1
|
Zhu P, Chu Y, Li F, Chen L. Biodegradable and Reusable Sponge Material Prepared from Pea Protein for the Effective Removal of Heavy Metals. ACS APPLIED MATERIALS & INTERFACES 2025; 17:26534-26550. [PMID: 40286329 DOI: 10.1021/acsami.4c22940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
There is a growing demand for biodegradable and sustainable materials, particularly those sourced from agricultural or industrial byproducts, for use in wastewater treatment. This study introduces an approach for developing a sponge-like adsorbent derived exclusively from pea protein (PeaAS-PEI) using liquid foam templating for the removal of heavy metals. The pore size, surface area, and mechanical strength of the sponge were modulated by the extent of protein hydrophobic aggregation induced by ammonium sulfate (AS) immersion based on the salting-out effect. Raising AS concentration from 10 to 20% led to an increase in surface area from 30.69 to 127.41 m2/g and compressive stress from 151.02 ± 8.73 kPa to 316.10 ± 13.87 kPa at 90% strain. Polyethylenimine (PEI) grafting introduced additional amine groups for heavy metal adsorption, and the porosity of the sponge increased from 86.9 to 90.3% upon surface modification. As a result, the PEI-modified sponge showed favorable adsorption performance of Cu(II), Zn(II), and Ni(II) ions at pH 5 with maximum sorption capacities of 67.07, 115.61, and 55.86 mg/g, respectively. The adsorption kinetics and isotherm study suggested that the adsorption process was primarily chemisorption and occurred with monolayer interactions. The negative Gibbs free energy change (ΔG < 0) confirmed that the adsorption was thermodynamically spontaneous. Reusability tests for the PeaAS-PEI sponge revealed that its adsorption capacity could be well maintained over five successive adsorption-desorption cycles, with the removal efficiency of Cu(II) over 95%. The pea protein sponge also exhibited excellent biodegradability in soil within 28 days, with weight losses of 86.1% and 67.5% before and after PEI grafting, respectively. Together, these results indicate the great potential of affordable and sustainable PEI-modified pea protein sponges for the remediation of water polluted with copper, zinc, and nickel ions.
Collapse
Affiliation(s)
- Peineng Zhu
- Faculty of Agricultural, Life & Environmental Sciences, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Yifu Chu
- Faculty of Agricultural, Life & Environmental Sciences, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Fengmin Li
- Institute of Coastal Environmental Pollution Control, and Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Lingyun Chen
- Faculty of Agricultural, Life & Environmental Sciences, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| |
Collapse
|
2
|
Khan I, Ali A, Naz A, Baig ZT, Shah W, Rahman ZU, Shah TA, Attia KA, Mohammed AA, Hafez YM. Removal of Cr(VI) from Wastewater Using Acrylonitrile Grafted Cellulose Extracted from Sugarcane Bagasse. Molecules 2024; 29:2207. [PMID: 38792069 PMCID: PMC11124459 DOI: 10.3390/molecules29102207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 05/26/2024] Open
Abstract
A highly efficient low-cost adsorbent was prepared using raw and chemically modified cellulose isolated from sugarcane bagasse for decontamination of Cr(VI) from wastewater. First, cellulose pulp was isolated from sugarcane bagasse by subjecting it to acid hydrolysis, alkaline hydrolysis and bleaching with sodium chlorate (NaClO3). Then, the bleached cellulose pulp was chemically modified with acrylonitrile monomer in the presence Fenton's reagent (Fe+2/H2O2) to carry out grafting of acrylonitrile onto cellulose by atom transfer radical polymerization. The developed adsorbent (acrylonitrile grafted cellulose) was analyzed by X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). Both raw cellulose and acrylonitrile grafted cellulose were used for chromium removal from wastewater. The effects of metal ion concentration, pH, adsorbent dose and time were studied, and their values were optimized. The optimum conditions for the adsorption of Cr(VI) onto raw and chemically modified cellulose were: metal ion concentration: 50 ppm, adsorbent dose: 1 g, pH: 6, and time: 60 min. The maximum efficiencies of 73% and 94% and adsorption capacities of 125.95 mg/g and 267.93 mg/g were achieved for raw and acrylonitrile grafted cellulose, respectively. High removal efficiency was achieved, owing to high surface area of 79.92 m2/g and functional active binding cites on grafted cellulose. Isotherm and kinetics studies show that the experimental data were fully fitted by the Freundlich isotherm model and pseudo first-order model. The adsorbent (acrylonitrile grafted cellulose) was regenerated using three different types of regenerating reagents and reused thirty times, and there was negligible decrease (19%) in removal efficiency after using it for 30 times. Hence, it is anticipated that acrylonitrile could be utilized as potential candidate material for commercial scale Cr(VI) removal from wastewater.
Collapse
Affiliation(s)
- Idrees Khan
- Department of Environmental Science, Faculty of Physical & Applied Sciences, The University of Haripur, Haripur 22620, Pakistan; (I.K.); (Z.T.B.); (W.S.); (Z.U.R.)
| | - Ashraf Ali
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
- Department of Chemistry, Faculty of Physical & Applied Sciences, The University of Haripur, Haripur 22620, Pakistan
| | - Alia Naz
- Department of Environmental Science, Faculty of Physical & Applied Sciences, The University of Haripur, Haripur 22620, Pakistan; (I.K.); (Z.T.B.); (W.S.); (Z.U.R.)
| | - Zenab Tariq Baig
- Department of Environmental Science, Faculty of Physical & Applied Sciences, The University of Haripur, Haripur 22620, Pakistan; (I.K.); (Z.T.B.); (W.S.); (Z.U.R.)
| | - Wisal Shah
- Department of Environmental Science, Faculty of Physical & Applied Sciences, The University of Haripur, Haripur 22620, Pakistan; (I.K.); (Z.T.B.); (W.S.); (Z.U.R.)
| | - Zia Ur Rahman
- Department of Environmental Science, Faculty of Physical & Applied Sciences, The University of Haripur, Haripur 22620, Pakistan; (I.K.); (Z.T.B.); (W.S.); (Z.U.R.)
| | - Tawaf Ali Shah
- College of Agriculture Engineering and Food Sciences, Shandong University of Technology, Zibo 255000, China;
| | - Kotb A. Attia
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (K.A.A.); (A.A.M.)
| | - Arif Ahmed Mohammed
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (K.A.A.); (A.A.M.)
| | - Yaser M. Hafez
- EPCRS Excellence Center, Plant Pathology and Biotechnology Laboratory, Agricultural Botany Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt;
| |
Collapse
|
3
|
Nthwane Y, Fouda-Mbanga BG, Thwala M, Pillay K. Synthesis and Characterization of MC/TiO 2 NPs Nanocomposite for Removal of Pb 2+ and Reuse of Spent Adsorbent for Blood Fingerprint Detection. ACS OMEGA 2023; 8:26725-26738. [PMID: 37546658 PMCID: PMC10399188 DOI: 10.1021/acsomega.2c05765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 03/14/2023] [Indexed: 08/08/2023]
Abstract
The removal of toxic heavy metals from wastewater through the use of novel adsorbents is expensive. The challenge arises after the heavy metal is removed by the adsorbent, and the fate of the adsorbent is not taken care of. This may create secondary pollution. The study aimed to prepare mesoporous carbon (MC) from macadamia nutshells coated with titanium dioxide nanoparticles (TiO2 NPs) using a hydrothermal method to remove Pb2+ and to test the effectiveness of reusing the lead-loaded spent adsorbent (Pb2+-MC/TiO2 NP nanocomposite) in blood fingerprint detection. The samples were characterized using SEM, which confirmed spherical and flower-like structures of the nanomaterials, whereas TEM confirmed a particle size of 5 nm. The presence of functional groups such as C and Ti and a crystalline size of 4 nm were confirmed by FTIR and XRD, respectively. The surface area of 1283.822 m2/g for the MC/TiO2 NP nanocomposite was examined by BET. The removal of Pb2+ at pH 4 and the dosage of 1.6 g/L with the highest percentage removal of 98% were analyzed by ICP-OES. The Langmuir isotherm model best fit the experimental data, and the maximum adsorption capacity of the MC/TiO2 NP nanocomposite was 168.919 mg/g. The adsorption followed the pseudo-second-order kinetic model. The ΔH° (-54.783) represented the exothermic nature, and ΔG° (-0.133 to -4.743) indicated that the adsorption process is spontaneous. In the blood fingerprint detection, the fingerprint details were more visible after applying the Pb2+-MC/TiO2 NP nanocomposite than before the application. The reuse application experiments showed that the Pb2+-MC/TiO2 NP nanocomposite might be a useful alternative material for blood fingerprint enhancement when applied on nonporous surfaces, eliminating secondary pollution.
Collapse
Affiliation(s)
- Yvonne
Boitumelo Nthwane
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg 2028, South Africa
| | - Bienvenu Gael Fouda-Mbanga
- Department
of Chemistry, Center for Rubber Science and Technology, Nelson Mandela University, Gqeberha 6031, South Africa
| | - Melusi Thwala
- Science
Advisory and Strategic Partnerships, Academy
of Science of South Africa, Pretoria 0040, South Africa
- Department
of Environmental Health, Nelson Mandela
University, Port Elizabeth 6031, South Africa
| | - Kriveshini Pillay
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg 2028, South Africa
| |
Collapse
|
4
|
Ali A, Alharthi S, Al-Shaalan NH, Naz A, Fan HJS. Efficient Removal of Hexavalent Chromium (Cr(VI)) from Wastewater Using Amide-Modified Biochar. Molecules 2023; 28:5146. [PMID: 37446811 DOI: 10.3390/molecules28135146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The utilization of biochar, derived from agricultural waste, has garnered attention as a valuable material for enhancing soil properties and serving as a substitute adsorbent for the elimination of hazardous heavy metals and organic contaminants from wastewater. In the present investigation, amide-modified biochar was synthesized via low-temperature pyrolysis of rice husk and was harnessed for the removal of Cr(VI) from wastewater. The resultant biochar was treated with 1-[3-(trimethoxysilyl) propyl] urea to incorporate an amide group. The amide-modified biochar was characterized by employing Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD) techniques. During batch experiments, the effect of various parameters, such as adsorbent dosage, metal concentration, time duration, and pH, on Cr(VI) removal was investigated. The optimal conditions for achieving maximum adsorption of Cr(VI) were observed at a pH 2, an adsorbent time of 60 min, an adsorbent dosage of 2 g/L, and a metal concentration of 100 mg/L. The percent removal efficiency of 97% was recorded for the removal of Cr(VI) under optimal conditions using amide-modified biochar. Freundlich, Langmuir, and Temkin isotherm models were utilized to calculate the adsorption data and determine the optimal fitting model. It was found that the adsorption data fitted well with the Langmuir isotherm model. A kinetics study revealed that the Cr(VI) adsorption onto ABC followed a pseudo-second-order kinetic model. The findings of this study indicate that amide-functionalized biochar has the potential to serve as an economically viable substitute adsorbent for the efficient removal of Cr(VI) from wastewater.
Collapse
Affiliation(s)
- Ashraf Ali
- Department of Chemistry, Faculty of Physical & Applied Sciences, The University of Haripur, Haripur 22620, Pakistan
| | - Sarah Alharthi
- Center of Advanced Research in Science and Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Nora Hamad Al-Shaalan
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Alia Naz
- Department of Environmental Science, Faculty of Physical & Applied Sciences, The University of Haripur, Haripur 22620, Pakistan
| | - Hua-Jun Shawn Fan
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643099, China
| |
Collapse
|
5
|
Azadegan F, Esmaeili Bidhendi M, Badiei A, Lu S, Sotoudehnia Korrani Z, Rezania S. Removal of mercury ions from aqueous by functionalized LUS-1 with Bis [3-(triethoxysilyl) propyl] tetrasulfide as an effective nanocomposite using response surface methodology (RSM). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:71649-71664. [PMID: 34185274 DOI: 10.1007/s11356-021-15021-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
In this study, LUS-1, as a mesoporous silica material, was functionalized using sulfur-containing ligand (Bis [3-(triethoxysilyl) propyl] tetrasulfide, TESPT) and used for mercury removal from the aqueous solution. Different characterizations such as N2 adsorption-desorption (BET), TGA, XRD, FT-IR, and SEM were used to verify the nanocomposite synthesis. In addition, the effects of several independent parameters like pH, the contact time of reaction, and adsorbent dose on the removal efficiency of mercury from aqueous in a batch system were studied using response surface methodology (RSM). Based on the results and after both theoretical and experimental studies, the optimum conditions using the LUS-1-TESPT were contact time of reaction of 23.16 min, sorbent dose of 51.12 mg, and pH of 4.5. The kinetic and isotherm models for the adsorption process showed a maximum adsorption capacity of adsorbent which was 136.73 mg g-1 with 99% removal of Hg(II) via the Langmuir model. Meanwhile, the sorbent's reusability and efficiency verified that the sorbent could be used five times after recovery with 99% efficiency.
Collapse
Affiliation(s)
- Farhang Azadegan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China
| | | | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
- Nanobiomedicine Center of Excellence, Nanoscience and Nanotechnology Research Center, University of Tehran, Tehran, Iran
| | - Shuguang Lu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200098, China
| | | | - Shahabaldin Rezania
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea.
| |
Collapse
|
6
|
Enhanced photocatalytic properties of mesoporous heterostructured SrCO3-SrTiO3 microspheres via effective charge transfer. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
7
|
Wang Z, Tan R, Gong J, Gong B, Guan Q, Mi X, Deng D, Liu X, Liu C, Deng C, Ding C, Zeng G. Process parameters and biological mechanism of efficient removal of Cd(II) ion from wastewater by a novel Bacillus subtilis TR1. CHEMOSPHERE 2023; 318:137958. [PMID: 36708781 DOI: 10.1016/j.chemosphere.2023.137958] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/15/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
The safe treatment of heavy metals in wastewater is directly related to the human health and social development. In this paper, a new biological strain has been isolated from electroplating wastewater, which can effectively remove metal ions in wastewater. The results of 16 S rDNA sequencing analysis and NCBI GenBank database comparison show that the strain belongs to a novel Bacillus genus and names Bacillus subtilis TR1 with the accession number of OL441606. The removal rate of Cd(II) reaches to 85.68% with the conditions of pH = 7, C0Cd(II) = 20 mg L-1, t = 48 h, m = 0.1 g, and T = 35 °C. The biological removal mechanism of Cd(II) is in-depth studied by FTIR and XRD combined with third-generation sequencing. The results indicate that Bacillus subtilis TR1 removes Cd(II) mainly through two synergistic pathways, namely, extracellular chemisorption and intracellular bioaccumulation: 1) The groups carried on the surface of the strain, such as -COOH, -NH, -OH and C-H, have good chemisorption properties for Cd(II) and easily form cadmium containing chelation (-COO-Cd(II), -N-Cd(II), etc.) with these groups. The appearance of TR1 strain changes from cylindrical to spherical after Cd(II) adsorption, which is due to the biotoxicity of Cd(II); 2) Cd(II) exchanges on the surface of TR1 strain with K and Na ions released from the intracellular cytoplasm and enters the cytoplasm under the transfer of biological transport medium. This part of Cd(II) is converted into its own components by anabolic enzymes and accumulates in the cytoplasm. These data provide a new biological agent for the efficient treatment of heavy metal ions in wastewater and enrich relevant theoretical knowledge.
Collapse
Affiliation(s)
- Zhongbing Wang
- School of Environment & Chemical Engineering, Nanchang Hangkong University, 330063, Nanchang, Jiangxi, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang, 330063, Jiangxi, China
| | - Rong Tan
- School of Environment & Chemical Engineering, Nanchang Hangkong University, 330063, Nanchang, Jiangxi, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang, 330063, Jiangxi, China
| | - Jie Gong
- School of Environment & Chemical Engineering, Nanchang Hangkong University, 330063, Nanchang, Jiangxi, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang, 330063, Jiangxi, China
| | - Baichuan Gong
- School of Environment & Chemical Engineering, Nanchang Hangkong University, 330063, Nanchang, Jiangxi, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang, 330063, Jiangxi, China
| | - Qian Guan
- College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Xue Mi
- School of Environment & Chemical Engineering, Nanchang Hangkong University, 330063, Nanchang, Jiangxi, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang, 330063, Jiangxi, China
| | - Di Deng
- School of Environment & Chemical Engineering, Nanchang Hangkong University, 330063, Nanchang, Jiangxi, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang, 330063, Jiangxi, China
| | - Xiangning Liu
- School of Environment & Chemical Engineering, Nanchang Hangkong University, 330063, Nanchang, Jiangxi, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang, 330063, Jiangxi, China
| | - Chunli Liu
- School of Environment & Chemical Engineering, Nanchang Hangkong University, 330063, Nanchang, Jiangxi, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang, 330063, Jiangxi, China
| | - Chunjian Deng
- School of Environment & Chemical Engineering, Nanchang Hangkong University, 330063, Nanchang, Jiangxi, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang, 330063, Jiangxi, China
| | - Chunlian Ding
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China.
| | - Guisheng Zeng
- School of Environment & Chemical Engineering, Nanchang Hangkong University, 330063, Nanchang, Jiangxi, China; National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang, 330063, Jiangxi, China.
| |
Collapse
|
8
|
Sandu T, Sârbu A, Căprărescu S, Stoica EB, Iordache TV, Chiriac AL. Polymer Membranes as Innovative Means of Quality Restoring for Wastewater Bearing Heavy Metals. MEMBRANES 2022; 12:membranes12121179. [PMID: 36557086 PMCID: PMC9783154 DOI: 10.3390/membranes12121179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 05/31/2023]
Abstract
The problem that has aroused the interest of this review refers to the harmful effect of heavy metals on water sources due to industrial development. In this respect, the review is aimed at achieving a literature survey on the outstanding results and advancements in membranes and membrane technologies for the advanced treatment of heavy metal-loaded wastewaters. Particular attention is given to synthetic polymer membranes, for which the proper choice of precursor material can provide cost benefits while ensuring good decontamination activity. Furthermore, it was also found that better removal efficiencies of heavy metals are achieved by combining the membrane properties with the adsorption properties of inorganic powders. The membrane processes of interest from the perspective of industrial applications are also discussed. A noteworthy conclusion is the fact that the main differences between membranes, which refer mainly to the definition and density of the pore structure, are the prime factors that affect the separation process of heavy metals. Literature studies reveal that applying UF/MF approaches prior to RO leads to a better purification performance.
Collapse
Affiliation(s)
- Teodor Sandu
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Spl. Independentei 202, 6th District, 060021 Bucharest, Romania
| | - Andrei Sârbu
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Spl. Independentei 202, 6th District, 060021 Bucharest, Romania
| | - Simona Căprărescu
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Ghe. Polizu Street, No. 1-7, 011061 Bucharest, Romania
| | - Elena-Bianca Stoica
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Spl. Independentei 202, 6th District, 060021 Bucharest, Romania
| | - Tanța-Verona Iordache
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Spl. Independentei 202, 6th District, 060021 Bucharest, Romania
| | - Anita-Laura Chiriac
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Spl. Independentei 202, 6th District, 060021 Bucharest, Romania
| |
Collapse
|
9
|
Kusenberg M, Faussone GC, Thi HD, Roosen M, Grilc M, Eschenbacher A, De Meester S, Van Geem KM. Maximizing olefin production via steam cracking of distilled pyrolysis oils from difficult-to-recycle municipal plastic waste and marine litter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156092. [PMID: 35605869 DOI: 10.1016/j.scitotenv.2022.156092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/04/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Plastic waste is steadily polluting oceans and environments. Even if collected, most waste is still predominantly incinerated for energy recovery at the cost of CO2. Chemical recycling can contribute to the transition towards a circular economy with pyrolysis combined with steam cracking being the favored recycling option for the time being. However, today, the high variety and contamination of real waste remains the biggest challenge. This is especially relevant for waste fractions which are difficult or even impossible to recycle mechanically such as highly mixed municipal plastic waste or marine litter. In this work, we studied the detailed composition and the steam cracking performance of distilled pyrolysis oil fractions in the naphtha-range of two highly relevant waste fractions: mixed municipal plastic waste (MPW) considered unsuitable for mechanical recycling and marine litter (ML) collected from the sea bottom. Advanced analytical techniques including comprehensive two-dimensional gas chromatography (GC × GC) coupled with various detectors and inductively coupled plasma - mass spectrometry (ICP-MS) were applied to characterize the feedstocks and to understand how their properties affect the steam cracking performance. Both waste-derived naphtha fractions were rich in olefins and aromatics (~70% in MPW naphtha and ~51% in ML naphtha) next to traces of nitrogen, oxygen, chlorine and metals. ICP-MS analyses showed that sodium, potassium, silicon and iron were the most crucial metals that should be removed in further upgrading steps. Steam cracking of the waste-derived naphtha fractions resulted in lower light olefin yields compared to fossil naphtha used as benchmark, due to secondary reactions of aromatics and olefins. Coke formation of ML naphtha was slightly increased compared to fossil naphtha (+ ~50%), while that of MPW naphtha was more than ~180% higher. It was concluded that mild upgrading of the waste-derived naphtha fractions or dilution with fossil feedstocks is sufficient to provide feedstocks suitable for industrial steam cracking.
Collapse
Affiliation(s)
- Marvin Kusenberg
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering & Architecture, Ghent University, B-9052 Zwijnaarde, Belgium
| | - Gian Claudio Faussone
- University of Nova Gorica, Vipavska 13, SI-5000 Nova Gorica, Slovenia; Sintol, Corso Matteotti 32A, Torino, Italy
| | - Hang Dao Thi
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering & Architecture, Ghent University, B-9052 Zwijnaarde, Belgium
| | - Martijn Roosen
- Laboratory for Circular Process Engineering (LCPE), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, B-8500 Kortrijk, Belgium
| | - Miha Grilc
- University of Nova Gorica, Vipavska 13, SI-5000 Nova Gorica, Slovenia; Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
| | - Andreas Eschenbacher
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering & Architecture, Ghent University, B-9052 Zwijnaarde, Belgium
| | - Steven De Meester
- Laboratory for Circular Process Engineering (LCPE), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, B-8500 Kortrijk, Belgium
| | - Kevin M Van Geem
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering & Architecture, Ghent University, B-9052 Zwijnaarde, Belgium.
| |
Collapse
|
10
|
Shehzad H, Farooqi ZH, Ahmed E, Sharif A, Ajmal M, Razzaq S, Naseer MU, Nazir MA, Batool M, Akram T, Nissa QU, Fatima A, Akbar L. Effective biosorption of Cu(II) using hybrid biocomposite based on N-maleated chitosan/calcium alginate/titania: Equilibrium sorption, kinetic and thermodynamic studies. Int J Biol Macromol 2022; 216:676-685. [PMID: 35810852 DOI: 10.1016/j.ijbiomac.2022.06.159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/27/2022] [Accepted: 06/25/2022] [Indexed: 11/16/2022]
Abstract
In this research work, a hybrid biocomposite based on N-maleated chitosan, amino-thiocarbamate functionalised calcium alginate and anhydrous Titania nanoparticles (NMC-MCA-TiO2) was fabricated. The study involves the one pot facile synthesis of N-maleated chitosan and amino-thiocarbamate functionalised alginate under moderate conditions. Sorbent was conditioned in the form of hydrogel beads and characterized through FT-IR and SEM analysis. Newly grafted functional groups could act as potential chelating sites for enhanced Cu(II) sorption. Modified biopolymers were organo-functionalised which provided excellent support for immobilization of Titania nanoparticles (TiO2) as inorganic filler. Kinetic data illustrated the manifestation of intrinsic chemisorption instead of simple bulk/film diffusion. Equilibrium sorption data fitted well with Freundlich adsorption model (R2 ≈ 0.99) which designated the heterogeneous nature of sorbent. Maximum sorption capacity of biosorbent was found 192 mg/g at 298 K and pH = 6.0. Standard Gibbs free energy change ∆Go (-21.53, -21.97, and - 22.42 kJ/mol), standard enthalpy change ∆Ho (5.12 kJ/mol) and standard entropy change ∆So (0.09 kJ/mol K-1) values suggested that the sorption process to be spontaneous and endothermic. The sorbent 3NMC-MCA-TiO2 could be competitive candidate for economical and rapid adsorptive removal of Cu(II) from dilute contaminated liquids.
Collapse
Affiliation(s)
- Hamza Shehzad
- School of Chemistry, University of the Punjab, Lahore 54590, Pakistan.
| | - Zahoor H Farooqi
- School of Chemistry, University of the Punjab, Lahore 54590, Pakistan.
| | - Ejaz Ahmed
- School of Chemistry, University of the Punjab, Lahore 54590, Pakistan
| | - Ahsan Sharif
- School of Chemistry, University of the Punjab, Lahore 54590, Pakistan
| | - Muhammad Ajmal
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Sana Razzaq
- School of Chemistry, University of the Punjab, Lahore 54590, Pakistan
| | - M Uzair Naseer
- School of Chemistry, University of the Punjab, Lahore 54590, Pakistan
| | - M Ahmad Nazir
- School of Chemistry, University of the Punjab, Lahore 54590, Pakistan
| | - Mehwish Batool
- School of Chemistry, University of the Punjab, Lahore 54590, Pakistan
| | - Tehreem Akram
- School of Chemistry, University of the Punjab, Lahore 54590, Pakistan
| | - Qamar Un Nissa
- School of Chemistry, University of the Punjab, Lahore 54590, Pakistan
| | - Amarah Fatima
- School of Chemistry, University of the Punjab, Lahore 54590, Pakistan
| | - Laiba Akbar
- School of Chemistry, University of the Punjab, Lahore 54590, Pakistan
| |
Collapse
|
11
|
Ji Z, Zhang Y, Wang H, Li C. Research progress in the removal of heavy metals by modified chitosan. TENSIDE SURFACT DET 2022. [DOI: 10.1515/tsd-2021-2414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Abstract
Chitosan and its modifiers have been widely studied for their good biocompatibility and excellent adsorption properties for heavy metal ions. The synthesis and application of modified chitosan, the effects of process variables (such as pH, amount of adsorbent, temperature, contact time, etc.), adsorption kinetics, thermodynamics and the adsorption mechanism on the removal of heavy metal ions are reviewed. The purpose is to provide the latest information about chitosan as adsorbent and to promote the synthesis of modified chitosan and its application in the removal of heavy metals.
Collapse
Affiliation(s)
- Zheng Ji
- Department of Medicinal Chemistry , School of Pharmacy, Anhui University of Chinese Medicine , Hefei , China
| | - Yansong Zhang
- Department of Medicinal Chemistry , School of Pharmacy, Anhui University of Chinese Medicine , Hefei , China
| | - Huchuan Wang
- Department of Medicinal Chemistry , School of Pharmacy, Anhui University of Chinese Medicine , Hefei , China
| | - Chuanrun Li
- Department of Medicinal Chemistry , School of Pharmacy, Anhui University of Chinese Medicine , Hefei , China
| |
Collapse
|
12
|
Recent Advances in the Decontamination and Upgrading of Waste Plastic Pyrolysis Products: An Overview. Processes (Basel) 2022. [DOI: 10.3390/pr10040733] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Extensive research on the production of energy and valuable materials from plastic waste using pyrolysis has been widely conducted during recent years. Succeeding in demonstrating the sustainability of this technology economically and technologically at an industrial scale is a great challenge. In most cases, crude pyrolysis products cannot be used directly for several reasons, including the presence of contaminants. This is confirmed by recent studies, using advanced characterization techniques such as two-dimensional gas chromatography. Thus, to overcome these limitations, post-treatment methods, such as dechlorination, distillation, catalytic upgrading and hydroprocessing, are required. Moreover, the integration of pyrolysis units into conventional refineries is only possible if the waste plastic is pre-treated, which involves sorting, washing and dehalogenation. The different studies examined in this review showed that the distillation of plastic pyrolysis oil allows the control of the carbon distribution of different fractions. The hydroprocessing of pyrolytic oil gives promising results in terms of reducing contaminants, such as chlorine, by one order of magnitude. Recent developments in plastic waste and pyrolysis product characterization methods are also reported in this review. The application of pyrolysis for energy generation or added-value material production determines the economic sustainability of the process.
Collapse
|
13
|
Yang P, Li F, Wang B, Niu Y, Wei J, Yu Q. In Situ Synthesis of Carbon Nanotube–Steel Slag Composite for Pb(II) and Cu(II) Removal from Aqueous Solution. NANOMATERIALS 2022; 12:nano12071199. [PMID: 35407318 PMCID: PMC9000475 DOI: 10.3390/nano12071199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 02/07/2023]
Abstract
Methods and materials that effectively remove heavy metals, such as lead and copper, from wastewater are urgently needed. In this study, steel slag, a low-cost byproduct of steel manufacturing, was utilized as a substrate material for carbon nanotube (CNT) growth by chemical vapor deposition (CVD) to produce a new kind of efficient and low-cost absorbent without any pretreatment. The synthesis parameters of the developed CNT–steel slag composite (SS@CNTs) were optimized, and its adsorption capacities for Pb(II) and Cu(II) were evaluated. The results showed that the optimal growth time, synthesis temperature and acetylene flow rate were 45 min, 600 °C and 200 sccm (standard cubic centimeter per minute), respectively. The SS@CNTs composite had a high adsorption capacity with a maximum removal amount of 427.26 mg·g−1 for Pb(II) and 132.79 mg·g−1 for Cu(II). The adsorption proceeded rapidly during the first 15 min of adsorption and reached equilibrium at approximately 90 min. The adsorption processes were in accordance with the isotherms of the Langmuir model and the pseudo-second-order model, while the adsorption thermodynamics results indicated that the removal for both metals was an endothermic and spontaneous process. This study showed that compared with other adsorbent materials, the SS@CNTs composite is an efficient and low-cost adsorbent for heavy metals such as lead and copper.
Collapse
Affiliation(s)
- Pengfei Yang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China; (P.Y.); (B.W.); (J.W.)
| | - Fangxian Li
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China; (P.Y.); (B.W.); (J.W.)
- Guangdong Low Carbon Technology and Engineering Center for Building Materials, Guangzhou 510641, China
- Correspondence: (F.L.); (Q.Y.)
| | - Beihan Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China; (P.Y.); (B.W.); (J.W.)
| | - Yanfei Niu
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China;
| | - Jiangxiong Wei
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China; (P.Y.); (B.W.); (J.W.)
- Guangdong Low Carbon Technology and Engineering Center for Building Materials, Guangzhou 510641, China
| | - Qijun Yu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China; (P.Y.); (B.W.); (J.W.)
- Guangdong Low Carbon Technology and Engineering Center for Building Materials, Guangzhou 510641, China
- Correspondence: (F.L.); (Q.Y.)
| |
Collapse
|
14
|
Kusenberg M, Eschenbacher A, Djokic MR, Zayoud A, Ragaert K, De Meester S, Van Geem KM. Opportunities and challenges for the application of post-consumer plastic waste pyrolysis oils as steam cracker feedstocks: To decontaminate or not to decontaminate? WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 138:83-115. [PMID: 34871884 PMCID: PMC8769047 DOI: 10.1016/j.wasman.2021.11.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 10/11/2021] [Accepted: 11/07/2021] [Indexed: 05/15/2023]
Abstract
Thermochemical recycling of plastic waste to base chemicals via pyrolysis followed by a minimal amount of upgrading and steam cracking is expected to be the dominant chemical recycling technology in the coming decade. However, there are substantial safety and operational risks when using plastic waste pyrolysis oils instead of conventional fossil-based feedstocks. This is due to the fact that plastic waste pyrolysis oils contain a vast amount of contaminants which are the main drivers for corrosion, fouling and downstream catalyst poisoning in industrial steam cracking plants. Contaminants are therefore crucial to evaluate the steam cracking feasibility of these alternative feedstocks. Indeed, current plastic waste pyrolysis oils exceed typical feedstock specifications for numerous known contaminants, e.g. nitrogen (∼1650 vs. 100 ppm max.), oxygen (∼1250 vs. 100 ppm max.), chlorine (∼1460vs. 3 ppm max.), iron (∼33 vs. 0.001 ppm max.), sodium (∼0.8 vs. 0.125 ppm max.)and calcium (∼17vs. 0.5 ppm max.). Pyrolysis oils produced from post-consumer plastic waste can only meet the current specifications set for industrial steam cracker feedstocks if they are upgraded, with hydrogen based technologies being the most effective, in combination with an effective pre-treatment of the plastic waste such as dehalogenation. Moreover, steam crackers are reliant on a stable and predictable feedstock quality and quantity representing a challenge with plastic waste being largely influenced by consumer behavior, seasonal changes and local sorting efficiencies. Nevertheless, with standardization of sorting plants this is expected to become less problematic in the coming decade.
Collapse
Affiliation(s)
- Marvin Kusenberg
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering & Architecture, Ghent University, B-9052 Zwijnaarde, Belgium
| | - Andreas Eschenbacher
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering & Architecture, Ghent University, B-9052 Zwijnaarde, Belgium
| | - Marko R Djokic
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering & Architecture, Ghent University, B-9052 Zwijnaarde, Belgium
| | - Azd Zayoud
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering & Architecture, Ghent University, B-9052 Zwijnaarde, Belgium
| | - Kim Ragaert
- Center for Polymer and Material Technologies (CPMT), Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering and Architecture, Ghent University, B-9052 Zwijnaarde, Belgium
| | - Steven De Meester
- Laboratory for Circular Process Engineering (LCPE), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, B-8500 Kortrijk, Belgium
| | - Kevin M Van Geem
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering & Architecture, Ghent University, B-9052 Zwijnaarde, Belgium
| |
Collapse
|
15
|
The selective adsorption performance and mechanism of multiwall magnetic carbon nanotubes for heavy metals in wastewater. Sci Rep 2021; 11:16878. [PMID: 34413419 PMCID: PMC8377063 DOI: 10.1038/s41598-021-96465-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/05/2021] [Indexed: 11/08/2022] Open
Abstract
The safe treatment of heavy metals in wastewater is directly related to human health and social development. In this paper, a new type of recyclable adsorbent is synthesized through the oxidation of enhancer and modification with magnetic nanoparticles. The new adsorbent not only inherits the advantages of multiwall carbon nanotubes (6O-MWCNTs), but also exhibits a new magnetic property and further improved adsorption capacity, which is conducive to the magnetic separation and recovery of heavy metals. The adsorption results indicate that multiwall magnetic carbon nanotubes (6O-MWCNTs@Fe3O4) have a good performance for Pb(II) selective adsorption, with a maximum adsorption capacity of 215.05 mg/g, much higher than the existing adsorption capacity of the same type of adsorbents. Under the action of an external magnetic field, 6O-MWCNTs@Fe3O4 that adsorbed metal ions can quickly achieve good separation from the solution. The joint characterization results of FTIR and XPS show that under the action of both coordination and electrostatic attraction, the C=O bond in the -COOH group is induced to open by the metal ions and transforms into an ionic bond, and the metal ions are stably adsorbed on the surface of 6O-MWCNTs@Fe3O4. Pb(II) has a stronger attraction than Cu(II) and Cd(II) to the lone pair of electrons in oxygen atoms to form complexes, due to the covalent index of Pb (6.41) is more larger than that of Cu (2.98) and Cd (2.71).These data provide a new type of recyclable adsorbent for the efficient treatment of heavy metal ions in wastewater and enrich relevant theoretical knowledge.
Collapse
|
16
|
Gong Z, Chan HT, Chen Q, Chen H. Application of Nanotechnology in Analysis and Removal of Heavy Metals in Food and Water Resources. NANOMATERIALS 2021; 11:nano11071792. [PMID: 34361182 PMCID: PMC8308365 DOI: 10.3390/nano11071792] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/07/2022]
Abstract
Toxic heavy metal contamination in food and water from environmental pollution is a significant public health issue. Heavy metals do not biodegrade easily yet can be enriched hundreds of times by biological magnification, where toxic substances move up the food chain and eventually enter the human body. Nanotechnology as an emerging field has provided significant improvement in heavy metal analysis and removal from complex matrices. Various techniques have been adapted based on nanomaterials for heavy metal analysis, such as electrochemical, colorimetric, fluorescent, and biosensing technology. Multiple categories of nanomaterials have been utilized for heavy metal removal, such as metal oxide nanoparticles, magnetic nanoparticles, graphene and derivatives, and carbon nanotubes. Nanotechnology-based heavy metal analysis and removal from food and water resources has the advantages of wide linear range, low detection and quantification limits, high sensitivity, and good selectivity. There is a need for easy and safe field application of nanomaterial-based approaches.
Collapse
Affiliation(s)
- Zhaoyuan Gong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China; (Z.G.); (H.T.C.)
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hiu Ting Chan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China; (Z.G.); (H.T.C.)
| | - Qilei Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China; (Z.G.); (H.T.C.)
- Correspondence: (Q.C.); (H.C.); Tel.: +852-6649-4275 (Q.C.); +852-3411-2060 (H.C.)
| | - Hubiao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China; (Z.G.); (H.T.C.)
- Correspondence: (Q.C.); (H.C.); Tel.: +852-6649-4275 (Q.C.); +852-3411-2060 (H.C.)
| |
Collapse
|
17
|
Lei X, Li H, Luo Y, Sun X, Guo X, Hu Y, Wen R. Novel fluorescent nanocellulose hydrogel based on gold nanoclusters for the effective adsorption and sensitive detection of mercury ions. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.05.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Thamaraiselvan C, Thakur AK, Gupta A, Arnusch CJ. Electrochemical Removal of Organic and Inorganic Pollutants Using Robust Laser-Induced Graphene Membranes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1452-1462. [PMID: 33390015 DOI: 10.1021/acsami.0c18358] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The removal of emerging environmental pollutants in water and wastewater is essential for high drinking water quality or for discharge to the environment. Electrochemical treatment is a promising technology shown to degrade undesirable organic compounds or metals via oxidation and reduction, and carbon-based electrodes have been reported. Here, we fabricated a robust, porous laser-induced graphene (LIG) electrode on a commercial water treatment membrane using the multilasing technique and demonstrated the electrochemical removal of iohexol, an iodine contrast compound, and chromium(VI), a highly toxic heavy metal ion. Multiple lasing resulted in a more ordered graphitic lattice, a more physically robust carbon layer, and a 3-4-fold higher electrical conductivity. These properties ultimately led to a more efficient electrochemical process, and the optimized LIG electrodes showed a higher hydrogen peroxide (H2O2) generation. At 3 V, 90% of Cr(VI) was removed after 6 h and reached >95% removal after 8 h at pH 2. Cr(VI) was mainly reduced to Cr(III), with small amounts of Cr(I) and Cr(0), which were partially deposited on the electrode membrane surface, confirmed with X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy analysis. Under the same conditions, 50% of iohexol was degraded after 6 h and the transformation products (TPs) were identified using ultra-performance liquid chromatography coupled with mass spectroscopy. A total of seven main intermediates were identified including deiodinated TPs (m/z = 695, 570, and 443), probably occurring via three transformation pathways including oxidative deiodination, amide hydrolysis, and deacetylation. The electrical energy costs calculated for the removal of 2 mg L-1 Cr(VI) was ∼$0.08/m3 in this system. Taken together, the porous LIG electrodes might be utilized for electrochemical removal of emerging contaminants in multiple applications because they can be rapidly formed on flexible polymer substrates at low cost.
Collapse
Affiliation(s)
- Chidambaram Thamaraiselvan
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Midreshet Ben Gurion 8499000, Israel
| | - Amit K Thakur
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Midreshet Ben Gurion 8499000, Israel
| | - Abhishek Gupta
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Midreshet Ben Gurion 8499000, Israel
| | - Christopher J Arnusch
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Midreshet Ben Gurion 8499000, Israel
| |
Collapse
|
19
|
Ates N, Basak A. Selective removal of aluminum, nickel and chromium ions by polymeric resins and natural zeolite from anodic plating wastewater. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2021; 31:102-119. [PMID: 31218885 DOI: 10.1080/09603123.2019.1631263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/07/2019] [Indexed: 06/09/2023]
Abstract
Aluminum industry has been well-known for producing enormous volume of wastewater in high concentration of varied heavy metals and toxic substances with wide variation in pH. In this study, selective removal of aluminum, nickel and chromium by polymeric resins (Amberlite IR120, Lewatit TP207) and natural zeolite from aluminum anodic plating process wastewater in varying aluminum concentrations (~10-200 mg/L), very low pH (3-4) and high conductivity (5090-8540 µS/cm) was evaluated. The wastewater was collected from a factory producing aluminum profiles (Kayseri, Turkey) where anodic oxidation plating is applied. The affinity of adsorbents towards to metals was in order aluminum > nickel > chromium. The kinetic results revealed that sorption of heavy metals onto adsorbent obeys pseudo-second-order model. The experimental data fitted the best to modified Freundlich isotherm. Aluminum uptake by adsorbents was feasible, exothermic and spontaneous by Amberlite IR120 and Lewatit TP207; however, the reaction was endothermic for zeolite.
Collapse
Affiliation(s)
- Nuray Ates
- Environmental Engineering, Erciyes University , Kayseri, Turkey
| | - Asli Basak
- Environmental Engineering, Erciyes University , Kayseri, Turkey
| |
Collapse
|
20
|
A facile microwave-assisted synthesis of mesoporous hydroxyapatite as an efficient adsorbent for Pb2+ adsorption. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121491] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Ali A, Nymann MC, Christensen ML, Quist-Jensen CA. Industrial Wastewater Treatment by Nanofiltration-a Case Study on the Anodizing Industry. MEMBRANES 2020; 10:membranes10050085. [PMID: 32365735 PMCID: PMC7281665 DOI: 10.3390/membranes10050085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 11/21/2022]
Abstract
The anodizing industry generates several alkaline and acidic wastewater streams often with high concentrations of heavy metals. In this study, nanofiltration (NF) was used to treat wastewater from individual baths, i.e., wastewater from color rinse, alkaline pickling rinse, acidic pickling rinse and anodizing rinse, as well as a mixture of all the wastewater streams. The experiments were carried out by using a commercial membrane (NF99HF) exhibiting pure water permeability of 10 L/(m2·h·bar). For all wastewater streams except one, pH was adjusted to bring it within the recommended pH limits of the membrane, whereby part of the heavy metals precipitated and was removed. The NF of the color rinse offered high-quality permeate (heavy metals below detection limit) and high permeability (9 L/(m2·h·bar)), whereas the nanofiltration of the alkaline pickling rinse exhibited no permeability. The NF of the acidic pickling rinse showed a permeability of 3.1–4.1 L/(m2·h·bar), but low ion rejection (7–13%). NF of the neutralized mixed wastewater, after the removal of precipitate, produced high-quality permeate with a stable permeability of 1 L/(m2·h·bar). Treatment of the mixed wastewater is therefore the best option if the water has to be discharged. If the water has to be reused, the permeate conductivity in the color rinse and anodizing rinse baths have been reduced significantly, so the treatment of these streams may then be a better option.
Collapse
|
22
|
Fazullin DD, Mavrin GV, Salakhova AN. Synthesis and Characterization of a Multilayer Membrane with Surface Layers for Water Desalination. MEMBRANES AND MEMBRANE TECHNOLOGIES 2020. [DOI: 10.1134/s2517751620020067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Yu X, Jiang J. Phosphate microbial mineralization consolidation of waste incineration fly ash and removal of lead ions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 191:110224. [PMID: 31991396 DOI: 10.1016/j.ecoenv.2020.110224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/30/2019] [Accepted: 01/15/2020] [Indexed: 06/10/2023]
Abstract
This paper proposes a green environment-friendly Bacillus subtilis to mineralize and consolidate waste incineration fly ash and heavy metal cations, and there is no harmful by-product in the mineralization process. Different phosphate products can be prepared, and are more stable than the microbially-induced carbonate precipitation (MICP) in nature. Typical heavy metal oxides were mainly PbO, ZnO, CdO, NiO, CuO and Cr2O3 in the chemical composition of waste incineration fly ash. Microstructure and chemical composition of waste incineration fly ash before and after treatment were characterized by powder X-ray diffraction (XRD) analysis and scanning electron microscopy. Scanning electron microscopy (SEM) images showed that the morphology of the Bacillus subtilis was mainly a rod-like structure. The optimal hydrolysis dosage of the organic phosphate monoester sodium salt was 0.2mol in the bacterial solution (1L, 20 g/L). The optimum required mass of the bacterial powder was 15 g/kg in treatment process of the waste incineration fly ash. The initial concentration of lead ions was 40.28 mg/L in waste incineration fly ash solution. After the optimum dosage treatment, the removal efficiency of lead ions was 78.15%, 79.64%, 77.70% and 80.14% when curing time was 1, 2, 4 and 6d, respectively. The waste incineration fly ash had a Shore hardness of 22 after the optimum amount of bacterial liquid treatment. Results of wind erosion test showed that the wind erosion rate of waste incineration fly ash was 2.6, 0, 0, 0, 0 and 0 g/h when blank group, deionized water, 100, 200, 300 and 400 mL of bacterial solutions treated, respectively. The bio-mineralization method provides an approach for the safe disposal of heavy metals in the contaminated areas of tailings, electroplating sewage, waste incineration plants, and so on.
Collapse
Affiliation(s)
- Xiaoniu Yu
- School of Environment, Tsinghua University, Beijing, 100084, China; College of Architecture and Civil Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Jianguo Jiang
- School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
24
|
Yuan J, Van Dyke MI, Huck PM. Selection and evaluation of water pretreatment technologies for managed aquifer recharge (MAR) with reclaimed water. CHEMOSPHERE 2019; 236:124886. [PMID: 31564425 DOI: 10.1016/j.chemosphere.2019.124886] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
Managed aquifer recharge with reclaimed water is a promising strategy for indirect potable reuse. However, residual contaminants in the treated wastewater effluent could potentially have adverse effects on human health. Hence, adequate water pretreatment is required. A multi-criteria approach was used to select and evaluate suitable water pretreatment technologies that can remove these critical contaminants in wastewater effluent for MAR identified in a previous study (Yuan et al., 2017). The treatment efficiency targets were calculated based on the concentrations and the suggested limits of critical contaminants. Treatment efficiency credits were then assigned to each treatment option for the removal of critical contaminants based on literature data. Treatment units that resulted in the highest efficiency credit scores were selected and combined into treatment train options, which were evaluated in terms of treatability, cost, and sustainability. This paper proposes an approach for the selection and evaluation of water treatment options, which will be helpful to guide the future implementation of MAR projects with reclaimed water.
Collapse
Affiliation(s)
- Jie Yuan
- NSERC Chair in Water Treatment, Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.
| | - Michele I Van Dyke
- NSERC Chair in Water Treatment, Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Peter M Huck
- NSERC Chair in Water Treatment, Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
25
|
Cui W, Zhang X, Pearce CI, Chen Y, Zhang S, Liu W, Engelhard MH, Kovarik L, Zong M, Zhang H, Walter ED, Zhu Z, Heald SM, Prange MP, De Yoreo JJ, Zheng S, Zhang Y, Clark SB, Li P, Wang Z, Rosso KM. Cr(III) Adsorption by Cluster Formation on Boehmite Nanoplates in Highly Alkaline Solution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11043-11055. [PMID: 31442378 DOI: 10.1021/acs.est.9b02693] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The development of advanced functional nanomaterials for selective adsorption in complex chemical environments requires partner studies of binding mechanisms. Motivated by observations of selective Cr(III) adsorption on boehmite nanoplates (γ-AlOOH) in highly caustic multicomponent solutions of nuclear tank waste, here we unravel the adsorption mechanism in molecular detail. We examined Cr(III) adsorption to synthetic boehmite nanoplates in sodium hydroxide solutions up to 3 M, using a combination of X-ray diffraction (XRD), Raman, X-ray photoelectron spectroscopy (XPS), scanning/transmission electron microscopy (S/TEM), electron energy loss spectroscopy (EELS), high-resolution atomic force microscopy (HR-AFM), time-of-fight secondary ion mass spectrometry (ToF-SIMS), Cr K-edge X-ray absorption near edge structure (XANES)/extended X-ray absorption fine structure (EXAFS), and electron paramagnetic resonance (EPR). Adsorption isotherms and kinetics were successfully fit to Langmuir and pseudo-second-order kinetic models, respectively, consistent with monotonic uptake of Cr(OH)4- monomers until saturation coverage of approximately half the aluminum surface site density. High resolution AFM revealed monolayer cluster self-assembly on the (010) basal surfaces with increasing Cr(III) loading, possessing a structural motif similar to guyanaite (β-CrOOH), stabilized by corner-sharing Cr-O-Cr bonds and attached to the surface with edge-sharing Cr-O-Al bonds. The selective uptake appears related to short-range surface templating effects, with bridging metal connections likely enabled by hydroxyl anion ligand exchange reactions at the surface. Such a cluster formation mechanism, which stops short of more laterally extensive heteroepitaxy, could be a metal uptake discrimination mechanism more prevalent than currently recognized.
Collapse
Affiliation(s)
- Wenwen Cui
- Physical & Computational Science Directorate , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Key Laboratory of Green Process and Engineering , Institute of Process Engineering, Chinese Academy of Sciences , Beijing , 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing , 100049 , P. R. China
| | - Xin Zhang
- Physical & Computational Science Directorate , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Carolyn I Pearce
- Energy & Environment Directorate , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Ying Chen
- Physical & Computational Science Directorate , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Shuai Zhang
- Physical & Computational Science Directorate , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
- Department of Materials Science and Engineering , University of Washington , Seattle , Washington 98195 , United States
| | - Wen Liu
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Mark H Engelhard
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Libor Kovarik
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Meirong Zong
- Physical & Computational Science Directorate , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
- School of Earth Sciences and Engineering , Nanjing University , Nanjing , Jiangsu Province 210023 , P. R. China
| | - Hailin Zhang
- Physical & Computational Science Directorate , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Key Laboratory of Green Process and Engineering , Institute of Process Engineering, Chinese Academy of Sciences , Beijing , 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing , 100049 , P. R. China
| | - Eric D Walter
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Zihua Zhu
- Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Steve M Heald
- Advanced Photon Source , Argonne National Laboratory , Lemont , Illinois 60439 , United States
| | - Micah P Prange
- Physical & Computational Science Directorate , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - James J De Yoreo
- Physical & Computational Science Directorate , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
- Department of Materials Science and Engineering , University of Washington , Seattle , Washington 98195 , United States
| | - Shili Zheng
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Key Laboratory of Green Process and Engineering , Institute of Process Engineering, Chinese Academy of Sciences , Beijing , 100190 , P. R. China
| | - Yi Zhang
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Key Laboratory of Green Process and Engineering , Institute of Process Engineering, Chinese Academy of Sciences , Beijing , 100190 , P. R. China
| | - Sue B Clark
- Physical & Computational Science Directorate , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
- Department of Chemistry , Washington State University , Pullman , Washington 99164 , United States
| | - Ping Li
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Key Laboratory of Green Process and Engineering , Institute of Process Engineering, Chinese Academy of Sciences , Beijing , 100190 , P. R. China
| | - Zheming Wang
- Physical & Computational Science Directorate , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Kevin M Rosso
- Physical & Computational Science Directorate , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| |
Collapse
|
26
|
Yu X, Jiang J. Phosphate microbial mineralization removes nickel ions from electroplating wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 245:447-453. [PMID: 31170633 DOI: 10.1016/j.jenvman.2019.05.091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
Nickel ions in electroplating wastewater can be removed by the bio-mineralization method. Bacillus subtilis can produce alkaline phosphatase, which hydrolyzes organophosphate monoesters and produces phosphate ions. Fourier-transform infrared spectroscopy (FTIR) showed that the precipitated material contains phosphate ions. X-ray diffraction (XRD) showed that nickel ions in electroplating wastewater react with Bacillus subtilis and organophosphate monoesters to obtain nickel phosphate octahydrate (Ni3(PO4)2·8H2O). The removal efficiency of nickel ions could reach 76.41% with the optimum content of the organophosphate monoester (0.02 mol), Bacillus subtilis powder (2 g), pH (6), standing time (36 h), and reaction temperature (25 °C) in the medium solution (100 mL). The average particle size of Ni3(PO4)2·8H2O was 80.51 nm, which was calculated by the Scherrer formula. The Lorentz-Transmission Electron Microscope (L-TEM) further showed that Ni3(PO4)2·8H2O was composed of clusters of irregular nanoparticles, and the individual particle size was in the range of 40-90 nm. The TGA curve shows that the mass loss of crystal water was 25.45%, which was close to the theoretical total mass loss of 28.24% in bio-Ni3(PO4)2·8H2O.
Collapse
Affiliation(s)
- Xiaoniu Yu
- School of Environment, Tsinghua University, Beijing, 100084, China; College of Architecture and Civil Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Jianguo Jiang
- School of Environment, Tsinghua University, Beijing, 100084, China; Key Laboratory for Solid Waste Management and Environment Safety, Ministry of Education of China, Beijing, 100084, China.
| |
Collapse
|