1
|
Jia C, Wang J, Wang H, Zhu S, Zhang X, Wang Y. Performance and mechanism of La-Fe metal-organic framework as a highly efficient adsorbent for fluoride removal from mine water. J Environ Sci (China) 2024; 139:245-257. [PMID: 38105052 DOI: 10.1016/j.jes.2023.05.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 12/19/2023]
Abstract
Water fluoride pollution has caused non-negligible harm to the environment and humans, and thus it is crucial to find a suitable treatment technology. In this study, La-Fe@PTA adsorbent was synthesized for the defluoridation of mine water. The results showed that the optimum conditions for defluoridation by La-Fe@PTA were pH close to 7.0, the initial F- concentration of 10 mg/L, the dosage of 0.5 g/L and the adsorption time of 240 min. Compared with SO42‒, Cl‒, NO3‒, Ca2+ and Mg2+, CO32‒ and HCO3‒ presented severer inhibition on fluoride uptake by La-Fe@PTA. The adsorption process fits well with the pseudo-second-order kinetic model and Freundlich model, and the maximum adsorption capacity of Langmuir model was 95 mg/g. Fixed-bed adsorption results indicated that fluoride in practical fluorinated mine water could be effectively removed from 3.6 mg/L to less than 1.5 mg/L within 130 bed volume (BV) by using 1.5 g La-Fe@PTA. Furthermore, the adsorbent still had good adsorption capacity after regeneration, which confirms the great application potential of La-Fe@PTA as a fluoride ion adsorbent. The mechanism analysis showed that La-Fe@PTA adsorption of fluorine ions is a physicochemical reaction driven by electrostatic attraction and ion exchange.
Collapse
Affiliation(s)
- Chaomin Jia
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China
| | - Jianbing Wang
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China.
| | - Huijiao Wang
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China
| | - Sichao Zhu
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China
| | | | - Yuxiang Wang
- Chinese Society for Urban Studies, Beijing 100835, China
| |
Collapse
|
2
|
Asif UA, Mahmood K, Naqvi SR, Mehran MT, Noor T. Development of high-capacity surface-engineered MXene composite for heavy metal Cr (VI) removal from industrial wastewater. CHEMOSPHERE 2023; 326:138448. [PMID: 36940825 DOI: 10.1016/j.chemosphere.2023.138448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/19/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
The substantial quantity of Cr(VI) contaminants in the aqueous atmosphere is a major environmental fear that cannot be overlooked. For the first time, MXene and chitosan-coated polyurethane foam have been employed for wastewater treatment, including heavy metal ions (Cr (VI)) through a fixed-bed column study. It is also the most inexpensive, lightweight, and globally friendly material tested. The Mxene and chitosan-coated polyurethane foam hybrid materials were thoroughly investigated using FTIR (Fourier transform infrared), SEM (scanning electron microscope), XPS (X-ray photoelectron spectroscopy) and XRD (X-ray diffraction). The presence of the rough surface and the pore creation in the Mxene- MX3@CS3@PUF should rise its surface area, which is useful to interact the surface-active assembly of MX3@CS3@PUF and the Cr(VI) contaminations in the aqueous solution. With the help of the ion exchange mechanism and electrostatic contact, negatively charged MXene hexavalent ions were being adsorbed on the surface. MXene and chitosan have been coated on PUF foam in the form of three different layers, which shows the highest adsorption capacity, where up to ∼70% Cr (VI) was removed in the first 10 min and more than 60% elimination after 3 h when the metal ion concentration was 20 ppm. The electrostatic interaction between the negative charge MXene and the positive charge chitosan on the surface of PUF, which was absent in MX@PUF, is accountable for the high removal efficiency. This was done through a sequence of fixed-bed column studies, which took place in the continuous flowing of wastewater.
Collapse
Affiliation(s)
- Umair Ali Asif
- Laboratory of Alternative Fuels and Sustainability, School of Chemical & Materials Engineering, National University of Sciences & Technology, H-12, Islamabad, Pakistan
| | - Khalid Mahmood
- Department of Chemical & Polymer Engineering, University of Engineering & Technology Lahore, Faisalabad Campus, Khurrianwala - Makkuana By-Pass, Faisalabad, Pakistan.
| | - Salman Raza Naqvi
- Laboratory of Alternative Fuels and Sustainability, School of Chemical & Materials Engineering, National University of Sciences & Technology, H-12, Islamabad, Pakistan.
| | - Muhammad Taqi Mehran
- Laboratory of Alternative Fuels and Sustainability, School of Chemical & Materials Engineering, National University of Sciences & Technology, H-12, Islamabad, Pakistan
| | - Tayyaba Noor
- Laboratory of Alternative Fuels and Sustainability, School of Chemical & Materials Engineering, National University of Sciences & Technology, H-12, Islamabad, Pakistan
| |
Collapse
|
3
|
Gholizadeh Z, Aliannezhadi M, Ghominejad M, Tehrani FS. High specific surface area γ-Al 2O 3 nanoparticles synthesized by facile and low-cost co-precipitation method. Sci Rep 2023; 13:6131. [PMID: 37061598 PMCID: PMC10105753 DOI: 10.1038/s41598-023-33266-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 04/11/2023] [Indexed: 04/17/2023] Open
Abstract
Alumina (Al2O3) nanoparticles (NPs) are particularly adsorbent NPs with a high specific surface area (SSA) that may well be utilized to clean water. In this study, pure γ-alumina NPs are successfully synthesized by the co-precipitation method, and the effect of ammonium bicarbonate concentration on the synthesized NPs is studied to find the optimum concentration to provide the highest capacity of copper ions removal from water. The results declare that spherical alumina NPs with average diameters in the range of 19-23 nm are formed with different concentrations of precipitation agent, and the concentration has no significant effect on the morphology of NPs. Furthermore, the precipitating agent concentration influences the optical characteristics of the produced alumina NPs, and the bandgap energies of the samples vary between 4.24 and 5.05 eV. The most important impact of precipitating agent concentrations reflects in their SSA and capacity for copper ion removal Ultra-high SSA = 317 m2/g, and the highest copper removal at the adsorbate concentration of 184 mg/L is achieved in an alkalis solution followed by a neutral solution. However, admirable copper removal of 98.2% is even achieved in acidic solutions with 0.9 g/L of the alumina NPs synthesized at a given concentration of ammonium bicarbonate, so this sample can be a good candidate for Cu ions removal from acidic wastewater.
Collapse
Affiliation(s)
- Zahra Gholizadeh
- Faculty of Physics, Semnan University, P.O. Box: 35195-363, Semnan, Iran
| | | | - Mehrdad Ghominejad
- Faculty of Physics, Semnan University, P.O. Box: 35195-363, Semnan, Iran
| | | |
Collapse
|
4
|
Gao J, Feng M, Yan Y, Zhao Z, Wang Y. Preparation of a sulfonated coal@ZVI@chitosan-acrylic acid composite and study of its removal of groundwater Cr(VI). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:6544-6558. [PMID: 36001265 DOI: 10.1007/s11356-022-22413-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
In this research, a new composite adsorbent (SC@ZVI@CS-AA) was designed and synthesized, and its application for the removal of Cr(VI) in groundwater was investigated. The interaction between SC@ZVI@CS-AA and Cr(VI) conformed to a pseudo-second-order model, and the adsorption process was dominated by chemisorption. The effects of material ratios, pH, temperature, SC@ZVI@CS-AA dosage, and coexisting ions on the removal of Cr(VI) were investigated. The removal efficiency of Cr(VI) by SC@ZVI@CS-AA reached 95%, and the reaction was significantly inhibited when SO42- was present. Thermodynamically, the adsorption of Cr(VI) proceeded spontaneously above 35 °C (ΔGθ < 0). According to scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectrometry, and synchronous thermal analysis, the removal mechanism of Cr(VI) by SC@ZVI@CS-AA was attributed to electrostatic attraction and reduction. In addition, SC@ZVI@CS-AA had good cyclic adsorption performance. Overall, the SC@ZVI@CS-AA composite showed great potential in the remediation of Cr(VI)-contaminated groundwater.
Collapse
Affiliation(s)
- Jianlei Gao
- School of Ecology and Environmental Science, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450000, People's Republic of China
| | - Mengyuan Feng
- School of Ecology and Environmental Science, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450000, People's Republic of China
| | - Yixin Yan
- School of Ecology and Environmental Science, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450000, People's Republic of China.
| | - Zixu Zhao
- School of Ecology and Environmental Science, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450000, People's Republic of China
| | - Yingchun Wang
- School of Ecology and Environmental Science, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450000, People's Republic of China
| |
Collapse
|
5
|
Removal of Thallium from Aqueous Solutions by Adsorption onto Alumina Nanoparticles. Processes (Basel) 2022. [DOI: 10.3390/pr10091826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Thallium (I) was removed from aqueous solution by using gamma-alumina nanoparticles (γANPs) materials as nano adsorbents. Varied experimental conditions such as adsorbent dose, agitation time, initial concentration, pH, and temperature effects were carried out in batch conditions in view of the optimization of thallium (I) adsorption and the identification of the adsorption mechanisms in the system γANPs-Tl. The pH effect indicated a remarkable increase in the quantity of Tl(I) removed for pH values ranging from 4 to 8, an almost constant magnitude for pH values between 8 and 10, and a decrease for pH values above 10. Considering an initial Tl(I) concentration of 20 µg/L and an adsorbent dose of 1 g/L at a pH value of 8.5, the removal was achieved at 95.12 ± 0.02% efficiency. The pseudo-second-order kinetics and the Freundlich isotherm perfectly described the adsorption mechanism. The process of thallium (I) adsorption reaction, as highlighted by thermodynamic investigations, was found to be spontaneous and exothermic with coexistence of physisorption and chemisorption with a dominance of physisorption. The diffusion model predicted multi-linearity, suggesting an involvement of surface spread and intraparticle diffusion in the sorption process. Thallium removal was effective by using γANPs as nano adsorbents.
Collapse
|
6
|
Bhuyan A, Ahmaruzzaman M. Metal-organic frameworks: A new generation potential material for aqueous environmental remediation. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
7
|
Rezić I, Somogyi Škoc M, Majdak M, Jurić S, Stracenski KS, Vinceković M. Functionalization of Polymer Surface with Antimicrobial Microcapsules. Polymers (Basel) 2022; 14:1961. [PMID: 35631845 PMCID: PMC9145794 DOI: 10.3390/polym14101961] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
The development of antimicrobial polymers is a priority for engineers fighting microbial resistant strains. Silver ions and silver nanoparticles can assist in enhancing the antimicrobial properties of microcapsules that release such substances in time which prolongs the efficiency of antimicrobial effects. Therefore, this study aimed to functionalize different polymer surfaces with antimicrobial core/shell microcapsules. Microcapsules were made of sodium alginate in shell and filled with antimicrobial silver in their core prior to application on the surface of polymer materials by dip-coating methodology. Characterization of polymers after functionalization was performed by several spectroscopic and microscopic techniques. After the characterization of polymers before and after the functionalization, the release of the active substances was monitored in time. The obtained test results can help with the calculation on the minimal concentration of antimicrobial silver that is encapsulated to achieve the desired amounts of release over time.
Collapse
Affiliation(s)
- Iva Rezić
- Department of Applied Chemistry, Faculty of Textile Technology, University of Zagreb, 10000 Zagreb, Croatia;
| | - Maja Somogyi Škoc
- Department of Materials, Fibers and Textile Testing, Faculty of Textile Technology, University of Zagreb, 10000 Zagreb, Croatia;
| | - Mislav Majdak
- Department of Applied Chemistry, Faculty of Textile Technology, University of Zagreb, 10000 Zagreb, Croatia;
| | - Slaven Jurić
- Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (S.J.); (K.S.S.); (M.V.)
| | | | - Marko Vinceković
- Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (S.J.); (K.S.S.); (M.V.)
| |
Collapse
|
8
|
Uma Maheswari B, Sivakumar VM, Thirumarimurugan M. Investigation on Sol-Gel Facilitated Synthesis of Silica Nanoparticles Using Kariba weed (KW-NS) and Its Efficiency in Cr(VI) Removal. J WATER CHEM TECHNO+ 2022. [DOI: 10.3103/s1063455x22020096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Yin C, Li S, Liu L, Huang Q, Zhu G, Yang X, Wang S. Structure-tunable trivalent Fe-Al-based bimetallic organic frameworks for arsenic removal from contaminated water. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117101] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
10
|
Yin C, Huang Q, Zhu G, Liu L, Li S, Yang X, Wang S. High-performance lanthanum-based metal-organic framework with ligand tuning of the microstructures for removal of fluoride from water. J Colloid Interface Sci 2021; 607:1762-1775. [PMID: 34600340 DOI: 10.1016/j.jcis.2021.09.108] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/07/2021] [Accepted: 09/19/2021] [Indexed: 12/16/2022]
Abstract
Excess fluoride in water poses a threat to ecology and human health, which has attracted global attention. In this study, a series of lanthanum-based metal-organic frameworks (La-MOFs) were synthesized by varying the organic ligands (i.e., terephthalic acid (BDC), trimesic acid (BTC), biphenyl-4,4-dicarboxylic acid (BPDC), 2,5-dihydroxyterephthalic acid (BHTA), and 1,2,4,5-benzenetetracarboxylic acid (PMA)) to control the microscopic structure of the MOFs and subsequently apply them for the removal of fluoride in water. The maximum capture capacities of La-BTC, La-BPDC, La-BHTA, La-PMA, and La-BDC at 298 K are 105.2, 125.9, 145.5, 158.9, and 171.7 mg g-1, respectively. The adsorption capacity is greater than most reported adsorbents. The adsorption isotherms of La-MOFs for fluoride are well fit to the Langmuir isotherm model. In addition, the adsorption kinetics of La-BTC, La-BPDC, La-BHTA, La-PMA, and La-BDC follows the pseudo-second-order kinetic model, and the kinetic rate-limiting step of adsorption is chemical adsorption. Thermodynamics revealed that temperature is favorable for the adsorption of fluoride. Meanwhile, La-BTC, La-BPDC, La-BHTA, La-PMA, and La-BDC are suitable for the removal of fluoride in a relatively wide pH range (4.0-9.0). Simultaneously, from X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) analysis, electrostatic attraction and ligand exchange are identified as the main action mechanisms for the adsorption of fluoride of La-MOFs. The prepared La-MOFs are used as efficient adsorbents for removal of fluoride in actual water, indicating that they have great potential in removing fluoride in real and complex environmental water. This work provides a new strategy for designing adsorbents with adjustable microstructure and expected function to effectively recover fluorosis in water.
Collapse
Affiliation(s)
- Chun Yin
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry Education, Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Qilan Huang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry Education, Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Guiping Zhu
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry Education, Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Lingli Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry Education, Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Shengjian Li
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry Education, Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Xiangjun Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry Education, Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, China.
| | - Shixiong Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry Education, Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, China.
| |
Collapse
|
11
|
Yang Z, Zhu T, Xiong M, Sun A, Xu Y, Wu Y, Shu W, Xu Z. Tuning adsorption capacity of metal–organic frameworks with Al3+ for phosphorus removal: Kinetics, isotherm and regeneration. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
12
|
Green Synthesis of A Novel MXene–CS Composite Applied in Treatment of Cr(VI) Contaminated Aqueous Solution. Processes (Basel) 2021. [DOI: 10.3390/pr9030524] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The considerable amount of Cr(VI) pollutants in the aqueous environment is a significant environmental concern that cannot be ignored. A series of novel Mxene–CS inorganic–organic composite nanomaterials synthesized by using the solution reaction method was applied to treat the Cr(VI) contaminated water. The Mxene–CS composites were characterized through SEM (scanning electron microscope), XRD (X–ray diffraction), XPS (X–ray photoelectron spectroscopy), and FTIR (Fourier transform infrared). The XRD patterns (observed at 2θ of 18.1°, 35.8°, 41.5°, and 60.1°) and the FT–IR spectra (-NH2 group for 1635 and 1517 cm−1, and -OH group for 3482 cm−1) illustrated that CS was successfully loaded on the Mxene. The effects of solution pH, the dosage of Mxene–CS, and duration time on the adsorption of Cr(VI) by synthesized Mxene–CS were investigated. The removal efficiency of Cr(VI) was increased from 12.9% to 40.5% with Mxene–CS dosage ranging from 0.02 to 0.12 g/L. The adsorption process could be well fitted by the pseudo–second–order kinetics model, indicating chemisorption occurred. The Langmuir isotherm model could be better to describe the process with a maximum adsorption capacity of 43.1 mg/g. The prepared novel Mxene–CS composite was considered as an alternative for adsorption of heavy metals from wastewater.
Collapse
|
13
|
Xu H, Hu X, Chen Y, Li Y, Zhang R, Tang C, Hu X. Cd(II) and Pb(II) absorbed on humic acid-iron-pillared bentonite: Kinetics, thermodynamics and mechanism of adsorption. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.126005] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Rezić I, Majdak M, Ljoljić Bilić V, Pokrovac I, Martinaga L, Somogyi Škoc M, Kosalec I. Development of Antibacterial Protective Coatings Active against MSSA and MRSA on Biodegradable Polymers. Polymers (Basel) 2021; 13:659. [PMID: 33672118 PMCID: PMC7926737 DOI: 10.3390/polym13040659] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 01/31/2023] Open
Abstract
In this work the in vitro antimicrobial activity of colloidal solutions of nine different commercially available nanoparticles were investigated against Staphylococcus aureus strains, both methicillin-sensitive (MSSA) and methicillin-resistant (MRSA). Research covered antimicrobial investigation of different metal and metal-oxide nanoparticles, including Ag 10 nm, Ag 40 nm, Al2O3 100 nm, Au 20 nm, Pt 4 nm, TiO2 100 nm, Y2O3 100 nm, ZnO 100 nm and ZrO2 100 nm nanoparticles. Such materials were foreseen to be applied as coatings on 3D-printed biodegradable polymers: i.e., catheters, disposable materials, hospital bedding items, disposable antimicrobial linings and bandages for chronic wounds. Therefore, the antimicrobial activity of the nanoparticles was determined by agar well diffusion assays and serial microdilution broth assays. In addition, the chromatographic characterization of elements present in trace amounts was performed as a method for tracing the nanoparticles. Moreover, the potential of preparing the rough surface of biodegradable polymers for coating with antimicrobial nanoparticles was tested by 3D-printing fused deposition methodology. The in vitro results have shown that particular nanoparticles provided powerful antimicrobial effects against MSSA and MRSA strains, and can be easily applied on different biopolymers.
Collapse
Affiliation(s)
- Iva Rezić
- Department of Applied Chemistry, Faculty of Textile Technology, University of Zagreb, 10000 Zagreb, Croatia; (M.M.); (L.M.)
| | - Mislav Majdak
- Department of Applied Chemistry, Faculty of Textile Technology, University of Zagreb, 10000 Zagreb, Croatia; (M.M.); (L.M.)
| | - Vanja Ljoljić Bilić
- Faculty of Pharmacy and Biochemistry, Institute for Microbiology University of Zagreb, 10000 Zagreb, Croatia; (V.L.B.); (I.P.)
| | - Ivan Pokrovac
- Faculty of Pharmacy and Biochemistry, Institute for Microbiology University of Zagreb, 10000 Zagreb, Croatia; (V.L.B.); (I.P.)
| | - Lela Martinaga
- Department of Applied Chemistry, Faculty of Textile Technology, University of Zagreb, 10000 Zagreb, Croatia; (M.M.); (L.M.)
| | - Maja Somogyi Škoc
- Department of Material Testing, Faculty of Textile Technology, University of Zagreb, 10000 Zagreb, Croatia;
| | - Ivan Kosalec
- Faculty of Pharmacy and Biochemistry, Institute for Microbiology University of Zagreb, 10000 Zagreb, Croatia; (V.L.B.); (I.P.)
| |
Collapse
|
15
|
Razanajatovo MR, Gao W, Song Y, Zhao X, Sun Q, Zhang Q. Selective adsorption of phosphate in water using lanthanum-based nanomaterials: A critical review. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.01.046] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Zhang W, Lan Y, Ma M, Chai S, Zuo Q, Kim KH, Gao Y. A novel chitosan-vanadium-titanium-magnetite composite as a superior adsorbent for organic dyes in wastewater. ENVIRONMENT INTERNATIONAL 2020; 142:105798. [PMID: 32590279 DOI: 10.1016/j.envint.2020.105798] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/30/2020] [Accepted: 05/03/2020] [Indexed: 05/21/2023]
Abstract
In this research, a novel chitosan (CS)-vanadium-titanium-magnetite (VTM) composite was designed and synthesized. The interaction between CS-VTM and Congo red (CR) dye conformed to a pseudo-second-order model to support the potent involvement of chemisorption. The effects of adsorbent dosage, reaction temperature, and initial solution pH on adsorption of CR were investigated. Approximately 99.1% of CR (100 mg/L) was adsorbed at a CS-VTM dose of 2.0 g/L or above, while such a reaction was favored at temperatures of 65 °C and pH of 6.0. Thermodynamically, the adsorption of CR proceeded spontaneously (ΔG < 0) above 35 °C. According to scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectrometer, and zeta potential analysis, its adsorption on CS-VTM can be attributed to electrostatic attraction and hydrogen bonds. The prepared CS-VTM exhibited superior adsorption performance on removal of CR as evidenced by significantly large partition coefficient of 108.3 mg g-1 μM-1 (equilibrium adsorption capacity of 62.2 mg/g at CR dose of 100 mg/L). Overall, the CS-VTM proved to be a promising and environmentally friendly adsorbent for the highly efficient and effective removal of organic dyes among the comparable sorbents studied to date.
Collapse
Affiliation(s)
- Wei Zhang
- School of Ecology and Environmental Science, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, PR China; Yellow River Institute for Ecological Protection & Regional Coordinated Development, Zhengzhou University, Henan 450001, PR China; Zhengzhou Key Laboratory of Water Resource and Environment, Zhengzhou 450001, PR China; Henan Key Laboratory of Groundwater Pollution Prevention and Rehabilitation, Zhengzhou 450001, PR China; Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Pingdingshan, Henan, PR China
| | - Yingying Lan
- School of Ecology and Environmental Science, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, PR China; School of Water Conservancy Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, PR China
| | - Mengting Ma
- School of Ecology and Environmental Science, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, PR China; School of Water Conservancy Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, PR China
| | - Senyou Chai
- School of Ecology and Environmental Science, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, PR China; School of Water Conservancy Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, PR China
| | - Qiting Zuo
- School of Water Conservancy Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, PR China; Yellow River Institute for Ecological Protection & Regional Coordinated Development, Zhengzhou University, Henan 450001, PR China; Zhengzhou Key Laboratory of Water Resource and Environment, Zhengzhou 450001, PR China; Henan Key Laboratory of Groundwater Pollution Prevention and Rehabilitation, Zhengzhou 450001, PR China; Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Pingdingshan, Henan, PR China.
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| | - Yaqian Gao
- School of Ecology and Environmental Science, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, PR China; School of Water Conservancy Engineering, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, PR China
| |
Collapse
|
17
|
Fabrication of novel magnetic core-shell chelating adsorbent for rapid and highly efficient adsorption of heavy metal ions from aqueous solution. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113593] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
18
|
Xu M, Qiao Z, Huang G, Long M, Yang T, Zhang X, Shao M, Xu Z, Rao Z. Optimization of l-arginine purification from Corynebacterium crenatum fermentation broth. J Sep Sci 2020; 43:2936-2948. [PMID: 32386338 DOI: 10.1002/jssc.202000067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/14/2020] [Accepted: 04/22/2020] [Indexed: 11/12/2022]
Abstract
l-Arginine has many special physiological and biochemical functions, with wide applications in the food and pharmaceutical industry. Few studies on the purification of l-arginine from fermentation broth have been conducted; however, none of them were systematic enough for industrial scale-up. Therefore, it is necessary to develop a highly efficient and systematic process for the purification of l-arginine from fermentation broth. In this study, we screened out a cation exchange resin, D155, having high exchange capacity, high selectivity, and easy elution capacity, and analyzed its adsorption isotherm, thermodynamics, and kinetics using different models. Further, the process parameters of fixed-bed ion exchange adsorption and elution were optimized, and the penetration curve during the operation was modeled. Based on the fixed-bed ion-exchange parameters, a 30-column continuous ion-exchange system was designed, and the flow velocity in each zone was optimized. Finally, to obtain a high purity of l-arginine, the purification tests were conducted using anion exchange resin 711, and an l-arginine yield of 99.1% and purity of 98.5% was obtained. This effective and economical method also provides a promising strategy for separation of other amino acids from the fermentation broth, which is of great significance to the l-arginine fermentation industry.
Collapse
Affiliation(s)
- Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Jiangsu, P. R. China.,Jiangnan University (Rugao) Food Biotechnology Research Institute, Jiangsu, P. R. China
| | - Zhina Qiao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Jiangsu, P. R. China
| | - Genshu Huang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Jiangsu, P. R. China
| | - Mengfei Long
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Jiangsu, P. R. China
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Jiangsu, P. R. China.,Jiangnan University (Rugao) Food Biotechnology Research Institute, Jiangsu, P. R. China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Jiangsu, P. R. China
| | - Minglong Shao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Jiangsu, P. R. China
| | - Zhenghong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Jiangsu, P. R. China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Jiangsu, P. R. China
| |
Collapse
|