1
|
Luo Z, Pan X, Xia Y, Duan X, Ma J, Chen F. Nanoscale particles-induced mitigation of tannery wastewater chromium stress in rice: Implications for plant performance and human health risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125562. [PMID: 39709056 DOI: 10.1016/j.envpol.2024.125562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
Due to the rapid increase in industrial and urban areas, environmental pollution is increasing worldwide, which is causing unwanted changes in air, water, and soil at biological, physical, as well as chemical levels that ultimately causing the negative effects in living things because of toxic level of chromium (Cr). However, nanotechnology is capturing great interest worldwide due to their stirring applications in various fields. For this purpose, a pot experiment was conducted to examine plant growth and exo-physiology in rice (Oryza sativa L.) under the different levels of wastewater 50% and 100% concentrations which were also primed with three nanoparticles (NPs)-copper oxide (nCuO), silicon (nSi), and zinc oxide (nZnO). The research outcomes indicated that elevated levels of wastewater in the soil (100%) notably reduced plant growth and biomass, photosynthetic pigments, and gas exchange attributes. However, increasing levels of Cr stress also induced oxidative stress in the plants by increasing malondialdehyde (MDA), hydrogen peroxide (H2O2), which also induced increased compounds of various enzymatic and non-enzymatic antioxidants and also the gene expression and sugar content. Furthermore, a significant increase in proline metabolism, the AsA-GSH cycle, and the pigmentation of cellular components was observed. Although, the application of nCuO, nSi, nZnO-NPs showed a significant increase in plant growth and biomass, gas exchange characteristics, enzymatic and non-enzymatic compounds, and their gene expression and also decreased oxidative stress. In addition, the application of nCuO, nSi, nZnO-NPs enhanced cellular fractionation and decreased the proline metabolism and AsA-GSH cycle in O. sativa plants. These results open new insights for sustainable agriculture practices and hold immense promise in addressing the pressing challenges of heavy metal contamination in agricultural soils.
Collapse
Affiliation(s)
- Zhanbin Luo
- School of Public Administration, Hohai University, Nanjing, 211000, China.
| | - Xuyue Pan
- School of Public Administration, Hohai University, Nanjing, 211000, China; Observation Research Station of Land Ecology and Land Use in the Yangtze River Delta, Ministry of Natural Resources, Nanjing, 210009, China.
| | - Yi Xia
- School of Public Administration, Hohai University, Nanjing, 211000, China.
| | - Xueying Duan
- School of Public Administration, Hohai University, Nanjing, 211000, China.
| | - Jing Ma
- School of Public Administration, Hohai University, Nanjing, 211000, China.
| | - Fu Chen
- School of Public Administration, Hohai University, Nanjing, 211000, China; Observation Research Station of Land Ecology and Land Use in the Yangtze River Delta, Ministry of Natural Resources, Nanjing, 210009, China.
| |
Collapse
|
2
|
Hamed A, Badran SR. The role of rice husk in Oreochromis niloticus safety enhancement by bio-adsorbing copper oxide nanoparticles following its green synthesis: an endeavor to advance environmental sustainability. Sci Rep 2024; 14:23730. [PMID: 39390125 PMCID: PMC11467324 DOI: 10.1038/s41598-024-74113-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024] Open
Abstract
Lowering nanoparticles (NPs) toxicity before discharge into aquatic environments and employing agricultural waste materials for environmental sustainability are necessary nowadays. Since this has never been done, this work examines how green CuO NPs treated with rice husk (RH) as a bio-adsorbent may be safer for Nile tilapia (Oreochromis niloticus) than chemically manufactured ones. So, five groups of fish were randomly placed in glass aquaria. One group was a control, and four groups received 50 mg/L green and chemically produced CuO NPs (GS and CS) with and without RH for 24, 48, and 96 h. RH was collected from all groups, and the results showed GS-CuO NPs had a greater adsorptive capacity than CS-CuO NPs after all time intervals. After analyzing fish indicators in all groups compared to the control, higher Cu bioaccumulation was exhibited in the liver and gills. The liver and gills showed elevated levels of glutathione peroxidase (GPx), catalase (CAT), and thiobarbituric acid reactive substances (TBARS), while the levels of glutathione reduced (GSH) were significantly lower. In addition, Cu exposure impaired liver and gill histology. Finally, our results indicated that using RH as an adsorbent for CuO NPs after their green synthesis instead of chemical synthesis before they enter the aquatic environment can enhance the overall health of fish and environmental sustainability.
Collapse
Affiliation(s)
- Aliaa Hamed
- Department of Biology, Basic Science Center, Misr University for Science and Technology (MUST), Giza, Egypt.
| | - Shereen R Badran
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
3
|
Fascineli ML, Cáceres-Vélez PR, Pinheiro WO, Chaves SB, Sousa MH, Peternella WS, Horst FH, Fernandes MDC, Guimarães W, Azevedo RB, Grisolia CK. Lack of genotoxicity of iron oxide maghemite (γ-Fe2O3) and magnetite (Fe3O4) nanoparticles to Oreochromis niloticus after acute exposures. Genet Mol Biol 2024; 47:e20230330. [PMID: 39535165 PMCID: PMC11559487 DOI: 10.1590/1678-4685-gmb2023-0330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/23/2024] [Indexed: 11/16/2024] Open
Abstract
Iron oxide nanoparticles (FeO-NPs) are widely used in scientific and technological fields. Environmental concerns have been raised about residual FeO-NPs levels as their toxicity and bioaccumulative potential are not well understood. Oreochromis niloticus were exposed to nanoparticles of γ-Fe2O3 and Fe3O4. Micro-CT 3D image and grayscale graphic assessments revealed the accumulation of radiopaque material in the digestive tract of fish exposed to FeO-NPs. Histological analysis showed the presence of such NPs in the hepatopancreas, gills, kidneys, and muscles. No genotoxicity occurred, through micronucleus test and comet assay in peripheral erythrocytes. Body clearance was confirmed by iron-content reduction in organisms exposed to FeO-NPs after recovery period. No tissue injuries were observed in the exposed animals which may be attributed to the absence or low toxicity of iron oxide nanoparticles under the study conditions. O. niloticus showed tolerance to sublethal exposures to FeO-NPs.
Collapse
Affiliation(s)
- Maria Luiza Fascineli
- Universidade Federal da Paraíba, Centro de Ciências da Saúde, Departamento de Morfologia, João Pessoa, PB, Brazil
| | - Paolin Rocio Cáceres-Vélez
- Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Genética e Morfologia, Brasília, DF, Brazil
| | - Willie Oliveira Pinheiro
- Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Genética e Morfologia, Brasília, DF, Brazil
| | - Sacha Braun Chaves
- Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Genética e Morfologia, Brasília, DF, Brazil
| | | | | | - Frederico Hillesheim Horst
- Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Genética e Morfologia, Brasília, DF, Brazil
| | - Michele de Castro Fernandes
- Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Genética e Morfologia, Brasília, DF, Brazil
| | - Wania Guimarães
- Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Genética e Morfologia, Brasília, DF, Brazil
| | - Ricardo Bentes Azevedo
- Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Genética e Morfologia, Brasília, DF, Brazil
| | - Cesar Koppe Grisolia
- Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Genética e Morfologia, Brasília, DF, Brazil
| |
Collapse
|
4
|
Badran SR, Hamed A. Is the trend toward a sustainable green synthesis of copper oxide nanoparticles completely safe for Oreochromis niloticus when compared to chemical ones?: using oxidative stress, bioaccumulation, and histological biomarkers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:9477-9494. [PMID: 38190069 PMCID: PMC10824803 DOI: 10.1007/s11356-023-31707-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/20/2023] [Indexed: 01/09/2024]
Abstract
Scientists worldwide have noticed that cutting-edge technologies can be used to produce nanoparticles (NPs) in a sustainable and environmentally friendly way, instead of the old methods. However, the effectiveness of this approach for aquatic environments and species still needs to be determined. Therefore, this study aims to compare between the toxicity of green and chemically synthesized copper oxide nanoparticles (GS and CS) CuO NPs at two different concentrations on Nile tilapia (Oreochromis niloticus) using various biomarkers. CuO NPs' formation was proved, and their different characterizations were recorded. Then, the fish samples were randomly allocated in glass aquaria into five groups: one acted as a control group, and the other groups were exposed to two concentrations (25 and 50 mg/L) of GS-CuO NPs and CS-CuO NPs, separately, for 4 days. After the experimental time, in all groups that were exposed to two concentrations of both synthesized CuO NPs, the results revealed that glutathione peroxidase (GPx), catalase (CAT), superoxide dismutase (SOD), and thiobarbituric acid reactive substances (TBARS) levels were elevated in the liver and gills compared to glutathione reduced (GSH) content, which showed a significant decline. Bioaccumulation of Cu was more prevalent in the liver than in the gills, and the highest bioaccumulation capacity was more evident in the groups exposed to CS-CuO NPs. Moreover, the bioaccumulation of Cu caused severe histological changes in the liver and gills. In conclusion, the results suggested that GS-CuO NPs revealed less toxicity than CS-CuO NPs to the examined fish. However, they are still toxic, and their toxic effect cannot be overlooked.
Collapse
Affiliation(s)
- Shereen R Badran
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt.
| | - Aliaa Hamed
- Department of Biology, Basic Science Center, Misr University for Science and Technology (MUST), Giza, Egypt
| |
Collapse
|
5
|
Çiçek S. α-tocopherol ameliorates copper II oxide nanoparticles-induced cytotoxic, biochemical, apoptotic, and genotoxic damages in the rainbow trout gonad cells-2 (RTG-2) culture. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 101:104168. [PMID: 37295739 DOI: 10.1016/j.etap.2023.104168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023]
Abstract
We investigated the effects of α-tocopherol on oxidative stress-caused damage caused by copper II oxide nanoparticles (CuO NPs) on Oncorhynchus mykiss gonadal cells (RTG-2) for 24 and 48 h. α-Tocopherol reversed the cell death and alterations in the expressions of genes such as sod1, gpx1a, gpx4b, and igf2 caused by CuO NPs; it also supported the expressions of cat, igf1, and gapdh genes caused by CuO NPs for 24 h and promoted alterations in the expressions of the sod2, gh1, and igf1 genes for 48 h. Additionally, α-tocopherol reversed the caspase 3/7 activity increased by CuO NPs for 24 h and supported it's decrease for 48 h. α-Tocopherol supported the increase in tail DNA (%) affected by CuO NPs for 24 h and reversed it for 48 h. Therefore, α-tocopherol may have the potential to protect against cellular alterations induced by CuO NPs in a time-dependent manner.
Collapse
Affiliation(s)
- Semra Çiçek
- Department of Animal Biotechnology, Faculty of Agriculture, Atatürk University, Erzurum 25240, Turkey.
| |
Collapse
|
6
|
Çiçek S. Influences of l-ascorbic acid on cytotoxic, biochemical, and genotoxic damages caused by copper II oxide nanoparticles in the rainbow trout gonad cells-2. Comp Biochem Physiol C Toxicol Pharmacol 2023; 266:109559. [PMID: 36738901 DOI: 10.1016/j.cbpc.2023.109559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/09/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
In parallel with the raising use of copper oxide nanoparticles (CuO NPs) in various industrial and commercial practices, scientific reports on their release to the environment and toxicity are increasing. The toxicity of CuO NPs is mostly based on their oxidative stress. Therefore, it is necessary to investigate the efficacy of well-known therapeutic agents as antioxidants against CuO NPs damage. This study aimed to investigate the mechanism of this damage and to display whether l-ascorbic acid could preserve against the cell toxicities induced by CuO NPs in the rainbow trout gonad cells-2 (RTG-2). While CuO NPs treatment significantly diminished cell viability, the l-ascorbic acid supplement reversed this. l-ascorbic acid treatment reversed the changes in expressions of sod1, sod2, gpx1a, and gpx4b genes while playing a supportive role in the changes in the expression of the cat gene induced by CuO NPs treatment. Moreover, CuO NPs treatment caused an upregulation in the expressions of growth-related genes (gh1, igf1, and igf2) and l-ascorbic acid treatment further increased these effects. CuO NPs treatment significantly up-regulated the expression of the gapdh gene (glycolytic enzyme gene) compared to the control group, and l-ascorbic acid treatment significantly down-regulated the expression of the gapdh gene compared to CuO NPs treatment. The genotoxicity test demonstrated that l-ascorbic acid treatment increased the genotoxic effect caused by CuO NPs by acting as a co-mutagen. Based on the findings, l-ascorbic acid has the potential to be sometimes inhibitory and sometimes supportive of cellular mechanisms caused by CuO NPs.
Collapse
Affiliation(s)
- Semra Çiçek
- Animal Biotechnology Department, Faculty of Agriculture, Atatürk University, Erzurum 25400, Turkey.
| |
Collapse
|
7
|
Kalman J, Connolly M, Abdolahpur-Monikh F, Fernández-Saavedra R, Cardona-García AI, Conde-Vilda E, Martínez-Morcillo S, Peijnenburg WJGM, Rucandio I, Fernández-Cruz ML. Bioaccumulation of CuO nanomaterials in rainbow trout: Influence of exposure route and particle shape. CHEMOSPHERE 2023; 310:136894. [PMID: 36265710 DOI: 10.1016/j.chemosphere.2022.136894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/24/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
The bioaccumulation potential of spherical and rod-shaped CuO nanomaterials (NMs) was assessed in rainbow trout (Oncorhynchus mykiss) exposed via water and diet following the OECD Test Guideline No. 305. Fish were exposed via diet to both NMs at concentrations of 70 and 500 mg Cu/kg for 15 days, followed by 44 days of depuration. For water-borne exposure, only the rod-shaped CuO NMs were tested at 0.08 and 0.8 mg Cu/L for 28 days, followed by 14 days of depuration. The concentration of Cu was determined in fish whole body to derive biomagnification and bioconcentration factors (BMF and BCF). Different tissues were sampled to investigate the total Cu biodistribution and target organs as well as the particle number-based bioaccumulation of CuO NMs. Estimated BMF and BCF values were below the thresholds of concern. However, shape and route influenced depuration. Following dietary exposure, there was a higher depuration of Cu from fish exposed to the rod-shaped compared to the spherical CuO NMs. A higher depuration was also observed for rod-shaped CuO NMs following the dietary exposure compared the aqueous one. Despite the much higher dietary exposure concentrations of rod-shape CuO NMs, similar Cu body burdens were reached via water. Cu was found in particulate form in different tissues. Although these NMs had a low bioaccumulation potential, differences in distribution and elimination patterns of Cu were observed depending on the exposure route and particle shape. Careful consideration of the most relevant exposure route is needed when designing a bioaccumulation experiment for testing NMs.
Collapse
Affiliation(s)
- Judit Kalman
- Department of Environment and Agronomy, National Institute for Agricultural and Food Research and Technology (INIA), National Research Council (CSIC), Madrid, Spain
| | - Mona Connolly
- Department of Environment and Agronomy, National Institute for Agricultural and Food Research and Technology (INIA), National Research Council (CSIC), Madrid, Spain
| | - Fazel Abdolahpur-Monikh
- Department of Environmental & Biological Sciences, University of Eastern Finland, 80101, Joensuu, Finland; Department of Experimental Limnology, Leibniz Institute for Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany
| | - Rocío Fernández-Saavedra
- Division of Chemistry, Department of Technology, Research Centre for Energy, Environment and Technology (CIEMAT), Madrid, Spain
| | - Ana I Cardona-García
- Division of Chemistry, Department of Technology, Research Centre for Energy, Environment and Technology (CIEMAT), Madrid, Spain
| | - Estefanía Conde-Vilda
- Division of Chemistry, Department of Technology, Research Centre for Energy, Environment and Technology (CIEMAT), Madrid, Spain
| | - Salome Martínez-Morcillo
- Department of Environment and Agronomy, National Institute for Agricultural and Food Research and Technology (INIA), National Research Council (CSIC), Madrid, Spain
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, Einsteinweg 2, 2333, CC Leiden, the Netherlands; Center for Safety of Substances and Products, National Institute of Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Isabel Rucandio
- Division of Chemistry, Department of Technology, Research Centre for Energy, Environment and Technology (CIEMAT), Madrid, Spain
| | - María Luisa Fernández-Cruz
- Department of Environment and Agronomy, National Institute for Agricultural and Food Research and Technology (INIA), National Research Council (CSIC), Madrid, Spain.
| |
Collapse
|
8
|
Mawed SA, Marini C, Alagawany M, Farag MR, Reda RM, El-Saadony MT, Elhady WM, Magi GE, Di Cerbo A, El-Nagar WG. Zinc Oxide Nanoparticles (ZnO-NPs) Suppress Fertility by Activating Autophagy, Apoptosis, and Oxidative Stress in the Developing Oocytes of Female Zebrafish. Antioxidants (Basel) 2022; 11:1567. [PMID: 36009286 PMCID: PMC9404823 DOI: 10.3390/antiox11081567] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 02/04/2023] Open
Abstract
In vertebrates, the core mechanisms that control gametogenesis are largely multiple, complex, successive, and orchestrated by intrinsic and extrinsic factors. However, age, health status, and hormonal activity are important factors for good fertility; other intangible intracellular molecular mechanisms that manage oocyte development are still unclear. The present study was designed to elucidate the ultrastructure changes in the ovary in response to its exposure to zinc oxide nanoparticles (ZnO-NPs) and to explore the role of autophagy and apoptosis during egg maturation and ovulation on the fertility of female zebrafish. In our study, ZnO-NPs could induce cytotoxicity in the maturing oocyte by activating autophagy and apoptosis in a caspase-dependent manner and could induce oxidative stress by generating reactive oxygen species (ROS) that elevated the mutated ovarian tP53 protein. Simultaneously, necroptosis developed, mimicking the features of apoptosis and necrosis. Collectively, ZnO-NPs created a suitable necrotic environment that led to follicular developmental retardation that altered oocyte ovulation and reduced fecundity of female zebrafish.
Collapse
Affiliation(s)
- Suzan Attia Mawed
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Carlotta Marini
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| | - Mahmoud Alagawany
- Poultry Department, Agriculture Faculty, Zagazig University, Zagazig 44519, Egypt
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Rasha M. Reda
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Walaa M. Elhady
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Gian E. Magi
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| | - Wafaa G. El-Nagar
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
9
|
Staroń A, Długosz O. Antimicrobial properties of nanoparticles in the context of advantages and potential risks of their use. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2021; 56:680-693. [PMID: 33979267 DOI: 10.1080/10934529.2021.1917936] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
The popularity of nanotechnology results from the possibility of obtaining materials that have better chemical, electrical, thermal, mechanical, or optical properties. Nano-sized materials are characterized by an increased surface area, which improves their chemical reactivity and mobility. Due to their enhanced reactivity and appropriately small size, some nanoparticles are used as antimicrobial and antifungal agents. Nanoparticles exhibit antimicrobial potential through multifaceted mechanisms. The adhesion of nanoparticles to microbial cells, and reactive oxygen species, and their penetration inside the cells, have been recognized as the most prominent modes of antimicrobial action. This review presents the mechanism of action of nanometals and oxide nanoparticles used as antimicrobials and the mechanisms of bacterial resistance to the toxic effects of nanoparticles. The article presents methods of forming microorganism resistance to the toxic effects of nanoparticles and the negative impact of nanoparticles on human health.
Collapse
Affiliation(s)
- Anita Staroń
- Department of Engineering and Chemical Technology, Cracow University of Technology, Cracow, Poland
| | - Olga Długosz
- Department of Engineering and Chemical Technology, Cracow University of Technology, Cracow, Poland
| |
Collapse
|
10
|
Hussain R, Ghaffar A, Abbas G, Jabeen G, Khan I, Abbas RZ, Noreen S, Iqbal Z, Chaudhary IR, Ishaq HM, Ghori MT, Khan A. Thiamethoxam at sublethal concentrations induces histopathological, serum biochemical alterations and DNA damage in fish (Labeo rohita). TOXIN REV 2020. [DOI: 10.1080/15569543.2020.1855655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Riaz Hussain
- Department of Pathology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Abdul Ghaffar
- Department of Life Sciences (Zoology), The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ghulam Abbas
- Centre of Excellence in Marine Biology, University of Karachi, Karachi, Pakistan
| | - Ghazala Jabeen
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| | - Iahtasham Khan
- Section of Epidemiology and Public Health, Department of Clinical Sciences, University of Veterinary and Animal Sciences, Lahore Sub-Campus Jhang, Lahore, Pakistan
| | - Rao Zahid Abbas
- Department of Parasitology, Faculty of Veterinary Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Sobia Noreen
- Department of Life Sciences (Zoology), The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Zahid Iqbal
- Department of Pharmacology, Swat, Medical College Saidu Sharif, Swat, Pakistan
| | - Iqra Rasheed Chaudhary
- Department of Life Sciences (Zoology), The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Hafiz Muhammad Ishaq
- Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Muhammad Taslim Ghori
- Department of Clinical Medicine and Surgery, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ahrar Khan
- Department of Pathology, Faculty of Veterinary Sciences, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
11
|
The Duckweed, Lemna minor Modulates Heavy Metal-Induced Oxidative Stress in the Nile Tilapia, Oreochromis niloticus. WATER 2020. [DOI: 10.3390/w12112983] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A two-fold integrated research study was conducted; firstly, to understand the effects of copper (Cu) and zinc (Zn) on the growth and oxidative stress in Nile tilapia, Oreochromis niloticus; secondly, to study the beneficial effects of the duckweed Lemna minor L. as a heavy metal remover in wastewater. Experiments were conducted in mesocosms with and without duckweed. Tilapia fingerlings were exposed to Cu (0.004 and 0.02 mg L−1) and Zn (0.5 and 1.5 mg L−1) and fish fed for four weeks. We evaluated the fish growth performance, the hepatic DNA structure using comet assay, the expression of antioxidative genes (superoxide dismutase, SOD; catalase, CAT; glutathione peroxidase, GPx and glutathione-S-transferase, GST) and GPx and GST enzymatic activity. The results showed that Zn exhibited more pronounced toxic effects than Cu. A low dose of Cu did not influence the growth whereas higher doses of Cu and Zn significantly reduced the growth rate of tilapia compared to the control, but the addition of duckweed prevented weight loss. Furthermore, in the presence of a high dose of Cu and Zn, DNA damage decreased, antioxidant gene expressions and enzymatic activities increased. In conclusion, the results suggest that duckweed and Nile tilapia can be suitable candidates in metal remediation wastewater assessment programs.
Collapse
|
12
|
Wei CC, Yen PL, Chaikritsadakarn A, Huang CW, Chang CH, Liao VHC. Parental CuO nanoparticles exposure results in transgenerational toxicity in Caenorhabditis elegans associated with possible epigenetic regulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:111001. [PMID: 32888585 DOI: 10.1016/j.ecoenv.2020.111001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/05/2020] [Accepted: 07/04/2020] [Indexed: 05/21/2023]
Abstract
Environmental nanomaterials contamination is a great concern for organisms including human. Copper oxide nanoparticles (CuO NPs) are widely used in a huge range of applications which might pose potential risk to organisms. This study investigated the in vivo transgenerational toxicity on development and reproduction with parental CuO NPs exposure in the nematode Caenorhabditis elegans. The results showed that CuO NPs (150 mg/L) significantly reduced the body length of parental C. elegans (P0). Only about 1 mg/L Cu2+ (~0.73%) were detected from 150 mg/L CuO NPs in 0.5X K-medium after 48 h. In transgenerational assays, CuO NPs (150 mg/L) parental exposure significantly induced developmental and reproductive toxicity in non-exposed C. elegans progeny (CuO NPs free) on body length (F1) and brood size (F1 and F2), respectively. In contrast, parental exposure to Cu2+ (1 mg/L) did not cause transgenerational toxicity on growth and reproduction. This suggests that the transgenerational toxicity was mostly attributed to the particulate form of CuO NPs. Moreover, qRT-PCR results showed that the mRNA levels of met-2 and spr-5 genes were significantly decreased at P0 and F1 upon only maternal exposure to CuO NPs (150 mg/L), suggesting the observed transgenerational toxicity was associated with possible epigenetic regulation in C. elegans.
Collapse
Affiliation(s)
- Chia-Cheng Wei
- Institute of Food Safety and Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei, 100, Taiwan; Department of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei, 100, Taiwan
| | - Pei-Ling Yen
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106, Taiwan
| | - Amornrat Chaikritsadakarn
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106, Taiwan
| | - Chi-Wei Huang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106, Taiwan
| | - Chun-Han Chang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106, Taiwan
| | - Vivian Hsiu-Chuan Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106, Taiwan.
| |
Collapse
|
13
|
Antibacterial and Antibiofilm Potential of Mono-dispersed Stable Copper Oxide Nanoparticles-Streptomycin Nano-drug: Implications for Some Potato Plant Bacterial Pathogen Treatment. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01707-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Du J, Fu L, Li H, Xu S, Zhou Q, Tang J. The potential hazards and ecotoxicity of CuO nanoparticles: an overview. TOXIN REV 2019. [DOI: 10.1080/15569543.2019.1670211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Jia Du
- Institute of Environmental Science and Engineering, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Li Fu
- Institute of Environmental Science and Engineering, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Huanxuna Li
- Institute of Environmental Science and Engineering, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Shaodan Xu
- Institute of Environmental Science and Engineering, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Qingwei Zhou
- Institute of Environmental Science and Engineering, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Junhong Tang
- Institute of Environmental Science and Engineering, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| |
Collapse
|