cordifolia L. is a widely used traditional medicine in the Indian sub-continent and Eastern Asia. In the present study, the aqueous leaf extract of the R. Cordifolia was used to fabricate silver nanoparticles (RC@AgNPs), following a green synthesis approach. Effect of temperature (60 °C), pH (8), as well the concentration of leaf extract (2 ml) and silver nitrate (2 mM) were optimized for the synthesis of stable RC@AgNPs. The phytofabrication of nanosilver was validated by UV–visible spectral analysis, which displayed a distinctive surface plasmon resonance peak at 432 nm. The effective functional molecules as capping and stabilizing agents, and responsible for the conversion of Ag+ to nanosilver (Ag0) were identified using the FTIR spectra. The spherical RC@AgNPs with an average size of ~ 20.98 nm, crystalline nature, and 61% elemental composition were revealed by TEM, SEM, XRD, and. EDX. Biogenic RC@AgNPs displayed a remarkable anticancer activity against B16F10 (melanoma) and A431 (carcinoma) cell lines with respective IC50 of 36.63 and 54.09 µg/mL, respectively. Besides, RC@AgNPs showed strong antifungal activity against aflatoxigenic Aspergillus flavus, DNA-binding properties, and DPPH and ABTS free radical inhibition. The presented research provides a potential therapeutic agent to be utilized in various biomedical applications.
Collapse
|
27
|
Chopra H, Bibi S, Singh I, Hasan MM, Khan MS, Yousafi Q, Baig AA, Rahman MM, Islam F, Emran TB, Cavalu S. Green Metallic Nanoparticles: Biosynthesis to Applications. Front Bioeng Biotechnol 2022; 10:874742. [PMID: 35464722 PMCID: PMC9019488 DOI: 10.3389/fbioe.2022.874742] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/22/2022] [Indexed: 12/14/2022] Open
Abstract
Current advancements in nanotechnology and nanoscience have resulted in new nanomaterials, which may pose health and environmental risks. Furthermore, several researchers are working to optimize ecologically friendly procedures for creating metal and metal oxide nanoparticles. The primary goal is to decrease the adverse effects of synthetic processes, their accompanying chemicals, and the resulting complexes. Utilizing various biomaterials for nanoparticle preparation is a beneficial approach in green nanotechnology. Furthermore, using the biological qualities of nature through a variety of activities is an excellent way to achieve this goal. Algae, plants, bacteria, and fungus have been employed to make energy-efficient, low-cost, and nontoxic metallic nanoparticles in the last few decades. Despite the environmental advantages of using green chemistry-based biological synthesis over traditional methods as discussed in this article, there are some unresolved issues such as particle size and shape consistency, reproducibility of the synthesis process, and understanding of the mechanisms involved in producing metallic nanoparticles via biological entities. Consequently, there is a need for further research to analyze and comprehend the real biological synthesis-dependent processes. This is currently an untapped hot research topic that required more investment to properly leverage the green manufacturing of metallic nanoparticles through living entities. The review covers such green methods of synthesizing nanoparticles and their utilization in the scientific world.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Rajpura, India
| | - Shabana Bibi
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, China
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming, China
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, India
| | - Mohammad Mehedi Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Muhammad Saad Khan
- Department of Biosciences, COMSATS University Islamabad, Sahiwal, Pakistan
| | - Qudsia Yousafi
- Department of Biosciences, COMSATS University Islamabad, Sahiwal, Pakistan
| | - Atif Amin Baig
- Unit of Biochemistry, Faculty of Medicine, University Sultan Zainal Abidin, Kuala Terengganu, Malaysia
| | - Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
28
|
Alahmdi MI, Khasim S, Vanaraj S, Panneerselvam C, Mahmoud MAA, Mukhtar S, Alsharif MA, Zidan NS, Abo-Dya NE, Aldosari OF. Green Nanoarchitectonics of ZnO Nanoparticles from Clitoria ternatea Flower Extract for In Vitro Anticancer and Antibacterial Activity: Inhibits MCF-7 Cell Proliferation via Intrinsic Apoptotic Pathway. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02263-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Recent progress of phytogenic synthesis of ZnO, SnO 2, and CeO 2 nanomaterials. Bioprocess Biosyst Eng 2022; 45:619-645. [PMID: 35244777 DOI: 10.1007/s00449-022-02713-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/14/2022] [Indexed: 01/17/2023]
Abstract
A critical investigation on the fabrication of metal oxide nanoparticles (NPs) such as ZnO, SnO2, and CeO2 NPs synthesized from green and phytogenic method using plants and various plant parts have been compiled. In this review, different plant extraction methods, synthesis methods, characterization techniques, effects of plant extract on the physical, chemical, and optical properties of green synthesized ZnO, SnO2, and CeO2 NPs also have been compiled and discussed. Effect of several parameters on the size, morphology, and optical band gap energy of metal oxide have been explored. Moreover, the role of solvents has been found important and discussed. Extract composition i.e. phytochemicals also found to affect the morphology and size of the synthesized ZnO, SnO2, and CeO2 NPs. It was found that, there is no universal extraction method that is ideal and extraction techniques is unique to the plant type, plant parts, and solvent used.
Collapse
|
30
|
Feng N, Liu Y, Dai X, Wang Y, Guo Q, Li Q. Advanced applications of cerium oxide based nanozymes in cancer. RSC Adv 2022; 12:1486-1493. [PMID: 35425183 PMCID: PMC8979138 DOI: 10.1039/d1ra05407d] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/22/2021] [Indexed: 12/24/2022] Open
Abstract
Cerium oxide nanozymes have emerged as a new type of bio-antioxidants in recent years. CeO2 nanozymes possess enzyme mimetic activities with outstanding free radical scavenging activity, facile synthesis conditions, and excellent biocompatibility. Based on these extraordinary properties, use of CeO2 nanozymes has been demonstrated to be a highly versatile therapeutic method for many diseases, such as for inflammation, rheumatoid arthritis, hepatic ischemia-reperfusion injury and Alzheimer's disease. In addition to that, CeO2 nanozymes have been widely used in the diagnosis and treatment of cancer. Many examples can be found in the literature, such as magnetic resonance detection, tumour marker detection, chemotherapy, radiotherapy, photodynamic therapy (PDT), and photothermal therapy (PTT). This review systematically summarises the latest applications of CeO2-based nanozymes in cancer research and treatment. We believe that this paper will help develop value-added CeO2 nanozymes, offering great potential in the biotechnology industry and with great significance for the diagnosis and treatment of a wide range of malignancies.
Collapse
Affiliation(s)
- Na Feng
- Department of Molecular Pathology, Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450052 China
- Center for Precision Medicine, Academy of Medical Sciences, Zhengzhou University Zhengzhou 450001 China
| | - Ying Liu
- Center for Precision Medicine, Academy of Medical Sciences, Zhengzhou University Zhengzhou 450001 China
| | - Xianglin Dai
- Department of Molecular Pathology, Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450052 China
- Center for Precision Medicine, Academy of Medical Sciences, Zhengzhou University Zhengzhou 450001 China
| | - Yingying Wang
- Center for Precision Medicine, Academy of Medical Sciences, Zhengzhou University Zhengzhou 450001 China
| | - Qiong Guo
- Department of Molecular Pathology, Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450052 China
- Center for Precision Medicine, Academy of Medical Sciences, Zhengzhou University Zhengzhou 450001 China
| | - Qing Li
- Department of Molecular Pathology, Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450052 China
- Center for Precision Medicine, Academy of Medical Sciences, Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
31
|
Karthikeyan C, Sisubalan N, Varaprasad K, Aepuru R, Yallapu MM, Viswanathan MR, Umaralikhan, Sadiku R. Hybrid nanoparticles from chitosan and nickel for enhanced biocidal activities. NEW J CHEM 2022. [DOI: 10.1039/d2nj02009b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cs/Ni/NiO hybrid nanomaterials were prepared by using the precipitation method, The HNPs displayed a nanoflake-like structure and showed high biocidal activity against S. aureus and E. coli strains and breast cancer cell lines.
Collapse
Affiliation(s)
| | - Natarajan Sisubalan
- Department of Botany, Bishop Heber College (Autonomous), Affi. To Bharathidasan University, Trichy 620017, Tamil Nadu, India
| | - Kokkarachedu Varaprasad
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Lientur 1457, Concepción 4080871, Chile
| | - Radhamanohar Aepuru
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad Tecnológica Metropolitana, Santiago, Chile
| | - Murali M. Yallapu
- Department of Immunology and Microbiology, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | | | - Umaralikhan
- PG and Research Department of Physics, Jamal Mohamed College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli 620020, Tamil Nadu, India
| | - Rotimi Sadiku
- Institute of Nano Engineering Research (INER), Department of Chemical, Metallurgical & Materials Engineering (Polymer Divison), Tshwane University of Technology, Pretoria West Campus, Staatsarillerie Rd, Pretoria 1083, South Africa
| |
Collapse
|
32
|
Abstract
The use of natural products has been increasing at a rapid pace, worldwide, with the aim to maintain a healthy lifestyle and to modify one's dietary habits. Ayurveda is a domain that has numerous wealth of information concerning medicinal plants and its part in controlling numerous ailments, such as neoplastic, cardiovascular, neurological plus immunological ailments. The use of such medicinal plants is important for preventing such diseases, especially "cancer" which is the succeeding foremost cause of mortality collectively. Even though abundant developments have been made in the management and control of cancer progression, substantial deficits and scope for advancement still continue to be unchanged. Several lethal adjacent consequences occur throughout the course of chemotherapy. Natural treatments, such as the use of plant-derived products in the treatment of cancer, might reduce the hostile side effects. Presently, a few plant-based products and its phytoconstituents are being utilized for the management of cancer. Here we have focused on numerous plant-derived phytochemicals and promising compounds from these plants to act as anticancer agents, along with their mechanisms of action.
Collapse
Affiliation(s)
- Nikhil Pandey
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Y B Tripathi
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
| |
Collapse
|
33
|
Yao Y, Tang M. Advances in endocrine toxicity of nanomaterials and mechanism in hormone secretion disorders. J Appl Toxicol 2021; 42:1098-1120. [PMID: 34935166 DOI: 10.1002/jat.4266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/23/2021] [Accepted: 11/05/2021] [Indexed: 12/14/2022]
Abstract
The size of nanoparticles is about 1-100 nm. People are exposed to nanoparticles in environmental pollutants from ancient times to the present. With the maturity of nanotechnology in the past two decades, the production of manufactured nanomaterials is rapidly increasing and they are used in a wide range of aerospace, medicine, food, and industrial applications. However, both natural and manufactured nanomaterials have been proved to pose a threat to diverse organs and systems. The endocrine system is critical to maintaining homeostasis. Endocrine disorders are associated with many diseases, including cancer, reduced fertility, and metabolic diseases. Therefore, we review the literatures dealing with the endocrine toxicity of nanomaterial. This review provides an exhaustive description of toxic effects of several common nanomaterials in the endocrine system; more involved are reproductive endocrinology. Then physicochemical factors that determine the endocrine toxicity of nanomaterials are discussed. Furthermore, oxidative stress, changes in steroid production and metabolic enzymes, organelle disruption, and alterations in signal pathways are introduced as potential mechanisms that may cause changes in hormone levels. Finally, we suggest that a risk assessment of endocrine toxicity based on standard procedures and consideration of endocrine disrupting effects of nanomaterials in the field and its environmental and population effects could be future research directions for endocrine toxicity of nanomaterials.
Collapse
Affiliation(s)
- Yongshuai Yao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
34
|
Dutta G, Sugumaran A. Bioengineered zinc oxide nanoparticles: Chemical, green, biological fabrication methods and its potential biomedical applications. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
Rani N, Rawat K, Saini M, Shrivastava A, Kandasamy G, Saini K, Maity D. Rod-shaped ZnO nanoparticles: synthesis, comparison and in vitro evaluation of their apoptotic activity in lung cancer cells. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01942-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
36
|
Joshi BC, Juyal V, Sah AN, Verma P, Mukhija M. Review On Documented Medicinal Plants Used For The Treatment Of Cancer. CURRENT TRADITIONAL MEDICINE 2021. [DOI: 10.2174/2215083807666211011125110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background:
Cancer is a frightful disease and it is the second leading cause of death worldwide. Naturally derived compounds are gaining interest of research workers as they have less toxic side effects as compared to currently used treatments such as chemotherapy. Plants are the pool of chemical compounds which provides a promising future for research on cancer.
Objective:
This review paper provides updated information gathered on medicinal plants and isolated phytoconstituents used as anticancer agents and summarises the plant extracts and their isolated chemical constituents exhibiting anticancer potential on clinical trials.
Methods:
An extensive bibliographic investigation was carried out by analysing worldwide established scientific databases like SCOPUS, PUBMED, SCIELO, ScienceDirect, Springerlink, Web of Science, Wiley, SciFinder and Google Scholar etc. In next few decades, herbal medicine may become a new epoch of medical system.
Results:
Many researches are going on medicinal plants for the treatment of cancer but it is a time to increase further experimental studies on plant extracts and their chemical constituents to find out their mechanism of action at molecular level.
Conclusion:
The article may help many researchers to start off further experimentation that might lead to the drugs for the cancer treatment.
Collapse
Affiliation(s)
- Bhuwan Chandra Joshi
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Vijay Juyal
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Archana N. Sah
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Piyush Verma
- Department of Pharmacology, School of Pharmaceutical science and Technology, Sardar Bhagwan Singh University, Dehradun-248001, India
| | - Minky Mukhija
- Department of Pharmaceutical Sciences, Ch. Devi Lal College of Pharmacy, Buria Road, Bhagwangarh, Jagadhri-135003, India
| |
Collapse
|
37
|
Sisubalan N, Karthikeyan C, Senthil Kumar V, Varaprasad K, Haja Hameed ASA, Vanajothi R, Sadiku R. Biocidal activity of Ba 2+-doped CeO 2 NPs against Streptococcus mutans and Staphylococcus aureus bacterial strains. RSC Adv 2021; 11:30623-30634. [PMID: 35479864 PMCID: PMC9041105 DOI: 10.1039/d1ra05948c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/27/2021] [Indexed: 12/27/2022] Open
Abstract
Mishandling of antibiotics often leads to the development of multiple drug resistance (MDR) among microbes, resulting in the failure of infection treatments and putting human health at great risk. As a response, unique nanomaterials with superior bioactivity must be developed to combat bacterial infections. Herein, CeO2-based nanomaterials (NMs) were synthesized by employing cerium(iii) nitrate and selective alkaline ions. Moreover, the influence of alkaline ions on CeO2 was investigated, and their characteristics, viz.: biochemical, structural, and optical properties, were altered. The size of nano Ba-doped CeO2 (BCO) was ∼2.3 nm, relatively smaller than other NMs and the antibacterial potential of CeO2, Mg-doped CeO2 (MCO), Ca-doped CeO2 (CCO), Sr-doped CeO2 (SCO), and Ba-doped CeO2 (BCO) NMs against Streptococcus mutans (S. mutans) and Staphylococcus aureus (S. aureus) strains was assessed. BCO outperformed all NMs in terms of antibacterial efficacy. In addition, achieving the enhanced bioactivity of BCO due to reduced particle size facilitated the easy penetration into the bacterial membrane and the presence of a sizeable interfacial surface. In this study, the minimum quantity of BCO required to achieve the complete inhibition of bacteria was determined to be 1000 μg mL-1 and 1500 μg mL-1 for S. mutans and S. aureus, respectively. The cytotoxicity test with L929 fibroblast cells demonstrated that BCO was less toxic to healthy cells. Furthermore, BCO did not show any toxicity and cell morphological changes in the L929 fibroblast cells, which is similar to the control cell morphology. Overall, the results suggest that nano BCO can be used in biomedical applications, which can potentially help improve human health conditions.
Collapse
Affiliation(s)
- Natarajan Sisubalan
- Department of Botany, Bishop Heber College, Affiliated to Bharathidasan University Trichy 620017 Tamil Nadu India
| | - Chandrasekaran Karthikeyan
- Centro de Investigaciòn de Polimeros Avanzados (CIPA) Avendia Collao 1202, Edificio de Laboratorios de CIPA Concepciòn Chile
- KIRND Institute of Research and Development PVT LTD Tiruchirappalli 620020 Tamil Nadu India
| | | | - Kokkarachedu Varaprasad
- Centro de Investigaciòn de Polimeros Avanzados (CIPA) Avendia Collao 1202, Edificio de Laboratorios de CIPA Concepciòn Chile
| | - Abdulrahman Syed Ahamed Haja Hameed
- PG and Research Department of Physics, Jamal Mohamed College (Affiliated to Bharathidasan University) Tiruchirappalli Tamil Nadu 620 020 India
| | - Ramar Vanajothi
- Department of Zoology, Fatima College Madurai 625001 Tamil Nadu India
| | - Rotimi Sadiku
- Institute of NanoEngineering Research (INER), Department of Chemical, Metallurgical & Materials Engineering (Polymer Division), Tshwane University of Technology, Pretoria West Campus Staatsarillerie Rd Pretoria 1083 South Africa
| |
Collapse
|
38
|
Shah A, Tauseef I, Yameen MA, Haleem SK, Haq S, Shoukat S. In-vivo toxicity and therapeutic efficacy of Paeonia emodi-mediated zinc oxide nanoparticles: In-vitro study. Microsc Res Tech 2021; 85:181-192. [PMID: 34390521 DOI: 10.1002/jemt.23894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/01/2021] [Accepted: 07/21/2021] [Indexed: 01/19/2023]
Abstract
This study was planned to explore the in-vitro and in-vivo therapeutic significance of Paeonia emodi-mediated zinc oxide nanoparticles (ZnO NPs) against the Staphylococcus aureus and Escherichia coli. The texture parameters were derived from nitrogen adsorption-desorption data using Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods, and the surface area (SBET ) was found to be 214 m2 /g with a pore size of 2.3 nm. The crystallographic parameters were investigated through X-ray diffraction analysis, and the calculated crystallite size is 29.13 nm. The microstructure was examined through transmission and scanning electron microscopies (TEM and SEM, respectively), and the average particle size estimated from a TEM image is 44.40 nm. The chemical composition and attached function groups were identified through energy-dispersive X-ray and Fourier transform infrared spectroscopies. The in-vitro minimum inhibitory concentration (MIC) for both bacterial species results was found less than 2 μg/ml. The tolerance limit of mouse models was evaluated by the inoculation of different concentrations of ZnO suspension where the concentration above 23 ppm was proved lethal. The maximum infection was caused in mouse models by inoculation of 3 × 107 CFUs (Colony forming unit) of the both bacterial species. The concentration higher than 3 × 107 CFUs led to the ultimate death of the mice. The histopathological and hematological studies reveal that the after simultaneous inoculation of both ZnO NPs and bacterial suspensions (tolerated amount), no/negligible infection was found in the mice model.
Collapse
Affiliation(s)
- Amreen Shah
- Department of Microbiology, Hazara University, Mansehra, Pakistan
| | - Isfahan Tauseef
- Department of Microbiology, Hazara University, Mansehra, Pakistan
| | - Muhammad Arfat Yameen
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | | | - Sirajul Haq
- Department of Chemistry, University of Azad Jammu and Kashmir, Muzffarabad, Pakistan
| | - Sabeena Shoukat
- Department of Chemistry, Hazara University, Mansehra, Pakistan
| |
Collapse
|
39
|
Naidi SN, Harunsani MH, Tan AL, Khan MM. Green-synthesized CeO 2 nanoparticles for photocatalytic, antimicrobial, antioxidant and cytotoxicity activities. J Mater Chem B 2021; 9:5599-5620. [PMID: 34161404 DOI: 10.1039/d1tb00248a] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cerium oxide nanoparticles (CeO2 NPs) are a sought-after material in numerous fields due to their potential applications such as in catalysis, cancer therapy, photocatalytic degradation of pollutants, sensors, polishing agents. Green synthesis usually involves the production of CeO2 assisted by organic extracts obtained from plants, leaves, flowers, bacteria, algae, food, fruits, etc. The phytochemicals present in the organic extracts adhere to the NPs and act as reducing and/or oxidizing agents and capping agents to stabilize the NPs, modify the particle size, morphology and band gap energy of the as-synthesized materials, which would be advantageous for numerous applications. This review focuses on the green extract-mediated synthesis of CeO2 NPs and discusses the effects on CeO2 NPs of various synthesis methods that have been reported. Several photocatalytic, antimicrobial, antioxidant and cytotoxicity applications have been evaluated, compared and discussed. Future prospects are also suggested.
Collapse
Affiliation(s)
- Siti Najihah Naidi
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam.
| | - Mohammad Hilni Harunsani
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam.
| | - Ai Ling Tan
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam.
| | - Mohammad Mansoob Khan
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam.
| |
Collapse
|
40
|
Caregnato P, Espinosa Jiménez KR, Villabrille PI. Ce-doped ZnO as photocatalyst for carbamazepine degradation. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.07.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
Karthikeyan C, Sisubalan N, Sridevi M, Varaprasad K, Ghouse Basha MH, Shucai W, Sadiku R. Biocidal chitosan-magnesium oxide nanoparticles via a green precipitation process. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:124884. [PMID: 33858076 DOI: 10.1016/j.jhazmat.2020.124884] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/28/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
In the present scenario, the development of eco-friendly multifunctional biocidal substances with low cost and high efficiency, has become the center of focus. This study is, focused on the synthesis of magnesium oxide (MgO) and chitosan-modified magnesium oxide (CMgO) nanoparticles (NPs), via a green precipitation process. In this process, leaves extract of Plumbago zeylanica L was, used as a nucleating agent. The MgO and CMgO NPs exhibit face-centered cubic structures, as confirmed by XRD studies. Morphologically, the FESEM and TEM images showed that the MgO and CMgO NPs were spherical, with an average particle size of ~40±2 and ~37±2 nm, respectively. EDX spectra were used to identify the elemental compositions of the nanoparticles. By using FTIR spectra, the Mg-O stretching frequency of MgO and CMgO NPs were observed at 431 and 435 cm-1, respectively. The photoluminescence (PL) spectra of MgO and CMgO NPs, revealed oxygen vacancies at 499 nm and 519 nm, respectively, due to the active radicals generated, which were responsible for their biocidal activities. The toxicity effects of the nanoparticles developed, on cell viability (antibacterial and anticancer), were measured on the MCF-7 cell line and six different types of gram-negative bacteria. The antibacterial activities of the nanoparticles on: Klebsiella pneumoniae, Escherichia coli, Shigella dysenteriae, Pseudomonas aeruginosa, Proteus vulgaris and Vibrio cholerae bacteria, were studied with the well diffusion method. The MgO and CMgO NPs were tested on breast cancer cell line (MCF-7) via an MTT assay and it proved that CMgO NPs possess higher anticancer properties than MgO NPs. Overall, CMgO NPs showed a higher amount of cytotoxicity for both the bacterial and cancer cells when compared to the MgO NPs. Toxicity studies of fibroblast L929 cells revealed that the CMgO NPs were less harmful to the healthy cells when compared to the MgO NPs. These results suggest that biopolymer chitosan-modified MgO NPs can be used for healthcare industrial applications in order to improve human health conditions.
Collapse
Affiliation(s)
- Chandrasekaran Karthikeyan
- KIRND Institute of Research and Development PVT LTD, Tiruchirappalli 620020, Tamil Nadu, India; Centro de Investigaciòn de Polimeros Avanzados (CIPA), Avendia Collao 1202, Edificio de Laboratorios de CIPA, Concepciòn, Chile
| | - Natarajan Sisubalan
- KIRND Institute of Research and Development PVT LTD, Tiruchirappalli 620020, Tamil Nadu, India; Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China; Department of Botany, Bishop Heber College (Autonomous), Affi. To Bharathidasan University, Trichy 620017, Tamil Nadu, India.
| | - Mani Sridevi
- KIRND Institute of Research and Development PVT LTD, Tiruchirappalli 620020, Tamil Nadu, India
| | - Kokkarachedu Varaprasad
- Centro de Investigaciòn de Polimeros Avanzados (CIPA), Avendia Collao 1202, Edificio de Laboratorios de CIPA, Concepciòn, Chile
| | - Mohamed Hussain Ghouse Basha
- PG and Research Department of Botany, Jamal Mohamed College (Autonomous), Affi. To Bharathidasan University, Trichy 620020, Tamil Nadu, India
| | - Wang Shucai
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China; School of Life Sciences, Linyi University, Linyi 276005, China
| | - Rotimi Sadiku
- Institute of Nano Engineering Research (INER), Department of Chemical, Metallurgical & Materials Engineering (Polymer Division), Tshwane University of Technology, Pretoria West Campus, Staatsarillerie Rd, Pretoria 1083, South Africa
| |
Collapse
|
42
|
Roy S, Mukherjee P, Das PK, Ghosh PR, Datta P, Kundu B, Nandi SK. Local delivery systems of morphogens/biomolecules in orthopedic surgical challenges. MATERIALS TODAY COMMUNICATIONS 2021; 27:102424. [DOI: 10.1016/j.mtcomm.2021.102424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
43
|
Prasad AR, Williams L, Garvasis J, Shamsheera K, Basheer SM, Kuruvilla M, Joseph A. Applications of phytogenic ZnO nanoparticles: A review on recent advancements. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115805] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Biosynthesis of TiO2 nanoparticles by Acalypha indica; photocatalytic degradation of methylene blue. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01761-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
45
|
Barani M, Mukhtar M, Rahdar A, Sargazi S, Pandey S, Kang M. Recent Advances in Nanotechnology-Based Diagnosis and Treatments of Human Osteosarcoma. BIOSENSORS 2021; 11:55. [PMID: 33672770 PMCID: PMC7924594 DOI: 10.3390/bios11020055] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 12/24/2022]
Abstract
Osteosarcoma (OSA) is a type of bone cancer that begins in the cells that form bones.OSA is a rare mesenchymal bone neoplasm derived from mesenchymal stem cells. Genome disorganization, chromosomal modifications, deregulation of tumor suppressor genes, and DNA repair defects are the factors most responsible for OSA development. Despite significant advances in the diagnosing and treatment of OSA, patients' overall survival has not improved within the last twenty years. Lately, advances in modern nanotechnology have spurred development in OSA management and offered several advantages to overcome the drawbacks of conventional therapies. This technology has allowed the practical design of nanoscale devices combined with numerous functional molecules, including tumor-specific ligands, antibodies, anti-cancer drugs, and imaging probes. Thanks to their small sizes, desirable drug encapsulation efficiency, and good bioavailability, functionalized nanomaterials have found wide-spread applications for combating OSA progression. This review invokes the possible utility of engineered nanomaterials in OSA diagnosis and treatment, motivating the researchers to seek new strategies for tackling the challenges associated with it.
Collapse
Affiliation(s)
- Mahmood Barani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 76169-14111, Iran;
| | - Mahwash Mukhtar
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6720 Szeged, Hungary;
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 538-98615, Iran
| | - Saman Sargazi
- Cellular and Molecule Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran;
| | - Sadanand Pandey
- Particulate Matter Research Center, Research Institute of Industrial Science & Technology (RIST), 187-12, Geumho-ro, Gwangyang-si 57801, Korea
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea;
| | - Misook Kang
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea;
| |
Collapse
|
46
|
González SCE, Bolaina-Lorenzo E, Pérez-Trujillo JJ, Puente-Urbina BA, Rodríguez-Fernández O, Fonseca-García A, Betancourt-Galindo R. Antibacterial and anticancer activity of ZnO with different morphologies: a comparative study. 3 Biotech 2021; 11:68. [PMID: 33489685 PMCID: PMC7806688 DOI: 10.1007/s13205-020-02611-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022] Open
Abstract
ZnO nanoparticles (NPS) with different morphologies were synthesized, and the antibacterial and anticancer activity was studied, herein. The physicochemical characterization was carried out by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR) and UV-visible. To study the antibacterial and anticancer capability of ZnO NPS, Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) bacteria and HeLa cancer cells were exposed at different doses of ZnO NPS (7-250 µg/mL). TEM analysis confirmed the obtention of spherical, hexagonal and rod ZnO NPS with an average diameter of 20 ± 4 nm, 1.17 ± 0.3 µm and 1.11 ± 1.2 µm, respectively. XRD diffractograms showed the characteristic pattern of crystalline ZnO in wurtzite phase. FTIR and UV-vis spectra showed slight differences of the main absorption peaks, revealing that different ZnO NPS morphologies may cause shifts in spectra. Biological essays showed that the number of E. coli and S. aureus bacteria as well as HeLa cells decreases linearly by increasing the nanoparticle concentration. However, the best anticancer and antibacterial activity was shown by spherical ZnO NPS at 100 µg/mL. The better capability of spherical ZnO NPS than hexagonal and rod ZnO NPS is related with its small particle size. The present results suggest that the spherical ZnO NPS has a great potential as an antibacterial and anticancer agent.
Collapse
Affiliation(s)
- S. C. Esparza González
- School of Dentistry, Saltillo Campus, Autonomous University of Coahuila, Adolfo Lopez Mateos, 25125 Saltillo, Coahuila Mexico
| | - Ena Bolaina-Lorenzo
- Center for Research in Applied Chemistry, Blvd. Enrique Reyna No. 140, Col. San José de Los Cerritos, 25294 Saltillo, Coahuila Mexico
| | - J. J. Pérez-Trujillo
- School of Medicine, Autonomous University of Nuevo Leon, 64460 San Nicolás de los Garza, Nuevo Leon Mexico
| | - B. A. Puente-Urbina
- Center for Research in Applied Chemistry, Blvd. Enrique Reyna No. 140, Col. San José de Los Cerritos, 25294 Saltillo, Coahuila Mexico
| | - O. Rodríguez-Fernández
- Center for Research in Applied Chemistry, Blvd. Enrique Reyna No. 140, Col. San José de Los Cerritos, 25294 Saltillo, Coahuila Mexico
| | - A. Fonseca-García
- Consejo Nacional de Ciencia y Tecnología (CONACYT)-Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna Hermosillo 140, 25294 Saltillo, Coahuila Mexico
| | - R. Betancourt-Galindo
- Center for Research in Applied Chemistry, Blvd. Enrique Reyna No. 140, Col. San José de Los Cerritos, 25294 Saltillo, Coahuila Mexico
| |
Collapse
|
47
|
El-Belely EF, Farag MMS, Said HA, Amin AS, Azab E, Gobouri AA, Fouda A. Green Synthesis of Zinc Oxide Nanoparticles (ZnO-NPs) Using Arthrospira platensis (Class: Cyanophyceae) and Evaluation of their Biomedical Activities. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:E95. [PMID: 33406606 PMCID: PMC7823323 DOI: 10.3390/nano11010095] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/27/2020] [Accepted: 12/30/2020] [Indexed: 12/28/2022]
Abstract
In this study, zinc oxide nanoparticles (ZnO-NPs) were successfully fabricated through the harnessing of metabolites present in the cell filtrate of a newly isolated and identified microalga Arthrospira platensis (Class: Cyanophyceae). The formed ZnO-NPs were characterized by UV-Vis spectroscopy, Fourier transform infrared (FT-IR), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDX), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Data showed the efficacy of cyanobacterial metabolites in fabricating spherical, crystallographic ZnO-NPs with a size ≈30.0 to 55.0 nm at a wavelength of 370 nm. Moreover, FT-IR analysis showed varied absorption peaks related to nanoparticle formation. XPS analysis confirms the presence of Zn(II)O at different varied bending energies. Data analyses exhibit that the activities of biosynthesized ZnO-NPs were dose-dependent. Their application as an antimicrobial agent was examined and formed clear zones, 24.1 ± 0.3, 21.1 ± 0.06, 19.1 ± 0.3, 19.9 ± 0.1, and 21.6 ± 0.6 mm, at 200 ppm against Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans, respectively, and these activities were reduced as the NPs concentration decreased. The minimum inhibitory concentration (MIC) values were determined as 50 ppm for S. aureus, 25 ppm for P. aeruginosa, and 12.5 ppm for B. subtilis, E. coli, and C. albicans. More interestingly, ZnO-NPs exhibit high in vitro cytotoxic efficacy against cancerous (Caco-2) (IC50 = 9.95 ppm) as compared with normal (WI38) cell line (IC50 = 53.34 ppm).
Collapse
Affiliation(s)
- Ehab F. El-Belely
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt; (E.F.E.-B.); (M.M.S.F.)
| | - Mohamed M. S. Farag
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt; (E.F.E.-B.); (M.M.S.F.)
| | - Hanan A. Said
- Botany Department, Faculty of Science, Fayoum University, Fayoum 63511, Egypt;
| | - Abeer S. Amin
- Botany Department, Faculty of Science, Suez Canal University Ismailia, Ismailia 41522, Egypt;
| | - Ehab Azab
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Adil A. Gobouri
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Amr Fouda
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt; (E.F.E.-B.); (M.M.S.F.)
| |
Collapse
|
48
|
Umavathi S, Mahboob S, Govindarajan M, Al-Ghanim KA, Ahmed Z, Virik P, Al-Mulhm N, Subash M, Gopinath K, Kavitha C. Green synthesis of ZnO nanoparticles for antimicrobial and vegetative growth applications: A novel approach for advancing efficient high quality health care to human wellbeing. Saudi J Biol Sci 2020; 28:1808-1815. [PMID: 33732066 PMCID: PMC7938149 DOI: 10.1016/j.sjbs.2020.12.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/09/2020] [Accepted: 12/13/2020] [Indexed: 12/15/2022] Open
Abstract
The present work aims to synthesize zinc oxide (ZnO) nanoparticles via green approaches using leaf extract of Parthenium hysterophorus. UV-vis and FT-IR tests confirmed the existence of biomolecules, active materials, and metal oxides. The X-ray diffraction structural study exposes the ZnO nanoparticles formation with hexagonal phase structures. SEM and TEM analysis reveal surface morphologies of ZnO nanoparticles and most of them are spherical with a size range of 10 nm. ZnO nanoparticles were revealed strong antimicrobial activity against both bacterial and fungal strains. The germination of seeds and vegetative growth of Sesamum indicum has been greatly improved.
Collapse
Affiliation(s)
- Saraswathi Umavathi
- Adhiyaman Arts and Science College for Women, Uthangarai, Tamil Nadu 635207, India
| | - Shahid Mahboob
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Marimuthu Govindarajan
- Unit of Vector Control, Phytochemistry and Nanotechnology, Department of Zoology, Annamalai University, Annamalainagar 608 002, Tamil Nadu, India.,Unit of Natural Products and Nanotechnology, Department of Zoology, Government College for Women (Autonomous), Kumbakonam 612 001, Tamil Nadu, India
| | - Khalid A Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Zubair Ahmed
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - P Virik
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Norah Al-Mulhm
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Murugesh Subash
- Arignar Anna Govt. Arts College, Attur, Tamil Nadu 636121, India
| | - Kasi Gopinath
- School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - C Kavitha
- Adhiyaman Arts and Science College for Women, Uthangarai, Tamil Nadu 635207, India
| |
Collapse
|
49
|
Kalpana VN, Alarjani KM, Rajeswari VD. Enhancing malaria control using Lagenaria siceraria and its mediated zinc oxide nanoparticles against the vector Anopheles stephensi and its parasite Plasmodium falciparum. Sci Rep 2020; 10:21568. [PMID: 33298984 PMCID: PMC7726141 DOI: 10.1038/s41598-020-77854-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 10/21/2020] [Indexed: 11/09/2022] Open
Abstract
In many developing countries, there are certain health problems faced by the public, one among them is Malaria. This tropical disease is mainly caused by Plasmodium falciparum. It is categorized as a disaster to public health, which increases both mortality and morbidity. Numerous drugs are in practice to control this disease and their vectors. Eco-friendly control tools are required to battle against vector of this significant disease. Nanotechnology plays a major role in fighting against malaria. The present paper synthesized Zinc oxide nanoparticles (ZnO NPs) using zinc nitrate via simple green routes with the help of aqueous peel extract of Lagenaria siceraria (L. siceraria). The synthesized ZnO NPs were characterized by various biophysical methods. Moreover, the extract of L. siceraria and their mediated ZnO NPs was experimented against III instar larvae of An. stephensi. The impact of the treatment based on ZnO NPs concerning histology and morphology of mosquito larval was further observed. In the normal laboratory environment, the efficiency of predation of Poeciliareticulata (P. reticulata) against An. Stephensi larvae was found to be 44%, whereas in aqueous L. siceraria extract and its mediated ZnO NPs contaminated environment, P. reticulate showed predation efficiency of about 45.8% and 61.13% against An. Stephensi larva. L. siceraria synthesized ZnO NPs were examined against the Plasmodium falciparum CQ-sensitive strains. The L. siceraria extract and its mediated ZnO NPs showed the cytotoxic effects against HeLa cell lines with an IC50 value of 62.5 µg/mL. This study concludes that L. siceraria peel extract and L. siceraria synthesized ZnO NPs represent a valuable green option to fight against malarial vectors and parasites.
Collapse
Affiliation(s)
- V N Kalpana
- Department of Bio-medical Sciences, School of Biosciences and Technology, VIT, Vellore-14, Tamil Nadu, India
| | - Khaloud Mohammed Alarjani
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - V Devi Rajeswari
- Department of Bio-medical Sciences, School of Biosciences and Technology, VIT, Vellore-14, Tamil Nadu, India.
| |
Collapse
|
50
|
Jeevanandam J, Kulabhusan PK, Sabbih G, Akram M, Danquah MK. Phytosynthesized nanoparticles as a potential cancer therapeutic agent. 3 Biotech 2020; 10:535. [PMID: 33224704 PMCID: PMC7669941 DOI: 10.1007/s13205-020-02516-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/27/2020] [Indexed: 12/30/2022] Open
Abstract
Plants are the well-known sources for the hyper-accumulation and reduction of metallic ions. Analysis of various plant extracts has justified the presence of different types of phytochemicals that possess the stabilization and reduction functionalities of precursors to form nanoparticles. Such characteristics make plants as an attractive source for synthesizing eco-friendly nanoparticles (NPs) with potentially less toxicity to the body. Recently, phytosynthesized nanoparticles have been explored for targeted inhibition and diagnosis of cancer cells without affecting non-cancerous healthy cells. The aim of this review is to discuss the characteristic performance of NPs synthesized from various plant sources for the diagnosis and inhibition of cancer. The mode of action of phytosynthesized nanoparticles for anti-cancer applications are also discussed.
Collapse
Affiliation(s)
- Jaison Jeevanandam
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Prabir Kumar Kulabhusan
- Department of Chemistry and Biomolecular Science, University of Ottawa, Ottawa, ON K1N6N5 Canada
| | - Godfred Sabbih
- Chemical Engineering Department, University of Tennessee, Chattanooga, TN 37403 USA
| | - Muhammad Akram
- Department of Eastern Medicine, Government College University, Faisalabad, 38000 Pakistan
| | - Michael K. Danquah
- Chemical Engineering Department, University of Tennessee, Chattanooga, TN 37403 USA
| |
Collapse
|