1
|
Hu D, Chen W, Li Z, Ma C, Yang S, Huang Y, Huangfu X. Molecular insights into the Tl(I) binding capacity and response sequences of soil humic acids from different sources. JOURNAL OF CONTAMINANT HYDROLOGY 2025; 272:104569. [PMID: 40239411 DOI: 10.1016/j.jconhyd.2025.104569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/25/2025] [Accepted: 04/07/2025] [Indexed: 04/18/2025]
Abstract
Humic acid (HA) significantly affects the migration, transformation, and environmental fate of Tl(I) through complexation. However, knowledge of the interaction processes and interfacial mechanisms between HA and Tl(I) remains lacking. Here, we investigated the Tl(I) binding characteristics of Sigma-HA and soil HAs from representative watersheds in China at the molecular level using adsorption models, an excitation-emission matrix with parallel factor analysis (EEM-PARAFAC), and two-dimensional correlation spectroscopy (2D-COS). According to the isothermal adsorption modeling results, SSHA exhibited the greatest attraction for Tl(I). However, YSHA exhibited the lowest value. On the one hand, the content of oxygen-containing functional groups on HAs may influence the adsorption capacity for Tl(I). On the other hand, the EEM-PARAFAC analysis results revealed that the UV humic-like component (C3), which is unique to SSHA, plays a crucial role in determining Tl(I) binding as a more effective complexing species (log KM = 5.248). For the binding responsiveness of HAs, the 2D-COS results indicated that the carboxyl and phenolic hydroxyl groups associated with humic-like components in SSHA are the optimal structures for Tl(I) binding, whereas the polysaccharides and aliphatics in YSHA and PSHA are more sensitive. These findings increase our understanding of environmental behavior of Tl(I) and provide a solid theoretical foundation for evaluating the effectiveness of HA remediation in Tl-contaminated soils.
Collapse
Affiliation(s)
- Die Hu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Wanpeng Chen
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Zhiheng Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Chengxue Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Shuangrui Yang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Yuheng Huang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Xiaoliu Huangfu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
2
|
Wang R, Wang Z, Li C, Chen J, Zhu N. Deciphering the mechanism of microbial metabolic function shift and dissolved organic matter variation in acidogenic fermentation of waste activated sludge induced by antiviral drugs. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123711. [PMID: 39689537 DOI: 10.1016/j.jenvman.2024.123711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/30/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024]
Abstract
Antiviral drugs (ATVs), as emerging contaminants enriched in wastewater activated sludge (WAS) in wastewater treatment plants, affect subsequent treatment. ATVs have been shown to have negative influences on anaerobic digestion of WAS, but it is unclear how ATVs affect functional microbial metabolic activity and changes in intermediates. Thus, the effect of the anti-HIV drug ritonavir (RIT) on the period of anaerobic fermentation (AF) and the response of microbial community structure were examined in this study. Results indicated that the production of total volatile fatty acids (VFAs) decreased from 2010.21 mg/L to 372.03 mg/L under 125-1000 μg RIT/kg TSS treatment. Characterization of organic matters revealed that dissolved organic matter in the high-dose RIT groups was less biodegradable, with lower protein content and higher humus content. Mechanistic analyses indicated that RIT exposure reduced the abundance of hydrolyzers and inhibited carbohydrate metabolism, resulting in an increased humification index in the RIT groups. In addition, the expression of genes associated with the synthesis of VFAs was also significantly reduced in the RIT groups, leading to a decrease in both the amount and type of VFAs. This study provides a novel perspective on the effects of emerging contaminants on WAS treatment processes and pollution prevention.
Collapse
Affiliation(s)
- Ruming Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhuoqin Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Chunxing Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Jiamiao Chen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Nanwen Zhu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
3
|
Zhang M, Yu P, Guo X. Oxidative removal of fluorescent components from soil DOM and its effect on heavy metals around abandoned mining areas. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 46:11. [PMID: 38147165 DOI: 10.1007/s10653-023-01833-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 12/10/2023] [Indexed: 12/27/2023]
Abstract
The oxidation stability of soil organic matter (SOM) plays an important role in the environmental chemical behavior of heavy metals (HMs). In this study, the oxidation stability of SOM and soil dissolved organic matter (DOM) for four soils around the mining area in Western China, including grassland (GR), forest land (FR), farmland soil (FA), and mining area soil (MA), was investigated. The oxidation effect of fluorescent DOM (FDOM) was determined by using synchronous fluorescence spectroscopy (SFS). The results showed that the oxidation stability of SOM for four soils follows the order: MA > GR > FR > FA. Protein-like fluorescence (A2) is dominant in soil DOM, more than 96% of which were more easily degraded. As the wavelength increases, FDOM components become more difficult to oxidize. Second derivative, two-dimensional correlation spectroscopy (2D-COS) and 1/n power transformation can identify more FDOM components, protein-like materials can be preferential removal by the oxidation process, followed by humic-like substances. The oxidation process increased the release of Cr, Cu, Zn, Pb and Fe in FA soil. Therefore, the oxidation stability of SOM and FDOM can affect the immobilization and release of HMs, and this work provides scientific guidance for remediation of soil HMs around abandoned mining areas.
Collapse
Affiliation(s)
- Meifeng Zhang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610225, China
| | - Ping Yu
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610225, China
| | - Xujing Guo
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610225, China.
| |
Collapse
|
4
|
Touseef B, Yang X, Fan W, Liu S. Investigating spectroscopic and copper binding characteristics of dissolved organic matter in wastewater using EEMs with two-dimensional Savitzky-Golay second-order differentiation-PARAFAC. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:85405-85414. [PMID: 37386222 DOI: 10.1007/s11356-023-28408-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
Dissolved organic matter (DOM) in wastewater interacts with heavy metal particles in aquatic environments, which changes their dynamics and bioavailability. For quantifying the DOM, an excitation-emission matrix (EEM) paired alongside parallel factor analysis (PARAFAC) is typically employed. However, a drawback of PARAFAC has been revealed in recent studies, i.e., the rise of overlapping spectra or wavelength shifts in fluorescent components. Here, traditional EEM-PARAFAC and, for the first time, two-dimensional Savitzky-Golay second-order differential-PARAFAC (2D-SG-2nd-df-PARAFAC) were used to study the DOM-heavy metal binding. The samples from four treatment units of a wastewater treatment plant, i.e., influent, anaerobic, aerobic, and effluent, underwent the process of fluorescence titration with Cu2+. Four components were separated with dominant peaks in regions I, II, and III (proteins and fulvic acid-like) through PARAFAC and 2D-SG-2nd-df-PARAFAC. A single peak was observed in region V (humic acid-like) by PARAFAC. In addition, Cu2+-DOM complexation indicated clear differences in DOM compositions. The binding strength increased between Cu2+ and fulvic acid-like components in contrast to protein-like components from influent to the effluent, and increasing fluorescence intensity with the addition of Cu2+ in the effluent indicated changes in their structural composition. Moreover, when comparing both methods, the 2D-SG-2nd-df-PARAFAC provided the components without peak shifts and better fitting for Cu2+-DOM complexation model, demonstrating it to be a more reliable technique compared to only traditional PARAFAC for DOM characterization and quantifying metal-DOM in wastewater.
Collapse
Affiliation(s)
- Bilal Touseef
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing, 10191, China
| | - Xiaolong Yang
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing, 10191, China
| | - Wenhong Fan
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing, 10191, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100191, China
| | - Shu Liu
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing, 10191, China.
| |
Collapse
|
5
|
Garraud J, Plihon H, Capiaux H, Le Guern C, Mench M, Lebeau T. Drivers to improve metal(loid) phytoextraction with a focus on microbial degradation of dissolved organic matter in soils. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:63-81. [PMID: 37303191 DOI: 10.1080/15226514.2023.2221740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bioaugmentation of soils can increase the mobilization of metal(loid)s from the soil-bearing phases. However, once desorbed, these metal(loid)s are mostly complexed to the dissolved organic matter (DOM) in the soil solution, which can restrict their availability to plants (roots mainly taking up the free forms) and then the phytoextraction performances. Firstly the main drivers influencing phytoextraction are reminded, then the review focuses on the DOM role. After having reminding the origin, the chemical structure and the lability of DOM, the pool of stable DOM (the most abundant in the soil) most involved in the complexation of metal(loid)s is addressed in particular by focusing on carboxylic and/or phenolic groups and factors controlling metal(loid) complexation with DOM. Finally, this review addresses the ability of microorganisms to degrade metal(loid)-DOM complexes as an additional lever for increasing the pool of free metal(loid) ions, and then phytoextraction performances, and details the origin of microorganisms and how they are selected. The development of innovative processes including the use of these DOM-degrading microorganisms is proposed in perspectives.
Collapse
Affiliation(s)
- Justine Garraud
- Nantes Université, Université d'Angers, Le Mans Université, CNRS, UMR 6112, Laboratoire de Planétologie et Géosciences, Nantes, France
| | - Hélène Plihon
- Nantes Université, Université d'Angers, Le Mans Université, CNRS, UMR 6112, Laboratoire de Planétologie et Géosciences, Nantes, France
| | - Hervé Capiaux
- Nantes Université, Université d'Angers, Le Mans Université, CNRS, UMR 6112, Laboratoire de Planétologie et Géosciences, Nantes, France
| | | | | | - Thierry Lebeau
- Nantes Université, Université d'Angers, Le Mans Université, CNRS, UMR 6112, Laboratoire de Planétologie et Géosciences, Nantes, France
| |
Collapse
|
6
|
Yuan D, Bai M, He L, Zhou Q, Kou Y, Li J. Removal performance and dissolved organic matter biodegradation characteristics in advection ecological permeable dam reactor. ENVIRONMENTAL TECHNOLOGY 2023; 44:2288-2299. [PMID: 34989328 DOI: 10.1080/09593330.2022.2026489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 12/11/2021] [Indexed: 06/04/2023]
Abstract
In this present study, an advection ecological permeable dam (AEPD) based on a biofilm reactor was established to investigate pollution control performance and dissolved organic matter (DOM) bio-degradation. The AEPD achieved optimal efficiency-chemical oxygen demand, 6-53 mg/L; total nitrogen concentration, 1.47-6.89 mg/L; total phosphorus concentration, 0.53-3.93 mg/L, and increases in values for ultraviolet-visible parameters-SUVA254, from 0.392 to 0.673-1.438; E4/E6, from 1.09 to 1.11-1.26; A240-400, from 12.06 to 13.09-19.95; and A253-203, from 0.03 to 0.04-0.23. This showed that DOM degradation promoted its humification, aromatisation, and unsaturation as well as increased the number of polar functional groups in the organic aromatic rings of DOM. Synchronous fluorescence and parallel factor analyses indicated that AEPD could effectively degrade tyrosine-like and tryptophan-like compounds, which showed the most significant decrease in fluorescence intensity. Additionally, AEPD displayed some stable dominant bacterial genera (e.g. Proteobacteria_unclassified, Bacteroidetes_unclassified, Gemmobacter, Pseudofulvimonas, Flavobacterium, Pseudomonas, and Nitrospira), although their relative abundance differed under variable hydraulic loading rates. This research provided further technical support for the application of AEPD in the treatment of water environment pollution.
Collapse
Affiliation(s)
- Donghai Yuan
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Minghui Bai
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Liansheng He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, People's Republic of China
| | - Qiang Zhou
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Yingying Kou
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Junqi Li
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| |
Collapse
|
7
|
Chen L, Zhuang WE, Yang L. Critical evaluation of the interaction between fluorescent dissolved organic matter and Pb(II) under variable environmental conditions. CHEMOSPHERE 2022; 307:135875. [PMID: 35932920 DOI: 10.1016/j.chemosphere.2022.135875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/12/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Dissolved organic matter (DOM) can strongly influence the behavior and risk of metal pollutants in aquatic ecosystems. However, a comprehensive study on the effects of DOM level and environmental factors on the binding of DOM with Pb(II) is lacking. This study examined the DOM-Pb(II) interaction in the river water under variable DOM level, pH, and major ions, using fluorescence excitation-emission matrices-parallel factor analysis (EEMs-PARAFAC). Four humic-like and one protein-like component were identified, and the abundant humic-like components showed higher Pb(II)-binding fractions (f) than the protein-like component. The f of PARAFAC components decreased while the conditional stability constants (logKM) increased for the diluted DOM, indicating the influence of DOM level on its metal binding. The DOM-Pb(II) interaction was sensitive to changes in pH, with generally higher f and lower logKM at the alkaline condition due to changes in the DOM conformation. The addition of major ions significantly decreased the fluorescence quenching by Pb(II), due to competitive effects and potential DOM conformation changes at elevated ions. Overall, our results show that the DOM-Pb(II) complexation is highly dependent on both the DOM properties and environmental factors, which have implications for optimizing the experimental conditions and for comparing the results in different environments.
Collapse
Affiliation(s)
- Linwei Chen
- Fujian Provincial Engineering Research Center for High-value Utilization Technology of Plant Resources, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, PR China
| | - Wan-E Zhuang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Liyang Yang
- Fujian Provincial Engineering Research Center for High-value Utilization Technology of Plant Resources, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, PR China.
| |
Collapse
|
8
|
Ma L, Li B, Yabo SD, Li Z, Qi H. Fluorescence fingerprinting characteristics of water-soluble organic carbon from size-resolved particles during pollution event. CHEMOSPHERE 2022; 307:135748. [PMID: 35863406 DOI: 10.1016/j.chemosphere.2022.135748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/09/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
A typical haze pollution process in northern China has necessitated this study which focuses on the fluorescence characteristics of water-soluble organic carbon (WSOC) in size-resolved particles. High concentrations of WSOC were found in both fine (38 μg/m³) and coarse particles (36 μg/m³) during the pollution period, which may be related to the secondary formation of organic aerosols and stable meteorological conditions. Five fluorescent components in WSOC were extracted by parallel factor analysis. Our results showed that the fluorophores in fine and coarse particles were mainly humic-like substances (humic-like, terrestrial humic-like, and high oxidation humic-like substances) and protein-like substances (protein-like and tyrosine-like substances), respectively. Moreover, the aging degree analysis, pollution source tracing, and concentration prediction of WSOC were carried out by fluorescence index. An innovative technique called self-organizing map was proposed for an in-depth investigation of the contamination mechanism of the atmospheric organic aerosol. Furthermore, the difference in the fluorescence characteristics of WSOC in fine particles was higher than that in coarse particles. The atmospheric pollution process increased the degree of difference in fluorescence characteristics. Additionally, an effective method for predicting the size of atmospheric particles was established by combining excitation-emission matrix fluorescence spectroscopy with classification and regression tree analysis.
Collapse
Affiliation(s)
- Lixin Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Bo Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Stephen Dauda Yabo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zhuo Li
- Department of Global Health, School of Public Health, Peking University, Beijing, 100191, China
| | - Hong Qi
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
9
|
Zheng X, Wang J, Zhang C, Zhang Y, Huang D, Yan S, Sun T, Mao Y, Cai Y. Influence of dissolved organic matter on methylmercury transformation during aerobic composting of municipal sewage sludge under different C/N ratios. J Environ Sci (China) 2022; 119:130-138. [PMID: 35934458 DOI: 10.1016/j.jes.2022.06.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 06/26/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Current knowledge about the transformation of total mercury and methylmercury (MeHg) in aerobic composting process is limited. In this study, the composition and transformation of mercury and dissovled organic matter (DOM) in aerobic composting process of municipal sewage sludge were were comprehensively characterized, and the differences among the three C/N ratio (20, 26 and 30) were investigated. The main form of mercury in C/N 20 and 26 was organo-chelated Hg (F3, 46%-60%); while the main form of mercury in C/N 30 was mercuric sulfide (F5, 64%-70%). The main component of DOM in C/N 20 and 26 were tyrosine-like substance (C1, 53%-76%) while the main fractions in C/N 30 were tyrosine-like substance (C1, 28%-37%) and fulvic-like substance (C2, 17%-39%). The mercury and DOM varied significantly during the 9 days composting process. Compared to C/N 20 and 26, C/N 30 produced the less MeHg after aerobic composting process, with values of 658% (C/N 20), 1400% (C/N 26) and 139% (C/N 30) of the initial, respectively. Meanwhile, C/N 30 produced the best compost showed greater degree of DOM molecular condensation and humification. Hg fraction had been altered by DOM, as indicated by a significant correlation between mercury species and DOM components. Notably, C/N 30 should be used as an appropriate C/N ratio to control the methylation processes of mercury and degration of DOM.
Collapse
Affiliation(s)
- Xin Zheng
- School of Resources & Environment, Henan Polytechnic University, Jiaozuo 454000, China
| | - Jing Wang
- School of Resources & Environment, Henan Polytechnic University, Jiaozuo 454000, China; School of Environment and Health, Jianghan University, Wuhan 430056, China.
| | - Chuanbing Zhang
- Huaxia Besince Environmental Technology Co. Ltd., Zhengzhou 450008, China
| | - Yong Zhang
- Huaxia Besince Environmental Technology Co. Ltd., Zhengzhou 450008, China
| | - Doudou Huang
- Huaxia Besince Environmental Technology Co. Ltd., Zhengzhou 450008, China
| | - Shuxiao Yan
- Huaxia Besince Environmental Technology Co. Ltd., Zhengzhou 450008, China
| | - Tengfei Sun
- Huaxia Besince Environmental Technology Co. Ltd., Zhengzhou 450008, China
| | - Yuxiang Mao
- School of Resources & Environment, Henan Polytechnic University, Jiaozuo 454000, China.
| | - Yong Cai
- School of Environment and Health, Jianghan University, Wuhan 430056, China; Department of Chemistry and Biochemistry & Southeast Environmental Research Center, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
10
|
Liu F, Zhuang WE, Yang L. Comparing the Pb(II) binding with different fluorescent components of dissolved organic matter from typical sources. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:56676-56683. [PMID: 35347618 DOI: 10.1007/s11356-022-19905-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Dissolved organic matter (DOM) is important for determining the speciation, environmental behavior, and effects of metal pollutants in aquatic environments. However, little is known about the difference between DOM from natural and anthropogenic sources for binding Pb(II). This study examined the Pb(II) binding with DOM from four typical sources including river, leaf litter leachate, and the influent and effluent of a wastewater treatment plant, using fluorescence quenching titration and excitation-emission matrices-parallel factor analysis (EEMs-PARAFAC). Four humic-like and one protein-like fluorescent components were identified, with much higher protein-like fraction and lower humification degree for the influent than for other sources. In the river water and leaf litter leachate, the abundant humic-like components were quenched by 6-17% while the protein-like component kept stable (2-4%) by the addition of Pb(II). In contrast, the influent DOM showed stronger fluorescence quenching of the protein-like component (46%) with higher conditional stability constant and binding fraction of fluorophore than the humic-like components (15-21%). The effluent DOM displayed weak quenching for all fluorescent components (4-6%) and thus weak complexation with Pb(II), indicating notable changes in the chemical composition and metal-binding affinity of DOM by wastewater treatments. These results demonstrated significant impacts of DOM source and chemical composition on its Pb(II) complexation properties, which have implications for understanding the interactions between DOM and heavy metals.
Collapse
Affiliation(s)
- Fang Liu
- Fujian Provincial Engineering Research Center for High-Value Utilization Technology of Plant Resources, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, People's Republic of China
| | - Wan-E Zhuang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, People's Republic of China
| | - Liyang Yang
- Fujian Provincial Engineering Research Center for High-Value Utilization Technology of Plant Resources, College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, People's Republic of China.
| |
Collapse
|
11
|
Liu D, Lu K, Yu H, Gao H, Xu W. Applying synchronous fluorescence spectroscopy conjunct second derivative and two-dimensional correlation to analyze the interactions of copper (II) with dissolved organic matter from an urbanized river. Talanta 2021; 235:122738. [PMID: 34517606 DOI: 10.1016/j.talanta.2021.122738] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 11/29/2022]
Abstract
Heavy metal speciation and distribution is significantly influenced by dissolved organic matter (DOM) exhibited in ecosystems, particularly in urbanized rivers. Synchronous fluorescence spectroscopy (SFS) conjunct second derivative and two-dimensional correlation spectroscopy (2D-COS) was devoted to characterizing interactions of DOM-copper (II). Three typical water samples were collected from Baitapu River. Only protein-like fluorescence (PLF) and fulvic-like (FLF) were identified from the SFS. Stability constant (log K) values of PLF complexes with copper (II) varied from 4.277 to 5.833, and proportion of binding fluorescent materials (f) were 0.054-2.640. The log K values of FLF complexes with copper (II) varied from 3.996 to 4.243, while the f values were 0.001-0.036. Obviously, PLF had much stronger complexing capacity than FLF. There were four obvious peaks in the principal component analysis and second derivative fluorescence spectroscopy (SDFS), i.e., tyrosine-like (TYLF), tryptophan-like (TRLF), microbial humus-like (MHLF) and FLF. The log K values of TYLF and TRLF complexes were 4.899-5.907 and 4.598-5.831, respectively, which were similar to those from PLF. The log K values of MHLF complexes varied from 4.311 to 5.760, and the f values were 0.261-8.688. The log K values of FLF complexes were ranged from 4.598 to 5.831, which were higher than those deduced from the SFS. Interestingly, by the SDSF, PLF was divided into TYLF and TRLF, which increased the parameters values from DOM-copper (II) complexes. 2D-SFS-COS revealed that the TRLF was more susceptive response to copper (II) appended than TYLF, MHLF, and FLF. Moreover, TYLF and TRLF could priorly interact with copper (II). The SDSF conjunct 2D-COS could be effective approaches for insight into the complexing heterogeneity of DOM with copper (II). The study could present a support to preventing heavy metals and organic pollution in urbanized rivers.
Collapse
Affiliation(s)
- Dongping Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Kuotian Lu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Huibin Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Hongjie Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Weining Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
12
|
Li Z, Gong Y, Zhao D, Dang Z, Lin Z. Evaluation of three common alkaline agents for immobilization of multi-metals in a field-contaminated acidic soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:60765-60777. [PMID: 34165755 DOI: 10.1007/s11356-021-14670-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
We investigated three common alkaline agents (NaOH, CaO, and Mg(OH)2) for immobilization of four heavy metals (Pb, Zn, Cu, and Cd) in a field-contaminated soil and elucidated the underpinning principles. NaOH caused the highest pH spike in the soil, while CaO and Mg(OH)2 served as a longer-lasting source of OH-. Amending the soil with CaO or Mg(OH)2 at ≥0.1 mol as OH- (kg·soil)-1 for 24 h was able to immobilize all four metals, while NaOH failed. NaOH leached up to 3 times more organic carbon than CaO and Mg(OH)2, resulting in elevated leachability of the metals. Column elution tests showed that amendments by CaO and Mg(OH)2 lowered the leachable Pb2+, Zn2+, Cu2+, and Cd2+ by 52-54%, 71-75%, 69-73%, and 68%, respectively, after 1440 pore volumes of elution. Sequential extraction revealed that the soil amendments converted the exchangeable fraction of the metals to the much less available forms. XRD and FTIR analyses indicated that formation of metal oxide precipitates and complexation with soil organic matter were responsible for the metals immobilization. Taken together the chemical cost, technical effectiveness, and environmental impact, CaO is the most suitable alkaline agent for remediation of soil contaminated with heavy metals.
Collapse
Affiliation(s)
- Zhiliang Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
- Environmental Engineering Program, Department of Civil & Environmental Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Yanyan Gong
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 511443, China.
| | - Dongye Zhao
- Environmental Engineering Program, Department of Civil & Environmental Engineering, Auburn University, Auburn, AL, 36849, USA.
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| | - Zhang Lin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
13
|
Zhang H, Heal K, Zhu X, Tigabu M, Xue Y, Zhou C. Tolerance and detoxification mechanisms to cadmium stress by hyperaccumulator Erigeron annuus include molecule synthesis in root exudate. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 219:112359. [PMID: 34044312 DOI: 10.1016/j.ecoenv.2021.112359] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/22/2021] [Accepted: 05/19/2021] [Indexed: 05/22/2023]
Abstract
Cadmium (Cd) is one of the most toxic environmental pollutants affecting the growth and reproduction of various plants. Analysis of the biological adaptation and tolerance mechanisms of the hyperaccumulator Erigeron annuus to Cd stress may help identify new plant species for phytoremediation and in optimizing the process. This study is to the first to analyze the molecular composition and diversity of dissolved organic matter (DOM) secreted by roots using FT-ICR MS, and multiple physiological and biochemical indexes of E. annuus seedlings grown in solutions containing 0-200 Cd μmol L-1. The results showed that E. annuus had strong photosynthetic adaptation and protection ability under Cd stress. Cd was immobilized or compartmentalized by cell walls and vacuoles in the plant, thus alleviating Cd stress. Activation of anti-oxidation defense mechanisms also played an important role in alleviating or eliminating Cd toxicity in E. annuus. High Cd stress promoted production of a higher proportion of new molecules in DOM secreted by E. annuus roots compared to low Cd stress. DOM secreted by roots contributed to plant resistance to Cd-induced stress via producing more carbohydrates, aromatic structures and tannins. Results indicate the mechanisms underpinning the potential use of E. annuus as a phytoremediator in environments with moderate Cd pollution.
Collapse
Affiliation(s)
- Hong Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; National Positioning Observation and Research Station of Red Soil Hill Ecosystem in Changting, Fuzhou 350002, Fujian, China
| | - Kate Heal
- School of GeoSciences, The University of Edinburgh, Crew Building, Alexander Crum Brown Road, Edinburgh EH9 3FF, UK
| | - Xiangdong Zhu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Mulualem Tigabu
- Swedish University of Agricultural Sciences, Faculty of Forest Science, Southern Swedish Forest Research Centre, PO Box 49, SE-230 53 Alnarp, Sweden
| | - Yanan Xue
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; National Positioning Observation and Research Station of Red Soil Hill Ecosystem in Changting, Fuzhou 350002, Fujian, China
| | - Chuifan Zhou
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; National Positioning Observation and Research Station of Red Soil Hill Ecosystem in Changting, Fuzhou 350002, Fujian, China.
| |
Collapse
|
14
|
Zhu C, Wang H, Ma H, Yang Y, Li F. Tanning process promotes abiotic humification: separation and characterization of humic acid-like polymers complex. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:41437-41445. [PMID: 32683619 DOI: 10.1007/s11356-020-10111-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
Humic-like substances are essential components of soluble organic matter in tannery wastewater. However, the tannery process can promote the abiotic humification in wastewater. Therefore, it is of great significance to clarify the pathway and degree of abiotic humification and the properties of the as-derived humic acid-like (HAL) complex polymers in the tannery process in order to control the refractory organic compounds. In the present study, considering the catechol-Maillard system and commercial humic acid (HA) as control, the polyphenol-Maillard humification in the tannery process was simulated under the catalysis of MnO2. Moreover, physicochemical and spectroscopic techniques were used to characterize the separated fractions of HAL further. As a result, it was found that the catechol-Maillard system with small molecule organic matter as precursor had higher humification degree. Furthermore, the ultraviolet-visible (UV-Vis), Fourier transform infrared (FTIR), and excitation-emission matrix (EEM) fluorescence spectrum of humic acid-like 0 (HAL0) derived from it was different from those of humic acid-like 1 and 2 (HAL1 and HAL2) of polyphenol-Maillard system, indicating the differences of polymer structure between them. In the polyphenol-Maillard system, tannin was the skeleton of polymerization or polycondensation reaction, and the high content of N and the H/C value of HAL2 indicated that in adding to amino acids, proteins promoted the humification, forming industry-specific HAL polymers with a high degree of aliphatic nature. Therefore, it can be concluded that controlling the raw materials in the tannery process (especially tannins), in order to reduce the occurrence of abiotic humification may be the key to improve the efficiency of wastewater treatment.
Collapse
Affiliation(s)
- Chao Zhu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Huiqin Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Hongrui Ma
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Yonglin Yang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Fan Li
- School of Science, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
15
|
Wang P, Peng H, Liu J, Zhu Z, Bi X, Yu Q, Zhang J. Effects of exogenous dissolved organic matter on the adsorption-desorption behaviors and bioavailabilities of Cd and Hg in a plant-soil system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 728:138252. [PMID: 32335403 DOI: 10.1016/j.scitotenv.2020.138252] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Dissolved organic matter (DOM) is one of the most active soil components and plays critical direct and indirect roles in heavy metal migration, transformation, bioavailability, and toxicity in soils. In this study, isothermal adsorption/desorption experiments and pot experiments were performed and samples were physically characterized to study the effects of different sources of DOM on adsorption and desorption behavior and bioavailability of Cd and Hg in a plant-soil system. The results showed that microbial DOM promoted Cd and Hg adsorption in soil and decreased Cd and Hg bioavailability to pak choi (Brassica chinensis Linn.). In contrast, straw DOM and farmyard manure DOM decreased Cd and Hg adsorption and improved Cd and Hg migration and bioavailability. These results might be explained by the different types of DOM having different molecular weights and degrees of aromaticity. Cd was more readily desorbed by the soil and was more phytoavailable than Hg. We concluded that exogenous microbial DOM can inhibit Cd and Hg migration and bioavailability in soil but straw DOM and farmyard manure DOM can activate Cd and Hg in soil and promote Cd and Hg accumulation in plants. The results could help in developing rational agricultural fertilization regimes.
Collapse
Affiliation(s)
- Pengcong Wang
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Huan Peng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Jinling Liu
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China.
| | - Zhenli Zhu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Xiangyang Bi
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Qianqian Yu
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Jie Zhang
- Institute of Mathematical Geology & Remote Sensing, China University of Geoscience, Wuhan 430074, China
| |
Collapse
|
16
|
Müller A, Österlund H, Marsalek J, Viklander M. The pollution conveyed by urban runoff: A review of sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:136125. [PMID: 31905584 DOI: 10.1016/j.scitotenv.2019.136125] [Citation(s) in RCA: 257] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
Urban stormwater and snowmelt pollution contributes significantly to the deterioration of surface waters quality in many locations. Consequently, the sources of such pollution have been studied for the past 50 years, with the vehicular transportation sector and the atmospheric deposition identified early as the major pollution sources. In search for mitigation of this pollution, source controls, besides other measures, were recognised as effective pollution mitigation tools, whose successful implementation requires a good knowledge of pollution sources. Even though great research efforts have been exerted to document specific sources of urban runoff pollution, or specific groups of pollutants present in urban runoff, a comprehensive overview of all known contributing sources is still missing. This review contributes to closing this gap by compiling findings of previous research and critically synthesizing the current knowledge of various stormwater pollution sources. As the emphasis is placed on the sources, the related issues of implications for urban surface water quality and possible source controls for individual sources are touched upon just briefly, where required. The review showed that the atmospheric deposition, vehicular transportation-related activities and metallic building envelopes continue to be among the major pollution sources, which have been studied in a far greater detail than other sources. Furthermore, it was noted that because of the rapid advances in clean manufacturing and pollution control technologies, a large part of the body of data on stormwater quality available in the literature should be considered as historical data, which may no longer describe well the current conditions. Progressing historical data obsolescence, combined with continuing releases of new materials and chemicals, and, in some cases of new substances of potential concern, into the environment, suggests that the identification of important stormwater runoff/snowmelt pollution sources, and the associated pollutants, has been and will remain to be a work in progress.
Collapse
Affiliation(s)
- Alexandra Müller
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden.
| | - Heléne Österlund
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
| | - Jiri Marsalek
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
| | - Maria Viklander
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
| |
Collapse
|
17
|
Liu S, Shirai H, Zuo J, Yang X, Li X, Kamruzzaman M, Fan W. Characterizing the interactions between copper ions and dissolved organic matter using fluorescence excitation-emission matrices with two-dimensional Savitzky-Golay second-order differentiation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 188:109834. [PMID: 31683045 DOI: 10.1016/j.ecoenv.2019.109834] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
Monitoring dissolved organic matter (DOM) content in aquatic environments is crucial for not only understanding the dynamics of heavy metals but also predicting their bioavailability. Fluorescence spectroscopy is typically employed to characterise DOM. Here, the interaction between DOM and trace metals was investigated by combining excitation-emission matrix (EEM) quenching with two-dimensional Savitzky-Golay second-order differentiation (2D-SG-2nd-df) analysis. The 2D-SG-2nd-df analysis decomposed the EEM spectra of commercial humic acid (HA) samples into six separate fluorescence peaks, which agreed with the results obtained through conventional parallel factor (PARAFAC) analysis. Compared with PARAFAC modeling, the 2D-SG-2nd-df approach provided more valid and reliable results when the dataset contained distinct samples. Moreover, since the results obtained from 2D-SG-2nd-df for each sample are independent, shifts in the peak wavelength can be reproduced more efficiently using this method. Triplicate titration experiments showed clear differences in HA-copper interactions for samples with different HA composition and molecular weight. The binding strength between copper and low-molecular-weight DOM in water was weaker than that observed for high-molecular-weight DOM. The results obtained in this study will serve as a basis for applying 2D-SG-2nd-df not only to DOM but also to other samples studied using EEM measurements.
Collapse
Affiliation(s)
- Shu Liu
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing, 10191, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100191, China
| | - Hiroaki Shirai
- Graduate School of Fundamental Science and Technology, Keio University, Yokohama, Kanagawa, 223-8522, Japan
| | - Jinxing Zuo
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing, 10191, China
| | - Xiaolong Yang
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing, 10191, China
| | - Xiaomin Li
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing, 10191, China
| | - Mohammed Kamruzzaman
- Department of Food Technology and Rural Industries, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Wenhong Fan
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing, 10191, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100191, China.
| |
Collapse
|
18
|
El-Naggar A, Lee MH, Hur J, Lee YH, Igalavithana AD, Shaheen SM, Ryu C, Rinklebe J, Tsang DCW, Ok YS. Biochar-induced metal immobilization and soil biogeochemical process: An integrated mechanistic approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134112. [PMID: 31783442 DOI: 10.1016/j.scitotenv.2019.134112] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/20/2019] [Accepted: 08/24/2019] [Indexed: 05/10/2023]
Abstract
The nature of biochar-derived dissolved organic matter (DOM) has a crucial role in the interactions between biochar and metal immobilization, carbon dynamics, and microbial communities in soil. This study utilized excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC) modeling to provide mechanistic evidence of biochar-induced influences on main soil biogeochemical processes. Three biochars produced from rice straw, wood, and grass residues were added to sandy and sandy loam soils and incubated for 473 d. Microbial and terrestrial humic-like fluorescent components were identified in the soils after incubation. The sandy loam soil exhibited a higher DOM with microbial sources than did the sandy soil. All biochars reduced Pb bioavailability, whereas the rice straw biochar enhanced the As bioavailability in the sandy loam soil. The biochar-derived aliphatic-DOM positively correlated with As bioavailability (r = 0.82) in the sandy loam soil and enhanced the cumulative CO2-C (r = 0.59) in the sandy soil. The promoted cumulative CO2-C in the sandy soil with all biochars correlated with the enhanced microbial communities, in particular, gram-positive (r = 0.59) and gram-negative (r = 0.59) bacteria. Our results suggest that the integration of EEM-PARAFAC with spectroscopic indices could be useful for a comprehensive interpretation of the soil quality changes in response to the application of biochar.
Collapse
Affiliation(s)
- Ali El-Naggar
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea; Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Mi-Hee Lee
- Department of Environment, Energy, and Geoinformatics, Sejong University, Seoul 05006, Republic of Korea
| | - Jin Hur
- Department of Environment, Energy, and Geoinformatics, Sejong University, Seoul 05006, Republic of Korea
| | - Young Han Lee
- Division of Plant Environmental Research, Gyeongsangnam-do Agricultural Research & Extension Services, Jinju 52773, Republic of Korea
| | - Avanthi Deshani Igalavithana
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33 516 Kafr El-Sheikh, Egypt
| | - Changkook Ryu
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy, and Geoinformatics, Sejong University, Seoul 05006, Republic of Korea
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
19
|
Song L, Li D, Fang H, Cao X, Liu R, Niu Q, Li YY. Revealing the correlation of biomethane generation, DOM fluorescence, and microbial community in the mesophilic co-digestion of chicken manure and sheep manure at different mixture ratio. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:19411-19424. [PMID: 31073832 DOI: 10.1007/s11356-019-05175-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/12/2019] [Indexed: 06/09/2023]
Abstract
Batch co-digestion tests of chicken manure (CM) and sheep manure (SM) at different ratio (Rs/c) were conducted under mesophilic condition (35 °C). Batch kinetic analysis of bioCH4 production, excitation-emission matrix (EEM) fluorescence of dissolved organic matter (DOM), and microbial community were investigated. The well-fitted modified Gompertz model (R2, 0.98-0.99) resulted that the co-digestion markedly improved the methane production rate and shortened the lag phase time. The highest bioCH4 yield of 219.67 mL/gVSadd and maximum production rate of 0.378 mL/gVSadd/h were obtained at an optimum Rs/c of 0.4. Additionally, a significant variation of DOM was detected at the Rs/c of 0.4 with a consistent degradation of soluble microbial byproduct-like and protein-like organics. The positive synergy effects of co-digestion conspicuously enhanced the bioCH4 production efficiency. FI370 and NADH were significantly correlated to Rs/c (p < 0.05). Moreover, the correlations among process indicator, EEM-peaks and different environmental parameters were evaluated by Pearson correlation analysis. The high diversity of acetoclastic methanogens and hydrogenotrophic methanogens in the co-digestion improved the stability of process. Graphical Abstract.
Collapse
Affiliation(s)
- Liuying Song
- School of Environmental Science and Engineering, China-America CRC for Environment & Health of Shandong Province, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Dunjie Li
- School of Environmental Science and Engineering, China-America CRC for Environment & Health of Shandong Province, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Hongli Fang
- School of Environmental Science and Engineering, China-America CRC for Environment & Health of Shandong Province, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Xiangyunong Cao
- School of Environmental Science and Engineering, China-America CRC for Environment & Health of Shandong Province, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Rutao Liu
- School of Environmental Science and Engineering, China-America CRC for Environment & Health of Shandong Province, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China
| | - Qigui Niu
- School of Environmental Science and Engineering, China-America CRC for Environment & Health of Shandong Province, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, People's Republic of China.
- Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China.
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| |
Collapse
|