1
|
Mohd Nazir NZ, Lee KE, Ab Rahim AR, Goh TL, Mokhtar M, Rahim Wan Abdullah WA, Husain H, Raja Mamat RB. Delineating the fundamental attributes and traits of nature-based solutions in wastewater management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:124811. [PMID: 40106989 DOI: 10.1016/j.jenvman.2025.124811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 02/20/2025] [Accepted: 03/01/2025] [Indexed: 03/22/2025]
Abstract
Water stress, exacerbated by population growth and climate change, necessitates sustainable wastewater management solutions that promote resource recovery and environmental protection. Nature-Based Solutions (NBS) offer a viable alternative to conventional wastewater treatment by leveraging natural processes for water purification and ecosystem restoration. However, the lack of standardised criteria for defining and evaluating NBS in wastewater management has led to inconsistencies in research and practice. This study conducts a systematic review of NBS applications in wastewater treatment, using Scopus and Web of Science databases, to delineate their fundamental attributes and establish a structured evaluation framework. By assessing NBS against seven key characteristics, i.e., natural processes, sustainability and resilience, biodiversity enhancement, multifunctionality, community and stakeholder involvement, cost-effectiveness and engineering approach, this study provides a comprehensive framework for distinguishing genuine NBS from other nature-inspired interventions. The findings contribute to improving the scientific rigour of NBS classifications, ensuring their scalability and fostering their integration into environmental management. This study offers a novel methodological approach to evaluating the effectiveness and applicability of NBS in wastewater management, facilitating their broader adoption and guiding future policy and research directions.
Collapse
Affiliation(s)
- Noor Zarina Mohd Nazir
- Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, Malaysia; Sewerage Services Department, Ministry of Energy Transition and Water Transformation (PETRA), Malaysia
| | - Khai Ern Lee
- Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, Malaysia; Integrated Water Research Synergy Consortium (IWaReS), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, Malaysia.
| | - Ainul Rasyidah Ab Rahim
- Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, Malaysia; Public Service Department, Federal Government Administrative Centre, Malaysia
| | - Thian Lai Goh
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Malaysia
| | - Mazlin Mokhtar
- Sustainable Development Solutions Network Asia (SDSN Asia), Sunway University, Malaysia
| | | | - Huzaini Husain
- Sewerage Services Department, Ministry of Energy Transition and Water Transformation (PETRA), Malaysia
| | - Raja Baharudin Raja Mamat
- Sewerage Services Department, Ministry of Energy Transition and Water Transformation (PETRA), Malaysia
| |
Collapse
|
2
|
Zhang S, Ji Y, Manoli K, Li Y, Chen Q, Lee Y, Yu X, Feng M. Halogenated bisphenol F compounds: Chlorination-mediated formation and photochemical fate in sunlit surface water. WATER RESEARCH 2025; 272:122966. [PMID: 39700836 DOI: 10.1016/j.watres.2024.122966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Halogenated bisphenol compounds are prevalent in urban water systems and may pose greater environmental risks than their bisphenol precursors. This study explored the formation of halogenated bisphenol F (BPF) in water chlorination and their subsequent transformation behaviors in receiving waters. The kinetics and pathways of BPF halogenation with chlorine, bromine, and iodine were firstly investigated. BPF chlorination followed second-order kinetics, with pH-dependent second-order rate constants (kapp) ranging from 1.0 M-1s-1 at pH 5.0 to 50.4 M-1s-1 at pH 9.0. The kapp of BPF with bromine and iodine were 4 - 5 orders of magnitude higher than those of chlorine. The degradation potential of halogenated BPF products in sunlit surface waters was also evaluated, focusing on both direct and indirect photolysis. Indirect photolysis, involving reactions with excited triplet state of CDOM (3CDOM*), •OH and 1O2, emerged as the primary degradation pathway for BPF, while both direct photolysis and indirect photolysis with 3CDOM* predominated for mono- and dihalogenated BPF products. Compared with BPF, the photodegradation of halogenated products was significantly enhanced. Photolysis experiments in wastewater-receiving wetland water demonstrated effective degradation of halogenated BPF products, highlighting the pivotal role of sunlight in their environmental fate. Overall, this study advances understanding of the formation and fate of halogenated BPF products and provides valuable insights for managing the environmental impacts of these emerging contaminants.
Collapse
Affiliation(s)
- Shengqi Zhang
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Yuefei Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | | | - Yong Li
- Guangzhou Hexin Instrument Co. Ltd., Guangzhou 510530, China
| | - Qian Chen
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Yunho Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, South Korea.
| | - Xin Yu
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Mingbao Feng
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
3
|
Sonbhadra S, Pandey LM. Bioelectrochemical Remediation and Valorization of Oily Wastewaters: A Review. JOURNAL OF HAZARDOUS, TOXIC, AND RADIOACTIVE WASTE 2025; 29. [DOI: 10.1061/jhtrbp.hzeng-1421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/12/2024] [Indexed: 05/15/2025]
Affiliation(s)
- Smrity Sonbhadra
- Bio-Interface and Environmental Engineering Lab, Dept. of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Lalit M. Pandey
- Bio-Interface and Environmental Engineering Lab, Dept. of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India (corresponding author). ORCID:
| |
Collapse
|
4
|
Hung C, Diamond C, Sinclair R, Lee MC, Stenstrom M, Freilich MA, Montgomery Q, Marquez C, Lyons TW. Nutrient loading as a key cause of short- and long-term anthropogenic ecological degradation of the Salton Sea. Sci Rep 2024; 14:31247. [PMID: 39732884 DOI: 10.1038/s41598-024-82633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/06/2024] [Indexed: 12/30/2024] Open
Abstract
The Salton Sea (SS), California's largest inland lake at 816 square kilometers, formed in 1905 from a levee breach in an area historically characterized by natural wet-dry cycles as Lake Cahuilla. Despite more than a century of untreated agricultural drainage inputs, there has not been a systematic assessment of nutrient loading, cycling, and associated ecological impacts at this iconic waterbody. The lake is now experiencing unprecedented degradation, particularly following the 2003 Quantification Settlement Agreement-the largest agricultural-to-urban water transfer in the United States. Combined with high evaporation rates, reduced inflows have led to rapid lake shrinkage, with current maximum depths of only 10 m. Here we report distinct temporal and spatial patterns for nutrient dynamics at the SS for two decades spanning the period before and after major water transfer agreement. While external nutrient loading remains relatively consistent year-round, internal cycling varies seasonally. Winter exhibits high total phosphates and nitrate levels due to reduced primary productivity, with lower ammonium concentrations from increased oxygenation. Summer conditions shift to decreased phosphate and nitrate levels from enhanced primary production, sustained partly by internal phosphorus release from sediments during anoxic periods. Although N:P molar ratios can exceed 50:1 to 100:1 (far above the Redfield ratio of 16:1), phosphorus consistently remains at hypereutrophic levels (> 0.05 mg/L) challenging previous assumptions of phosphorus limitation. Post-2020 data show disrupted stratification patterns. Despite higher oxygen levels in bottom waters compared to 2004-2009, overall water column oxygenation has declined, reflecting altered hydrodynamics in the shallowing lake. These changes have intensified environmental challenges stemming from cultural eutrophication including harmful algal blooms, threatening both ecosystem and public health. Effective remediation will require significant reduction in external nutrient loading through constructed wetlands and/or treatment facilities at tributary mouths to reduce the lake's overall nutrient inventory over time.
Collapse
Affiliation(s)
- Caroline Hung
- Department of Earth and Planetary Sciences, University of California, Riverside, CA, 92521, USA.
| | - Charles Diamond
- Department of Earth and Planetary Sciences, University of California, Riverside, CA, 92521, USA
| | - Ryan Sinclair
- School of Public Health, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Meng-Chen Lee
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Michael Stenstrom
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Mara A Freilich
- Division of Applied Mathematics and Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, RI, 02912, USA
| | | | | | - Timothy W Lyons
- Department of Earth and Planetary Sciences, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
5
|
Arden S, Anderson M, Blue J, Ma XC, Jahne M, Garland J. Towards the definition of treatment wetland pathogen log reduction credits. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177613. [PMID: 39561901 PMCID: PMC11907694 DOI: 10.1016/j.scitotenv.2024.177613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024]
Abstract
Treatment wetlands have the potential to treat a range of water and wastewater pollutants while using less energy and chemicals than conventional treatment processes, making them a viable option for improving the sustainability of water treatment systems. However, water treatment systems used for water reuse must also be protective of human health. To date, the human health protection benefits of treatment wetlands have not been rigorously quantified in the context of current human health risk frameworks. This study presents a comprehensive review of the ability of treatment wetlands to provide reliable pathogen reduction to meet risk-based treatment targets for water reuse. Following an existing protocol for establishing log reduction credits, we systematically reviewed the documented pathogen reduction performance of major treatment wetland types in terms of core components of that protocol, including pathogen removal mechanisms, identification of target pathogens, and influencing factors. Results of the review point to design and operational conditions under which treatment wetlands could likely be credited with a log reduction value of approximately 0.5 or greater for virus, protozoa and bacteria. These conditions are specified in terms of preliminary operating envelopes, or design and operational parameter windows associated with optimal performance. Important caveats are noted, as are specific and tractable recommendations for future research and data collection efforts that would help refine operating envelopes and define log reduction credits for these promising water treatment technologies. As a resource to other practitioners, we have also included the detailed performance characterization database as Supplemental Information. This database includes a detailed tracking of log reduction values as well as design and operational parameters reported in the literature.
Collapse
Affiliation(s)
- Sam Arden
- Eastern Research Group, Inc. (ERG), Lexington, MA, USA
| | | | - Julie Blue
- Eastern Research Group, Inc. (ERG), Lexington, MA, USA
| | - Xin Cissy Ma
- United States Environmental Protection Agency, Center for Environmental Solutions and Emergency Response, Cincinnati, OH, USA
| | - Michael Jahne
- United States Environmental Protection Agency, Center for Environmental Solutions and Emergency Response, Cincinnati, OH, USA.
| | - Jay Garland
- United States Environmental Protection Agency, Center for Environmental Solutions and Emergency Response, Cincinnati, OH, USA
| |
Collapse
|
6
|
Huang Z, Gao J, Liu L, Mao Y, Kang H, Song Z, Cai M, Guo P, Chen K. Performance and by-product generation in sulfur-siderite/limestone autotrophic denitrification systems: Enhancing nitrogen removal efficiency and operational insights. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:123042. [PMID: 39467460 DOI: 10.1016/j.jenvman.2024.123042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/27/2024] [Accepted: 10/20/2024] [Indexed: 10/30/2024]
Abstract
Sulfur autotrophic denitrification technology is a promising nitrogen removing process and is suitable for the tail water of sewage treatment plants with easy biodegradation and low C/N ratio. Nitrogen removal efficiency and along-path variation of related product concentrations in the sulfur-siderite autotrophic denitrification (SSAD) and sulfur-limestone autotrophic denitrification (SLAD) systems were comprehensively investigated in this work. The optimal denitrification conditions for SSAD and SLAD systems were pH of 7, HRT of 3 h, temperatures of 20-25 °C with NO3--N removal rates of more than 99%. Although a greater capacity for alkalinity was provided by limestone than siderite, siderite can also meet the advanced nitrogen removal of SSAD system. A transient accumulation of NO2--N in the SLAD system eventually decreased to 0.02 mg/L, while S2- concentration gradually increased relative to SSAD. It might be due to the fact that Fe2+ promoted the nitrogen removal efficiency of SSAD system and further reduced the content of intermediates in the nitrogen removal process. The results obtained may provide the scientific basis and technical countermeasures for the application of sulfur autotrophic denitrification in actual low-C/N wastewater.
Collapse
Affiliation(s)
- Zhenzhen Huang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China; Faculty of Environmental and Municipal Engineering, Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Jingqing Gao
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China.
| | - Lina Liu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Yanli Mao
- Faculty of Environmental and Municipal Engineering, Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Haiyan Kang
- Faculty of Environmental and Municipal Engineering, Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Zhongxian Song
- Faculty of Environmental and Municipal Engineering, Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Ming Cai
- Yellow River Engineering Consulting Co., Ltd., Zhengzhou, 450003, China
| | - Pengcheng Guo
- Yellow River Engineering Consulting Co., Ltd., Zhengzhou, 450003, China
| | - Kai Chen
- Yellow River Engineering Consulting Co., Ltd., Zhengzhou, 450003, China
| |
Collapse
|
7
|
de Farias BO, Saggioro EM, Montenegro KS, Magaldi M, Santos HSO, Gonçalves-Brito AS, Pimenta RL, Ferreira RG, Spisso BF, Pereira MU, Bianco K, Clementino MM. Metagenomic insights into plasmid-mediated antimicrobial resistance in poultry slaughterhouse wastewater: antibiotics occurrence and genetic markers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60880-60894. [PMID: 39395082 DOI: 10.1007/s11356-024-35287-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/08/2024] [Indexed: 10/14/2024]
Abstract
Slaughterhouse wastewater represents important convergence and concentration points for antimicrobial residues, bacteria, and antibiotic resistance genes (ARG), which can promote antimicrobial resistance propagation in different environmental compartments. This study reports the assessment of the metaplasmidome-associated resistome in poultry slaughterhouse wastewater treated by biological processes, employing metagenomic sequencing. Antimicrobial residues from a wastewater treatment plant (WWTP) that treats poultry slaughterhouse influents and effluents were investigated through high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS). Residues from the macrolide, sulfonamide, and fluoroquinolone classes were detected, the latter two persisting after the wastewater treatment. The genetic markers 16S rRNA rrs (bacterial community) and uidA (Escherichia coli) were investigated by RT-qPCR and the sul1 and int1 genes by qPCR. After treatment, the 16S rRNA rrs, uidA, sul1, and int1 markers exhibited reductions of 0.67, 1.07, 1.28, and 0.79 genes copies, respectively, with no statistical significance (p > 0.05). The plasmidome-focused metagenomics sequences (MiSeq platform (Illumina®)) revealed more than 100 ARG in the WWTP influent, which can potentially confer resistance to 14 pharmacological classes relevant in the human and veterinary clinical contexts, in which the qnr gene (resistance to fluoroquinolones) was the most prevalent. Only 7.8% of ARG were reduced after wastewater treatment, and the remaining 92.2% were associated with an increase in the prevalence of ARG linked to multidrug efflux pumps, substrate-specific for certain classes of antibiotics, or broad resistance to multiple medications. These data demonstrate that wastewater from poultry slaughterhouses plays a crucial role as an ARG reservoir and in the spread of AMR into the environment.
Collapse
Affiliation(s)
- Beatriz Oliveira de Farias
- Programa de Pós-Graduação Em Saúde Pública E Meio Ambiente, Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Enrico Mendes Saggioro
- Programa de Pós-Graduação Em Saúde Pública E Meio Ambiente, Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil.
- Laboratório de Avaliação E Promoção da Saúde Ambiental, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil.
| | - Kaylanne S Montenegro
- Programa de Pós-Graduação Em Saúde Pública E Meio Ambiente, Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Mariana Magaldi
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Hugo Sérgio Oliveira Santos
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Andressa Silva Gonçalves-Brito
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Ramon Loureiro Pimenta
- Instituto de Veterinária, Universidade Federal Rural Do Rio de Janeiro, Km 07, Zona Rural, BR-465, Seropédica, RJ, Brazil
| | - Rosana Gomes Ferreira
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Bernardete Ferraz Spisso
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Mararlene Ulberg Pereira
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Kayo Bianco
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Maysa Mandetta Clementino
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
8
|
Kilian S, Pawęska K, Bawiec A. Evaluation of post-treatment after wastewater stabilization ponds at municipal wastewater treatment plant. Sci Rep 2024; 14:22257. [PMID: 39333231 PMCID: PMC11437007 DOI: 10.1038/s41598-024-72995-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
The primary objective of this study was to assess the operational conditions of the municipal wastewater treatment system. This system comprises a wastewater treatment plant that employs the activated sludge process, along with wastewater stabilization ponds as the third stage of treatment. The operating conditions of the wastewater stabilization ponds were observed during both normal operation and malfunction scenarios. The average values of the pollutant parameters at the inlet and outlet of the ponds did not differ significantly. However, an increase in the concentrations of total organic carbon (TOC) and phosphates was observed at the ponds' outlet. Specifically, the TOC increased from 2.25 mg/dm3 (inlet) to 5.02 mg/dm3 (outlet), while phosphates rose from 0.34 mg/dm3 (inlet) to 3.02 mg/dm3 (outlet). The analyzed pollutants in the wastewater stabilization ponds samples were characterized by seasonal variability, particularly concerning TOC, dissolved oxygen, ammonium nitrogen, and phosphates. During malfunctions, the highest pollutant load (including activated sludge and precipitated phosphorus) was delivered to the first wastewater stabilization pond, inducing the phenomenon of internal loading, leading to increase in phosphates concentrations. To mitigate such issues, the main force should be focused on the proper operation of the wastewater stabilization ponds and wastewater treatment plants.
Collapse
Affiliation(s)
- Szymon Kilian
- Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Katarzyna Pawęska
- Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, Grunwaldzki Sq. 24, 50-363, Wrocław, Poland.
| | - Aleksandra Bawiec
- Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
9
|
Pastor-Lopez EJ, Casas ME, Hellman D, Müller JA, Matamoros V. Nature-based solutions for antibiotics and antimicrobial resistance removal in tertiary wastewater treatment: Microbiological composition and risk assessment. WATER RESEARCH 2024; 261:122038. [PMID: 38996727 DOI: 10.1016/j.watres.2024.122038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/15/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
This field-scale study evaluates the seasonal effectiveness of employing nature-based solutions (NBSs), particularly surface flow and horizontal subsurface flow constructed wetland configurations, as tertiary treatment technologies for the removal of antibiotics (ABs) and antibiotic resistance genes (ARGs) compared to a conventional treatment involving UV and chlorination. Out of the 21 monitored ABs, 13 were detected in the influent of three tertiary wastewater treatments, with concentrations ranging from 2 to 1218 ng·L-1. The ARGs sul1 and dfrA1 exhibited concentrations ranging from 1 × 105 to 9 × 106 copies/100 mL. NBSs were better at reducing ABs (average 69 to 88 %) and ARGs (2-3 log units) compared to the conventional tertiary system (average 36 to 39 % and no removal to 2 log units) in both seasons. Taxonomic compositions in influent water samples shifted from wastewater-impacted communities (Actinomycetota and Firmicutes) to a combination of plant rhizosphere-associated and river communities in NBS effluents (Alphaproteobacteria). In contrast, the conventional technology showed no substantial differences in community composition. Moreover, NBSs substantially reduced the ecotoxicological risk assessment (cumulative RQs). Furthermore, NBSs reduced the ecotoxicological risk (cumulative RQs) by an average of over 70 % across seasons, whereas the benchmark technology only achieved a 6 % reduction. In conclusion, NBSs present a robust alternative for minimizing the discharge of ABs and ARGs into surface water bodies.
Collapse
Affiliation(s)
- Edward J Pastor-Lopez
- Department of Environmental Chemistry. IDAEA-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain
| | - Mònica Escola Casas
- Department of Environmental Chemistry. IDAEA-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain
| | - Dominik Hellman
- Institute for Biological Interfaces (IBG-5), Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| | - Jochen A Müller
- Institute for Biological Interfaces (IBG-5), Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| | - Víctor Matamoros
- Department of Environmental Chemistry. IDAEA-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain.
| |
Collapse
|
10
|
Dey P, Osborne JW, Lincy KB. An insight on the plausible biological and non-biological detoxification of heavy metals in tannery waste: A comprehensive review. ENVIRONMENTAL RESEARCH 2024; 258:119451. [PMID: 38906443 DOI: 10.1016/j.envres.2024.119451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/20/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
A key challenge for the tannery industries is the volume of tannery waste water (TWW) generated during the processing of leather, releasing various forms of toxic heavy metals resulting in uncontrolled discharge of tannery waste (TW) into the environment leading to pollution. The pollutants in TW includes heavy metals such as chromium (Cr), cadmium (Cd), lead (Pb) etc, when discharged above the permissible limit causes ill effects on humans. Therefore, several researchers have reported the application of biological and non-biological methods for the removal of pollutants in TW. This review provides insights on the global scenario of tannery industries and the harmful effects of heavy metal generated by tannery industry on micro and macroorganisms of the various ecological niches. It also provides information on the process, advantages and disadvantages of non-biological methods such as electrochemical oxidation, advanced oxidation processes, photon assisted catalytic remediation, adsorption and membrane technology. The various biological methods emphasised includes strategies such as constructed wetland, vermitechnology, phytoremediation, bioaugmentation, quorum sensing and biofilm in the remediation of heavy metals from tannery wastewater (TWW) with special emphasize on chromium.
Collapse
Affiliation(s)
- Parry Dey
- School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Jabez W Osborne
- VIT School of Agricultural Innovations and Advanced Learning (VAIAL) Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| | - Kirubhadharsini B Lincy
- School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
11
|
Karunarathne AD, Pathiratne A. Combined use of ecotoxicity tools and physicochemical analysis for evaluating potential toxicity of treated natural rubber processing effluents and receiving waters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:41964-41979. [PMID: 38856856 DOI: 10.1007/s11356-024-33900-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/31/2024] [Indexed: 06/11/2024]
Abstract
Potential toxicity of treated effluents of selected natural rubber processing industries was evaluated by integrating physicochemical analysis with Daphnia magna and Poecilia reticulata bioassays as ecotoxicity tools. Further, the efficacy of the constructed wetland treatments practiced by the industries for reducing the ecotoxicity of the final effluents reaching the receiving water course was assessed. Even after passing through the constructed wetlands, some of the measured physicochemical parameters of the final effluents did not comply with the stipulated rubber processing effluent regulatory limits. Acute toxicity data of treated effluents demonstrated greater susceptibility of D. magna compared to P. reticulata. Erythrocytic abnormality tests with P. reticulata revealed that rubber industry effluents contained cytogenotoxic contaminations which had not been completely eliminated by the treatment processes. Wetland treatment technique was not effective in reducing the cytogenotoxic effects of final effluents reaching the receiving water course. The use of ecotoxicity tools for optimization of rubber industry effluent treatment processes would help to reduce potential toxic/cytogenotoxic effects of effluent receiving waterbodies considering sustainable development goals focusing on ecosystem safety.
Collapse
Affiliation(s)
- Ahinsa Dewthilini Karunarathne
- Department of Zoology and Environmental Management, Faculty of Science, University of Kelaniya, Kelaniya, GQ 11600, Sri Lanka
| | - Asoka Pathiratne
- Department of Zoology and Environmental Management, Faculty of Science, University of Kelaniya, Kelaniya, GQ 11600, Sri Lanka.
| |
Collapse
|
12
|
Riechelmann C, Habashy MM, Rene ER, Moussa MS, Hosney H. Assessment of hybrid fixed and moving bed biofilm applications for wastewater treatment capacity increase - In situ tests in El-Gouna WWTP, Egypt. CHEMOSPHERE 2024; 355:139783. [PMID: 37574084 DOI: 10.1016/j.chemosphere.2023.139783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/11/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
This paper provides a procedure for comparing the performance of different biofilm carrier medias and their surrounding suspended biomass through oxygen uptake rate (OUR) tests. For in situ (oxygen uptake rate (OUR) measurements, three identical lab scale biofilm reactors were set up at the El Gouna wastewater treatment plant (WWTP). In this setup, two options of media for moving-bed biofilm reactors (MBBR) and one media for fixed-bed biofilm reactors (FBBR) were compared. The WWTP also used the same carrier in a real scale hybrid application to analyze how the interactions between the carrier type and the suspended biomass influences the overall performance. The in situ OUR approach is recommended to measure the contribution of the biofilm fixed biomass under site specific conditions. Specifically, settleability and diffusion limitations are the two opposite poles that cannot be predicted adequately for mild climate conditions based on the literature. A biofilm carrier application can add but actually can also reduce the capacity in a hybrid activated sludge system: The added MBBR-media was able to grind down the sludge flocs forming a poorly settleable suspended biomass. The added FBBR-media can lead to extracellular polymeric substances (EPS) rich biofilms that contribute very little as substrate and oxygen are unavailable for the microorganisms present in the biofilm. In this application of the comparison procedure, Kaldnes K1 like MBBR media was compared with a recycling MBBR carrier option (poly propylene bottle caps) and Jäger Envirotech "BioCurlz™" FBBR media. The study showed higher average rates for the MBBR but decreased settleability. The FBBR showed higher peak rates when flushed to break up the biofilm and well settleable sludge. The determination of OUR per g of volatile solids (SOUR) showed comparable results for all the carriers and in warm conditions, only the capacity to accommodate biomass determines the contribution of the carrier.
Collapse
Affiliation(s)
- Carsten Riechelmann
- Department of Urban Water Management, Faculty of Civil Engineering, Technische Universität Berlin, Germany
| | - Mahmoud M Habashy
- Department of Water Supply, Sanitation, and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611 AX, Delft, the Netherlands
| | - Eldon R Rene
- Department of Water Supply, Sanitation, and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611 AX, Delft, the Netherlands
| | - Moustafa S Moussa
- Director of Sustainable Development Center, Zewail City of Science and Technology, Giza, Egypt; Faculty of Engineering Mataria, Helwan University, Cairo, Egypt
| | - Hadeel Hosney
- Department of Water Supply, Sanitation, and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611 AX, Delft, the Netherlands.
| |
Collapse
|
13
|
A D, Guo QM, Deng YY, Jiang Y, Chen CX. Purification of the secondary treatment tail water for wastewater reclamation by integrated subsurface-constructed wetlands. ENVIRONMENTAL TECHNOLOGY 2024; 45:2450-2458. [PMID: 36730286 DOI: 10.1080/09593330.2023.2176260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
A whole-year investigation of full-scale integrated subsurface-constructed wetlands (ISCWs) was carried out to purify the tail water from a wastewater treatment plant (WWTP) for wastewater reclamation under four plant species, four hydraulic loading rates (HLRs), and four seasons. The results showed that ISCWs were effective for the purification of WWTP discharge, with the average removal efficiencies of COD, NH4+-N, TN, and TP being 48%, 49%, 9%, and 30%, respectively. Typical pollutant concentrations in the treated effluent of ISCWs were 8.19 mg/L COD, 1.76 mg/L NH4+-N, 11.57 mg/L TN, and 0.36 mg/L TP, which met most of the water quality standards for reusing recycling water. Emergent plants with well-developed root systems may be capable of promoting the decontamination of ISCWs. Seasonal change played an important role in the treatment process: the removal of phosphorus by plant uptake and microbial utilization was more active in the warm season and the co-occurrence of organic degradation and nitrification, whereas the cold season is conducive to exothermic adsorption process of pollutants to substrates. Properly increasing the HLRs may improve the availability of ISCWs according to the requirement of effluent quality. Furthermore, the C/N ratio might be the key factor for the purification effect of ISCWs, because the COD level of WWTP discharge may change the process of NH4+-N biotransformation.
Collapse
Affiliation(s)
- Dan A
- Engineering and Technology Research Center for Agricultural Land Pollution Integrated Prevention and Control of Guangdong Higher Education Institute, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, People's Republic of China
| | - Qin-Mei Guo
- Engineering and Technology Research Center for Agricultural Land Pollution Integrated Prevention and Control of Guangdong Higher Education Institute, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, People's Republic of China
| | - Yang-Yang Deng
- Engineering and Technology Research Center for Agricultural Land Pollution Integrated Prevention and Control of Guangdong Higher Education Institute, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, People's Republic of China
| | - Yu Jiang
- Engineering and Technology Research Center for Agricultural Land Pollution Integrated Prevention and Control of Guangdong Higher Education Institute, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, People's Republic of China
| | - Chun-Xing Chen
- Shenzhen Academy of Environmental Sciences, Shenzhen, People's Republic of China
- State Environmental Protection Key Laboratory of Drinking Water Source Management and Technology, Shenzhen, People's Republic of China
| |
Collapse
|
14
|
Santos DEO, Zapata YAU, Buitrago CA, Herrera GS, Becoche LEC, Páez MCL, López MCB, Pineda CO. Occurrence of parasites in waters used for crops irrigation and vegetables from the Savannah of Bogotá, Colombia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33360-33370. [PMID: 38676868 PMCID: PMC11136797 DOI: 10.1007/s11356-024-33088-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/21/2024] [Indexed: 04/29/2024]
Abstract
The World Health Organization (WHO) has established as a criterion of parasitological quality for irrigation water, ≤ 1 helminth egg/liter, which guarantees the safety in agricultural products. In this study, the presence of parasites in surface water used for irrigation of crops (n = 96) and vegetables (celery and lettuce) (n = 120), from the Former La Ramada irrigation district, was evaluated using conventional and molecular parasitological methods. Our findings showed contamination of irrigation systems in the study area with domestic wastewater, demonstrated by the presence of Ancylostomatidae eggs, Ascaris spp., Hymenolepis spp., Trichuris spp., Capillaria spp., Giardia spp. cysts, and oocysts of Toxoplasma gondii and Cryptosporidium spp. A prevalence of 33% and 23.3% was calculated for helminths and protozoa, respectively in vegetables, representing a possible risk to human and animal health in relation to these parasites. These findings show the need for continuous monitoring of the water quality used for crop irrigation, as well as the safety of food, taking into account the values established in national and international regulations.
Collapse
Affiliation(s)
- Daniel Eduardo Ospina Santos
- Maestría en Ciencias Microbiología, Ciudad Universitaria, Universidad Nacional de Colombia, Bogotá, DC, CP 111321, Colombia
| | - Yulieth Alexandra Upegui Zapata
- Departamento de Salud Pública, Facultad de Medicina, Ciudad Universitaria, Universidad Nacional de Colombia, Bogotá, DC, CP 111321, Colombia
| | - Catherine Aguilar Buitrago
- Departamento de Salud Pública, Facultad de Medicina, Ciudad Universitaria, Universidad Nacional de Colombia, Bogotá, DC, CP 111321, Colombia
| | - Geraldine Sánchez Herrera
- Programa de Bacteriología y Laboratorio clínico, Universidad Colegio Mayor de Cundinamarca, Bogotá, DC, CP 111051, Colombia
| | - Libia Eunise Chandillo Becoche
- Programa de Bacteriología y Laboratorio clínico, Universidad Colegio Mayor de Cundinamarca, Bogotá, DC, CP 111051, Colombia
| | - Myriam Consuelo López Páez
- Departamento de Salud Pública, Facultad de Medicina, Ciudad Universitaria, Universidad Nacional de Colombia, Bogotá, DC, CP 111321, Colombia
| | - Martha Cristina Bustos López
- Departamento de Ingeniería Civil y Agrícola, Facultad de Ingeniería, Ciudad Universitaria, Universidad Nacional de Colombia, Bogotá, DC, CP 111321, Colombia.
| | - Carolina Ortiz Pineda
- Departamento de Salud Pública, Facultad de Medicina, Ciudad Universitaria, Universidad Nacional de Colombia, Bogotá, DC, CP 111321, Colombia
| |
Collapse
|
15
|
Yang F, Xiong X. Carbon emissions, wastewater treatment and aquatic ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171138. [PMID: 38402957 DOI: 10.1016/j.scitotenv.2024.171138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
As a nexus of environmental pollution, fossil fuel consumption and the global warming, carbon emissions are critical in China's long-term environmental strategies. In the water cycle, carbon is released during wastewater discharge, wastewater treatment, and subsequent changes in aquatic ecosystems. To gain a comprehensive understanding of this entire process, we investigate the intricate connections using balanced panel data from 261 prefecture-level cities in China spanning the period from 2000 to 2020. Each sample is quantified using 48 features derived from hydrosphere, biosphere, anthroposphere, atmosphere, pedosphere and lithosphere. This paper contributes to the relevant studies in the following ways: Firstly, to analyze the basic interaction within the water cycle, we utilize Structural Equation Modeling (SEM). Our results indicate a weak linear relationship between wastewater treatment and carbon emissions. We also substantiate the crucial role of the aquatic ecosystems in carbon fixation. Secondly, in order to comprehend the intricate interactions within the Earth system, we employ eight machine learning models to predict carbon emissions. We observe that extremely randomized trees (ET) exhibit the highest predictive accuracy among these models. Thirdly, in interpreting the ET model, we utilize Explainable artificial intelligence (XAI) techniques, including Shapley Additive Explanations (SHAP) and Accumulated Local Effects (ALE). Our 3D-SHAP analysis reveals heterogeneity in the emission effects of wastewater treatment across different sub-groups, indicating that emissions are especially sensitive to increased wastewater treatment in agricultural and tourism cities. Furthermore, 3D-SHAP analysis of the aquatic ecosystems exhibits a series of spikes, signifying that aquatic plants will abruptly lose their carbon storage ability once the degradation of the aquatic ecosystems exceeds a certain threshold. Finally, our ALE evaluation, depicting the dispersion tendency of feature importance, identifies the uncertainty of wastewater carbon release in agricultural and tourism cities, while also affirming the vulnerability of the aquatic ecosystems.
Collapse
Affiliation(s)
- Fan Yang
- School of Economics and Management, Southeast University, Nanjing 211189, China.
| | - Xiong Xiong
- School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China.
| |
Collapse
|
16
|
Munir R, Muneer A, Sadia B, Younas F, Zahid M, Yaseen M, Noreen S. Biochar imparted constructed wetlands (CWs) for enhanced biodegradation of organic and inorganic pollutants along with its limitation. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:425. [PMID: 38573498 DOI: 10.1007/s10661-024-12595-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
The remediation of polluted soil and water stands as a paramount task in safeguarding environmental sustainability and ensuring a dependable water source. Biochar, celebrated for its capacity to enhance soil quality, stimulate plant growth, and adsorb a wide spectrum of contaminants, including organic and inorganic pollutants, within constructed wetlands, emerges as a promising solution. This review article is dedicated to examining the effects of biochar amendments on the efficiency of wastewater purification within constructed wetlands. This comprehensive review entails an extensive investigation of biochar's feedstock selection, production processes, characterization methods, and its application within constructed wetlands. It also encompasses an exploration of the design criteria necessary for the integration of biochar into constructed wetland systems. Moreover, a comprehensive analysis of recent research findings pertains to the role of biochar-based wetlands in the removal of both organic and inorganic pollutants. The principal objectives of this review are to provide novel and thorough perspectives on the conceptualization and implementation of biochar-based constructed wetlands for the treatment of organic and inorganic pollutants. Additionally, it seeks to identify potential directions for future research and application while addressing prevailing gaps in knowledge and limitations. Furthermore, the study delves into the potential limitations and risks associated with employing biochar in environmental remediation. Nevertheless, it is crucial to highlight that there is a significant paucity of data regarding the influence of biochar on the efficiency of wastewater treatment in constructed wetlands, with particular regard to its impact on the removal of both organic and inorganic pollutants.
Collapse
Affiliation(s)
- Ruba Munir
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Amna Muneer
- Department of Physics, Government College Women University, Faisalabad, 38000, Pakistan
| | - Bushra Sadia
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, 38000, Pakistan
| | - Fazila Younas
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Muhammad Zahid
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Muhammad Yaseen
- Department of Physics, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Saima Noreen
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| |
Collapse
|
17
|
Kumar P, Kumar M, Barnawi AB, Maurya P, Singh S, Shah D, Yadav VK, Kumar A, Kumar R, Yadav KK, Gacem A, Ahmad A, Patel A, Alreshidi MA, Singh V, Yaseen ZM, Cabral-Pinto MMS, Vinayak V, Wanale SG. A review on fluoride contamination in groundwater and human health implications and its remediation: A sustainable approaches. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104356. [PMID: 38158029 DOI: 10.1016/j.etap.2023.104356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/15/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Contamination of drinking water due to fluoride (F-) is a major concern worldwide. Although fluoride is an essential trace element required for humans, it has severe human health implications if levels exceed 1.5 mg. L-1 in groundwater. Several treatment technologies have been adopted to remove fluoride and reduce the exposure risk. The present article highlights the source, geochemistry, spatial distribution, and health implications of high fluoride in groundwater. Also, it discusses the underlying mechanisms and controlling factors of fluoride contamination. The problem of fluoride-contaminated water is more severe in India's arid and semiarid regions than in other Asian countries. Treatment technologies like adsorption, ion exchange, precipitation, electrolysis, electrocoagulation, nanofiltration, coagulation-precipitation, and bioremediation have been summarized along with case studies to look for suitable technology for fluoride exposure reduction. Although present technologies are efficient enough to remove fluoride, they have specific limitations regarding cost, labour intensity, and regeneration requirements.
Collapse
Affiliation(s)
- Pankaj Kumar
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat 391760, India.
| | - Manoj Kumar
- Department of Hydro and Renewable Energy, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Abdulwasa Bakr Barnawi
- Department of Electrical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Parul Maurya
- Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India
| | - Snigdha Singh
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat 391760, India
| | - Deepankshi Shah
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat 391760, India
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat 384265, India
| | - Anand Kumar
- School of Management Studies, Nalanda University, Rajgir, Bihar 803116, India
| | - Ramesh Kumar
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, Rajasthan 305817, India
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal, Madhya Pradesh 462044, India; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah 64001, Iraq.
| | - Amel Gacem
- Department of Physics, Faculty of Sciences, University 20 Août 1955, Skikda 21000, Algeria
| | - Akil Ahmad
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat 384265, India
| | | | - Vipin Singh
- Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra 282005, India
| | - Zaher Mundher Yaseen
- Civil and Environmental Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Marina M S Cabral-Pinto
- Geobiotec Research Centre, Department of Geoscience, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory, School of Applied Science, Dr Harisingh Gour Central University, Sagar, Madhya Pradesh 470003, India
| | - Shivraj Gangadhar Wanale
- School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, Maharashtra 431606, India
| |
Collapse
|
18
|
Y. Saapi SS, Andrianisa HA, Zorom M, Mounirou LA, Kouassi HAA, Ahossouhe MS. New developments on vermifiltration as a bio-ecological wastewater treatment technology: Mechanism, application, performance, modelling, optimization, and sustainability. Heliyon 2024; 10:e25795. [PMID: 38375316 PMCID: PMC10875448 DOI: 10.1016/j.heliyon.2024.e25795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/22/2024] [Accepted: 02/02/2024] [Indexed: 02/21/2024] Open
Abstract
The review discusses the advancements in vermifiltration research over the last decade, focusing on pollution removal mechanisms, system performance, the fate of filter components, and by-products. Vermifiltration has demonstrated remarkable capabilities, particularly in treating highly contaminated wastewater with Chemical Oxygen Demand (COD) levels exceeding 92,000 mg/L and Biochemical Oxygen Demand (BOD5) levels over 25,000 mg/L, achieving removal rates of approximately 89% and 91%, respectively. Importantly, vermifiltration maintains its effectiveness even with fluctuating organic loads at the inlet, thanks to optimization of parameters like Hydraulic Loading Rate, biodegradable organic strength, earthworm density and active layer depth. Clogging issues can be minimized through parameters optimization. The review also highlights vermifiltrations' potential in co-treating the organic fraction of municipal solid waste while significantly reducing heavy metal concentrations, including Cd, Ni, Pb, Cu, Cr, and Zn, during the treatment process. Earthworms play a pivotal role in the removal of various components, with impressive removal percentages, such as 75% for Total Organic Carbon (TOC), 86% for Total COD, 87% for BOD5, 59% for ammonia nitrogen, and 99.9% for coliforms. Furthermore, vermifiltration-treated effluents can be readily utilized in agriculture, with the added benefit of producing vermicompost, a nutrient-rich biofertilizer. The technology contributes to environmental sustainability, as it helps reduce greenhouse gas emissions (GHG), thanks to earthworm activity creating an aerobic environment, minimizing GHG production compared to other wastewater treatment methods. In terms of pollutant degradation modeling, the Stover-Kincannon model outperforms the first-order and Grau second-order models, with higher regression coefficients (R2 = 0.9961 for COD and R2 = 0.9353 for TN). Overall, vermifiltration emerges as an effective and sustainable wastewater treatment solution, capable of handling challenging wastewater sources, while also producing valuable by-products and minimizing environmental impacts.
Collapse
Affiliation(s)
- Sidesse S. Y. Saapi
- Laboratoire Eaux, Hydro-Systèmes et Agriculture (LEHSA), Institut International d’Ingénierie de l’Eau et de l’Environnement (2iE), Rue de la Science, P.O. Box 594, Ouagadougou, 01, Burkina Faso
| | - Harinaivo A. Andrianisa
- Laboratoire Eaux, Hydro-Systèmes et Agriculture (LEHSA), Institut International d’Ingénierie de l’Eau et de l’Environnement (2iE), Rue de la Science, P.O. Box 594, Ouagadougou, 01, Burkina Faso
| | - Malicki Zorom
- Laboratoire Eaux, Hydro-Systèmes et Agriculture (LEHSA), Institut International d’Ingénierie de l’Eau et de l’Environnement (2iE), Rue de la Science, P.O. Box 594, Ouagadougou, 01, Burkina Faso
| | - Lawani A. Mounirou
- Laboratoire Eaux, Hydro-Systèmes et Agriculture (LEHSA), Institut International d’Ingénierie de l’Eau et de l’Environnement (2iE), Rue de la Science, P.O. Box 594, Ouagadougou, 01, Burkina Faso
| | - Hemez Ange Aurélien Kouassi
- Laboratoire Eaux, Hydro-Systèmes et Agriculture (LEHSA), Institut International d’Ingénierie de l’Eau et de l’Environnement (2iE), Rue de la Science, P.O. Box 594, Ouagadougou, 01, Burkina Faso
| | - Mahugnon Samuel Ahossouhe
- Laboratoire Eaux, Hydro-Systèmes et Agriculture (LEHSA), Institut International d’Ingénierie de l’Eau et de l’Environnement (2iE), Rue de la Science, P.O. Box 594, Ouagadougou, 01, Burkina Faso
| |
Collapse
|
19
|
Abbasi HN, Ahmad W, Shahzad KA, Lu X. Evaluating the potential of Abelmoschus esculentus, Solanum melongena, and Capsicum annuum spp. for nutrient and microbial reduction from wastewater in hybrid constructed wetland. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:293. [PMID: 38383675 DOI: 10.1007/s10661-024-12474-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/17/2024] [Indexed: 02/23/2024]
Abstract
Utilizing engineered wetlands for the cultivation of vegetables can help to overcome the problems of water and food scarcity. These wetlands are primarily designed for wastewater treatment, and their efficiency and effectiveness can be improved by selecting an appropriate substrate. To investigate the potential for nutrient and microbial removal, the Abelmoschus esculentus, Solanum melongena, and Capsicum annuum L. plants were selected to grow in a hybrid constructed wetland (CW) under natural conditions. The removal efficiency of the A. esculentus, S. melongena, and C. annuum L. in the CW system varied between 59.8 to 68.5% for total phosphorous (TP), 40.3 to 53.1% for ammonium (NH4+), and 33.6 to 45.1% for total nitrogen (TN). The influent sample contained multiple pathogenic bacteria, including Alcaligenes faecalis, Staphylococcus aureus, and Escherichia coli, with Capsicum annuum exhibiting a positive association with 7 of the 11 detected species, whereas microbial removal efficiency was notably higher in the S. melongena bed, potentially attributed to temperature variations and plant-facilitated oxygen release rates. While utilizing constructed wetlands for vegetable cultivation holds promising potential to address the disparity between water and food supply and yield various environmental, economic, and social benefits, it is crucial to note that the wastewater source may contain heavy metals, posing a risk of their transmission to humans through the food chain.
Collapse
Affiliation(s)
- Haq Nawaz Abbasi
- Department of Environmental Science, Federal Urdu University of Arts, Science and Technology, Karachi, Pakistan.
- School of Ennery and Environment, Southeast University, Nanjing, China.
| | - Waqar Ahmad
- Department of Environmental Science, Federal Urdu University of Arts, Science and Technology, Karachi, Pakistan
| | - Khawar Ali Shahzad
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
| | - Xiwu Lu
- School of Ennery and Environment, Southeast University, Nanjing, China
| |
Collapse
|
20
|
Pascual A, Álvarez JA, de la Varga D, Arias CA, Van Oirschot D, Kilian R, Soto M. Horizontal flow aerated constructed wetlands for municipal wastewater treatment: The influence of bed depth. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168257. [PMID: 37924877 DOI: 10.1016/j.scitotenv.2023.168257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 10/13/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023]
Abstract
The influence of bed depth on the performance of aerated horizontal constructed wetlands was investigated at the pilot plant scale. Two horizontal flow subsurface constructed wetlands (HF) intensified units of different bed depth (HF1: 0.90 m and HF2: 0.55 m, 0.8 m and 0.5 m water level, respectively) were fitted with forced aeration, while a third one (HFc, 0.55 m bed depth, 0.5 m water level) was used as control and not aerated. The three HF units were operated in parallel, receiving the same municipal wastewater pre-treated in a hydrolytic up-flow sludge blanket anaerobic digester. Applied surface loading rates (SLR) ranged from 20 to 80 g biochemical oxygen demand (BOD5)/m2·d and from 3.7 to 6.7 g total nitrogen (TN)/m2·d, while it ranges from 6 to 23 g BOD5/m2·d and from 1.1 to 1.7 g TN/m2·d in the control unit. Removal of total suspended solids (TSS) and BOD5 was usually close to a 100 % in all units, whilst chemical oxygen demand (COD) removal was higher for the HF1 unit (97 % on average, range of 96-99 %) than for HF2 (92 %, 82-98 %) and HFc (94 %, 86-99 %). TN removal reached on average 33 % (16-43 %) in HFc, 37 % (10-76 %) in HF2 and 51 % (21-79 %) in HF1. High TN removal required a longer aeration time for nitrification and higher effluent recirculation ratio to enhance denitrification. The results indicate that artificial aeration and a high bed depth allows to increase the SLR by a factor of 4 in HF1 but only by a factor of 2 in HF2.
Collapse
Affiliation(s)
- A Pascual
- Department of Chemistry, University of A Coruña, Spain.
| | | | | | - C A Arias
- Department of Biology, Aarhus University, Denmark.
| | | | | | - M Soto
- Department of Chemistry, University of A Coruña, Spain.
| |
Collapse
|
21
|
Teixeira AR, Jorge N, Lucas MS, Peres JA. Winery and olive mill wastewaters treatment using nitrilotriacetic acid/UV-C/Fenton process: Batch and semi-continuous mode. ENVIRONMENTAL RESEARCH 2024; 240:117545. [PMID: 37914014 DOI: 10.1016/j.envres.2023.117545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/19/2023] [Accepted: 10/29/2023] [Indexed: 11/03/2023]
Abstract
In this work, both red and white winery wastewaters (WW) and olive mill wastewater (OMW) were submitted to a treatment by Fenton-based processes (FBPs). The main aim was to evaluate the most efficient and economic process. Initial tests, resorting to a batch reactor, demonstrated that UV-C/Fenton (λ = 254 nm) was the most effective process. Operational conditions such as pH, H2O2 and Fe2+ concentrations revealed to have a superior influence within dissolved organic carbon (DOC) removal as well as regarding the reactor's energy consumption. As a means to prevent iron precipitation, the addition of nitrilotriacetic acid (NTA) was tested. With experimental conditions pH = 3.0, [H2O2] = 194 mM, [Fe2+] = 1.0 mM, [NTA] = 1.0 mM, radiation UV-C (254 nm), time = 240 min, the kinetic rate related with DOC removal showed a kredWW = 0.0128 min-1 > kOMW = 0.0124 min-1 > kwhiteWW = 0.0104 min-1 and both the WW and OMW achieved the Portuguese legal limit values for wastewater discharge. Furthermore, comparative experiments were performed in a semi-continuous reactor, being that the results put in evidence that the concentration of H2O2 added and the flow rate of reagents' addition (F) had a significant effect on the efficiency of the reactor. Under an optimum experimental procedure pH = 3.0, [H2O2] = 97 mM, [Fe2+] = 1.0 mM, [NTA] = 1.0 mM, radiation UV-C (254 nm), F = 1 mL min-1, time = 240 min, there were observed higher DOC removal kinetic rates (kOMW = 15.20 × 10-3 min-1 > kredWW = 11.64 × 10-3 min-1 > kwhiteWW = 11.57 × 10-3 min-1) and a cost ranging between 0.0402 and 0.0419 €/g.DOC. These results showed that semi-continuous reactors have the potential to be applied to large scale treatments, with low reagents consumption and reduced energy requirements.
Collapse
Affiliation(s)
- Ana R Teixeira
- Centro de Química de Vila Real (CQVR), Departamento de Química, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Nuno Jorge
- Centro de Química de Vila Real (CQVR), Departamento de Química, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal.
| | - Marco S Lucas
- Centro de Química de Vila Real (CQVR), Departamento de Química, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
| | - José A Peres
- Centro de Química de Vila Real (CQVR), Departamento de Química, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
| |
Collapse
|
22
|
Yang L, Jin X, Hu Y, Zhang M, Wang H, Jia Q, Yang Y. Technical structure and influencing factors of nitrogen and phosphorus removal in constructed wetlands. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:271-289. [PMID: 39219130 PMCID: wst_2023_414 DOI: 10.2166/wst.2023.414] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Constructed wetlands purify water quality by synergistically removing nitrogen and phosphorus pollutants from water, among other pollutants such as organic matter through a physical, chemical, and biological composite remediation mechanism formed between plants, fillers, and microorganisms. Compared with large-scale centralized wastewater treatment systems with high cost and energy consumption, the construction and operation costs of artificial wetlands are relatively low, do not require large-scale equipment and high energy consumption treatment processes, and have the characteristics of green, environmental protection, and sustainability. Gradually, constructed wetlands are widely used to treat nitrogen and phosphorus substances in wastewater. Therefore, this article discusses in detail the role and interaction of the main technical structures (plants, microorganisms, and fillers) involved in nitrogen and phosphorus removal in constructed wetlands. At the same time, it analyses the impact of main environmental parameters (such as pH and temperature) and operating conditions (such as hydraulic load and hydraulic retention time, forced ventilation, influent carbon/nitrogen ratio, and feeding patterns) on nitrogen and phosphorus removal in wetland systems, and addresses the problems currently existing in relevant research, the future research directions are prospected in order to provide theoretical references for scholars' research.
Collapse
Affiliation(s)
- Lei Yang
- Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission, Zhengzhou, Henan 450003, China; Rural Water Environmental Engineering Technology Research Center of Henan Province, Zhengzhou, Henan 450003, China; Key Laboratory of Ecological Environment Protection and Restoration in the Yellow River Basin of Henan Province, Zhengzhou, Henan 450003, China E-mail:
| | - Xiaohui Jin
- Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission, Zhengzhou, Henan 450003, China; Rural Water Environmental Engineering Technology Research Center of Henan Province, Zhengzhou, Henan 450003, China; Key Laboratory of Ecological Environment Protection and Restoration in the Yellow River Basin of Henan Province, Zhengzhou, Henan 450003, China
| | - Yawei Hu
- Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission, Zhengzhou, Henan 450003, China; Rural Water Environmental Engineering Technology Research Center of Henan Province, Zhengzhou, Henan 450003, China; Key Laboratory of Ecological Environment Protection and Restoration in the Yellow River Basin of Henan Province, Zhengzhou, Henan 450003, China
| | - Mingqi Zhang
- Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission, Zhengzhou, Henan 450003, China; Rural Water Environmental Engineering Technology Research Center of Henan Province, Zhengzhou, Henan 450003, China
| | - Huihui Wang
- Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission, Zhengzhou, Henan 450003, China; Rural Water Environmental Engineering Technology Research Center of Henan Province, Zhengzhou, Henan 450003, China
| | - Qian Jia
- Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission, Zhengzhou, Henan 450003, China; Rural Water Environmental Engineering Technology Research Center of Henan Province, Zhengzhou, Henan 450003, China
| | - Yafei Yang
- Yellow River Engineering Consulting Co., Ltd., Zhengzhou, Henan 450003, China
| |
Collapse
|
23
|
Mahlknecht J, Torres-Martínez JA, Kumar M, Mora A, Kaown D, Loge FJ. Nitrate prediction in groundwater of data scarce regions: The futuristic fresh-water management outlook. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166863. [PMID: 37690767 DOI: 10.1016/j.scitotenv.2023.166863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/28/2023] [Accepted: 09/03/2023] [Indexed: 09/12/2023]
Abstract
Nitrate contamination in groundwater poses a significant threat to water quality and public health, especially in regions with limited data availability. This study addresses this challenge by employing machine learning (ML) techniques to predict nitrate (NO3--N) concentrations in Mexico's groundwater. Four ML algorithms-Extreme Gradient Boosting (XGB), Boosted Regression Trees (BRT), Random Forest (RF), and Support Vector Machines (SVM)-were executed to model NO3--N concentrations across the country. Despite data limitations, the ML models achieved robust predictive performances. XGB and BRT algorithms demonstrated superior accuracy (0.80 and 0.78, respectively). Notably, this was achieved using ∼10 times less information than previous large-scale assessments. The novelty lies in the first-ever implementation of the 'Support Points-based Split Approach' during data pre-processing. The models considered initially 68 covariates and identified 13-19 significant predictors of NO3--N concentration spanning from climate, geomorphology, soil, hydrogeology, and human factors. Rainfall, elevation, and slope emerged as key predictors. A validation incorporated nationwide waste disposal sites, yielding an encouraging correlation. Spatial risk mapping unveiled significant pollution hotspots across Mexico. Regions with elevated NO3--N concentrations (>10 mg/L) were identified, particularly in the north-central and northeast parts of the country, associated with agricultural and industrial activities. Approximately 21 million people, accounting for 10 % of Mexico's population, are potentially exposed to elevated NO3--N levels in groundwater. Moreover, the NO3--N hotspots align with reported NO3--N health implications such as gastric and colorectal cancer. This study not only demonstrates the potential of ML in data-scarce regions but also offers actionable insights for policy and management strategies. Our research underscores the urgency of implementing sustainable agricultural practices and comprehensive domestic waste management measures to mitigate NO3--N contamination. Moreover, it advocates for the establishment of effective policies based on real-time monitoring and collaboration among stakeholders.
Collapse
Affiliation(s)
- Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501, Monterrey, NL 64849, Mexico
| | - Juan Antonio Torres-Martínez
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501, Monterrey, NL 64849, Mexico.
| | - Manish Kumar
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501, Monterrey, NL 64849, Mexico; Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India
| | - Abrahan Mora
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Puebla, Atlixcáyotl 5718, Puebla de Zaragoza, Puebla 72453, Mexico
| | - Dugin Kaown
- School of Earth and Environmental Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Frank J Loge
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501, Monterrey, NL 64849, Mexico; Department of Civil and Environmental Engineering, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
24
|
Nigam M, Mishra P, Kumar P, Rajoriya S, Pathak P, Singh SR, Kumar S, Singh L. Comprehensive technological assessment for different treatment methods of leather tannery wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:124686-124703. [PMID: 35680745 DOI: 10.1007/s11356-022-21259-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/30/2022] [Indexed: 05/16/2023]
Abstract
The leather-making process necessitates large amounts of water and consequently generates tons of liquid waste as leather tannery wastewater (TWW) is disposed of directly in the open environment. Open disposal of untreated TWW into the natural environment causes an accumulation of various polluting compounds, including heavy metals, dyes, suspended solids inorganic matter, biocides, oils, tannins, and other toxic chemicals. It thus poses potential hazards to the environment and human health. This study primarily focuses on providing in-depth insight into the characteristics, treatment strategies, and regulatory frameworks for managing TWW in leather processing industries. Different technologies of conventional physico-chemical (equalization, coagulation, and adsorption), advanced approaches (Fenton oxidation, ozonation, cavitation), thermo-catalytic and biological treatments available to treat TWW, and their integrative approaches were also highlighted. This review also sheds light on the most frequently applied technologies to reduce contaminant load from TWW though there are several limitations associated with it such as being ineffective for large quantities of TWW, waste generation during treatment, and high operational and maintenance (O&M) costs. It is concluded that the sustainable alternatives applied in the current TWW technologies can minimize O&M costs and recirculate the treated water in the environment. The exhaustive observations and recommendations presented in this article are helpful in the industry to manage TWW and recirculate the water in a sustainable manner.
Collapse
Affiliation(s)
- Mohit Nigam
- Chemical Engineering Department, Raja Balwant Singh Engineering Technical Campus, Agra, 283105, India
| | - Puranjan Mishra
- Institute of Bioresource and Agriculture, Hong Kong Baptist University, Kowloon Tong, Hong Kong.
| | - Pradeep Kumar
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | | | - Pankaj Pathak
- Department of Environmental Science, SRM University-AP, Amaravati, Andhra Pradesh, 522502, India
| | - Shraddha Rani Singh
- Chemical Engineering Department, Raja Balwant Singh Engineering Technical Campus, Agra, 283105, India
| | - Smita Kumar
- Department of Environmental Sciences, J.C. Bose University of Science & Technology, YMCA, Sector-6, Mathura Road, Faridabad, Haryana, 121006, India
| | - Lakhveer Singh
- Department of Chemistry, Sardar Patel University, Mandi, Himachal Pradesh, 175001, India
- Department of Civil Engineering, Centre for Research & Development, Chandigarh University, Mohali, Punjab, 140413, India
| |
Collapse
|
25
|
Plaza-Rojas CA, Amaya-Orozco NA, Rivera-Hoyos CM, Montaña-Lara JS, Páez-Morales A, Salcedo-Reyes JC, Castillo-Carvajal LC, Martínez-Urrútia W, Díaz-Ariza LA, Pedroza-Rodríguez AM. Use of biochar and a post-coagulation effluent as an adsorbent of malachite green, beneficial bacteria carrier, and seedling substrate for plants belonging to the poaceae family. 3 Biotech 2023; 13:386. [PMID: 37928437 PMCID: PMC10624780 DOI: 10.1007/s13205-023-03766-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/03/2023] [Indexed: 11/07/2023] Open
Abstract
Wastewater treatment plants produce solid and semi-solid sludge, which treatment minimises secondary environmental pollution because of wastewater treatment and obtaining new bioproducts. For this reason, in this paper, the co-pyrolysis of biogenic biomasses recovered from a biological reactor with immobilised fungal and bacterial biomass and a tertiary reactor with Chlorella sp. used for dye-contaminated wastewater treatment was carried out. Biogenic biomasses mixed with pine bark allowed the production and characterisation of two types of biochar. The raw material and biochar were on the "in vitro" germination of Lolium sp. seeds, followed by adsorption studies for malachite green (MG) dye using the raw material and the biochar. Results showed that using 60 mg L-1 of a cationic coagulant at pH 6.5 allowed for the recovery of more than 90% of the microalgae after 50 min of processing. Two biochar resulted: BC300, at pH 5.08 ± 0.08 and BC500, at pH 6.78 ± 0.01. The raw material and both biochars were co-inoculated with growth-promoting bacteria; their viabilities ranged from 1.7 × 106 ± 1.0 × 101 to 7.5 × 108 ± 6.0 × 102 CFU g-1 for total heterotrophic, nitrogen-fixing and phosphate-solubilising bacteria. Re-use tests on Lolium sp. seed germination showed that with the post-coagulation effluent, the germination was 100%, while with the biochar, with and without beneficial bacteria, the germination was 98 and 99%, respectively. Finally, BC500 adsorbed the highest percentage of malachite green at pH 4.0, obtaining qecal values of 0.5249 mg g-1 (R2: 0.9875) with the pseudo-second-order model. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03766-x.
Collapse
Affiliation(s)
- Christy A. Plaza-Rojas
- Laboratorio de Microbiología Ambiental y Suelos, Unidad de Investigaciones Agropecuarias (UNIDIA), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7ma No 43-82, Edifício 50 Lab. 106, P.O. Box 110-23, Bogotá, DC Colombia
| | - Nelson A. Amaya-Orozco
- Laboratorio de Microbiología Ambiental y Suelos, Unidad de Investigaciones Agropecuarias (UNIDIA), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7ma No 43-82, Edifício 50 Lab. 106, P.O. Box 110-23, Bogotá, DC Colombia
| | - Claudia M. Rivera-Hoyos
- Laboratorio de Biotecnología Molecular, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110-23, Bogotá, DC Colombia
| | - José S. Montaña-Lara
- Laboratorio de Microbiología Ambiental y Suelos, Unidad de Investigaciones Agropecuarias (UNIDIA), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7ma No 43-82, Edifício 50 Lab. 106, P.O. Box 110-23, Bogotá, DC Colombia
| | - Adriana Páez-Morales
- Laboratorio de Microbiología Ambiental y Suelos, Unidad de Investigaciones Agropecuarias (UNIDIA), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7ma No 43-82, Edifício 50 Lab. 106, P.O. Box 110-23, Bogotá, DC Colombia
| | - Juan Carlos Salcedo-Reyes
- Laboratorio de Películas Delgadas y Nanofotónica, Grupo de Películas Delgadas y Nanofotónica, Departamento de Física, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110-23, Bogotá, DC Colombia
| | | | - Wilmar Martínez-Urrútia
- Grupo de Diseño Avanzado, Fundación Universidad de América, P.O. Box 110-23, Bogotá, DC Colombia
| | - Lucía Ana Díaz-Ariza
- Laboratorio Asociaciones Suelo-Panta-Microorganismo, Grupo de Investigación en Agricultura Biológica, Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110-23, Bogotá, DC Colombia
| | - Aura M. Pedroza-Rodríguez
- Laboratorio de Microbiología Ambiental y Suelos, Unidad de Investigaciones Agropecuarias (UNIDIA), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7ma No 43-82, Edifício 50 Lab. 106, P.O. Box 110-23, Bogotá, DC Colombia
| |
Collapse
|
26
|
Qu Y, Yang Y, Sonne C, Chen X, Yue X, Gu H, Lam SS, Peng W. Phytosphere purification of urban domestic wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122417. [PMID: 37598935 DOI: 10.1016/j.envpol.2023.122417] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/26/2023] [Accepted: 08/18/2023] [Indexed: 08/22/2023]
Abstract
Industrialization and overpopulation have polluted aquatic environments with significant impacts on human health and wildlife. The main pollutants in urban sewage are nitrogen, phosphorus, heavy metals and organic pollutants, which need to be treated with sewage, and the use of aquatic plants to purify wastewater has high efficiency and low cost. However, the effectiveness and efficiency of phytoremediation are also affected by temperature, pH, microorganisms and other factors. The use of biochar can reduce the cost of wastewater purification, and the combination of biochar and nanotechnology can improve the efficiency of wastewater purification. Some aquatic plants can enrich pollutants in wastewater, so it can be considered to plant these aquatic plants in constructed wetlands to achieve the effect of purifying wastewater. Biochar treatment technology can purify wastewater with high efficiency and low cost, and can be further applied to constructed wetlands. In this paper, the latest research progress of various pollutants in wastewater purification by aquatic plants is reviewed, and the efficient treatment technology of wastewater by biochar is discussed. It provides theoretical basis for phytoremediation of urban sewage pollution in the future.
Collapse
Affiliation(s)
- Yimeng Qu
- Henan Province International Collaboration Lab of Forest Resources Utilization,School of Forestry,Henan Agricultural University,Zhengzhou 450002,China
| | - Yafeng Yang
- Henan Province International Collaboration Lab of Forest Resources Utilization,School of Landscape Architecture,Henan Agricultural University,Zhengzhou 450002,China
| | - Christian Sonne
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, Roskilde DK-4000, Denmark; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Xiangmeng Chen
- Henan Province International Collaboration Lab of Forest Resources Utilization,School of Science,Henan Agricultural University,Zhengzhou 450002,China
| | - Xiaochen Yue
- Henan Province International Collaboration Lab of Forest Resources Utilization,School of Forestry,Henan Agricultural University,Zhengzhou 450002,China
| | - Haiping Gu
- Henan Province International Collaboration Lab of Forest Resources Utilization,School of Forestry,Henan Agricultural University,Zhengzhou 450002,China
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Center for Global Health Research (CGHR), Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Wanxi Peng
- Henan Province International Collaboration Lab of Forest Resources Utilization,School of Forestry,Henan Agricultural University,Zhengzhou 450002,China.
| |
Collapse
|
27
|
Al-Hazmi HE, Mohammadi A, Hejna A, Majtacz J, Esmaeili A, Habibzadeh S, Saeb MR, Badawi M, Lima EC, Mąkinia J. Wastewater reuse in agriculture: Prospects and challenges. ENVIRONMENTAL RESEARCH 2023; 236:116711. [PMID: 37487927 DOI: 10.1016/j.envres.2023.116711] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023]
Abstract
Sustainable water recycling and wastewater reuse are urgent nowadays considering water scarcity and increased water consumption through human activities. In 2015, United Nations Sustainable Development Goal 6 (UN SDG6) highlighted the necessity of recycling wastewater to guarantee water availability for individuals. Currently, wastewater irrigation (WWI) of crops and agricultural land appears essential. The present work overviews the quality of treated wastewater in terms of soil microbial activities, and discusses challenges and benefits of WWI in line with wastewater reuse in agriculture and aquaculture irrigation. Combined conventional-advanced wastewater treatment processes are specifically deliberated, considering the harmful impacts on human health arising from WWI originating from reuse of contaminated water (salts, organic pollutants, toxic metals, and microbial pathogens i.e., viruses and bacteria). The comprehensive literature survey revealed that, in addition to the increased levels of pathogen and microbial threats to human wellbeing, poorly-treated wastewater results in plant and soil contamination with toxic organic/inorganic chemicals, and microbial pathogens. The impact of long-term emerging pollutants like plastic nanoparticles should also be established in further studies, with the development of standardized analytical techniques for such hazardous chemicals. Likewise, the reliable, long-term and extensive judgment on heavy metals threat to human beings's health should be explored in future investigations.
Collapse
Affiliation(s)
- Hussein E Al-Hazmi
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Ali Mohammadi
- Department of Engineering and Chemical Sciences, Karlstad University, 65188, Karlstad, Sweden.
| | - Aleksander Hejna
- Institute of Materials Technology, Poznan University of Technology, Poznań, Poland
| | - Joanna Majtacz
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Amin Esmaeili
- Department of Chemical Engineering, School of Engineering Technology and Industrial Trades, University of Doha for Science and Technology (UDST), 24449, Arab League St, Doha, Qatar
| | - Sajjad Habibzadeh
- Surface Reaction and Advanced Energy Materials Laboratory, Chemical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233, Gdańsk, Poland.
| | - Michael Badawi
- Laboratoire de Physique et Chimie Théoriques UMR CNRS 7019, Université de Lorraine, Nancy, France
| | - Eder C Lima
- Institute of Chemistry, Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Jacek Mąkinia
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233, Gdańsk, Poland
| |
Collapse
|
28
|
Chikogu Ameso V, Essandoh HMK, Donkor EA, Nwude MO. Comparative analysis of greywater pollutant removal efficiency with horizontal free water surface flow wetland with other wetland technologies. Heliyon 2023; 9:e17637. [PMID: 37539117 PMCID: PMC10395022 DOI: 10.1016/j.heliyon.2023.e17637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 08/05/2023] Open
Abstract
The reuse of treated wastewater for agriculture and other purposes is globally recognized as a reliable water source. Constructed wetlands are cost-effective and reliable green technologies for wastewater treatment, offering an environmentally friendly and affordable solution with minimal operational and maintenance requirements. This study assessed four wetland technologies (HFWSF, VFSF, VSSF, and HSSF) for treating greywater according to regulatory standards. The technologies effectively maintained pH levels, and both treated and untreated greywater samples met FEPA limits. They efficiently reduced dissolved and suspended particles, remaining below FEPA discharge limits for conductivity, TDS, turbidity, and TSS. However, elevated ammonia levels in both treated and untreated samples required additional treatment or mitigation. Sulphate levels were successfully mitigated, and phosphorus limits were met, with HFWSF already compliant even before treatment. Nitrate levels were reduced to meet FEPA limits, ensuring regulatory compliance. While BOD limits were met in both treated and untreated samples, untreated samples exceeded COD limits, necessitating more efficient treatment methods. HFWSF and HSSF complied with COD limits, whereas VFSF and VSSF did not. Both treated and untreated samples exceeded FEPA limits for oil and grease, indicating the need for additional treatment. Untreated samples exhibited high coliform contamination levels, underscoring the importance of effective treatment. However, all technologies successfully reduced coliform levels in treated samples, meeting FEPA limits and confirming treatment effectiveness. The combination of Typha (Domingensis) in the horizontal subsurface flow constructed wetland improved pollutant removal, nutrient removal, and contaminant elimination. Incorporating water Hyacinth (Eichhornia crassipes) with horizontal free water surface flow wetland technology demonstrated the highest efficacy in removing various pollutants. This combination outperformed other wetland technologies in effectively removing pollutants, including ammonia (60%), oil and grease (78.46%), COD (85%), TP (37.04%), FC (75%), and TC (79.59%), representing significant progress in greywater treatment.
Collapse
Affiliation(s)
- Vivien Chikogu Ameso
- Regional Water and Environmental Sanitation Centre, Kumasi (RWESCK) Department of Civil Engineering College of Engineering, Kwame Nkrumah University of Science and Technology, P.M.B UP, KNUST, Kumasi, Ghana
- Department of Water Resource and Environmental Management, National Water Resource, Institute (NWRI), P.M.B. 2309, Mando Road, Kaduna, Kaduna State, Nigeria
| | - Helen Michelle Korkor Essandoh
- Regional Water and Environmental Sanitation Centre, Kumasi (RWESCK) Department of Civil Engineering College of Engineering, Kwame Nkrumah University of Science and Technology, P.M.B UP, KNUST, Kumasi, Ghana
| | - Emmanuel Amponsah Donkor
- Regional Water and Environmental Sanitation Centre, Kumasi (RWESCK) Department of Civil Engineering College of Engineering, Kwame Nkrumah University of Science and Technology, P.M.B UP, KNUST, Kumasi, Ghana
| | - Michael Obiekwe Nwude
- Department of Water Resource and Environmental Management, National Water Resource, Institute (NWRI), P.M.B. 2309, Mando Road, Kaduna, Kaduna State, Nigeria
| |
Collapse
|
29
|
Kachhadiya DD, Murthy Z. Microfluidic synthesized ZIF-67 decorated PVDF mixed matrix membranes for the pervaporation of toluene/water mixtures. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
30
|
Arrington DA, Harris RJ, Layman CA, Gomes DGE. Leveraging green infrastructure for efficient treatment of reclaimed water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162232. [PMID: 36796699 DOI: 10.1016/j.scitotenv.2023.162232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Global water scarcity necessitates creative, yet practical, solutions to meet ever-growing demand. Green infrastructure is increasingly used in this context to provide water in environmentally friendly and sustainable ways. In this study, we focused on reclaimed wastewater from a joint gray and green infrastructure system employed by the Loxahatchee River District in Florida. The water system consists of a series of treatment stages for which we assessed 12 years of monitoring data. We measured water quality after secondary (gray) treatment, then in onsite lakes, offsite lakes, landscape irrigation (via sprinklers), and ultimately in downstream canals. Our findings show gray infrastructure designed for secondary treatment, integrated with green infrastructure, achieved nutrient concentrations nearly equivalent to advanced wastewater treatment systems. For example, we observed a dramatic decline in mean nitrogen concentration from 19.42 mg L-1 after secondary treatment to 5.26 mg L-1 after spending an average of 30 days in the onsite lakes. Nitrogen concentration continued to decline as reclaimed water moved from onsite lakes to offsite lakes (3.87 mg L-1) and irrigation sprinklers (3.27 mg L-1). Phosphorus concentrations exhibited a similar pattern. These decreasing nutrient concentrations led to relatively low nutrient loading rates and occurred while consuming substantially less energy and producing fewer greenhouse gas emissions than traditional gray infrastructure-at lower cost and higher efficiency. There was no evidence of eutrophication in canals downstream of the residential landscape whose sole source of irrigation water was reclaimed water. This study provides a long-term example of how circularity in water use can be used to work toward sustainable development goals.
Collapse
Affiliation(s)
- D Albrey Arrington
- Loxahatchee River District, 2500 Jupiter Park Drive, Jupiter, FL 33458, United States of America.
| | - Rachel Joy Harris
- Loxahatchee River District, 2500 Jupiter Park Drive, Jupiter, FL 33458, United States of America
| | - Craig A Layman
- Center for Energy, Environment & Sustainability, Wake Forest University, Winston-Salem, NC 27106, United States of America
| | - Dylan G E Gomes
- National Academy of Sciences NRC Research Associateship Program, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98112, United States of America
| |
Collapse
|
31
|
Spiniello I, De Carluccio M, Castiglione S, Amineva E, Kostryukova N, Cicatelli A, Rizzo L, Guarino F. Landfill leachate treatment by a combination of a multiple plant hybrid constructed wetland system with a solar photoFenton process in a raceway pond reactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 331:117211. [PMID: 36657206 DOI: 10.1016/j.jenvman.2022.117211] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/21/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
The sustainable and green treatment of landfill leachate (LL), produced by municipal solid waste, represents one of the most relevant challenges in the integrated waste management systems. Accordingly, in this work a green solution was investigated by coupling an innovative hybrid constructed wetland (HCW) to a solar photo-Fenton (SPF) process. A multiple layers HCW pilot plant including different medium substrates (sand, solid compost and carriers) and plant species (Phragmites australis, Arundo donax and A. plinii) was designed. The HCW was functionalised with compost tea solution to simultaneously provide high nutrient content for plants and increase the microorganism biodiversity. Process efficiency was investigated using different real LLs (young and mature) in terms of chemical oxygen demand (COD), nitrogen compounds, chlorides and metals. Removals in the range 75-95% were observed for all the parameters after ten days of leachate recirculation in the pilot plant. Subsequently, the SPF process was carried out in a raceway pond reactor (RPR) as polishing step, significantly improving COD removal (further 49%). HCW combined with SPF in RPR would allow to meet the corresponding limits according to the final use/fate of the effluent by modulating the main parameters of the process.
Collapse
Affiliation(s)
- Ivano Spiniello
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Marco De Carluccio
- Water Science and Technology (WaSTe) Group, Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Stefano Castiglione
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Enzhe Amineva
- Department of Environmental Health & Safety, Ufa State Aviation Technical University, Marks 12, 450077, Ufa, Republic of Bashkortostan, Russian Federation
| | - Natalia Kostryukova
- Department of Environmental Health & Safety, Ufa State Aviation Technical University, Marks 12, 450077, Ufa, Republic of Bashkortostan, Russian Federation
| | - Angela Cicatelli
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy.
| | - Luigi Rizzo
- Water Science and Technology (WaSTe) Group, Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy.
| | - Francesco Guarino
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| |
Collapse
|
32
|
Collivignarelli MC, Gomez FH, Caccamo FM, Sorlini S. Reduction of pathogens in greywater with biological and sustainable treatments selected through a multicriteria approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:38239-38254. [PMID: 36580251 DOI: 10.1007/s11356-022-24827-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Non-potable reuse of greywater (GW) can represent a valid alternative to freshwater consumption, satisfying the Sustainable Development Goals promoted by United Nations. The Multi-Criteria Analysis (MCA) was applied to select the most suitable processes for the reduction of microbiological contamination in GW. A pilot plant, including horizontal flow constructed wetland (CW) and anaerobic filtration (AF) in parallel, best treatment options according to MCA results, was built to treat GW collected from a Venezuelan family. (i) The removal efficiency of microbiological parameters, and (ii) the turbidity as possible microbiological contamination indicator and possible influence factor of disinfection treatment, were investigated. Except for Escherichia coli (4.1 ± 0.9 log reduction with AF), CW achieved the best reductions yields for total coliforms, faecal coliforms, and Salmonella, respectively equal to 3.1 ± 0.5 log, 4.3 ± 0.5 log, and 2.9 ± 0.4 log. In accordance with Venezuelan legislation and WHO guidelines, GW treated with CW was found to be suitable for irrigation reuse for non-edible crops. However, the reduction of pathogens by CW should be considered as a preliminary and not complete disinfection treatment. To reuse GW, especially in the irrigation of edible crops, stronger disinfection treatment should be considered as a complement to the preliminary disinfection performed by CW, to avoid any kind of risk. No significant correlation was found for turbidity either as a possible predictor of microbiological contamination or as an influence on biological disinfection.
Collapse
Affiliation(s)
- Maria Cristina Collivignarelli
- Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 3, 27100, Pavia, Italy
- Interdepartmental Centre for Water Research, University of Pavia, Via Ferrata 3, 27100, Pavia, Italy
| | - Franco Hernan Gomez
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy
| | - Francesca Maria Caccamo
- Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 3, 27100, Pavia, Italy.
| | - Sabrina Sorlini
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy
| |
Collapse
|
33
|
Tiwari H, Prajapati SK. Allelopathic effect of benzoic acid (hydroponics root exudate) on microalgae growth. ENVIRONMENTAL RESEARCH 2023; 219:115020. [PMID: 36521539 DOI: 10.1016/j.envres.2022.115020] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Hydroponic effluent (HE) contains a reasonable amount of residual nutrients. Therefore, HE could be used as a low-cost growth media for microalgae mediated resource recovery and water recycling. However, the presence of root exudates (particularly, benzoic acid) may lead to toxicity in microalgae.In the present study, the allelopathic effects of benzoic acid on microalgal growth was tested. During 96 h batch growth, Chlorella pyrenoidosa showed the highest biomass concentration (0.064-0.037 g.L-1) compared to Chlorella sorokiniana (0.09-0.26 g.L-1) at the tested benzoic acid doses. Moreover, both the species showed growth stimulation and growth inhibition up to certain benzoic acid doses. Hence, both the microalgal species showed allelopathic behaviour at different doses of benzoic acid. Further, the observed half effective concentration (96 h EC50) were 65.10 mg.L-1 and 105.27 mg.L-1, respectively, for Chlorella pyrenoidosa and C. sorokiniana with 95% confidence limits. Further, Haldane's model best fitted with experimental data of both the microalgae (r ∼ 0.99). Overall, the study reveals that the HE with low benzoic acid dose may serve as a suitable growth media for microalgae. However, further in-depth research interventions using real HE are desirable to determine its real-world applicability.
Collapse
Affiliation(s)
- Harshit Tiwari
- Environment and Biofuel Research Lab (EBRL), Department of Hydro and Renewable Energy, Indian Institute of Technology (IIT), Roorkee, Uttarakhand, 247667, India
| | - Sanjeev Kumar Prajapati
- Environment and Biofuel Research Lab (EBRL), Department of Hydro and Renewable Energy, Indian Institute of Technology (IIT), Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
34
|
Kumar M, Sridharan S, Sawarkar AD, Shakeel A, Anerao P, Mannina G, Sharma P, Pandey A. Current research trends on emerging contaminants pharmaceutical and personal care products (PPCPs): A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160031. [PMID: 36372172 DOI: 10.1016/j.scitotenv.2022.160031] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Pharmaceutical and personnel care products (PPCPs) from wastewater are a potential hazard to the human health and wildlife, and their occurrence in wastewater has caught the concern of researchers recently. To deal with PPCPs, various treatment technologies have been evolved such as physical, biological, and chemical methods. Nevertheless, modern and efficient techniques such as advance oxidation processes (AOPs) demand expensive chemicals and energy, which ultimately leads to a high treatment cost. Therefore, integration of chemical techniques with biological processes has been recently suggested to decrease the expenses. Furthermore, combining ozonation with activated carbon (AC) can significantly enhance the removal efficiency. There are some other emerging technologies of lower operational cost like photo-Fenton method and solar radiation-based methods as well as constructed wetland, which are promising. However, feasibility and practicality in pilot-scale have not been estimated for most of these advanced treatment technologies. In this context, the present review work explores the treatment of emerging PPCPs in wastewater, via available conventional, non-conventional, and integrated technologies. Furthermore, this work focused on the state-of-art technologies via an extensive literature search, highlights the limitations and challenges of the prevailing commercial technologies. Finally, this work provides a brief discussion and offers future research directions on technologies needed for treatment of wastewater containing PPCPs, accompanied by techno-economic feasibility assessment.
Collapse
Affiliation(s)
- Manish Kumar
- Engineering Department, Palermo University, Viale delle Scienze, Ed.8, 90128 Palermo, Italy.
| | - Srinidhi Sridharan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India; CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India
| | - Ankush D Sawarkar
- Department of Computer Science and Engineering, Visvesvaraya National Institute of Technology (VNIT), Nagpur, Maharashtra 440 010, India
| | - Adnan Shakeel
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India
| | - Prathmesh Anerao
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India
| | - Giorgio Mannina
- Engineering Department, Palermo University, Viale delle Scienze, Ed.8, 90128 Palermo, Italy
| | - Prabhakar Sharma
- School of Ecology and Environment Studies, Nalanda University, Rajgir 803116, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248 007, India; Centre for Energy and Environmental Sustainability, Lucknow 226 029, India.
| |
Collapse
|
35
|
Yahia B, Faouzi S, Mohamed T. Methylene Blue Photo-degradation on the Hetero-junction System α-Fe2O3 / BaTiO3 Under Sunlight. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
36
|
Enhanced leachate phytodetoxification test combined with plants and rhizobacteria bioaugmentation. Heliyon 2023; 9:e12921. [PMID: 36820189 PMCID: PMC9938419 DOI: 10.1016/j.heliyon.2023.e12921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/05/2022] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
Plant combination and rhizobacterial bioaugmentation are the modification of constructed wetlands (CWs) to promote the detoxification of leachate. In this study, characterization of leachate was carried out to ensure the maximum concentration of leachate that did not affect the plant's growth. Herein, the identification of leachate-resistant rhizobacteria is used to determine the type of bacteria that is resistant and has the potential for leachate processing in the next step. The phytodetoxification test is carried out by comparing the addition of rhizobacteria and without the addition of rhizobacteria to detox leachate parameter Chemical Oxygen Demand (COD), Biological Oxygen Demand (BOD), Total Suspended Solid (TSS), Total Nitrogen (TN), Cadmium (Cd), and Mercury (Hg). Results showed that used plants could still live in the largest leachate concentration of 100%. The rhizobacteria that were identified and bioaugmented in the reactor were Bacillus cereus, Nitrosomonas communis, and Pseudomonas aeruginosa. Phytodetoxification test by a single plant showed the efficiency ranged between 40% and 70%. The addition of rhizobacterial bioaugmentation and plant combination can improve the percentage of COD 80.47%, BOD 84.05%, TSS 80.05%, TN 75.58%, Cd 99.96%, and Hg 90%. These modifications are very influential for leachate detoxification through plant uptake and rhizodegradation processes.
Collapse
|
37
|
Berego YS, Sota SS, Ulsido MD, Beyene EM. Treatment Performance Assessment of Natural and Constructed Wetlands on Wastewater From Kege Wet Coffee Processing Plant in Dale Woreda, Sidama Regional State, Ethiopia. ENVIRONMENTAL HEALTH INSIGHTS 2022; 16:11786302221142749. [PMID: 36506919 PMCID: PMC9730010 DOI: 10.1177/11786302221142749] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
Constructed wetlands are engineered systems built to use natural processes and remove pollutants from contaminated water in a more controlled environment. The research was an experimental research carried out to assess the effectiveness of natural and constructed wetland systems in the treatment of coffee wastewater. The 2 vertical flow constructed wetland was built. The first wetland covered an area of 132 m2. It has 12 m width and 11 m length. Open space is constructed between 2 constructed wetlands with a dimension of 11 m × 3 m × 1 m. The second wetland was constructed and its function is similar to the first one, from this wetland water is discharged to the river. The construction of the wetland is accomplished by constructing 20 cm wide furrows with a spacing of 30 cm. Vetiver grasses have planted with a spacing of 20 cm intervals. The physicochemical data were recorded, organized, and analyzed using R software (version 4.1) and Microsoft Excel. Data were processed using parametric (one-way ANOVA) and nonparametric (Mann-Whitney's U test) statistical tests of homogeneity. One-way analysis of Variance (ANOVA) was used to determine the significance of differences in variations in physicochemical variables within the constructed wetland sites. Tukey's multiple comparisons for differences between means were also assessed. Findings indicated that a natural wetland had a mean influent and effluent of total suspended solids (TSS) of 2190.78 ± 448.46 mg/l and 972.67 ± 234.312 mg/l, respectively. A Mann-Whitney U test revealed that TSS were significantly higher in natural wetland (median = 1551.50) compared to constructed wetland (median = 922.5), U = 676.5, z = -2.435, P = .015, r = .257. Natural wetlands had a mean influent of biological oxygen demand (BOD) was 4277.94 ± 157.02 mg/l, while in the effluent of BOD it was 326.83 ± 112.24 mg/l. While in constructed wetland it was 4192.4 ± 191.3 mg/l, 782.72 ± 507.6 mg/l, and 88.28 ± 20.08 mg/l in influent, middle, and effluent respectively. Average chemical oxygen demand (COD) value at influent in natural wetlands was 8085.61 ± 536.99 mg/l and in the effluent it was 675.33 ± 201.4 mg/l. In constructed wetland, it was found to be 8409.8 ± 592.9, 1372.6 ± 387.94, and 249.0 ± 7.68 for influent, middle, and effluent respectively. Comparatively, the purification efficiency of organic pollutants (TSS, BOD, and COD) of constructed wetlands was better than natural wetlands, whereas natural wetlands had better purification efficiency of nitrogen compounds such as ammonium, nitrite, and nitrate. On average, removal rates for nitrogen compounds were 39.53% and -24.41% for ammonium, 79.44% and 55.4% for nitrite, and 68.90% and 60.6% for nitrate in natural and constructed wetlands respectively, while the phosphate removal rate was 43.17% and 58.7% in natural and constructed wetlands, respectively. A Mann-Whitney U test revealed that there is no significance difference in nitrite, nitrate, ammonium, and phosphate concentration between natural and constructed wetlands(P > .05). Based on these results, both systems of treatment were effective in treating the coffee effluent since most of the values obtained were below the permissible EEPA limits. Even though the constructed wetland treatment plant performed better overall, in comparison, the natural wetlands had better purification efficiency for nitrogen compounds like ammonium, nitrite, and nitrate and the constructed wetlands had better purification efficiency for organic pollutants (TSS, BOD, and COD).
Collapse
Affiliation(s)
| | - Solomon Sorsa Sota
- Department of Biology, Hawassa University, Hawassa, Sidama Region, Ethiopia
| | - Mihret Dananto Ulsido
- Department of Water Supply and Environmental Engineering, Faculty of Biosystems and Water Resources Engineering, Institute of Technology, and Center for Ethiopian Rift Valley Studies (CERVaS), Hawassa University, Hawassa, Sidama Region, Ethiopia
| | - Embialle Mengistie Beyene
- Department of Environmental Health, College of Medicine and Health Sciences, Hawassa University, Hawassa, Sidama Region, Ethiopia
| |
Collapse
|
38
|
Justin LD, Olukanni DO, Babaremu KO. Performance assessment of local aquatic macrophytes for domestic wastewater treatment in Nigerian communities: A review. Heliyon 2022; 8:e10093. [PMID: 36042728 PMCID: PMC9420480 DOI: 10.1016/j.heliyon.2022.e10093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/21/2022] [Accepted: 07/22/2022] [Indexed: 10/27/2022] Open
Abstract
The concept of treating wastewater before disposal is a global necessity. Recent mechanisms of doing this include the use of Constructed Wetland Systems (CWS). This technique is believed to be cost-effective and simpler compared to conventional methods. The application of this system is primarily dependent on the use of plants through the phytoremediation process. There is evidence of the potential of some locally found Nigerian aquatic plants such as water lettuce, water hyacinth and duckweed to be applicable for this purpose. However, there is little information on their performance level in remediating domestic wastewater. Thus, this review paper assessed the performance of these local macrophytes for domestic wastewater treatment and the potential of contributing the same in Nigerian communities. This was done by reviewing recent literature on the role of water lettuce, water hyacinth and duckweed, their occurrence and their efficiency in minimising different wastewater contaminants. Contaminant indicators such as total solids, electrical conductivity (EC), BOD, COD, dissolved oxygen, total phosphorous, total nitrogen, and heavy metals have been reduced using these macrophytes. The review indicates that the selected macrophytes do not only have the potential for wastewater purification but high efficiencies in doing so when applied appropriately in the Nigerian communities.
Collapse
Affiliation(s)
- Lazarus D Justin
- Department of Civil Engineering Covenant University, Ota, Ogun State, Nigeria
| | - David O Olukanni
- Department of Civil Engineering Covenant University, Ota, Ogun State, Nigeria
| | - Kunle O Babaremu
- Department of Mechanical Engineering, University of Johannesburg, South Africa.,Directorate of Pan African Universities for Life and Earth Institute, Ibadan, Oyo State, Nigeria
| |
Collapse
|
39
|
García-Prieto JC, Núñez-Núñez CM, Proal-Nájera JB, García-Roig M. Study of coliforms and Clostridium bacteria inactivation in wastewaters by a pilot photolysis process and by the maturation lagoons of a low-cost nature-based WWTP. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:35484-35499. [PMID: 35060052 PMCID: PMC9076734 DOI: 10.1007/s11356-021-18184-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
The inactivation processes of coliform bacteria (total and fecal) and sulphito-reducing Clostridium bacteria (vegetative species and spores) in water maturation lagoon of a low-cost nature-based wastewater treatment plant using constructed wetlands and through processes of photolysis in a pilot photoreactor have been comparatively studied. The different inactivation mechanisms by photolysis of these bacteria have been studied following the criteria of different statistical and kinetic models. Clostridium disinfection treatments fit models in which two types of bacteria populations coexist, one sensitive (vegetative species) and the other (spores) resistant to the treatment, the sensitive one (94%) with an inactivation rate of k = 0.24 ± 0.07 min-1 and the resistant one (6%) with k = 0.11 ± 0.05 min-1. Total coliform photolytic disinfection also shows two populations with different physiological state. The time required to reduce the first logarithmic decimal cycle of the different types of bacteria (physiological states) are δ1 = 4.2 ± 0.9 and δ2 = 8.3 ± 1.1 min, respectively. For fecal coliform photolytic disinfection, only bacteria population, with k = 1.15 ± 0.19 min-1, is found. The results obtained confirm the photolytic disinfection processes and maturation lagoon are effective systems for Clostridia bacteria removal after water treatment by nature-based systems. Total removal of coliform bacteria is not achieved by maturation lagoons, but their reduction is significant using low doses of cumulative radiation.
Collapse
Affiliation(s)
- Juan Carlos García-Prieto
- Centro de Investigación y Desarrollo Tecnológico del Agua (CIDTA), Universidad de Salamanca, Campus Miguel de Unamuno, Facultad de Farmacia, Campo Charro s/n, 37080 Salamanca, Spain
| | - Cynthia Manuela Núñez-Núñez
- CIIDIR–Unidad Durango, Instituto Politécnico Nacional, Sigma 119, Fracc. 20 de Nov. II, 34220 Durango, Dgo Mexico
| | - José Bernardo Proal-Nájera
- CIIDIR–Unidad Durango, Instituto Politécnico Nacional, Sigma 119, Fracc. 20 de Nov. II, 34220 Durango, Dgo Mexico
| | - Manuel García-Roig
- Centro de Investigación y Desarrollo Tecnológico del Agua (CIDTA), Universidad de Salamanca, Campus Miguel de Unamuno, Facultad de Farmacia, Campo Charro s/n, 37080 Salamanca, Spain
| |
Collapse
|
40
|
Elucidating the Potential of Vertical Flow-Constructed Wetlands Vegetated with Different Wetland Plant Species for the Remediation of Chromium-Contaminated Water. SUSTAINABILITY 2022. [DOI: 10.3390/su14095230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Water scarcity is one of the key global challenges affecting food safety, food security, and human health. Constructed wetlands (CWs) provide a sustainable tool to remediate wastewater. Here we explored the potential of vertical flow-CWs (VF-CWs) vegetated with ten indigenous wetland plant species to treat chromium (Cr)-contaminated water. The wetland plants were vegetated to develop VF-CWs to treat Cr-contaminated water in a batch mode. Results revealed that the Cr removal potential of VF-CWs vegetated with different wetland plants ranged from 47% to 92% at low (15 mg L−1) Cr levels and 36% to 92% at high (30 mg L−1) Cr levels, with the maximum (92%) Cr removal exhibited by VF-CWs vegetated with Leptochloa fusca. Hexavalent Cr (Cr(VI)) was reduced to trivalent Cr (Cr(III)) in treated water (96–99 %) of all VF-CWs. All the wetland plants accumulated Cr in the shoot (1.9–34 mg kg−1 dry weight (DW)), although Cr content was higher in the roots (74–698 mg kg−1 DW) than in the shoots. Brachiaria mutica showed the highest Cr accumulation in the roots and shoots (698 and 45 mg kg−1 DW, respectively), followed by Leptochloa fusca. The high Cr level significantly (p < 0.05) decreased the stress tolerance index (STI) percentage of the plant species. Our data provide strong evidence to support the application of VF-CWs vegetated with different indigenous wetland plants as a sustainable Cr-contaminated water treatment technology such as tannery wastewater.
Collapse
|
41
|
Sharma A, Mangla D, Chaudhry SA. Recent advances in magnetic composites as adsorbents for wastewater remediation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 306:114483. [PMID: 35066323 DOI: 10.1016/j.jenvman.2022.114483] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/15/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
The scarcity of clean drinking water combined with other environmental and anthropogenic effects necessitates the demand for development of advanced technology for cleaning polluted water. Adsorption is one such technique that does not produce toxic byproducts and solves the problem of cleaning contaminated water at a lower cost. In recent years, magnetic composites, as adsorbent, have gained lot of attention due to their reusability which makes them sustainable and economical. This review article describes the challenges related to water quality, scarcity and then summarizes the current treatment technologies and advancement in the field of adsorption to resolve the prevailing concerns. The review includes an insight into the recent research being carried out in the field of magnetic composites and nanocomposites, as adsorbent, covering, probably, all aspects of what is going around the globe. Different materials, like polymers, biomaterials, clays and metal organic framework (MOF)-based magnetic composites and their applications in wastewater treatment processes have been included. The article is a comprehensive review on the application of different materials to detoxify various diverse pollutants with prime focus on magnetic composites. The thorough study of this review will surely bring upcoming researchers closer to the future possibilities of research in wastewater treatment.
Collapse
Affiliation(s)
- Atul Sharma
- Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Divyanshi Mangla
- Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Saif Ali Chaudhry
- Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
42
|
Sharma R, Malaviya P. Constructed wetlands for textile wastewater remediation: A review on concept, pollutant removal mechanisms, and integrated technologies for efficiency enhancement. CHEMOSPHERE 2022; 290:133358. [PMID: 34929266 DOI: 10.1016/j.chemosphere.2021.133358] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/12/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Textile industries are among the ecologically unsustainable industries that release voluminous wastewater threatening ecosystem health. The constructed wetlands (CWs) are low-cost eco-technological interventions for the management of industrial wastewaters. The CWs are self-sustaining remediation systems that do not require an external source of energy and encompass simple operational mechanisms including biological (bioremediation and phytoremediation), chemical, and physical processes for pollutant removal. This review idiosyncratically scrutinizes the recent advances and developments in CWs, and their types employed for textile wastewater treatment. The major focus is on mechanisms involved during the removal of contaminants from textile wastewater in CWs and factors affecting the performance of the system. The article also discusses the State-of-the-Art integrated technologies e.g., CW-MFCs/algal ponds/sponge iron coupled systems, for the performance and sustainability enhancement of CWs. All the important aspects together with the technology amalgamation are critically synthesized for establishing suitable strategies for CW-based textile wastewater treatment systems.
Collapse
Affiliation(s)
- Rozi Sharma
- Department of Environmental Sciences, University of Jammu, Jammu, 180006, Jammu and Kashmir, India
| | - Piyush Malaviya
- Department of Environmental Sciences, University of Jammu, Jammu, 180006, Jammu and Kashmir, India.
| |
Collapse
|
43
|
Kaur N, Brraich OS. Impact of industrial effluents on physico-chemical parameters of water and fatty acid profile of fish, Labeo rohita (Hamilton), collected from the Ramsar sites of Punjab, India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:11534-11552. [PMID: 34537943 PMCID: PMC8449748 DOI: 10.1007/s11356-021-16429-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
In this contemporary era, wetlands and the entire aquatic diversity are suffering from major pollution problem. Not only the aggregation of higher population in metropolitan causes the production of plenty of solid, liquid and gaseous wastes, but also the high-technological industries contribute to a mammoth of wastes in the ecosystem. During the process of industrial effluent discharge into the water bodies, the toxic substances available in these wastes can affect the aquatic flora and fauna, resultantly disturbing the entire system and constituting human health hazards indirectly or directly. The objective of this study was to estimate the nutritional value of the liver and intestine of fish which is being discarded as waste during fish processing and pollution status by calculated water quality index (WQI) and comparison of both wetlands during diverse seasons. WQI of Harike Wetland was observed to be 56.68 which indicates that water quality in this wetland is "poor", while at Nangal Wetland WQI was calculated to be 39.54 and comes under "good" water quality and safe for the entire ecosystem. HPI (heavy metal pollution index) for Harike Wetland was observed 144.9 and for Nangal Wetland was 3.12, indicating heavy load of heavy metal pollution at test sample site. MI (metal index) value was also detected higher at test sample site (4.76) as compared to that at control site (0.22). The mean total n-3 and n-6 polyunsaturated fatty acids (PUFAs) declined in the liver of test fish samples (Harike Wetland) as compared to control fish (Nangal Wetland) samples except in winter season. Similarly, mean total saturated fatty acids (SFAs) were also found to decline significantly (p<0.05) in the liver of test fish sample as compared to control fish sample during autumn and winter seasons. Significant (p<0.05) decline of mean total n-3 PUFAs (except winter) and total n-6 PUFAs (except rainy) in the intestine of test fish sample was observed during all the seasons when compared to control fish samples. However, total SFAs were found to increase in the intestine of test fish samples as compared to control fish samples during all the studied seasons. In the present investigation, fluctuations recorded in the water quality parameters and major groups of FAs in the tissues were due to the geographical location and pollution load in the fish samples taken from Harike Wetland.
Collapse
Affiliation(s)
- Navpreet Kaur
- Department of Zoology and Environmental Sciences, Punjabi University, Patiala, Punjab, 147002, India.
| | - Onkar Singh Brraich
- Department of Zoology and Environmental Sciences, Punjabi University, Patiala, Punjab, 147002, India
| |
Collapse
|
44
|
Hazra M, Durso LM. Performance Efficiency of Conventional Treatment Plants and Constructed Wetlands towards Reduction of Antibiotic Resistance. Antibiotics (Basel) 2022; 11:114. [PMID: 35052991 PMCID: PMC8773441 DOI: 10.3390/antibiotics11010114] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 12/18/2022] Open
Abstract
Domestic and industrial wastewater discharges harbor rich bacterial communities, including both pathogenic and commensal organisms that are antibiotic-resistant (AR). AR pathogens pose a potential threat to human and animal health. In wastewater treatment plants (WWTP), bacteria encounter environments suitable for horizontal gene transfer, providing an opportunity for bacterial cells to acquire new antibiotic-resistant genes. With many entry points to environmental components, especially water and soil, WWTPs are considered a critical control point for antibiotic resistance. The primary and secondary units of conventional WWTPs are not designed for the reduction of resistant microbes. Constructed wetlands (CWs) are viable wastewater treatment options with the potential for mitigating AR bacteria, their genes, pathogens, and general pollutants. Encouraging performance for the removal of AR (2-4 logs) has highlighted the applicability of CW on fields. Their low cost of construction, operation and maintenance makes them well suited for applications across the globe, especially in developing and low-income countries. The present review highlights a better understanding of the performance efficiency of conventional treatment plants and CWs for the elimination/reduction of AR from wastewater. They are viable alternatives that can be used for secondary/tertiary treatment or effluent polishing in combination with WWTP or in a decentralized manner.
Collapse
Affiliation(s)
- Moushumi Hazra
- Department of Hydrology, Indian Institute of Technology, Roorkee 247667, Uttarakhand, India
| | - Lisa M. Durso
- Agroecosystem Management Research Unit, Agricultural Research Service, United States Department of Agriculture, Lincoln, NE 68583, USA;
| |
Collapse
|
45
|
Ricky R, Shanthakumar S. Phycoremediation integrated approach for the removal of pharmaceuticals and personal care products from wastewater - A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:113998. [PMID: 34717103 DOI: 10.1016/j.jenvman.2021.113998] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/24/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) are of emerging concerns because of their large usage, persistent nature which promised their continuous disposal into the environment, as these pollutants are stable enough to pass through wastewater treatment plants causing hazardous effects on all the organisms through bioaccumulation, biomagnification, and bioconcentration. The available technologies are not capable of eliminating all the PPCPs along with their degraded products but phycoremediation has the advantage over these technologies by biodegrading the pollutants without developing resistant genes. Even though phycoremediation has many advantages, industries have found difficulty in adapting this technology as a single-stage treatment process. To overcome these drawbacks recent research studies have focused on developing technology that integrated phycoremediation with the commonly employed treatment processes that are in operation for treating the PPCPs effectively. This review paper focuses on such research approaches that focused on integrating phycoremediation with other technologies such as activated sludge process (ASP), advanced oxidation process (AOP), Up-flow anaerobic sludge blanket reactor (UASBR), UV irradiation, and constructed wetland (CW) with the advantages and limitations of each integration processes. Furthermore, augmenting phycoremediation by co-metabolic mechanism with the addition of sodium chloride, sodium acetate, and glucose for the removal of PPCPs has been highlighted in this review paper.
Collapse
Affiliation(s)
- R Ricky
- Department of Environmental and Water Resources Engineering, School of Civil Engineering, Vellore Institute of Technology (VIT), Vellore, 632014, India
| | - S Shanthakumar
- Department of Environmental and Water Resources Engineering, School of Civil Engineering, Vellore Institute of Technology (VIT), Vellore, 632014, India.
| |
Collapse
|
46
|
Younas F, Niazi NK, Bibi I, Afzal M, Hussain K, Shahid M, Aslam Z, Bashir S, Hussain MM, Bundschuh J. Constructed wetlands as a sustainable technology for wastewater treatment with emphasis on chromium-rich tannery wastewater. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126926. [PMID: 34449346 DOI: 10.1016/j.jhazmat.2021.126926] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/30/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
Water scarcity is a major threat to agriculture and humans due to over abstraction of groundwater, rapid urbanization and improper use in industrial processes. Industrial consumption of water is lower than the abstraction rate, which ultimately produces large amounts of wastewater such as from tannery industry containing high concentration of chromium (Cr). Chromium-contaminated tannery industry wastewater is used for irrigation of food crops, resulting in food safety and public health issues globally. In contrast to conventional treatment technologies, constructed wetlands (CWs) are considered as an eco-friendly technique to treat various types of wastewaters, although their application and potential have not been discussed and elaborated for Cr treatment of tannery wastewater. This review briefly describes Cr occurrence, distribution and speciation in aquatic ecosystems. The significance of wetland plant species, microorganisms, various bedding media and adsorbents have been discussed with a particular emphasis on the removal and detoxification of Cr in CWs. Also, the efficiency of various types of CWs is elaborated for advancing our understanding on Cr removal efficiency and Cr partitioning in various compartments of the CWs. The review covers important aspects to use CWs for treatment of Cr-rich tannery wastewater that are key to meet UN's Sustainable Development Goals.
Collapse
Affiliation(s)
- Fazila Younas
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Irshad Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan.
| | - Muhammad Afzal
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad 38000, Pakistan
| | - Khalid Hussain
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan
| | - Zubair Aslam
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Safdar Bashir
- Department of Soil and Environmental Science, Ghazi University, Dera Ghazi Khan 32200, Pakistan
| | - Muhammad Mahroz Hussain
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Jochen Bundschuh
- UNESCO Chair on Groundwater Arsenic within the 2030 Agenda for Sustainable Development, University of Southern Queensland, West Street, Toowoomba 4350, Queensland, Australia
| |
Collapse
|
47
|
Gabr ME. Design methodology for sewage water treatment system comprised of Imhoff 's tank and a subsurface horizontal flow constructed wetland: a case study Dakhla Oasis, Egypt. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2022; 57:52-64. [PMID: 35021933 DOI: 10.1080/10934529.2022.2026735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/28/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
In this study, in order to reuse the treated wastewater in irrigation in rural areas, a new sewage water treatment system comprised of primary treatment Imhoff's tank, Hama drying basins, inlet well, a subsurface horizontal flow constructed wetland (HSFW), water control device, and a groundwater tank is proposed and designed in Dakhla Oasis western desert of Egypt. The proposed system serves a population of 5000 capita with a designed discharge of 750 m3 d-1. The kinetic parameters involved macrophyte organisms, media forms, water level, hydraulic retention time (HRT), and hydraulic loading rate (hl) for the system were selected to achieve an efficient wastewater treatment system design. Imhoff's tank is sized as the primary sedimentation efficiency is 30%, and HSFW is sized based on the first-order kinetics (k-C∗) model, and total hydraulic design theory. The air temperatures were 29.7 °C and 13.8 °C in summer and winter respectively, influent pollutant concentrations after primary sedimentation for BOD, fecal coliforms (FC), total nitrogen (TN), and total phosphorus (TP) were 210 mg L-1, 108 CFU100 mL-1, 30 and 7 mg L-1, respectively. The expected designed effluent BOD and FC were 30 mg L-1 and 1000 CFU100 mL-1 respectively. The results show that FC removal controls the area of the HSFW (2.87 ha), 6 units of reed (Phragmites Australis and Papyrus) plants each one is 66 ×72.6 m with hl of 2.6 cm d-1 and HRT of 6.91 d. The expected overall removal efficiencies for BOD and FC were 85.7%, and 99.9% respectively.
Collapse
Affiliation(s)
- Mohamed Elsayed Gabr
- Civil Engineering Department, Ministry of Higher Education, Higher Institute for Engineering and Technology, New Damietta, Egypt
| |
Collapse
|
48
|
Agnihotri S, Yin DM, Mahboubi A, Sapmaz T, Varjani S, Qiao W, Koseoglu-Imer DY, Taherzadeh MJ. A Glimpse of the World of Volatile Fatty Acids Production and Application: A review. Bioengineered 2022; 13:1249-1275. [PMID: 34738864 PMCID: PMC8805862 DOI: 10.1080/21655979.2021.1996044] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/16/2021] [Accepted: 10/16/2021] [Indexed: 11/18/2022] Open
Abstract
Sustainable provision of chemicals and materials is undoubtedly a defining factor in guaranteeing economic, environmental, and social stability of future societies. Among the most sought-after chemical building blocks are volatile fatty acids (VFAs). VFAs such as acetic, propionic, and butyric acids have numerous industrial applications supporting from food and pharmaceuticals industries to wastewater treatment. The fact that VFAs can be produced synthetically from petrochemical derivatives and also through biological routes, for example, anaerobic digestion of organic mixed waste highlights their provision flexibility and sustainability. In this regard, this review presents a detailed overview of the applications associated with petrochemically and biologically generated VFAs, individually or in mixture, in industrial and laboratory scale, conventional and novel applications.
Collapse
Affiliation(s)
- Swarnima Agnihotri
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | - Dong-Min Yin
- Institute of Urban and Rural Mining, Changzhou University, Changzhou, China
| | - Amir Mahboubi
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | - Tugba Sapmaz
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
- Department of Environmental Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey
| | | | - Wei Qiao
- Institute of Urban and Rural Mining, Changzhou University, Changzhou, China
| | - Derya Y. Koseoglu-Imer
- Department of Environmental Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey
| | | |
Collapse
|
49
|
Liu L, Zhang C, Chen S, Ma L, Li Y, Lu Y. Phosphate adsorption characteristics of La(OH) 3-modified, canna-derived biochar. CHEMOSPHERE 2022; 286:131773. [PMID: 34375827 DOI: 10.1016/j.chemosphere.2021.131773] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 06/08/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
La(OH)3-modified canna biochar (CBC-La) was prepared by a coprecipitation method (dipping method), and its phosphate adsorption characteristics were investigated. The results show that the pseudo-second-order kinetics and the Langmuir model can be used to describe the adsorption process with a high level of accuracy. Adsorption equilibrium could be reached at 8 h, at which point the maximum adsorption capacity was shown to be 37.37 mg/g. CBC-La has excellent phosphate adsorption capacity in the middle to low concentrations (≤50 mg/L), and its removal rate can exceed 99 %. CBC-La also has wide pH adaptability (3-9) and a strongly selective adsorption performance. Notably, it can still maintain a removal rate of over 99.8 % in the presence of certain anions (NO3-, HCO3-, and CO32-), and the presence of NH4+ has a synergistic effect on the adsorption process. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) measurements demonstrate that the main mechanisms of CBC-La phosphate adsorption are electrostatic adsorption, ion exchange, ligand exchange and inner sphere complexation.
Collapse
Affiliation(s)
- LingYan Liu
- Institute of International Rivers and Eco-Security, Yunnan University, Kunming, 650091, China; School of Ecology and Environmental Science YNU, Yunnan University, Kunming, 650091, China
| | - ChunHong Zhang
- School of Ecology and Environmental Science YNU, Yunnan University, Kunming, 650091, China
| | - ShuangRong Chen
- School of Ecology and Environmental Science YNU, Yunnan University, Kunming, 650091, China
| | - Lan Ma
- Yunnan Academy of Science and Technology Development, Kunming, 650051, China
| | - YingMei Li
- School of Ecology and Environmental Science YNU, Yunnan University, Kunming, 650091, China
| | - YiFeng Lu
- School of Ecology and Environmental Science YNU, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
50
|
Potential Use of Constructed Wetland Systems for Rural Sanitation and Wastewater Reuse in Agriculture in the Moroccan Context. ENERGIES 2021. [DOI: 10.3390/en15010156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Located in a semi-arid to arid region, Morocco is confronting increasing water scarcity challenges. In the circular economy paradigm, the reuse of treated wastewater in agriculture is currently considered a possible solution to mitigate water shortage and pollution problems. In recent years, Morocco has made significative progress in urban wastewater treatment under the National Wastewater Program (PNA). However, rural sanitation has undergone significant delays. Therefore, an alternative technology for wastewater treatment and reuse in rural areas is investigated in this review, considering the region’s economic, social, and regulatory characteristics. Constructed wetlands (CWs) are a simple, sustainable, and cost-effective technology that has yet to be fully explored in Morocco. CWs, indeed, appear to be suitable for the treatment and reuse of wastewater in remote rural areas if they can produce effluent that meets the standards of agricultural irrigation. In this review, 29 studies covering 16 countries and different types of wastewater were collected and studied to assess the treatment efficiency of different types of CWs under different design and operational parameters, as well as their potential application in agricultural reuse. The results demonstrated that the removal efficiency of conventional contamination such as organic matter and suspended solids is generally high. CWs also demonstrated a remarkable capacity to remove heavy metals and emerging contaminants such as pharmaceuticals, care products, etc. The removal of microbial contamination, on the other hand, is challenging, and does not satisfy the standards all the time. However, it can be improved using hybrid constructed wetlands or by adding polishing treatment. In addition, several studies reported that CWs managed to produce effluent that met the requirements of wastewater reuse in agriculture of different countries or organisations including Morocco.
Collapse
|