1
|
Su D, Liu Y, Liu F, Dong Y, Pu Y. Enhancing polycyclic aromatic hydrocarbon soil remediation in cold climates using immobilized low-temperature-resistant mixed microorganisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173414. [PMID: 38796006 DOI: 10.1016/j.scitotenv.2024.173414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/30/2024] [Accepted: 05/19/2024] [Indexed: 05/28/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), widespread organic pollutants, significantly impact human health and environmental integrity. Recent approaches to ameliorate PAH-contaminated soils, particularly in cold environments, have been insufficient. This study investigates the use of immobilized low-temperature-resistant mixed microorganisms (LTRMM) for enhancing the degradation of PAHs in soils from coke plants and the Shenfu irrigation area. Our results demonstrate that treatment with immobilized mixed microorganisms (MC-HS) is more effective than treatments with free bacteria (H-S) and control (CK). Specifically, the degradation rates in the MC-HS1 treatment were 10.10 %-41.13 % higher than those in the coking plant soil treated with CK1 and H-S1. Similarly, in the Shenfu irrigation area soil, MC-HS2 showed improvements of 6.00 % to 52.56 % over CK2 and H-S2. A kinetic model was used to analyze the enhanced degradation capabilities, revealing that the half-life of PAHs under the immobilized mixed microorganism treatment (T3) was significantly shorter compared to the free bacteria (T2) and control treatments (T1). These findings suggest that employing immobilized LTRMM could significantly improve the remediation efficiency of PAH-contaminated soils in cold climates.
Collapse
Affiliation(s)
- Dan Su
- College of Environment, Liaoning University, Shenyang 110036, PR China.
| | - YiHan Liu
- College of Environment, Liaoning University, Shenyang 110036, PR China
| | - FengFei Liu
- College of Environment, Liaoning University, Shenyang 110036, PR China
| | - YuShan Dong
- College of Environment, Liaoning University, Shenyang 110036, PR China
| | - Yu Pu
- Shizuishan City Ecological Environment Monitoring Station, Ningxia 753099, PR China
| |
Collapse
|
2
|
Wu S, Zhong J, Lei Q, Song H, Chen SF, Wahla AQ, Bhatt K, Chen S. New roles for Bacillus thuringiensis in the removal of environmental pollutants. ENVIRONMENTAL RESEARCH 2023; 236:116699. [PMID: 37481057 DOI: 10.1016/j.envres.2023.116699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/04/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
For a long time, the well-known Gram-positive bacterium Bacillus thuringiensis (Bt) has been extensively studied and developed as a biological insecticide for Lepidoptera and Coleoptera pests due to its ability to secrete a large number of specific insecticidal proteins. In recent years, studies have found that Bt strains can also potentially biodegrade residual pollutants in the environment. Many researchers have isolated Bt strains from multiple sites polluted by exogenous compounds and characterized and identified their xenobiotic-degrading potential. Furthermore, its pathway for degradation was also investigated at molecular level, and a number of major genes/enzymes responsible for degradation have been explored. At present, a variety of xenobiotics involved in degradation in Bt have been reported, including inorganic pollutants (used in the field of heavy metal biosorption and recovery and precious metal recovery and regeneration), pesticides (chlorpyrifos, cypermethrin, 2,2-dichloropropionic acid, etc.), organic tin, petroleum and polycyclic aromatic hydrocarbons, reactive dyes (congo red, methyl orange, methyl blue, etc.), and ibuprofen, among others. In this paper, the biodegrading ability of Bt is reviewed according to the categories of related pollutants, so as to emphasize that Bt is a powerful agent for removing environmental pollutants.
Collapse
Affiliation(s)
- Siyi Wu
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Jianfeng Zhong
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Qiqi Lei
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Haoran Song
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Shao-Fang Chen
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Abdul Qadeer Wahla
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Punjab, Pakistan
| | - Kalpana Bhatt
- Department of Food Science, Purdue University, West Lafayette, IN, USA.
| | - Shaohua Chen
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Tarafdar A, Sinha A. Profiling and occupational health risk assessment study on coal ashes in terms of polycyclic aromatic hydrocarbons (PAHs). JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2022; 57:913-926. [PMID: 36254457 DOI: 10.1080/10934529.2022.2131291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Profiling and cancer risk assessment on the polycyclic aromatic hydrocarbons (PAHs) content of coal ashes produced by the major coal combustion plants from the eastern coalfield region in India was conducted. Thirteen PAHs were detected on coal ashes collected from ash deposition sites of major thermal power plants and the profiling of the PAHs was done. Benzo[a]pyrene equivalents (BaPeq) for individual PAHs were calculated and applied to the probabilistic assessment model from US EPA (1989). Monte Carlo simulations were conducted to assess the risk of inhabitants exposed to PAHs through the dust of the coal ash deposition site. In fly ash, the range of total amount of carcinogenic PAHs was from 3.50 to 6.72 µg g-1 and for the bottom ash, the range was 8.49 to 14.91 µg g-1. Bottom ashes were loaded with ample amounts of 5- and 6-ring carcinogenic PAHs, whereas fly ashes were dominated by medium molecular weight PAHs. The simulated mean cancer risks from fly ashes were 2.187 E-06 for children and 3.749 E-06 for adults. For the case of bottom ash, the mean risks were 1.248 E-05 and 2.173 E-05 respectively for children and adults. Among all the three exposure routes, dermal contact was the major and caused 81% of the total cancer risk. The most sensitive parameters were exposure duration and relative skin adherence factor for soil, which contributed the most to total variation. The 90% risks calculated from the bottom ashes (2.617 E-05 for children and 4.803 E-05 for adults) are marginally above the acceptable limit (>1.000 E-06) according to US EPA. In this study, a comprehensive risk assessment on carcinogenic PAHs present in coal ashes was done for the first time that may be helpful to develop potential strategies against occupational cancer risk.
Collapse
Affiliation(s)
- Abhrajyoti Tarafdar
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
- Department of Environmental Science and Engineering, Indian Institute of Technology, (Indian School of Mines), Dhanbad, Jharkhand, India
| | - Alok Sinha
- Department of Environmental Science and Engineering, Indian Institute of Technology, (Indian School of Mines), Dhanbad, Jharkhand, India
| |
Collapse
|
4
|
Nikiforova EM, Kasimov NS, Kosheleva NE, Timofeev IV. Main features and contamination of sealed soils in the east of Moscow city. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:1697-1711. [PMID: 34705161 DOI: 10.1007/s10653-021-01132-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
The aim of this paper is to characterize the main properties and level of pollution of sealed soils in different land use zones of the Eastern administrative district (EAD) of Moscow. In 2016-2017 overall, 47 samples were taken from 35 soil pits. The list of soil properties analyzed included actual acidity, organic carbon content, particle-size distribution, and degree of salinity. Pollution of sealed soils with petroleum products (PPs), benzo[a]pyrene (BaP) and heavy metals and metalloids (HMMs) was evaluated. Sealed soils are characterized by the medium organic matter content (2.24%), alkaline reaction (pH 8.0), sandy loamy texture, and the absence of soluble salts in the upper part of the profile. The pronounced technogenic anomalies of hydrocarbons are mainly formed in the sealed soils of the industrial and traffic land use zones. The mean content of BaP in the sealed soils is 56 times higher than that in the background soils, it exceeds MPC by 9.5 times. The concentrations of most HMMs in the sealed soils exceed the background level by two-four times. The most intense accumulation of As, Ba, Cr, Cu, Ni, Pb, Sb, and Sn takes place in the industrial zone with the high degree of sealing. The hygienic standards for BaP and PPs contents approved in the Russian Federation in the sealed soils of EAO are exceeded by almost ten times. Maximum permissible concentrations are also exceeded for a large group of HMMs. The high contamination of the sealed soils can create dangerous ecological situation in the EAD if road covering will be removed and pollutants begin to migrate.
Collapse
Affiliation(s)
- Elena M Nikiforova
- Faculty of Geography, Department of Landscape Geochemistry and Soil Geography, Lomonosov Moscow State University, Moscow, Russia
| | - Nikolay S Kasimov
- Faculty of Geography, Department of Landscape Geochemistry and Soil Geography, Lomonosov Moscow State University, Moscow, Russia
| | - Natalia E Kosheleva
- Faculty of Geography, Department of Landscape Geochemistry and Soil Geography, Lomonosov Moscow State University, Moscow, Russia
| | - Ivan V Timofeev
- Faculty of Geography, Department of Landscape Geochemistry and Soil Geography, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
5
|
Mohammed AB, Goran SMA, Tarafdar A. Profiling of seasonal variation in and cancer risk assessment of benzo(a)pyrene and heavy metals in drinking water from Kirkuk city, Iraq. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:22203-22222. [PMID: 34782976 DOI: 10.1007/s11356-021-17314-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Water samples at 13 sites were analyzed to evaluate heavy metals (cobalt, lead, manganese, copper) and benzo(a)pyrene using 2 methods of analysis (high-performance liquid chromatography (HPLC) and enzyme-linked immunosorbent assay (ELISA) kits). The Lesser Zap River is the main tributary of the Tigris and is used as a main source of drinking water in Kirkuk city through the General Kirkuk project. Risk evaluation for benzo(a)pyrene and lead in water samples was accomplished by Monte Carlo simulation. The highest concentrations of B(a)P were recorded at sites S7 and S5, with levels of 0.192 and 0.122 µg L-1 detected by HPLC and ELISA, respectively. The WHO guidelines for benzo[a]pyrene in drinking water recommend 0.7 µg L -1, and none of the samples surpassed this level; moreover, B(a)P levels exceeded EPA standards in 2014 (0.01 µg L-1), particularly when the liquid-liquid extraction method with HPLC was used. Carcinogenic risks for human adults and children exist and are highest during the rainy season as compared with the carcinogenic risk during the dry season and risks for children exceed those of adults. This indicates that the 2nd round of sampling (winter season) harbors more carcinogenic risk than the 1st round of sampling (dry season).
Collapse
Affiliation(s)
| | - Siraj Muhammed Abdulla Goran
- Environmental Science and Health Department, College of Science, Salahaddin University-Erbil, Kurdistan Region, Erbil, Iraq.
| | - Abhrajyoti Tarafdar
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Nádudvari Á, Kozielska B, Abramowicz A, Fabiańska M, Ciesielczuk J, Cabała J, Krzykawski T. Heavy metal- and organic-matter pollution due to self-heating coal-waste dumps in the Upper Silesian Coal Basin (Poland). JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125244. [PMID: 33951867 DOI: 10.1016/j.jhazmat.2021.125244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
This study provides potential insight between self-heating coal-waste dumps and related environmental pollution in southern Poland. Samples collected from dumps in the Upper Silesian Coal Basin were used to quantify released contents of organic- and inorganic pollutants, i.e., polycyclic aromatic hydrocarbons (PAHs) and trace elements (Pb, Cd, Cr, Cu, Zn, Ni, Hg, As). Elevated Hg concentrations (~100-1078 mg/kg) and Pb (~600-2000 mg/kg) attest to the evaporation of these metals from deeper parts of the dumps. The acidic pH levels (3.0-4.5) may help to mobilize these elements. Pearson's correlation coefficients for samples analyzed by AAS and ICP-MS indicate a similar origin for Cd, Zn, and As. Mostly 2- and 3-ring PAHs, especially anthracene in burnt soil, dominate in the samples. Chlorinated PAHs, thiophenol, pyridines, quinolines (and derivatives) in thermally-altered samples, and waste containing pyrolytic bitumen indicate coking conditions. The high levels of Hg, Pb, and Cd, and chlorinated PAHs and nitrogen heterocycles formed or enriched during self-heating in these dumps should be deemed a significant environmental hazard. Calculating the lifetime cancer risks due to PAHs and heavy metals accumulations in the dumps are substantial, and access to these dumps should be prohibited.
Collapse
Affiliation(s)
- Ádám Nádudvari
- University of Silesia, Faculty of Natural Sciences, 60 Będzińska Street, 41-200 Sosnowiec, Poland.
| | - Barbara Kozielska
- Silesian University of Technology, Faculty of Power and Environmental Engineering, Department of Air Protection, 22B Konarskiego St., 44-100 Gliwice, Poland
| | - Anna Abramowicz
- University of Silesia, Faculty of Natural Sciences, 60 Będzińska Street, 41-200 Sosnowiec, Poland
| | - Monika Fabiańska
- University of Silesia, Faculty of Natural Sciences, 60 Będzińska Street, 41-200 Sosnowiec, Poland
| | - Justyna Ciesielczuk
- University of Silesia, Faculty of Natural Sciences, 60 Będzińska Street, 41-200 Sosnowiec, Poland
| | - Jerzy Cabała
- University of Silesia, Faculty of Natural Sciences, 60 Będzińska Street, 41-200 Sosnowiec, Poland
| | - Tomasz Krzykawski
- University of Silesia, Faculty of Natural Sciences, 60 Będzińska Street, 41-200 Sosnowiec, Poland
| |
Collapse
|
7
|
Kumar B, Verma VK, Joshi D, Kumar S, Gargava P. Polycyclic aromatic hydrocarbons in urban and rural residential soils, levels, composition profiles, source identification and health risk & hazard. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03769-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
8
|
Benlaribi R, Djebbar S. Concentrations, distributions, sources, and risk assessment of polycyclic aromatic hydrocarbons in topsoils around a petrochemical industrial area in Algiers (Algeria). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:29512-29529. [PMID: 32445139 DOI: 10.1007/s11356-020-09241-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Fifty-five samples were collected from topsoils around a petrochemical industrial area at the east of Algiers (Algeria) and analyzed for 16EPA priority PAHs in the aim to determine the concentrations, the distributions, and the possible sources of polycyclic aromatic hydrocarbons (PAHs). The results of the quantification are then devoted to the assessment of the potential risks as the toxicity, the risk for the ecosystem, and the risk for the human health. The sampling sites were classified into four categories: rural, suburban, urban, and industrial-urban. A new extraction method based on the insertion of a preliminary step, using hot water, was proposed to improve the extraction efficiency. Principal component analysis (PCA) and selected diagnostic ratio of PAHs were used to investigate the source apportionment of these PAHs. The potential toxicity, the ecological, and human health risk of PAHs in soil were estimated using the toxic equivalent quotient, the risk quotient, and the total lifetime cancer risk (TLCR) methods, respectively. The proposed new protocol gave improved recovery rates for the sixteen EPA PAHs particularly for low molecular weight PAHs, with satisfactory repeatability (RSD < 10%). The Σ16PAHs concentrations were varied from 143.73 to 4575.65 μg kg-1 with a mean value of 1209.56 μg kg-1. Σ16PAH concentrations found for the industrial areas would be 2 times higher than for urban soils and 3 times higher than for the rural soils. The biplots of PCA and the five diagnostic ratios suggested that the most sources of PAHs in the rural, the suburban, and the urban areas are traffic emissions, biomass burning, and coal combustion sources. Some points of the urban-industrial area are from the petroleum source. The found Σ16PAH concentrations and theirs calculated TEQs showed the following trend: industrial-urban > urban > suburban >rural. The potential cancer of human health risks calculated through TLCR results indicated that the exposure to the 7EPA PAH-contaminated soils produces negligible cancer risk to human health.
Collapse
Affiliation(s)
- Rabia Benlaribi
- Laboratoire d'Hydrométallurgie et Chimie Inorganique Moléculaire, USTHB, BP 32 El Alia, 16111, Bab Ezzouar, Algeria.
- Institut National de Criminalistique et de Criminologie de la Gendarmerie Nationale (INCC/GN), Cheraga, Algeria.
| | - Safia Djebbar
- Laboratoire d'Hydrométallurgie et Chimie Inorganique Moléculaire, USTHB, BP 32 El Alia, 16111, Bab Ezzouar, Algeria
| |
Collapse
|
9
|
Kamal N, Tarafdar A, Sinha A, Kumar V. Effect of Glucose Cometabolism on Biodegradation of Gabapentin (an Anticonvulsant Drug) by Gram-Positive Bacteria Micrococcus luteus N.ISM.1. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820040067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Tarafdar A, Oh MJ, Nguyen-Phuong Q, Kwon JH. Profiling and potential cancer risk assessment on children exposed to PAHs in playground dust/soil: a comparative study on poured rubber surfaced and classical soil playgrounds in Seoul. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:1691-1704. [PMID: 31134396 DOI: 10.1007/s10653-019-00334-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 05/21/2019] [Indexed: 06/09/2023]
Abstract
Children can get affected by polycyclic aromatic hydrocarbons (PAHs) while they interact with play area soil/rubber surfacing and exposed to PAHs by dermal contact, inhalation and hand-to-mouth activity. A comparative study has been conducted on PAHs profiling and probable cancer risk of children from PAHs present in uncovered playground surface soil and poured rubber surfaced playground dust. Surface soil and dust samples have been collected from 14 different children parks around the Korea University campus, Seoul, Republic of Korea. Concentrations of 16 PAHs in the soils/dust were found to be in a range of 2.82-57.93 μg g-1. Profiling of the PAHs from the playground soils/dust reveals 3-ring PAHs are dominating with 79.9% of total PAHs content, on an average. The diagnostic ratio analysis confirms that vehicular exhaust and fossil fuel burning are likely the main sources of high molecular weight carcinogenic PAHs, whereas low molecular weight PAHs have pyrogenic origin. The probabilistic health risk assessment using Monte Carlo simulations for the estimation of the 95% cancer risk exposed to the PAHs from the surfaced playgrounds shows a little higher value than the USEPA safety standard (1.3 × 10-5). Sensitivity analysis revealed exposure duration and relative skin adherence factor for soil as the most influential parameters of the assessment. Noticeably, cancer risk is approximately 10 times higher in poured rubber surfaced playgrounds than in uncovered soil playgrounds.
Collapse
Affiliation(s)
- Abhrajyoti Tarafdar
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Min-Ju Oh
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Quynh Nguyen-Phuong
- Department of Water-Environment-Oceanography, University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Hanoi, 10000, Vietnam
| | - Jung-Hwan Kwon
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
11
|
Assessing the Spatial Distribution of Soil PAHs and their Relationship with Anthropogenic Activities at a National Scale. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16244928. [PMID: 31817465 PMCID: PMC6950367 DOI: 10.3390/ijerph16244928] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 02/02/2023]
Abstract
Soil polycyclic aromatic hydrocarbon (PAH) pollution is a major concern due to its negative impact on soil quality around the world. In China, accurate data on soil PAHs and information on the relationship with anthropogenic activities are limited. In this study, about 30,800 samples from 1833 soil sample sites were reviewed from 306 published reports to build a soil PAHs database. Based on the data obtained, the results demonstrated that 24.11% of surface soils in China are heavily contaminated. Meanwhile, the concentration of soil PAHs varied, in the order of independent mining and industrial areas (IMIA) > urban areas > suburban areas > rural areas, and the spatial distribution in China demonstrated a descending trend from north to south. Moreover, the characteristic ratio and PCA-MLR (principal component analysis-multiple linear regression) analysis demonstrated that coal combustion and vehicular exhaust emissions were the main sources of soil PAH pollution in China. On the other hand, provincial total Σ16PAHs in surface soil were significantly correlated with the per square kilometer GDP (gross domestic product) of industrial land, the per capita GDP, as well as the production and consumption of energy. These results indicate that anthropogenic factors have greatly affected the levels of soil PAHs in China. This study improves our understanding on the status and sources of soil PAH contamination in China, thereby facilitating the implementation of strategies of prevention, control, and remediation of soils.
Collapse
|
12
|
The study on Suaeda heteroptera Kitag, Nereis succinea and bacteria's joint bioremediation of oil-contaminated soil. Microchem J 2019. [DOI: 10.1016/j.microc.2019.03.081] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Taghvaee S, Mousavi A, Sowlat MH, Sioutas C. Development of a novel aerosol generation system for conducting inhalation exposures to ambient particulate matter (PM). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 665:1035-1045. [PMID: 30893735 PMCID: PMC6430148 DOI: 10.1016/j.scitotenv.2019.02.214] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 01/26/2019] [Accepted: 02/13/2019] [Indexed: 05/25/2023]
Abstract
In this study, we developed a novel method for generating aerosols that are representative of real-world ambient particulate matter (PM) in terms of both physical and chemical characteristics, with the ultimate objective of using them for inhalation exposure studies. The protocol included collection of ambient PM on filters using a high-volume sampler, which were then extracted with ultrapure Milli-Q water using vortexing and sonication. As an alternative approach for collection, ambient particles were directly captured into aqueous slurry samples using the versatile aerosol concentration enrichment system (VACES)/aerosol-into-liquid collector tandem technology. The aqueous samples from both collection protocols were then re-aerosolized using commercially available nebulizers. The physical characteristics (i.e., particle size distribution) of the generated aerosols were examined by the means of a scanning mobility particle sizer (SMPS) connected to a condensation particle counter (CPC) at different compressed air pressures of the nebulizer, and dilution air flow rates. In addition, the collected PM samples (both ambient and re-aerosolized) were chemically analyzed for water-soluble organic carbon (WSOC), elemental and organic carbon (EC/OC), inorganic ions, polycyclic aromatic hydrocarbons (PAHs), and metals and trace elements. Using the aqueous filter extracts, we were able to effectively recover the water-soluble components of ambient PM (e.g., water-soluble organic matter, and water-soluble inorganic ions); however, this method was deficient in recovering some of the important insoluble components such as EC, PAHs, and many of the redox-active trace elements and metals. In contrast, using the VACES/aerosol-into-liquid collector tandem technology for collecting ambient PM directly into water slurry, we were able to preserve the water-soluble and water-insoluble components very effectively. These results illustrate the superiority of the VACES/aerosol-into liquid collector tandem technology to be used in conjunction with the re-aerosolization setup to create aerosols that fully represent ambient PM, making it an attractive choice for application in inhalation exposure studies.
Collapse
Affiliation(s)
- Sina Taghvaee
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| | - Amirhosein Mousavi
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| | - Mohammad H Sowlat
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| | - Constantinos Sioutas
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA.
| |
Collapse
|
14
|
Tarafdar A, Chawda S, Sinha A. Health Risk Assessment from Polycyclic Aromatic Hydrocarbons (PAHs) Present in Dietary Components: A Meta-analysis on a Global Scale. Polycycl Aromat Compd 2018. [DOI: 10.1080/10406638.2018.1492426] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Abhrajyoti Tarafdar
- Division of Environmental Science and Ecological Engineering, Korea University, Republic of Korea
| | - Shruti Chawda
- Department of Environment, Headquarters, Western Coalfields Ltd, Nagpur, India
| | - Alok Sinha
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad
| |
Collapse
|
15
|
Tarafdar A, Sarkar TK, Chakraborty S, Sinha A, Masto RE. Biofilm development of Bacillus thuringiensis on MWCNT buckypaper: Adsorption-synergic biodegradation of phenanthrene. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 157:327-334. [PMID: 29627417 DOI: 10.1016/j.ecoenv.2018.03.090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/29/2018] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
Adsorption-synergic biodegradation of a model PAH (phenanthrene, Phe) on MWCNT buckypaper surface with a potential PAH biodegrading bacterial strain Bacillus thuringiensis AT.ISM.11 has been studied in aqueous medium. Adsorption of Phe on buckypaper follows Dubinin-Ashtakhov model (R2 = 0.9895). MWCNT generally exerts toxicity to microbes but adsorbed layer of Phe prevents the direct contact between MWCNT and bacterial cell wall. FESEM study suggests that formation of biofilms occurred on buckypaper. Lower layer cells are disrupted and flattened as they are in direct contact with MWCNT but the upper layer cells of the developed biofilm are fully intact and functional. Force-distance curves of Bacillus thuringiensis AT.ISM.11 with buckypaper indicates adhesion forces varied from -10.3 to -15.6 nN with increasing contact time, which supports the phenomenon of biofilm formation. AFM surface statistical data of buckypaper suggests increase in bacterial cell count increases the Rms roughness (95.7242-632.565) while adhering to the buckypaper surface to form biofilm. We observed an enhanced Phe biodegradation of 93.81% from that of the 65.71% in 15 days' study period, using buckypaper as a bio-carrier or a matrix for the microbial growth. GC-MS study identified phthalic acid ester as metabolite, which is the evidence of protocatechuate pathway degradation of Phe. Current study enlightens the interaction between hydrocarbons and microbes in presence of MWCNT buckypaper matrix in aqueous system for the first time. An enhancement in biodegradation of Phe by 28.10% has also been reported which can be a basis for CNT aided enhanced biodegradation studies in future.
Collapse
Affiliation(s)
- Abhrajyoti Tarafdar
- Division of Environmental Science and Ecological Engineering, Korea University, Republic of Korea.
| | - Tarun Kanti Sarkar
- Chemical Science Division, CSIR-Indian Institute of Petroleum, Dehradun, India.
| | - Sourav Chakraborty
- Department of Environmental science, Southeast Missouri State University, USA.
| | - Alok Sinha
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, India.
| | - Reginald E Masto
- Environmental Management Division, Central Institute of Mining and Fuel Research (Digwadih Campus), Dhanbad, India.
| |
Collapse
|
16
|
Tarafdar A, Sinha A. Health risk assessment and source study of PAHs from roadside soil dust of a heavy mining area in India. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2018; 74:252-262. [PMID: 29482466 DOI: 10.1080/19338244.2018.1444575] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/17/2018] [Indexed: 06/08/2023]
Abstract
The total concentrations of 13 detected polycyclic aromatic hydrocarbons (PAHs) in different traffic soil samples of Dhanbad heavy mining area, India, were between 8.256 and 12.562 µg/g and were dominated by four ring PAHs (44%). Diagnostic ratio study revealed that fossil fuel burning and vehicular pollution are the most prominent sources of the PAHs in roadside soil even at a heavy coal mining area. The 90th percentiles cancer risks determined by probabilistic health risk assessment (Monte Carlo simulations) for both the age groups (children and adults) were above tolerable limit (>1.00E-06) according to USEPA. The simulated mean cancer risk was 1.854E-05 for children and 1.823E-05 for adults. For different exposure pathways, dermal contact was observed to be the major pathway with an exposure load of 74% for children and 85% for adults. Sensitivity analysis demonstrated relative skin adherence factor for soil (AF) is the most influential parameter of the simulation, followed by exposure duration (ED).
Collapse
Affiliation(s)
- Abhrajyoti Tarafdar
- Division of Environmental Science and Ecological Engineering, Korea University , Republic of Korea
| | - Alok Sinha
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines) , Dhanbad , India
| |
Collapse
|
17
|
Tarafdar A, Sinha A. Public health risk assessment with bioaccessibility considerations for soil PAHs at oil refinery vicinity areas in India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 616-617:1477-1484. [PMID: 29066207 DOI: 10.1016/j.scitotenv.2017.10.166] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/16/2017] [Accepted: 10/16/2017] [Indexed: 06/07/2023]
Abstract
Populations living in the vicinity of oil refinery sludge deposition sites may be at greater risk of potential exposure to polycyclic aromatic hydrocarbons (PAHs) through inhalation, ingestion, and direct contact with contaminated media. Three Indian oil refinery sludge deposition sites (at Haldia, Barauni and Guwahati) were chosen for study. Soil samples were collected from three different locations at each site. Mild solvent extraction by butanol and exhaustive extraction by acetone/hexane have been conducted to estimate the bioaccessible PAHs beside the total extractable PAHs content of the soil samples. Concentrations of 13 PAHs in the soils were found to be in a range of 67.02-95.21μg/g and bioaccessible PAHs were in a range of 19.296-36.657μg/g. A probabilistic health risk assessment with bioaccessibility considerations was carried out using Monte Carlo simulations for the estimation of the cancer risk exposed to the PAHs. The 90th percentiles cancer risks with bioaccessibility considerations of soil PAHs for children is 6.506E-05 and for the adults the risk is 6.609E-05. Risk assessments on extracted PAHs from exhaustive solvent extraction can overestimate the risk by 2.87-2.89 folds at 90% confidence level with respect to the biomimetic mild extraction procedure using butanol. According to USEPA above 1×10-6 extra risk of cancer is an alarm towards management. So, public health issues due to PAHs is imminent in these oil refinery vicinity areas. Sensitivity analysis revealed exposure duration (ED) and relative skin adherence factor for soil (AF) as the most influential parameters of the assessment. The profiling and risk assessment study with bioaccessibility considerations of PAHs from soil indicates that high PAHs concentration can lead to higher cancer risk for the vicinity area residents and local government should take immediate management actions.
Collapse
Affiliation(s)
- Abhrajyoti Tarafdar
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India
| | - Alok Sinha
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India.
| |
Collapse
|
18
|
Tarafdar A, Sinha A. Cancer Risk Assessment of Polycyclic Aromatic Hydrocarbons in the Soils and Sediments of India: A Meta-Analysis. ENVIRONMENTAL MANAGEMENT 2017; 60:784-795. [PMID: 28801749 DOI: 10.1007/s00267-017-0920-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 07/28/2017] [Indexed: 06/07/2023]
Abstract
A carcinogenic risk assessment of polycyclic aromatic hydrocarbons in soils and sediments was conducted using the probabilistic approach from a national perspective. Published monitoring data of polycyclic aromatic hydrocarbons present in soils and sediments at different study points across India were collected and converted to their corresponding BaP equivalent concentrations. These BaP equivalent concentrations were used to evaluate comprehensive cancer risk for two different age groups. Monte Carlo simulation and sensitivity analysis were applied to quantify uncertainties of risk estimation. The analysis denotes 90% cancer risk value of 1.770E-5 for children and 3.156E-5 for adults at heavily polluted site soils. Overall carcinogenic risks of polycyclic aromatic hydrocarbons in soils of India were mostly in acceptance limits. However, the food ingestion exposure route for sediments leads them to a highly risked zone. The 90% risk values from sediments are 7.863E-05 for children and 3.999E-04 for adults. Sensitivity analysis reveals exposure duration and relative skin adherence factor for soil as the most influential parameter of the assessment, followed by BaP equivalent concentration of polycyclic aromatic hydrocarbons. For sediments, biota to sediment accumulation factor of fish in terms of BaP is most sensitive on the total outcome, followed by BaP equivalent and exposure duration. Individual exposure route analysis showed dermal contact for soils and food ingestion for sediments as the main exposure pathway. Some specific locations such as surrounding areas of Bhavnagar, Raniganj, Sunderban, Raipur, and Delhi demand potential strategies of carcinogenic risk management and reduction. The current study is probably the first attempt to provide information on the carcinogenic risk of polycyclic aromatic hydrocarbons in soil and sediments across India.
Collapse
Affiliation(s)
- Abhrajyoti Tarafdar
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India.
| | - Alok Sinha
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India
| |
Collapse
|
19
|
Tarafdar A, Sinha A, Masto R. Biodegradation of anthracene by a newly isolated bacterial strain,Bacillus thuringiensisAT.ISM.1, isolated from a fly ash deposition site. Lett Appl Microbiol 2017; 65:327-334. [DOI: 10.1111/lam.12785] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 07/22/2017] [Accepted: 07/22/2017] [Indexed: 11/28/2022]
Affiliation(s)
- A. Tarafdar
- Department of Environmental Science and Engineering; Indian School of Mines (ISM); Dhanbad Jharkhand India
| | - A. Sinha
- Department of Environmental Science and Engineering; Indian School of Mines (ISM); Dhanbad Jharkhand India
| | - R.E. Masto
- Environmental Management Division; Central Institute of Mining and Fuel Research (Digwadih Campus); Dhanbad Jharkhand India
| |
Collapse
|