1
|
Cheng Q, Wang Y, Han C, Liu W, Fan G, Zhang H, Lei Z, Hu C, Zhao X. Selenium: The Toxicant for Pathogen and Pest but the Guardian of Soil and Crop. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:11495-11514. [PMID: 40317105 DOI: 10.1021/acs.jafc.5c01293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Selenium (Se) is an essential micronutrient for higher organisms and plays a beneficial role in plant growth and development. In recent years, there has been growing interest in the using of Se to enhance plant resilience, particularly in mitigating the effects of diseases and pests in agricultural systems. This review offers a comprehensive analysis of the sources and chemical forms of Se in soil, investigates the mechanisms of plant uptake and metabolism of different Se forms, and evaluates the physical and chemical inhibition of pathogens by various Se forms, as well as the role of Se in enhancing plant systemic resistance for crop protection. Additionally, we summarize current research on the role of Se in pest and disease control and explore potential future research directions, with a focus on integrating Se into sustainable agricultural practices. The insights presented in this review seek to establish a solid scientific foundation for Se-based approaches to pest control and emphasize its potential application in sustainable agriculture.
Collapse
Affiliation(s)
- Qin Cheng
- College of Resources and Environment, Huazhong Agricultural University/Research Center of Trace Elements, Wuhan 430070, China
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding 071001, China
| | - Yin Wang
- College of Resources and Environment, Huazhong Agricultural University/Research Center of Trace Elements, Wuhan 430070, China
| | - Chuang Han
- College of Resources and Environment, Huazhong Agricultural University/Research Center of Trace Elements, Wuhan 430070, China
| | - Wenju Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding 071001, China
| | - Guocheng Fan
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou 350003, China
| | - Huan Zhang
- College of Resources and Environment, Huazhong Agricultural University/Research Center of Trace Elements, Wuhan 430070, China
| | - Zheng Lei
- College of Resources and Environment, Huazhong Agricultural University/Research Center of Trace Elements, Wuhan 430070, China
| | - Chengxiao Hu
- College of Resources and Environment, Huazhong Agricultural University/Research Center of Trace Elements, Wuhan 430070, China
| | - Xiaohu Zhao
- College of Resources and Environment, Huazhong Agricultural University/Research Center of Trace Elements, Wuhan 430070, China
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes/College of Resource and Environment, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
2
|
Pei W, Dai M, Shi S, Zhang Y, Wu D, Qiao C, Sun Y, Wang J. Effects of foliar selenium spraying on the growth and selenium content and morphology of rice. FRONTIERS IN PLANT SCIENCE 2025; 16:1587159. [PMID: 40353239 PMCID: PMC12061967 DOI: 10.3389/fpls.2025.1587159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 03/27/2025] [Indexed: 05/14/2025]
Abstract
Selenium (Se), an essential micronutrient for both plants and humans, plays critical roles in crop metabolism and human physiological functions. However, optimizing Se biofortification strategies to enhance grain Se accumulation while mitigating potential agronomic trade-offs remains a significant challenge. In this study, foliar applications of sodium selenite at concentrations of 0.0075 kg/hm² (FX01) and 0.015 kg/hm² (FX02) were administered during the full heading stage of rice (Oryza sativa L.) to systematically investigate Se uptake, interorgan translocation, and organic Se speciation in grains. Results demonstrated that foliar Se application significantly increased total Se contents and accumulation across rice tissues, with FX02 exhibiting superior enhancement compared to FX01. Specifically, total Se and organic Se contents in rice grains of FX02 were 2.76- and 2.77-fold compared to FX01, respectively. Translocation dynamics revealed that foliar treatment reduced Se transfer rates from leaves to husks and stems, while FX02 markedly improved phloem-mediated Se remobilization from leaves to grains. The Se translocation factor (TF) from leaves to grains increased to 0.71 under FX02, compared to 0.44 in FX01 and 0.60 in CK, indicating enhanced efficiency of Se redistribution under FX02. Spatial partitioning analysis further confirmed reduced Se retention in stems and husks alongside elevated accumulation in leaves under foliar treatments. Notably, Se accumulation in rice grains reached 24% under FX02, significantly higher than CK (15%) and FX01 (14%). Foliar Se application also increased the total organic Se and different organic Se forms contents in grains and altered its composition by reducing the proportion of RNA-bound Se. Temporal analysis revealed that total Se concentrations in rice tissues rose sharply within the first 14 days post-application, followed by a decline in vegetative tissues but a continued increase in grains after 31 days. In addition, grain Se enrichment showed no significant correlation with yield-related agronomic parameters. This study elucidates the dynamic transport-transformation mechanisms of foliar-applied Se in rice, providing a theoretical framework for designing precision Se biofortification strategies that synergistically improve grain nutritional quality and field adaptability.
Collapse
Affiliation(s)
- Wenxia Pei
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, China
| | - Mengya Dai
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, China
| | - Sheng Shi
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, China
| | - Yuan Zhang
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, China
| | - Daxia Wu
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, China
| | - Cece Qiao
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, China
| | - Yafei Sun
- ECO−Environment Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jianfei Wang
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, China
| |
Collapse
|
3
|
Wang J, Pi Y, Li Y, Wang H, Huang K, Wang X, Xia H, Zhang X, Liang D, Lv X, Lin L. Transcriptome and metabolome analyses reveal the promoting effects of arbuscular mycorrhizal fungi on selenium uptake in grapevines. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109456. [PMID: 39742784 DOI: 10.1016/j.plaphy.2024.109456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025]
Abstract
To improve the selenium (Se) uptake in grapes, the effects of arbuscular mycorrhizal fungi (AMF) on the Se accumulation in grapevines were studied under a soil Se concentration of 5 mg/kg, and the transcriptome and metabolome sequencing were used to elucidate the regulatory mechanism of AMF on Se accumulation. AMF initially decreased the biomass of grapevines, but later increased the biomass. Moreover, AMF enhanced the activities of Se metabolism enzymes (adenosine triphosphate sulfurylase, adenosine 5'-phosphosulfate reductase, serine acetyltransferase, and cysteine methyltransferase) and the Se concentration in grapevines. Compared to Se treatment alone, AMF resulted in a 20% increase in root Se concentration and a 21% increase in shoot Se concentration 60 days after treatment. Transcriptome and metabolome analyses revealed that AMF up-regulated the expression levels of inorganic phosphate transporter proteins 1-11 and down-regulated the expression levels of ABC transporter family members, water channel proteins, and sulfur transporter proteins in grapevines. In addition, AMF elevated the levels of hesperidin, naringenin, apigenin, neohesperidin, pine sapogenin, and rutin in grapevines. Therefore, AMF can enhance Se accumulation in grapes by modulating the phosphate transport pathway and the biosynthesis of secondary metabolites involved in the phenylpropane biosynthesis pathway, flavonoid biosynthesis pathway, and flavonoid and flavonol biosynthesis pathway.
Collapse
Affiliation(s)
- Jin Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yong Pi
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuxin Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hao Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kewen Huang
- Institute of Horticulture, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, 611130, China
| | - Xun Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hui Xia
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoli Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dong Liang
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xiulan Lv
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Lijin Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
4
|
Ali A, Mashwani ZUR, Raja NI, Mohammad S, Ahmad MS, Luna-Arias JP. Exposure of Caralluma tuberculata to biogenic selenium nanoparticles as in vitro rooting agent: Stimulates morpho-physiological and antioxidant defense system. PLoS One 2024; 19:e0297764. [PMID: 38598493 PMCID: PMC11006134 DOI: 10.1371/journal.pone.0297764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/11/2024] [Indexed: 04/12/2024] Open
Abstract
The commercial-scale production of Caralluma tuberculata faces significant challenges due to lower seed viability and sluggish rate of root growth in natural conditions. To overcome these obstacles, using phyto-mediated selenium nanomaterials as an in vitro rooting agent in plant in vitro cultures is a promising approach to facilitate rapid propagation and enhance the production of valuable therapeutic compounds. This study aimed to investigate the impact of phytosynthesized selenium nanoparticles (SeNPs) on the morphological growth attributes, physiological status, and secondary metabolite fabrication in in vitro propagated Caralluma tuberculata. The results demonstrated that a lower dose of SeNPs (100 μg/L) along with plant growth regulators (IBA 1 mg/L) had an affirmative effect on growth parameters and promoted earliest root initiation (4.6±0.98 days), highest rooting frequency (68.21±5.12%), number of roots (6.3±1.8), maximum fresh weight (710±6.01 mg) and dry weight (549.89±6.77 mg). However, higher levels of SeNPs (200 and 400 μg/L) in the growth media proved detrimental to growth and development. Further, stress caused by SeNPs at 100 μg/L along with PGRs (IBA 1 mg/L) produced a higher level of total chlorophyll contents (32.66± 4.36 μg/ml), while cultures exposed to 200 μg/L SeNPs alone exhibited the maximum amount of proline contents (10.5± 1.32 μg/ml). Interestingly, exposure to 400 μg/L SeNPs induced a stress response in the cultures, leading to increased levels of total phenolic content (3.4 ± 0.052), total flavonoid content (1.8 ± 0.034), and antioxidant activity 82 ± 4.8%). Furthermore, the combination of 100 μg/L SeNPs and plant growth regulators (1 mg/L IBA) led to accelerated enzymatic antioxidant activities, including superoxide dismutase (SOD = 4.4 ± 0.067 U/mg), peroxidase dismutase (POD = 3.3 ± 0.043 U/mg), catalase (CAT = 2.8 ± 0.048 U/mg), and ascorbate peroxidase (APx = 1.6 ± 0.082 U/mg). This is the first report that highlights the efficacy of SeNPs in culture media and presents a promising approach for the commercial propagation of C. tuberculata with a strong antioxidant defense system in vitro.
Collapse
Affiliation(s)
- Amir Ali
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
- Biotechnology Laboratory, Agricultural Research Institute (ARI) Tarnab, Peshawar, Pakistan
| | - Zia-ur-Rehman Mashwani
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
- Pakistan Academy of Sciences, Islamabad, Pakistan
| | - Naveed Iqbal Raja
- Department of Botany, PMAS Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Sher Mohammad
- Biotechnology Laboratory, Agricultural Research Institute (ARI) Tarnab, Peshawar, Pakistan
| | - M. Sheeraz Ahmad
- University Institute of Biochemistry and Biotechnology (UIBB), PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Juan Pedro Luna-Arias
- Department of Cell Biology and Nanoscience and Nanotechnology Ph.D. Program, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| |
Collapse
|
5
|
Klaczek CE, Goss GG, Glover CN. Mechanistic characterization of waterborne selenite uptake in the water flea, Daphnia magna, indicates water chemistry affects toxicity in coal mine-impacted waters. CONSERVATION PHYSIOLOGY 2024; 12:coad108. [PMID: 38293640 PMCID: PMC10823350 DOI: 10.1093/conphys/coad108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/20/2023] [Accepted: 12/15/2023] [Indexed: 02/01/2024]
Abstract
Concentrations of selenium that exceed regulatory guidelines have been associated with coal mining activities and have been linked to detrimental effects on aquatic ecosystems and the organisms therein. Although the major route of selenium uptake in macroinvertebrates is via the diet, the uptake of waterborne selenite (HSeO3-), the prominent form at circumneutral pH, can be an important contributor to selenium body burden and thus selenium toxicity. In the current study, radiolabelled selenite (Se75) was used to characterize the mechanism of selenite uptake in the water flea, Daphnia magna. The concentration dependence (1-32 μM) of selenite uptake was determined in 1-hour uptake assays in artificial waters that independently varied in bicarbonate, chloride, sulphate, phosphate and selenate concentrations. At concentrations representative of those found in highly contaminated waters, selenite uptake was phosphate-dependent and inhibited by foscarnet, a phosphate transport inhibitor. At higher concentrations, selenite uptake was dependent on waterborne bicarbonate concentration and inhibited by the bicarbonate transporter inhibitor DIDS (4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid). These findings suggest that concentrations of phosphate in coal mining-affected waters could alter selenite uptake in aquatic organisms and could ultimately affect the toxic impacts of selenium in such waters.
Collapse
Affiliation(s)
- Chantelle E Klaczek
- Department of Biological Sciences, CW 405 Biological Sciences Bldg., University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Greg G Goss
- Department of Biological Sciences, CW 405 Biological Sciences Bldg., University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Chris N Glover
- Department of Biological Sciences, CW 405 Biological Sciences Bldg., University of Alberta, Edmonton, Alberta T6G 2E9, Canada
- Faculty of Science and Technology and Athabasca River Basin Research Institute, Athabasca University, 1 University Dr., Athabasca, Alberta T9S 3A3, Canada
| |
Collapse
|
6
|
Zheng Q, Guo L, Huang J, Hao X, Li X, Li N, Wang Y, Zhang K, Wang X, Wang L, Zeng J. Comparative transcriptomics provides novel insights into the mechanisms of selenium accumulation and transportation in tea cultivars ( Camellia sinensis (L.) O. Kuntze). FRONTIERS IN PLANT SCIENCE 2023; 14:1268537. [PMID: 37849840 PMCID: PMC10577196 DOI: 10.3389/fpls.2023.1268537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/08/2023] [Indexed: 10/19/2023]
Abstract
Tea plants (Camellia sinensis) show discrepancies in selenium accumulation and transportation, the molecular mechanisms of which are not well understood. Hence, we aimed to conduct a systematic investigation of selenium accumulation and transportation mechanisms in different tea cultivars via transcriptome analysis. The Na2SeO3 and Na2SeO4 treatments improved selenium contents in the roots and leaves of three tea cultivars. The high selenium-enrichment ability (HSe) tea cultivars accumulated higher selenium contents in the leaves than did the low selenium-enrichment ability (LSe) tea cultivars. Transcriptome analysis revealed that differentially expressed genes (DEGs) under the Na2SeO3 and Na2SeO4 treatments were enriched in flavonoid biosynthesis in leaves. DEGs under the Na2SeO3 treatment were enriched in glutathione metabolism in the HSe tea cultivar roots compared to those of the LSe tea cultivar. More transporters and transcription factors involved in improving selenium accumulation and transportation were identified in the HSe tea cultivars under the Na2SeO3 treatment than in the Na2SeO4 treatment. In the HSe tea cultivar roots, the expression of sulfate transporter 1;2 (SULTR1;2) and SULTR3;4 increased in response to Na2SeO4 exposure. In contrast, ATP-binding cassette transporter genes (ABCs), glutathione S-transferase genes (GSTs), phosphate transporter 1;3 (PHT1;3), nitrate transporter 1 (NRT1), and 34 transcription factors were upregulated in the presence of Na2SeO3. In the HSe tea cultivar leaves, ATP-binding cassette subfamily B member 11 (ABCB11) and 14 transcription factors were upregulated under the Na2SeO3 treatment. Among them, WRKY75 was explored as a potential transcription factor that regulated the accumulation of Na2SeO3 in the roots of HSe tea cultivars. This study preliminary clarified the mechanism of selenium accumulation and transportation in tea cultivars, and the findings have important theoretical significance for the breeding and cultivation of selenium-enriched tea cultivars.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Lu Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Jianming Zeng
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
7
|
Mishra P, Mishra J, Arora NK. Biofortification revisited: Addressing the role of beneficial soil microbes for enhancing trace elements concentration in staple crops. Microbiol Res 2023; 275:127442. [PMID: 37437425 DOI: 10.1016/j.micres.2023.127442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/07/2023] [Accepted: 06/23/2023] [Indexed: 07/14/2023]
Abstract
Trace element deficiency is a pervasive issue contributing to malnutrition on a global scale. The primary cause of this hidden hunger is related to low dietary intake of essential trace elements, which is highly prevalent in numerous regions across the world. To address deficiency diseases in humans, fortification of staple crops with vital trace elements has emerged as a viable solution. Current methods for fortifying crops encompass chemical amendments, genetic breeding, and transgenic approaches, yet these approaches possess certain limitations, constraining their agricultural application. In contrast, fortifying staple crops through the utilization of soil-beneficial microbes has emerged as a promising and economically feasible approach to enhance trace element content in crops. A specific subset of these beneficial soil microbes, referred to as plant growth-promoting microbes, have demonstrated their ability to influence the interactions between plants, soil, and minerals. These microbes facilitate the transport of essential soil minerals, such as zinc, iron, and selenium, into plants, offering the potential for the development of tailored bioinoculants that can enhance the nutritional quality of cereals, pulses, and vegetable crops. Nevertheless, further research efforts are necessary to comprehensively understand the molecular mechanisms underlying the uptake, transport, and augmentation of trace element concentrations in staple crops. By delving deeper into these mechanisms, customized bioinoculants of soil-beneficial microbes can be developed to serve as highly effective strategies in combating trace element deficiency and promoting global nutritional well-being.
Collapse
Affiliation(s)
- Priya Mishra
- Department of Environmental Science, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| | - Jitendra Mishra
- Department of Environmental Science, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| | - Naveen Kumar Arora
- Department of Environmental Science, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India.
| |
Collapse
|
8
|
Cheng H, Li L, Dong J, Wang S, Wu S, Rao S, Li L, Cheng S, Li L. Transcriptome and physiological determination reveal the effects of selenite on the growth and selenium metabolism in mung bean sprouts. Food Res Int 2023; 169:112880. [PMID: 37254328 DOI: 10.1016/j.foodres.2023.112880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 06/01/2023]
Abstract
Selenium (Se) biofortification of crops has been studied to substantially improve the Se content in human dietary food intake. In the present study, Vigna radiata (mung bean) seeds were soaked in different concentrations of sodium selenite (Na2SeO3). Low concentration of selenite is conducive to seed germination and growth, and can increase the fresh weight (FW) and dry weight (DW) of sprouts. The concentration of Na2SeO3 lower than 50 mg/kg resulted in noticeable elongation in the stem and marginal elongation in root. Mung bean seeds soaked with 80 mg/kg Na2SeO3 accounted for 93.77% of organic Se after growing for about 5 days. Transcriptome data revealed that Se treatment enhances starch and sugar metabolism, along with the up-regulation of ribosomal protein and DNA synthesis related genes. Further analysis indicated that the mung bean seeds absorbed Na2SeO3 through PHT1.1 and NIP2. Se (IV) was transformed into Se (VI) and transported to stems, leaves and roots through cotyledons during the germination of bean sprouts. SULTR3;3 may play an important role in the transit process. Se (VI) or Se (IV) transported to the leaves was catalytically transformed into SeCys through SiR and CS, and SeCys is further converted to MeSeCys through SMT. Most SeCys were transformed into SeHCys through CBL, transported to plastids, and finally transformed into SeMet through Met Synthase.
Collapse
Affiliation(s)
- Hua Cheng
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; College of Biology and Agricultural Resources, Huanggang Normal University, Hubei Huanggang 438000, China
| | - Lei Li
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China
| | - Jingzhou Dong
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China
| | - Shiyan Wang
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China
| | - Shuai Wu
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China
| | - Shen Rao
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China
| | - Li Li
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China
| | - Shuiyuan Cheng
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China
| | - Linling Li
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; College of Biology and Agricultural Resources, Huanggang Normal University, Hubei Huanggang 438000, China.
| |
Collapse
|
9
|
Vidya CSN, Shetty R, Bokor B, Fialová I, Luxová M, Jašková K, Vaculík M. Do Antimonite and Silicon Share the Same Root Uptake Pathway by Lsi1 in Sorghum bicolor L. Moench? PLANTS (BASEL, SWITZERLAND) 2023; 12:2368. [PMID: 37375993 DOI: 10.3390/plants12122368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/18/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023]
Abstract
A study was conducted to further develop our understanding of antimony (Sb) uptake in plants. Unlike other metal(loid)s, such as silicon (Si), the mechanisms of Sb uptake are not well understood. However, SbIII is thought to enter the cell via aquaglyceroporins. We investigated if the channel protein Lsi1, which aids in Si uptake, also plays a role in Sb uptake. Seedlings of WT sorghum, with normal silicon accumulation, and its mutant (sblsi1), with low silicon accumulation, were grown in Hoagland solution for 22 days in the growth chamber under controlled conditions. Control, Sb (10 mg Sb L-1), Si (1mM) and Sb + Si (10 mg Sb L-1 + 1 mM Si) were the treatments. After 22 days, root and shoot biomass, the concentration of elements in root and shoot tissues, lipid peroxidation and ascorbate levels, and relative expression of Lsi1 were determined. When mutant plants were exposed to Sb, they showed almost no toxicity symptoms compared to WT plants, indicating that Sb was not toxic to mutant plants. On the other hand, WT plants had decreased root and shoot biomass, increased MDA content and increased Sb uptake compared to mutant plants. In the presence of Sb, we also found that SbLsi1 was downregulated in the roots of WT plants. The results of this experiment support the role of Lsi1 in Sb uptake in sorghum plants.
Collapse
Affiliation(s)
- Chirappurathu Sukumaran Nair Vidya
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 14, SK-845 23 Bratislava, Slovakia
| | - Rajpal Shetty
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 14, SK-845 23 Bratislava, Slovakia
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina B2, Ilkovicova 6, SK-842 15 Bratislava, Slovakia
| | - Boris Bokor
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina B2, Ilkovicova 6, SK-842 15 Bratislava, Slovakia
- Comenius University Science Park, SK-841 04 Bratislava, Slovakia
| | - Ivana Fialová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 14, SK-845 23 Bratislava, Slovakia
| | - Miroslava Luxová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 14, SK-845 23 Bratislava, Slovakia
| | - Katarína Jašková
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 14, SK-845 23 Bratislava, Slovakia
| | - Marek Vaculík
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 14, SK-845 23 Bratislava, Slovakia
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina B2, Ilkovicova 6, SK-842 15 Bratislava, Slovakia
| |
Collapse
|
10
|
Cheng C, Coldea TE, Yang H, Zhao H. Selenium Uptake, Translocation, and Metabolization Pattern during Barley Malting: A Comparison of Selenate, Selenite, and Selenomethionine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5240-5249. [PMID: 36961403 DOI: 10.1021/acs.jafc.3c00273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Selenium (Se) is an essential trace element for human and animal health. Understanding the uptake and translocation of Se in crops is critical from the perspective of Se biofortification. In this study, barley was malted to investigate the uptake, translocation, and metabolism of exogenous Se including Na2SeO4, Na2SeO3, and selenomethionine (Se-Met). The results showed that the uptake rates of different forms of Se in barley decreased in the following order: Se-Met > Na2SeO3 > Na2SeO4, with the peak uptake occurring at the end of the steeping stages. In the early stages of germination, Se was mainly distributed in the husk and endosperm. Exogenous Se upregulated the transcription levels of Se transport and metabolic enzyme genes in the barley to varying degrees, which promoted Se transformation in various tissues, and improved Se bioeffectiveness. Compared to the Na2SeO3 and Se-Met groups, more Se was transferred from husk and endosperm to acrospire and rootlets in the Na2SeO4 group during the germination stage. Na2SeO4 and Se-Met stimulated the development of rootlets, and accelerated Se metabolism, resulting in a higher Se loss rate. Thus, these comparative findings provide new insights into Se uptake, transformation, and metabolization in barley.
Collapse
Affiliation(s)
- Chao Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Teodora Emilia Coldea
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca 400372, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Floreşti, Cluj-Napoca 400509, Romania
| | - Huirong Yang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
11
|
Yang C, Wang C, Khan Z, Duan S, Li Z, Shen H. Algal polysaccharides-Selenium nanoparticles regulate the uptake and distribution of selenium in rice plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1135080. [PMID: 36968401 PMCID: PMC10036908 DOI: 10.3389/fpls.2023.1135080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Selenium (Se) is an essential trace element required for proper human and animal health. METHODS In this paper, we investigated the uptake and distribution characteristics of a new Se fertilizer, which comprises algal polysaccharides-selenium nanoparticles (APS-SeNPs), in rice plants in both hydroponic and pot experiments. RESULTS The results from the hydroponic experiments revealed that the rice root uptake of APS-SeNPs fitted the Michaelis-Menten equation, with a V max of 13.54 μg g-1 root dry weight (DW) per hour, which was 7.69 and 2.23 times those of selenite and selenate treatments, respectively. The root uptake of APS-SeNPs was inhibited by AgNO3 (64.81%-79.09%) and carbonyl cyanide 3-chlorophenylhydrazone (CCCP; 19.83%-29.03%), indicating that the uptake of APS-SeNPs by rice roots is mainly via aquaporins and is also affected by metabolic activity. Moreover, sulfur deficiency caused rice roots to absorb more APS-SeNPs, but treatment with APS-SeNPs increased the expression of the sulfate transporter OsSULTR1;2 in the roots, suggesting that OsSULTR1;2 is probably involved in the uptake of APS-SeNPs. The application of APS-SeNPs significantly increased the Se content in rice plants and the apparent Se uptake efficiency compared with selenate and selenite treatments. Most of the Se in the roots of rice plants was distributed in the cell wall, while it was primarily located in the cytosol in the shoots when treated with APS-SeNPs. The results from the pot experiments indicated that the application of Se enhanced the Se content of each rice tissue. It is worth noting that the Se content in brown rice under APS-SeNP treatment was higher than that under selenite or selenate treatment and was mainly concentrated in the embryo end, with the Se in organic form. DISCUSSION Our findings provide important insights into the uptake mechanism and the distribution of APS-SeNPs in rice plants.
Collapse
|
12
|
Ma Y, Zhang N, Li Y, Zhao H, Zhou F, Xue M, Lyu L, Yang J, Man YB, Wu F, Liang D. Differences in selenium concentration and bioavailability between paddy and dryland soils of China: A study based on literature collection and field sampling. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130467. [PMID: 36495638 DOI: 10.1016/j.jhazmat.2022.130467] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/28/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Lack systematic understanding of differences in environmental behavior of selenium between paddy and dryland soils affects Se biofortification and leads to human Se-related health risks. Therefore, this study investigated differences in Se concentration and bioavailability between paddy and dryland soils using data collected from literatures and field sampling. Our analysis showed paddy soil Se concentration in Se-rich area of China was significantly lower than that in dryland soil. Selenium biological concentration factor of rice grain (BCFgrain) in Se-rich area was lower than that in non-Se-rich area attributed to higher percentage of selenite in available Se. Concentration and percentage of available Se were in dryland soil lower than those in paddy soil and this affected BCFgrain of maize, whereas BCFgrain of rice was further influenced by its Se transport capacity. The ranges of Se concentration in Se-rich paddy (0.14-3.63 mg kg-1) and dryland (0.45-1.17 mg kg-1) soils were derived using a linear regression model. The current soil Se concentration evaluation standard was only suitable for dryland but overestimated Se-deficiency and Se-toxicity levels in paddy field. The present study provides theoretical foundations for understanding Se concentrations and bioavailability in soils and selecting efficient and safe approach on cultivated land use.
Collapse
Affiliation(s)
- Yuanzhe Ma
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Nanchun Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanan Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haolin Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fei Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingyue Xue
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lihui Lyu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Jing Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Yu Ban Man
- Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong
| | - Fuyong Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| | - Dongli Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| |
Collapse
|
13
|
Mushtaq NU, Alghamdi KM, Saleem S, Shajar F, Tahir I, Bahieldin A, Rehman RU, Hakeem KR. Selenate and selenite transporters in proso millet: Genome extensive detection and expression studies under salt stress and selenium. FRONTIERS IN PLANT SCIENCE 2022; 13:1060154. [PMID: 36531352 PMCID: PMC9748351 DOI: 10.3389/fpls.2022.1060154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Crops are susceptible to a variety of stresses and amongst them salinity of soil is a global agronomic challenge that has a detrimental influence on crop yields, thus posing a severe danger to our food security. Therefore, it becomes imperative to examine how plants respond to salt stress, develop a tolerance that allows them to live through higher salt concentrations and choose species that can endure salt stress. From the perspective of food, security millets can be substituted to avoid hardships because of their efficiency in dealing with salt stress. Besides, this problem can also be tackled by using beneficial exogenous elements. Selenium (Se) which exists as selenate or selenite is one such cardinal element that has been reported to alleviate salt stress. The present study aimed for identification of selenate and selenite transporters in proso millet (Panicum miliaceum L.), their expression under NaCl (salt stress) and Na2SeO3 (sodium selenite)treatments. This study identified eight transporters (RLM65282.1, RLN42222.1, RLN18407.1, RLM74477.1, RLN41904.1, RLN17428.1, RLN17268.1, RLM65753.1) that have a potential role in Se uptake in proso millet. We analyzed physicochemical properties, conserved structures, sub-cellular locations, chromosome location, molecular phylogenetic analysis, promoter regions prediction, protein-protein interactions, three-dimensional structure modeling and evaluation of these transporters. The analysis revealed the chromosome location and the number of amino acids present in these transporters as RLM65282.1 (16/646); RLN42222.1 (1/543); RLN18407.1 (2/483); RLM74477.1 (15/474); RLN41904.1 (1/521); RLN17428.1 (2/522); RLN17268.1(2/537);RLM65753.1 (16/539). The sub-cellular locations revealed that all the selenite transporters are located in plasma membrane whereas among selenate transporters RLM65282.1 and RLM74477.1 are located in mitochondria and RLN42222.1 and RLN18407.1 in chloroplast. The transcriptomic studies revealed that NaCl stress decreased the expression of both selenate and selenite transporters in proso millet and the applications of exogenous 1µM Se (Na2SeO3) increased the expression of these Se transporter genes. It was also revealed that selenate shows similar behavior as sulfate, while selenite transport resembles phosphate. Thus, it can be concluded that phosphate and sulphate transporters in millets are responsible for Se uptake.
Collapse
Affiliation(s)
- Naveed Ul Mushtaq
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Khalid M. Alghamdi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Seerat Saleem
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Faamiya Shajar
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Inayatullah Tahir
- Department of Botany, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Ahmad Bahieldin
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Reiaz Ul Rehman
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Public Health, Daffodil International University, Dhaka, Bangladesh
| |
Collapse
|
14
|
Wang M, Zhou F, Cheng N, Chen P, Ma Y, Zhai H, Qi M, Liu N, Liu Y, Meng L, Bañuelos GS, Liang D. Soil and foliar selenium application: Impact on accumulation, speciation, and bioaccessibility of selenium in wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:988627. [PMID: 36186067 PMCID: PMC9516304 DOI: 10.3389/fpls.2022.988627] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
A comprehensive study in selenium (Se) biofortification of staple food is vital for the prevention of Se-deficiency-related diseases in human beings. Thus, the roles of exogenous Se species, application methods and rates, and wheat growth stages were investigated on Se accumulation in different parts of wheat plant, and on Se speciation and bioaccessibility in whole wheat and white all-purpose flours. Soil Se application at 2 mg kg-1 increased grains yield by 6% compared to control (no Se), while no significant effects on yield were observed with foliar Se treatments. Foliar and soil Se application of either selenate or selenite significantly increased the Se content in different parts of wheat, while selenate had higher bioavailability than selenite in the soil. Regardless of Se application methods, the Se content of the first node was always higher than the first internode. Selenomethionine (SeMet; 87-96%) and selenocystine (SeCys2; 4-13%) were the main Se species identified in grains of wheat. The percentage of SeMet increased by 6% in soil with applied selenite and selenate treatments at 0.5 mg kg-1 and decreased by 12% compared with soil applied selenite and selenate at 2 mg kg-1, respectively. In addition, flour processing resulted in losses of Se; the losses were 12-68% in white all-purpose flour compared with whole wheat flour. The Se bioaccessibility in whole wheat and white all-purpose flours for all Se treatments ranged from 6 to 38%. In summary, foliar application of 5 mg L-1 Se(IV) produced wheat grains that when grounds into whole wheat flour, was the most efficient strategy in producing Se-biofortified wheat. This study provides an important reference for the future development of high-quality and efficient Se-enriched wheat and wheat flour processing.
Collapse
Affiliation(s)
- Min Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, China
| | - Fei Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Nan Cheng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Ping Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuanzhe Ma
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Hui Zhai
- Key Laboratory of Oasis Ministry of Education, College of Ecology and Environment, Xinjiang University, Urumqi, China
| | - Mingxing Qi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Nana Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
- Center of Regional Watershed Environment Comprehensive Control Technology in Jiangsu Province, Academy of Environmental Planning & Design, Co., Ltd, Nanjing University, Nanjing, China
| | - Yang Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Li Meng
- School of Arts, Ankang University, Ankang, Shaanxi, China
| | - Gary S. Bañuelos
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, United States
| | - Dongli Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| |
Collapse
|
15
|
Li M, Song N, Song X, Liu J, Su B, Chen X, Guo X, Li M, Zong Q. Investigating and modeling the toxicity of arsenate on wheat root elongation: Assessing the effects of pH, sulfate and phosphate. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113633. [PMID: 35598446 DOI: 10.1016/j.ecoenv.2022.113633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Excessive arsenic in soil and groundwater will not only seriously affect the growth of plants, but also endanger human health through the food chain. However, there are few studies on the effects of metalloid speciation and anion competition on the toxicity of arsenate [As(Ⅴ)]. To investigate the effects of accompanying anions and pH on the toxicity of As(Ⅴ) on wheat root elongation, wheat roots were exposed to the concentrations of As(Ⅴ) in the solution ranged from 0 to 500 mM and different levels of pH (4.5-8.0) and different accompanying anions (H2PO4-, SO42-, NO3- and Cl-) for five days. The root length of wheat was measured and the biotic ligand model (BLM) was developed to predict the potential toxicity of As(V) speciation to wheat roots. The results illustrated that EC50 of total As(V) (EC50{As(Ⅴ)T}) values increased from 6.88 to 33.9 μM with increasing pH values from 4.5 to 8.0, suggesting that increasing pH alleviated As(Ⅴ) toxicity. The EC50{AsO43-} and EC50{HAsO42-} values increased from 0.001 to 4342 μM and from 0.0214 to 27.4 μM, respectively, while the EC50{H2AsO4-} and EC50{H3AsO4} values sharply decreased from 6.62 to 2.68 μM and from 41.8 μM to 5.34 nm, respectively, when pH increased from 4.5 to 8.0. The toxicity of As(Ⅴ) decreased as the H2PO4- and SO42- activities increased but not when the activities of NO3- and Cl- increased, indicating that SO42- and H2PO4- showed competitive effects with As(Ⅴ) on the binding sites. Based on BLM theory, the stability constants were obtained: [Formula: see text] = 3.70; [Formula: see text] = 4.08; [Formula: see text] = 4.77; [Formula: see text] = 6.50; [Formula: see text] = 2.09 and [Formula: see text] = 1.86, with fAsBL50%= 0.30 and β = 1.73. Results implied that BLM performed well in As(Ⅴ) toxicity prediction when coupling toxic species AsO43-, HAsO42-, H2AsO4-, and H3AsO4, and the competition of SO42- and H2PO4- for binding sites. The current study provides a useful tool to accurately predict As(V) toxicity to wheat roots.
Collapse
Affiliation(s)
- Mengjia Li
- Qingdao Engineering Research Center for Rural Environment/School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Ningning Song
- Qingdao Engineering Research Center for Rural Environment/School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Xin Song
- Qingdao Engineering Research Center for Rural Environment/School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Jun Liu
- Qingdao Engineering Research Center for Rural Environment/School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Baokun Su
- Qingdao Engineering Research Center for Rural Environment/School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaodong Chen
- Qingdao Engineering Research Center for Rural Environment/School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaohong Guo
- School of Resources and Environmental Engineering, Ludong University, Yantai 264025, China
| | - Meng Li
- Shandong Institute of Sericulture, Yantai 264001, China
| | - Quanli Zong
- Qingdao Engineering Research Center for Rural Environment/School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
16
|
Peng Q, Zhang Z, Su R, Zhang X, Lambers H, He H. Phosphorus and selenium uptake, root morphology, and carboxylates in the rhizosheath of alfalfa (Medicago sativa) as affected by localised phosphate and selenite supply in a split-root system. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:1161-1174. [PMID: 34582744 DOI: 10.1071/fp21031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 08/05/2021] [Indexed: 05/12/2023]
Abstract
Low availability of phosphorus (P) is a key limiting factor for the growth of many crops. Selenium (Se) is a nutrient for humans that is acquired predominantly from plants. Localised P and Se supply may affect P- and Se-uptake efficiency. Our aim was to examine the mechanisms of alfalfa (Medicago sativa L.) to acquire P and Se when the elements are heterogeneously or homogeneously distributed in soil, and how P and Se supply affect plant growth and uptake of P and Se. We conducted a split-root experiment growing alfalfa in a loess soil with two distribution patterns (i.e. heterogeneous and homogeneous) of P and Se. The application rates of P (KH2PO4) and Se (Na2SeO3) were 0 and 20mgPkg-1, and 0 and 1mgSekg-1, respectively. Our results showed that plants absorbed more Se when both P and Se were supplied homogeneously than when supplied heterogeneously. Supplying Se had a positive effect on plant P content. Localised P supply resulted in the exudation of more carboxylates by roots than homogeneous P supply did. Soil microbial biomass P was significantly greater when P was supplied homogeneously. Shoot-to-root translocation of Se had a positive effect on P-uptake efficiency. These results indicated that, compared with homogeneous P supply, localised P supply promoted P and Se uptake by increasing the amount of rhizosheath carboxylates and weakening the competition between roots and microbes. Translocation of Se within plant organs was promoted by the application of P, thus enhancing the P-uptake efficiency of alfalfa.
Collapse
Affiliation(s)
- Qi Peng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China; and Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China; and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zekun Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China; and College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rui Su
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China; and College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xingchang Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China; and Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China; and College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hans Lambers
- School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia; and The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA 6009, Australia; and Department of Plant Nutrition, China Agricultural University, Beijing 100193, China
| | - Honghua He
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China; and Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China; and College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; and School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
17
|
Golubkina N, Moldovan A, Kekina H, Kharchenko V, Sekara A, Vasileva V, Skrypnik L, Tallarita A, Caruso G. Joint Biofortification of Plants with Selenium and Iodine: New Field of Discoveries. PLANTS (BASEL, SWITZERLAND) 2021; 10:1352. [PMID: 34371555 PMCID: PMC8309223 DOI: 10.3390/plants10071352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 05/04/2023]
Abstract
The essentiality of selenium (Se) and iodine (I) to human beings and the widespread areas of selenium and iodine deficiency determine the high significance of functional food production with high levels of these elements. In this respect, joint biofortification of agricultural crops with Se and I is especially attractive. Nevertheless, in practice this topic has raised many problems connected with the possible utilization of many Se and I chemical forms, different doses and biofortification methods, and the existence of wide species and varietal differences. The limited reports relevant to this subject and the multiplicity of unsolved questions urge the need for an adequate evaluation of the results obtained up-to-date, useful for developing further future investigations. The present review discusses the outcome of joint plant Se-I biofortification, as well as factors affecting Se and I accumulation in plants, paying special attention to unsolved issues. A particular focus has been given to the prospects of herb sprouts production enriched with Se and I, as well as the interactions between the latter microelements and arbuscular-mycorrhizal fungi (AMF).
Collapse
Affiliation(s)
- Nadezhda Golubkina
- Laboratory Analytical Department, Federal Scientific Center of Vegetable Production, Moscow 143072, Russia; (A.M.); (V.K.)
| | - Anastasia Moldovan
- Laboratory Analytical Department, Federal Scientific Center of Vegetable Production, Moscow 143072, Russia; (A.M.); (V.K.)
| | - Helene Kekina
- Medical Academy of Post Graduate Education, Moscow 123995, Russia;
| | - Victor Kharchenko
- Laboratory Analytical Department, Federal Scientific Center of Vegetable Production, Moscow 143072, Russia; (A.M.); (V.K.)
| | - Agnieszka Sekara
- Department of Horticulture, Faculty of Biotechnology and Horticulture, University of Agriculture, 31-120 Krakow, Poland;
| | - Viliana Vasileva
- Institute of Forage Crops, 89 General Vladimir Vazov Str, 5802 Pleven, Bulgaria;
| | - Liubov Skrypnik
- Institute of Living Systems, Immanuel Kant Baltic Federal University, Kaliningrad 236040, Russia;
| | - Alessio Tallarita
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Naples, Italy; (A.T.); (G.C.)
| | - Gianluca Caruso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Naples, Italy; (A.T.); (G.C.)
| |
Collapse
|
18
|
Jiang H, Lin W, Jiao H, Liu J, Chan L, Liu X, Wang R, Chen T. Uptake, transport, and metabolism of selenium and its protective effects against toxic metals in plants: a review. Metallomics 2021; 13:6310585. [PMID: 34180517 DOI: 10.1093/mtomcs/mfab040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/21/2021] [Accepted: 06/25/2021] [Indexed: 12/19/2022]
Abstract
Selenium (Se) is an essential trace element of fundamental importance to humans, animals, and plants. However, the uptake, transport, and metabolic processes of Se and its underlying mechanisms in plants have not been well characterized. Here, we review our current understanding of the adsorption and assimilation of Se in plants. First, we discussed the conversion of Se from inorganic Se into organic forms, the mechanisms underlying the formation of seleno-amino acids, and the detoxification of Se. We then discussed the ways in which Se protects plants against toxic metal ions in the environment, such as by alleviating oxidative stress, regulating the activity of antioxidant enzymes, sequestering metal ions, and preventing metal ion uptake and accumulation. Generally, this review will aid future research examining the molecular mechanisms underlying the antagonistic relationships between Se and toxic metals in plants.
Collapse
Affiliation(s)
- Haiyan Jiang
- Guangdong Province Research Center for Geoanalysis, Guangzhou 510080, China
| | - Weiqiang Lin
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Hongpeng Jiao
- Guangdong Province Research Center for Geoanalysis, Guangzhou 510080, China
| | - Jinggong Liu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 111 Dade Rd, Guangzhou 510120, China
| | - Leung Chan
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Xiaoying Liu
- Shenzhen Agricultural Product Quality and Safety Inspection and Testing Center (Guangdong Provincial Key Laboratory of Supervision and Administration of Edible Agricultural Products, Market Supervision Administration), Shenzhen 518000, China
| | - Rui Wang
- Shenzhen Agricultural Product Quality and Safety Inspection and Testing Center (Guangdong Provincial Key Laboratory of Supervision and Administration of Edible Agricultural Products, Market Supervision Administration), Shenzhen 518000, China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| |
Collapse
|
19
|
Pavlovic J, Kostic L, Bosnic P, Kirkby EA, Nikolic M. Interactions of Silicon With Essential and Beneficial Elements in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:697592. [PMID: 34249069 PMCID: PMC8261142 DOI: 10.3389/fpls.2021.697592] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/27/2021] [Indexed: 05/18/2023]
Abstract
Silicon (Si) is not classified as an essential element for plants, but numerous studies have demonstrated its beneficial effects in a variety of species and environmental conditions, including low nutrient availability. Application of Si shows the potential to increase nutrient availability in the rhizosphere and root uptake through complex mechanisms, which still remain unclear. Silicon-mediated transcriptional regulation of element transporters for both root acquisition and tissue homeostasis has recently been suggested as an important strategy, varying in detail depending on plant species and nutritional status. Here, we summarize evidence of Si-mediated acquisition, uptake and translocation of nutrients: nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), iron (Fe), zinc (Zn), manganese (Mn), copper (Cu), boron (B), chlorine (Cl), and nickel (Ni) under both deficiency and excess conditions. In addition, we discuss interactions of Si-with beneficial elements: aluminum (Al), sodium (Na), and selenium (Se). This review also highlights further research needed to improve understanding of Si-mediated acquisition and utilization of nutrients and vice versa nutrient status-mediated Si acquisition and transport, both processes which are of high importance for agronomic practice (e.g., reduced use of fertilizers and pesticides).
Collapse
Affiliation(s)
- Jelena Pavlovic
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Ljiljana Kostic
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Predrag Bosnic
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Ernest A. Kirkby
- Faculty of Biological Sciences, Leeds University, Leeds, United Kingdom
| | - Miroslav Nikolic
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
20
|
Demirtas M. Evaluation of energy use and carbon dioxide emissions from the consumption of fossil fuels and agricultural chemicals for paste tomato cultivation in the Bursa region of Turkey. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:27132-27146. [PMID: 33502709 DOI: 10.1007/s11356-021-12593-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
This study was aimed to determine the fossil fuel consumption, energy use, and carbon dioxide (CO2) emissions in per unit production area (ha) considering the petroleum products (PP) directly used and the chemical fertilizers and pesticides for the cultivation of paste tomatoes in open-field conditions in Bursa region of Turkey. The primary data of the study consisted of data collected by making face-to-face surveys with the producers of paste tomatoes in the Bursa region. The direct energy inputs and CO2 emissions related to diesel fuel and lubricant oil consumptions of engines of agricultural tractors for cultivation operations and the indirect energy inputs and CO2 emissions related to the manufacturing of chemical fertilizers and plant growth regulators used for plant nutrition and pesticides used for plant protection were determined for paste tomato cultivation. A total of 288.6 L diesel fuel and 0.067 L lubrication oil are consumed per hectare when using tools and machinery in paste tomato production. A total of 408 kg of chemical fertilizers and 15.5 kg of pesticides are used per hectare in paste tomato production in the Bursa region of Turkey. A total of 2343.45 MJ/ha and 2700.5 MJ/ha indirect energy is used in the application of chemical fertilizers and pesticides, respectively. A total of 792.43 kg and 0.189 kg CO2 is released as a result of diesel fuel and lubricant oil consumptions. For the production of one kilogram of paste tomato, 2.68 grams (g) diesel fuel and lubricating oil, 175.02 kilojoules (kJ) of energy is consumed, and 15.88 g CO2 is released in the Bursa region of Turkey.
Collapse
Affiliation(s)
- Muhammet Demirtas
- General Directorate of Agricultural Research and Policies, Universities district, Dumlupınar avenue, Eskisehir road 10. km, Cankaya, 06800, Ankara, Turkey.
| |
Collapse
|
21
|
Wang M, Ali F, Qi M, Peng Q, Wang M, Bañuelos GS, Miao S, Li Z, Dinh QT, Liang D. Insights into uptake, accumulation, and subcellular distribution of selenium among eight wheat (Triticum aestivum L.) cultivars supplied with selenite and selenate. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111544. [PMID: 33254403 DOI: 10.1016/j.ecoenv.2020.111544] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 05/12/2023]
Abstract
Selenium (Se)-enriched wheat can be improved by altering Se sources and selecting wheat cultivars. Such improvement can affect subcellular distribution and speciation of Se in wheat. Thus, a pot experiment was conducted to investigate Se uptake and distribution when Se was applied as selenite or selenate at low and high rates (1 and 10 mg kg-1, respectively). Moreover, Se's impact on the grain and biomass yield of eight wheat cultivars was also investigated. The subcellular distribution and speciation of Se were also explored to elucidate Se metabolism and micro-distribution pattern in wheat. Results showed that biomass and grain yield were decreased with the application of both selenite and selenate in almost all the cultivars, regardless of the Se rate. Application high Se rate resulted in a significant (p < 0.05) decrease in grain yield and biomass compared with low rate of Se. Compared with the low rate of selenite application, the grain and the biomass yield of ZM-9023 significantly (p < 0.05) increased by about 15% for low rate of selenate application. In addition, both selenite and selenate treatment increased the uptake of Se in each part of wheat, compared with the control. Selenium was mostly accumulated in the grain and root of wheat under selenite treatment, while more Se accumulation was found in leaves and straw for selenate application. Further investigation on the subcellular distribution of Se showed that the proportion of Se in soluble fraction was significantly (p < 0.05) higher in wheat leaves than that in organelle fraction and cell walls (46%-66%). Meanwhile, Se6+ was the main species found in soluble fraction, whereas SeMet and MeSeCys were the species predominantly stored in organelle fraction. In conclusion, wheat cultivar ZM-9023 is the most Se-rich potential cultivar, and the isolation of Se in the soluble fraction plays an important role in Se tolerance and accumulation.
Collapse
Affiliation(s)
- Min Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fayaz Ali
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingxing Qi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qin Peng
- Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, Yongchuan 402160, China
| | - Mengke Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Guangdong Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Gary S Bañuelos
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648-9757, USA
| | - Shuyin Miao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhe Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, 61801 IL, USA
| | - Quang Toan Dinh
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Center for Monitoring and Environmental Protection Thanh Hoa-Department of Natural Resources and Environment of Thanh Hoa, Thanh Hoa city, Thanh Hoa, Vietnam
| | - Dongli Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
22
|
Peng Q, Wu M, Zhang Z, Su R, He H, Zhang X. The Interaction of Arbuscular Mycorrhizal Fungi and Phosphorus Inputs on Selenium Uptake by Alfalfa ( Medicago sativa L.) and Selenium Fraction Transformation in Soil. FRONTIERS IN PLANT SCIENCE 2020; 11:966. [PMID: 32676094 PMCID: PMC7333729 DOI: 10.3389/fpls.2020.00966] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/12/2020] [Indexed: 05/26/2023]
Abstract
Selenium (Se) is a beneficial element to plants and an essential element to humans. Colonization by arbuscular mycorrhizal fungi (AMF) and supply of phosphorus (P) fertilizer may affect the bioavailability of Se in soils and the absorption of Se by plants. To investigate the interaction between AMF and P fertilizer on the transformation of soil Se fractions and the availability of Se in the rhizosphere of alfalfa, we conducted a pot experiment to grow alfalfa in a loessial soil with three P levels (0, 5, and 20 mg kg-1) and two mycorrhizal inoculation treatments (without mycorrhizal inoculation [-AMF] and with mycorrhizal inoculation [+AMF]), and the interaction between the two factors was estimated with two-way ANOVA. The soil in all pots was supplied with Se (Na2SeO3) at 1 mg kg-1. In our results, shoot Se concentration decreased, but plant Se content increased significantly as P level increased and had a significant positive correlation with AMF colonization rate. The amount of total carboxylates in the rhizosphere was strongly affected by AMF. The amounts of rhizosphere carboxylates and alkaline phosphatase activity in the +AMF and 0P treatments were significantly higher than those in other treatments. The concentration of exchangeable-Se in rhizosphere soil had a positive correlation with carboxylates. We speculated that rhizosphere carboxylates promoted the transformation of stable Se (iron oxide-bound Se) into available Se forms, i.e. exchangeable Se and soluble Se. Colonization by AMF and low P availability stimulated alfalfa roots to release more carboxylates and alkaline phosphatase. AMF and P fertilizer affected the transformation of soil Se fractions in the rhizosphere of alfalfa.
Collapse
Affiliation(s)
- Qi Peng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Miaomiao Wu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Zekun Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Rui Su
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Honghua He
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Xingchang Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| |
Collapse
|
23
|
Ye Y, Qu J, Pu Y, Rao S, Xu F, Wu C. Selenium Biofortification of Crop Food by Beneficial Microorganisms. J Fungi (Basel) 2020; 6:jof6020059. [PMID: 32375266 PMCID: PMC7344654 DOI: 10.3390/jof6020059] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/25/2020] [Accepted: 04/26/2020] [Indexed: 12/20/2022] Open
Abstract
Selenium (Se) is essential for human health, however, Se is deficient in soil in many places all around the world, resulting in human diseases, such as notorious Keshan disease and Keshin–Beck disease. Therefore, Se biofortification is a popular approach to improve Se uptake and maintain human health. Beneficial microorganisms, including mycorrhizal and root endophytic fungi, dark septate fungi, and plant growth-promoting rhizobacteria (PGPRs), show multiple functions, especially increased plant nutrition uptake, growth and yield, and resistance to abiotic stresses. Such functions can be used for Se biofortification and increased growth and yield under drought and salt stress. The present review summarizes the use of mycorrhizal fungi and PGPRs in Se biofortification, aiming to improving their practical use.
Collapse
Affiliation(s)
| | | | | | | | | | - Chu Wu
- Correspondence: ; Tel.: +86-716-806-6262
| |
Collapse
|
24
|
Schiavon M, Nardi S, dalla Vecchia F, Ertani A. Selenium biofortification in the 21 st century: status and challenges for healthy human nutrition. PLANT AND SOIL 2020; 453:245-270. [PMID: 32836404 PMCID: PMC7363690 DOI: 10.1007/s11104-020-04635-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/06/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Selenium (Se) is an essential element for mammals and its deficiency in the diet is a global problem. Plants accumulate Se and thus represent a major source of Se to consumers. Agronomic biofortification intends to enrich crops with Se in order to secure its adequate supply by people. SCOPE The goal of this review is to report the present knowledge of the distribution and processes of Se in soil and at the plant-soil interface, and of Se behaviour inside the plant in terms of biofortification. It aims to unravel the Se metabolic pathways that affect the nutritional value of edible plant products, various Se biofortification strategies in challenging environments, as well as the impact of Se-enriched food on human health. CONCLUSIONS Agronomic biofortification and breeding are prevalent strategies for battling Se deficiency. Future research addresses nanosized Se biofortification, crop enrichment with multiple micronutrients, microbial-integrated agronomic biofortification, and optimization of Se biofortification in adverse conditions. Biofortified food of superior nutritional quality may be created, enriched with healthy Se-compounds, as well as several other valuable phytochemicals. Whether such a food source might be used as nutritional intervention for recently emerged coronavirus infections is a relevant question that deserves investigation.
Collapse
Affiliation(s)
- Michela Schiavon
- Dipartimento di Agronomia, Animali, Alimenti, Risorse naturali e Ambiente (DAFNAE), Università di Padova, Viale dell’Università 16, 35020 Legnaro, PD Italy
| | - Serenella Nardi
- Dipartimento di Agronomia, Animali, Alimenti, Risorse naturali e Ambiente (DAFNAE), Università di Padova, Viale dell’Università 16, 35020 Legnaro, PD Italy
| | | | - Andrea Ertani
- Dipartimento di Scienze Agrarie, Università di Torino, Via Leonardo da Vinci, 44, 10095 Grugliasco, TO Italy
| |
Collapse
|