1
|
Wang X, Yang J, Li X. Study on characteristics and microscopic mechanism of composite environment-friendly dust suppressant for urban construction site soil fugitive dust based on response surface methodology optimization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:41954-41969. [PMID: 36640236 DOI: 10.1007/s11356-023-25224-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Soil fugitive dust pollution caused by urban construction sites is a significant problem. To improve the dust suppression efficiency on the urban construction sites, hydroxypropyl guar (HPG), dodecyl dimethyl amine oxide (OB-2), and hydroxypropyl methylcellulose (HPMC) were selected as individual components of the composite dust suppressant using a single-factor test. The response surface methodology (RSM) was used to determine the optimal mixing proportions. After preparation, the characteristics of the composite dust suppressant were tested. Fourier-transform infrared spectroscopy and scanning electron microscopy (SEM) were used to characterize the composite dust suppressant and explore its mechanism. The results showed that 0.327% HPG, 0.6% OB-2, and 0.5% HPMC were the best compound concentrations. Under optimum conditions, the viscosity of the composite dust suppressant was 151.1 [Formula: see text], penetration time was 61.4 s, and water retention rate was 30.67%. Compared with traditional dust control by spraying water, it showed better resistance to evaporation at high temperatures and better wind erosion resistance. The antievaporation rate was 39.42% at 60 °C. After 11 d of continuous wind erosion at level 7, the wind erosion resistance rate was as high as 98.24%. The reason for the excellent dust suppression effect of the composite dust suppressant is that the methyl and hydroxyl groups in the solution diffuse to the surface of the soil fugitive dust particles using Brownian motion and gradually approach the corresponding groups in the soil fugitive dust particles. When the distance between the two reaches 10 [Formula: see text], adsorption occurs, causing small dust particles to stick together. Because of the stability of the covalent bonds in the methyl and hydroxyl groups, a stable solidified layer is formed on the soil fugitive dust surface after the evaporation of the composite dust inhibitor solution, thereby avoiding secondary dust. In addition, the composite dust suppressant is noncorrosive and friendly to the construction site environment. Therefore, the composite dust suppressant can effectively reduce soil fugitive dust, alleviate environmental pollution, and provide a reference for preventing and controlling soil fugitive dust on urban construction sites and preparing composite environment-friendly dust suppressants.
Collapse
Affiliation(s)
- Xiaonan Wang
- College of Safety Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China.
| | - Junni Yang
- College of Safety Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Xiang Li
- College of Safety Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| |
Collapse
|
2
|
Costa MAM, da Silva BM, de Almeida SGC, Felizardo MP, Costa AFM, Cardoso AA, Dussán KJ. Evaluation of the efficiency of a Venturi scrubber in particulate matter collection smaller than 2.5 µm emitted by biomass burning. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:8835-8852. [PMID: 36053424 PMCID: PMC9438357 DOI: 10.1007/s11356-022-22786-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Energy demand has increased worldwide, and biomass burning is one of the solutions most used by industries, especially in countries that have a great potential in agriculture, such as Brazil. However, these energy sources generate pollutants, consisting of particulate matter (PM) with a complex chemical composition, such as sugarcane bagasse (SB) burning. Controlling these emissions is necessary; therefore, the aim was to evaluate PM collection using a rectangular Venturi scrubber (RVS), and its effects on the composition of the PM emitted. Considering the appropriate use of biomass as an industrial fuel and the emerging need for a technique capable of efficiently removing pollutants from biomass burning, this study shows the control of emissions as an innovation in a situation such as the industrial one with the use of a Venturi scrubber in fine particle collection, in addition to using portable and representative isokinetic sampling equipment of these particles. The pilot-scale simulation of the biomass burning process, the representative sampling of fine particles and obtaining parameters to control pollutant emissions for a Venturi scrubber, meets the current situation of concern about air quality. The average collection efficiency values were 96.6% for PM> 2.5, 85.5% for PM1.0-2.5, and 66.9% for PM< 1.0. The ionic analysis for PM< 1.0 filters showed potassium, chloride, nitrate, and nitrite at concentrations ranging from 20.12 to 36.5 μg/m3. As the ethanol and sugar plants will continue to generate electricity with sugarcane bagasse burning, emission control technologies and cost-effective and efficient portable samplers are needed to monitor particulate materials and improve current gas cleaning equipment projects.
Collapse
Affiliation(s)
- Maria Angélica Martins Costa
- Department of Engineering, Physics and Mathematics, Institute of Chemistry, São Paulo State University-UNESP, Av. Prof. Francisco Degni, 55 - Jardim Quitandinha, Araraquara, São Paulo, 14800-900, Brazil
| | - Bruno Menezes da Silva
- Department of Engineering, Physics and Mathematics, Institute of Chemistry, São Paulo State University-UNESP, Av. Prof. Francisco Degni, 55 - Jardim Quitandinha, Araraquara, São Paulo, 14800-900, Brazil
| | - Sâmilla Gabriella Coelho de Almeida
- Department of Engineering, Physics and Mathematics, Institute of Chemistry, São Paulo State University-UNESP, Av. Prof. Francisco Degni, 55 - Jardim Quitandinha, Araraquara, São Paulo, 14800-900, Brazil
| | - Marcos Paulo Felizardo
- Departament of Mechanics, Minas Gerais Federal Institute of Education, Science and Technology, IFMG, Congonhas, Brazil
| | - Ana Flávia Martins Costa
- Faculty of Engineering Technology, Department of Biomechanical Engineering, Engineering Organ Support Technologies Group, University of Twente, P.O. Box 217, Enschede, Overijssel, 7500 AE, The Netherlands
| | - Arnaldo Alves Cardoso
- Department of Analytical Chemistry, Physical-Chemical and Inorganic Chemistry, Institute of Chemistry, São Paulo State University-UNESP, Av. Prof. Francisco Degni, 55 - Jardim Quitandinha, Araraquara, São Paulo, 14800-900, Brazil
| | - Kelly Johana Dussán
- Department of Engineering, Physics and Mathematics, Institute of Chemistry, São Paulo State University-UNESP, Av. Prof. Francisco Degni, 55 - Jardim Quitandinha, Araraquara, São Paulo, 14800-900, Brazil.
| |
Collapse
|
3
|
Yang M, Jalava P, Wang XF, Bloom MS, Leskinen A, Hakkarainen H, Roponen M, Komppula M, Wu QZ, Xu SL, Lin LZ, Liu RQ, Hu LW, Yang BY, Zeng XW, Yu YJ, Dong GH. Winter and spring variation in sources, chemical components and toxicological responses of urban air particulate matter samples in Guangzhou, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157382. [PMID: 35843314 DOI: 10.1016/j.scitotenv.2022.157382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/17/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
The sources and chemical components of urban air particles exhibit seasonal variations that may affect their hazardousness to human health. Our aims were to investigate winter and spring variation in particulate matter (PM) sources, components and toxicological responses of different PM size fractions from samples collected in Guangzhou, China. Four size-segregated PM samples (PM10-2.5, PM2.5-1, PM1-0.2, and PM0.2) were collected separately during winter (December 2017 and January 2018) and spring (March 2018). All PM samples were analyzed for chemical components and characterized by source. RAW 264.7 macrophages were exposed to four doses of PM samples for 24 h. Cytotoxicity, oxidation, cell cycle, genotoxicity and inflammatory parameters were tested. PM concentrations were higher in the winter samples and caused more severe cytotoxicity and oxidative damage than to PM in the spring samples. PM in winter and spring led to increases in cell cycle and genotoxicity. The trends of size-segregated PM components were consistent in winter and spring samples. Metallic elements and PAHs were found in the largest concentrations in winter PM, but ions were found in the largest concentrations in spring PM. metallic elements, PAHs and ions in size-segregated PM samples were associated with most toxicological endpoints. Soil dust and biomass burning were the main sources of PM in winter, whereas traffic exhaust and biomass burning was the main source with of spring PM. Our results suggest that the composition of PM samples from Guangzhou differed during winter and spring, which led to strong variations in toxicological responses. The results demonstrate the importance of examining a different particle sizes, compositions and sources across different seasons, for human risk assessment.
Collapse
Affiliation(s)
- Mo Yang
- Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland; Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Pasi Jalava
- Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Xin-Feng Wang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Michael S Bloom
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Department of Global and Community Health, George Mason University, Fairfax, VA, USA
| | - Ari Leskinen
- Finnish Meteorological Institute, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland; Department of Applied Physics, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Henri Hakkarainen
- Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Marjut Roponen
- Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Mika Komppula
- Finnish Meteorological Institute, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Qi-Zhen Wu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shu-Li Xu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Zi Lin
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ru-Qing Liu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Wen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yun-Jiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, China.
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
4
|
Cao Z, Wu X, Wang T, Zhao Y, Zhao Y, Wang D, Chang Y, Wei Y, Yan G, Fan Y, Yue C, Duan J, Xi B. Characteristics of airborne particles retained on conifer needles across China in winter and preliminary evaluation of the capacity of trees in haze mitigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150704. [PMID: 34600981 DOI: 10.1016/j.scitotenv.2021.150704] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
To fully understand the characteristics of particulate matter (PM) retained on plant leaves (PMR) and the effect of vegetation on haze on a large spatial scale, we investigated needle samples collected from 78 parks and campuses in 31 cities (30 provincial cities) of China and developed a comprehensive method to characterise PMR. Both the PMR load (including water-insoluble particulate matter (WIPM), water-soluble inorganic ions (WSIS) and water-soluble organic matter (WSOM)), with a mean value of 554 ± 345 mg m-2 leaf area, and component profiles of PMR showed obvious spatial variation across the cities. Though haze pollution levels vary greatly among the 31 cities, the PM retention capacity of needles does not depend on haze level because PMR generally reaches saturation before precipitation in winter. The water-soluble component (WSC, the sum of WSIS and WSOM) accounted for 52.3% of PMR on average, among which WSIS and WSOM contributed 21.4% and 30.9% to PMR, respectively. The dominant ions of WSIS in PMR in the cities were Ca2+, K+ and NO3-, indicating that raised dust, biomass combustion and traffic exhaust are significant sources of PM in China. Compared with previous reports, the particle size distributions of PMR and PM across China were consistent, with fine PM (PM2.5) constituting a substantial proportion (43.8 ± 17.0%) of PMR. These results prove that trees can effectively remove fine particles from the air, thereby reducing human exposure to inhalable PM. We proposed a method to estimate the annual amount of PMR on Cedrus deodara, with an average value of 11.9 ± 9.6 t km-2 canopy yr-1 in China. Compared with the load of dust fall (atmospheric particles naturally falling on the ground, average of 138 ± 164 t km-2 land area yr-1 in China), we conclude that trees play a significant role in mitigating haze pollution.
Collapse
Affiliation(s)
- Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China.
| | - Xinyuan Wu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Tianyi Wang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Yahui Zhao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Youhua Zhao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Danyang Wang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Yu Chang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Ya Wei
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Guangxuan Yan
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Yujuan Fan
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Chen Yue
- Ministry of Education Key Laboratory of Silviculture and Conservation, Beijing Forestry University, Beijing, China
| | - Jie Duan
- Ministry of Education Key Laboratory of Silviculture and Conservation, Beijing Forestry University, Beijing, China
| | - Benye Xi
- Ministry of Education Key Laboratory of Silviculture and Conservation, Beijing Forestry University, Beijing, China.
| |
Collapse
|
5
|
Shang J, Zhang Y, Schauer JJ, Chen S, Yang S, Han T, Zhang D, Zhang J, An J. Prediction of the oxidation potential of PM 2.5 exposures from pollutant composition and sources. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118492. [PMID: 34785286 DOI: 10.1016/j.envpol.2021.118492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
The inherent oxidation potential (OP) of atmospheric particulate matter has been shown to be an important metric in assessing the biological activity of inhaled particulate matter and is associated with the composition of PM2.5. The current study examined the chemical composition of 388 personal PM2.5 samples collected from students and guards living in urban and suburban areas of Beijing, and assessed the ability to predict OP from the calculated metrics of carcinogenic risk, represented by ELCR (excess lifetime cancer risk), non-carcinogenic risk represented by HI (hazard index), and the composition and sources of the particulate matter using multiple linear regression methods. The correlations between calculated ELCR and HI and the measured OP were 0.37 and 0.7, respectively. HI was a better predictor of OP than ELCR. The prediction models based on pollutants (Model_1) and pollution sources (Model_2) were constructed by multiple linear regression method, and Pearson correlation coefficients between the predicted results of Model_1 and Model_2 with the measured volume normalized OP are 0.81 and 0.80, showing good prediction ability. Previous investigations in Europe and North America have developed location-specific relationships between the chemical composition of particulate matter and OP using regression methods. We also examined the ability of relationships between OP and composition, sources, developed in Europe and North America, to predict the OP of particulate matter in Beijing from the composition and sources determined in Beijing. The relationships developed in Europe and North America provided good predictive ability in Beijing and it suggests that these relationships can be used to predict OP from the chemical composition measured in other regions of the world.
Collapse
Affiliation(s)
- Jing Shang
- Institute of Urban Meteorology, China Meteorological Administration, Beijing, 100089, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), China
| | - Yuanxun Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China; CAS Center for Excellence in Regional Atmospheric Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Institute of Eco-Environmental Forensics, Shandong University, Qingdao, 266237, China.
| | - James J Schauer
- Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, Madison, WI, 53718, USA
| | - Sumin Chen
- Beijing Municipal Research Institute of Environmental Protection, China
| | - Shujian Yang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Tingting Han
- Institute of Urban Meteorology, China Meteorological Administration, Beijing, 100089, China
| | - Dong Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Jinjian Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Jianxiong An
- Department of Anesthesiology, Pain Medicine and Critical Care Medicine, Aviation General Hospital of China Medical University, Beijing, China
| |
Collapse
|
6
|
Mai D, Xu C, Lin W, Yue D, Fu S, Lin J, Yuan L, Zhao Y, Zhai Y, Mai H, Zeng X, Jiang T, Li X, Dai J, You B, Xiao Q, Wei Q, Hu Q. Association of abnormal-glucose tolerance during pregnancy with exposure to PM 2.5 components and sources. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118468. [PMID: 34748887 DOI: 10.1016/j.envpol.2021.118468] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/15/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Maternal exposure to PM2.5 has been associated with abnormal glucose tolerance during pregnancy, but little is known about which constituents and sources are most relevant to glycemic effects. We conducted a retrospective cohort study of 1148 pregnant women to investigate associations of PM2.5 chemical components with gestational diabetes mellitus (GDM) and impaired glucose tolerance (IGT) and to identify the most harmful sources in Heshan, China from January 2015 to July 2016. We measured PM2.5 using filter-based method and analyzed them for 28 constituents, including carbonaceous species, water-soluble ions and metal elements. Contributions of PM2.5 sources were assessed by positive matrix factorization (PMF). Logistic regression model was used to estimate composition-specific and source-specific effects on GDM/IGT. Random forest algorithm was applied to evaluate the relative importance of components to GDM and IGT. PM2.5 total mass and several chemical constituents were associated with GDM and IGT across the early to mid-gestation periods, as were the PM2.5 sources fossil fuel/oil combustion, road dust, metal smelting, construction dust, electronic waster, vehicular emissions and industrial emissions. The trimester-specific associations differed among pollutants and sources. The third and highest quartile of elemental carbon, ammonium (NH4+), iron (Fe) and manganese (Mn) across gestation were consistently associated with higher odds of GDM/IGT. Maternal exposures to zinc (Zn), titanium (Ti) and vehicular emissions during the first trimester, and vanadium (V), nickel (Ni), road dust and fossil fuel/oil combustion during the second trimester were more important for GDM/IGT. This study provides important new evidence that maternal exposure to PM2.5 components and sources is significantly related to elevated risk for abnormal glucose tolerance during pregnancy.
Collapse
Affiliation(s)
- Dejian Mai
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Chengfang Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China
| | - Weiwei Lin
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Dingli Yue
- Guangdong Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangzhou, 510308, China
| | - Shaojie Fu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jianqing Lin
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Luan Yuan
- Guangdong Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangzhou, 510308, China
| | - Yan Zhao
- Guangdong Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangzhou, 510308, China
| | - Yuhong Zhai
- Guangdong Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangzhou, 510308, China
| | - Huiying Mai
- Department of Obstetrics and Gynecology, Heshan Maternal and Child Health Hospital, Heshan, 529700, Jiangmen, Guangdong, China
| | - Xiaoling Zeng
- Department of Obstetrics and Gynecology, Heshan Maternal and Child Health Hospital, Heshan, 529700, Jiangmen, Guangdong, China
| | - Tingwu Jiang
- Department of Clinical Laboratory, Heshan Maternal and Child Health Hospital, Heshan, 529700, Jiangmen, Guangdong, China
| | - Xuejiao Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China
| | - Jiajia Dai
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Boning You
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Qin Xiao
- Experimental Teaching Center, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Qing Wei
- Experimental Teaching Center, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Qiansheng Hu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| |
Collapse
|
7
|
Ambastha SK, Haritash AK. Emission of respirable dust from stone quarrying, potential health effects, and its management. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:6670-6677. [PMID: 34453257 DOI: 10.1007/s11356-021-16079-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Mining of minerals exerts adverse pressure on different compartments of environment directly or indirectly. Air is the worst affected environmental matrix, and it can carry the harmful effect of pollutants generated from mining activity even to distant places. The present study was undertaken to estimate the emission of particulate matter (PM2.5 and PM10) from different activities undertaken in stone quarrying in Mahendragarh, Haryana. The results obtained from the present study indicated that drilling, blasting, crushing, and transport of mined material are chiefly responsible for the generation of dust. Whereas drilling, blasting, and loading were responsible for emission of higher fraction of PM10, crushing and re-suspension of roadside dust from movement of vehicles resulted in generation of relatively higher fraction of finer dust (PM2.5). Modelling the transport of dust over the Hybrid Single-Particle Lagrangian Integrated Trajectory model revealed that the emitted particle may move up to the distance of about 40 km within 4 h of emission under average meteorological conditions. Fourier transform infrared (FTIR) spectroscopy analysis of dust confirmed the presence of calcite and gypsum, thus confirming the source as mining. The study concluded that generation of PM2.5-sized particles may impose serious respiratory health effects over the workers engaged in mining, crushing, and transportation of sandstone. Apart from it, population residing downwind of the mining area is particularly vulnerable to the pulmonary effects due to inhalation of dust.
Collapse
Affiliation(s)
- Saurav Kumar Ambastha
- Department of Environmental Engineering, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India.
| | - Anil Kumar Haritash
- Department of Environmental Engineering, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India
| |
Collapse
|
8
|
Elkama A, Şüküroğlu AA, Çakmak G. Exposure to particulate matter: a brief review with a focus on cardiovascular effects, children, and research conducted in Turkey. Arh Hig Rada Toksikol 2021; 72:244-253. [PMID: 34985835 PMCID: PMC8785112 DOI: 10.2478/aiht-2021-72-3563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/01/2021] [Accepted: 11/01/2021] [Indexed: 11/20/2022] Open
Abstract
Exposure to environmental particulate matter (PM), outdoor air pollution in particular, has long been associated with adverse health effects. Today, PM has widely been accepted as a systemic toxicant showing adverse effects beyond the lungs. There are numerous studies, from those in vitro to epidemiological ones, suggesting various direct and indirect PM toxicity mechanisms associated with cardiovascular risks, including inflammatory responses, oxidative stress, changes in blood pressure, autonomic regulation of heart rate, suppression of endothelium-dependent vasodilation, thrombogenesis, myocardial infarction, and fibrinolysis. In addition to these and other health risks, considerations about air quality standards should include individual differences, lifestyle, and vulnerable populations such as children. Urban air pollution has been a major environmental issue for Turkey, and this review will also address current situation, research, and measures taken in our country.
Collapse
Affiliation(s)
- Aylin Elkama
- Gazi University Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey
| | | | - Gonca Çakmak
- Gazi University Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey
| |
Collapse
|
9
|
Wang S, Bao C, Liu Q, Zhang T, Yang Y, Tian X, Zhu Z, Xu K. Ga-68 EDTA aerosols in evaluation of inhaled-particle deposition and clearance of obstructive pulmonary diseases: A pilot prospective study compared with Galligas. Eur J Clin Invest 2021; 51:e13620. [PMID: 34076256 PMCID: PMC9286628 DOI: 10.1111/eci.13620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE 68-gallium (Ga-68) ethylenediaminetetraacetic acid (EDTA) aerosols and Galligas were compared in evaluation of inhaled-particle deposition and clearance in volunteers with or without obstructive pulmonary diseases. METHODS Nonsmoking healthy volunteers, healthy smokers, asthma patients and patients with chronic obstructive pulmonary disease (COPD) were recruited to undergo the dynamic lung ventilation positron emission tomography/computerized tomography (PET/CT) scans within two consecutive days. The inhaled particles were Ga-68-labelled carbon nanoparticles (Galligas, 30-60 nm in size) and Ga-68-labelled EDTA aerosols (1-2 μm in size), respectively. The volunteers' lung function parameters were measured for comparison. RESULTS Central deposition and inhomogeneity of both tracers were negatively correlated with lung function parameters, including the ratio of forced expiratory volume at 1 second to forced vital capacity (FEV1 /FVC). The central or hilum deposition of Galligas, but not 68-gallium (Ga-68) EDTA, was negatively correlated with the maximal expiratory flow at 25%, 50% and 75% of the forced vital capacity. Compared with Galligas, Ga-68 EDTA aerosols were more concentrated in the central region in all groups except for the healthy nonsmokers. Ventilation inhomogeneity was more evident when using Ga-68 EDTA aerosols, especially in patients with COPD and asthma patients. In the healthy smokers, the central region accumulated more Ga-68 EDTA at 30 minutes after inhalation than immediately after inhalation. Ga-68 EDTA cleared faster in lungs than Galligas. CONCLUSIONS Both Galligas and Ga-68 EDTA aerosols can be used for PET/CT lung ventilation scan. However, Ga-68 EDTA aerosols showed more advantages in diagnosis and evaluation of obstructive airway diseases by revealing the inhaled-particle deposition and clearance.
Collapse
Affiliation(s)
- Shao‐Ting Wang
- Department of Pulmonary and Critical Care MedicineState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Cheng Bao
- Department of Pulmonary and Critical Care MedicineState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
- Department of Pulmonary and Critical Care MedicineCenter of Respiratory MedicineChina‐Japan Friendship HospitalBeijingChina
| | - Qingxing Liu
- Department of Nuclear MedicineState Key Laboratory of Complex Severe and Rare DiseasesBeijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear MedicinePeking Union Medical College HospitalChinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Tengyue Zhang
- Department of Pulmonary and Critical Care MedicineState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Yanli Yang
- Department of Pulmonary and Critical Care MedicineState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Xinlun Tian
- Department of Pulmonary and Critical Care MedicineState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Zhaohui Zhu
- Department of Nuclear MedicineState Key Laboratory of Complex Severe and Rare DiseasesBeijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear MedicinePeking Union Medical College HospitalChinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Kai‐Feng Xu
- Department of Pulmonary and Critical Care MedicineState Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| |
Collapse
|
10
|
Ye L, Zhong B, Huang M, Chen W, Wang X. Pollution evaluation and children's multimedia exposure of atmospheric arsenic deposition in the Pearl River Delta, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147629. [PMID: 34000541 DOI: 10.1016/j.scitotenv.2021.147629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/20/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
The populous Pearl River Delta (PRD) region in China suffers from serious air arsenic (As) pollution. The objective of this study was to explore the pollution situation of atmospheric arsenic deposition in the PRD region, and to evaluate the associated multimedia daily intake in children. The average deposition flux was 3921.7 μg/m2/year during the 2016-2017, and the pollution situation was even worse than that in 2015. A continuously increasing trend of arsenic atmospheric deposition was found. The bioaccessibility of As in the settled dust was determined as about 22% by a physiologically based extraction test (PBET). After corrected with the bioaccessibilities of As in the settled dust and food items, the geometry means (GM) value of daily uptake through multimedia ingestion of produce (dust and diet) originated from arsenic atmospheric deposition was 0.23 μg/kg/day for 1- to 6-year-old children. The contribution of the non-dietary oral exposure (settled dust) was negligible and just accounted for only 0.01% of the daily uptake. This estimated value was much lower than those in the literatures, in which the bioaccessibility of As was not taken into account, concluding that the role of the settled dust in the total daily intake may have been overestimated previously. Milk, eggs and freshwater fish were the dominant pathways for children to intake the products derived from atmospheric arsenic deposition. There still be a concern about the high non-carcinogenic and carcinogenic risk by long-term multimedia ingestion. Special care should be considered toward the emission sources of air arsenic, including the coal combustion from industries and construction dust, etc., to reduce the negative effect of air arsenic in children.
Collapse
Affiliation(s)
- Lyumeng Ye
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Buqing Zhong
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Institute for Environmental and Climate Research, Jinan University, Guangzhou 510632, China; Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Minjuan Huang
- School of Atmospheric Sciences, and Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Guangzhou 510275, China
| | - Weihua Chen
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Institute for Environmental and Climate Research, Jinan University, Guangzhou 510632, China
| | - Xuemei Wang
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Institute for Environmental and Climate Research, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
11
|
Zhou W, Liu H, Xiang J, Zheng J, Yao R, Liu S, Liu T, Zhang J, Zhan C, Xiao W, Cao J. Assessment of Elemental Components in Atmospheric Particulate Matter from a Typical Mining City, Central China: Size Distribution, Source Characterization and Health Risk. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 105:941-950. [PMID: 33170305 DOI: 10.1007/s00128-020-03039-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 11/03/2020] [Indexed: 05/24/2023]
Abstract
Atmospheric particulate matters in nine size fractions were sampled at Huangshi city, Hubei province. Elemental concentrations occurred unimodal size distribution for Zn, Pb and Ni, dimodal distribution for Ca, S, Fe and Ti, and trimodal distribution for Cl, K, Mn, Cu and Cr. Enrichment factor and principal component analysis identified the main sources from crustal material, biomass burning, waste incineration, vehicular and industrial emission. As for the non-carcinogenic health risk through inhalation, there were certain potential risks for Mn and Sb for children, and Pb for children and adults in PM2.5. It showed certain potential risks for Mn, Sb and Pb for children and adults in PM10. As for the carcinogenic health risk through inhalation, Cr in PM2.5 and Ni, Co and Cr in PM10 indicated unacceptable risk for children and adults. Meanwhile, Co and Ni in PM2.5 represented acceptable risk for children.
Collapse
Affiliation(s)
- Wenyu Zhou
- Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Hongxia Liu
- Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China.
| | - Jueyi Xiang
- Jiangsu Dynamic Chemical CO.LTD, Nanjing, 210047, China
| | - Jingru Zheng
- Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Ruizhen Yao
- Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Shan Liu
- Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Ting Liu
- Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Jiaquan Zhang
- Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Changlin Zhan
- Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Wensheng Xiao
- Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation, School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Junji Cao
- Key Laboratory of Aerosol Chemistry and Physics (KLACP), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710075, China
| |
Collapse
|
12
|
Guo J, Zhou Y, Sun M, Cui J, Zhang B, Zhang J. Methylsiloxanes in plasma from potentially exposed populations and an assessment of the associated inhalation exposure risk. ENVIRONMENT INTERNATIONAL 2020; 143:105931. [PMID: 32634670 DOI: 10.1016/j.envint.2020.105931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
Methylsiloxanes (MSs) are ubiquitous in indoor air and pose an important health risk. Thus, assessments of indoor inhalation exposure by measuring MSs levels in plasma are needed. In this study, we measured plasma MSs concentrations and evaluated daily indoor inhalation exposure in potentially exposed populations, including residents of industrial areas, university campus, and residential areas, all located in southwestern China. The concentrations of MSs in indoor air (gas-phase and PM2.5) collected from factory housing and from girls' dormitories on university campus were approximately one to three orders of magnitude higher than in parallel samples from other areas. The consequences of MSs exposure were investigated by measuring MSs levels in the plasma samples of the exposed populations. Relatively high levels of cyclic MSs (CMSs: D4-D6) were found in the plasma of the co-resident family members of factory workers and in female college students living in campus dormitories. The highest levels of CMSs (D4-D6) and linear MSs (L5-L16), 2.3 × 102 and 2.0 × 102 ng/mL, respectively, were detected in the very young (0-3 years old) co-resident children of factory workers. The average daily dose via inhalation (ADDinh) in different groups showed that the ADDinh values of all MSs (D4-D6, L5-L16) were one to two orders of magnitude higher in the co-resident family members of factory workers and in female college students than in other groups, indicating that both populations should be considered as potentially highly exposed to MSs. A further assessment showed that inhalation exposure is the main source of CMSs (D4-D6) in plasma for people exposed to high indoor air levels of these compounds. Although the health risk assessment showed that the health risk from inhalation exposure to D4 and D5 was acceptable for all of the studied groups based on the current chronic reference dose (cRfD), the maximum ADDinh,CMSs value in 0- to 3-year-old children was only 7.9-fold below the cRfD. Because the toxicity of other MSs is unknown, the potential health risk of MSs to very young children via inhalation exposure should be further analysed.
Collapse
Affiliation(s)
- Junyu Guo
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Ying Zhou
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Mei Sun
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jia'nan Cui
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Boya Zhang
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Jianbo Zhang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|