1
|
Wei F, Xue P, Fang X, Lou X, Sun J, Zou H, Zhou L. Pesticide poisoning in Zhejiang Province, China: a retrospective analysis from 2008 to 2022. BMC Public Health 2025; 25:1378. [PMID: 40221692 PMCID: PMC11992753 DOI: 10.1186/s12889-025-22604-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 04/02/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Pesticide poisoning has emerged as a significant public health concern on a global scale. China has a diverse range of agricultural practices and varying pesticide usage across its regions. Nevertheless, there is a paucity of research on the epidemiology of pesticide poisoning in China. To address this research gap, our study was undertaken to investigate the epidemiological characteristics of pesticide poisoning in Zhejiang Province. METHODS Pesticide poisoning data for Zhejiang Province from 2008 to 2022 was extracted from the National Occupational Disease and Occupational Health Information Monitoring System. A descriptive statistical analysis had been employed to explore the temporal, demographic, and regional distribution of pesticide poisoning cases. Furthermore, logistic regression models were conducted to analyze the influence factors of pesticide-related death. RESULTS Between the years 2008 and 2022, totally 64,605 pesticide poisoning cases were observed in Zhejiang Province, with a case fatality rate of 5.28%. The incidence rate was estimated as 7.23 per 100,000 population. The poisoning cases number, incidence rates and the case fatality rates all exhibited fluctuating decreasing trends during the study period. Intentional poisoning (suicide) accounted for 64.64% of all poisoning cases, and the case fatality rate of intentional poisoning cases were also significantly higher than occupational and accidental poisoning. In examining the influence factors of pesticide-related death, it was revealed that older individuals, males, and those experiencing either accidental or intentional poisoning had higher risk of death. The analysis also identified that patients treated in township level hospitals exhibited a higher risk of death compared with those in district/county level or provincial/municipal level primary care hospitals. CONCLUSIONS The current situation of pesticide poisoning in Zhejiang Province remains severe and the government should further strengthen the monitoring and governing of pesticide. Moreover, it is imperative that mental health education and early psycho-social interventions be given greater emphasis to effectively reduce pesticide-related suicides.
Collapse
Affiliation(s)
- Fang Wei
- Occupational Health and Radiation Protection Institute, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, P.R. China
| | - Panqi Xue
- Occupational Health and Radiation Protection Institute, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, P.R. China
| | - Xinglin Fang
- Occupational Health and Radiation Protection Institute, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, P.R. China
| | - Xiaoming Lou
- Occupational Health and Radiation Protection Institute, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, P.R. China
| | - Jingyi Sun
- School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hua Zou
- Occupational Health and Radiation Protection Institute, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, P.R. China
| | - Lifang Zhou
- Occupational Health and Radiation Protection Institute, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, P.R. China.
| |
Collapse
|
2
|
Lee R, Lee WY, Kim DW, Park HJ. Diazinon induces testicular dysfunction and testicular cell damage through increased reactive oxygen species production in mouse. Cell Death Discov 2025; 11:113. [PMID: 40118815 PMCID: PMC11928526 DOI: 10.1038/s41420-025-02399-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/18/2025] [Accepted: 03/13/2025] [Indexed: 03/24/2025] Open
Abstract
Diazinon (DZN) is an organophosphorus compound used as a pesticide and is an environmentally hazardous substance to which the human body is commonly exposed. In this study, we evaluated the toxicity of DZN to the male reproductive in mice. For in vivo experiments, mice were intraperitoneally injected with 30 mg/kg DZN for 35 days. Microscopic analysis revealed that the diameter of the spermatogonia in the testes decreased, and the number of differentiating germ cells decreased. Sperm motility in mice injected with DZN was reduced, and slow motility was observed. The rate of neck deformation in the sperm increased in DZN-treated mice. The number of germ and Sertoli cells decreased, and the levels of serum testosterone and steroidogenesis markers also decreased in DZN-treated mice. In addition, DZN-induced oxidative stress in the testes. For in vitro experiments, DZN was toxic to GC-1 spermatogonia and TM4 and TM3 cells derived from mouse testes. DZN generated reactive oxygen species (ROS) and induced mitochondrial dysfunction, suggesting a molecular mechanism underlying ROS-induced cell death. DZN upregulated BAD, cleaved-caspase 3, and phospho-p53 at the cellular level. We also found that this toxicity could be mitigated by N-acetyl-l-cysteine, an ROS inhibitor.
Collapse
Affiliation(s)
- Ran Lee
- Department of Livestock, Korea National University of Agriculture and Fisheries, Jeonbuk, Korea
- Department of Animal Biotechnology, College of Life Science, Sangji University, Wonju-si, Korea
| | - Won-Young Lee
- Department of Livestock, Korea National University of Agriculture and Fisheries, Jeonbuk, Korea
| | - Dong-Wook Kim
- Department of Livestock, Korea National University of Agriculture and Fisheries, Jeonbuk, Korea
| | - Hyun-Jung Park
- Department of Animal Biotechnology, College of Life Science, Sangji University, Wonju-si, Korea.
| |
Collapse
|
3
|
Wang A, Liu Y, Yan Y, Jiang Y, Shi S, Wang J, Qiao K, Yang L, Wang S, Li S, Gui W. Chlorpyrifos Influences Tadpole Development by Disrupting Thyroid Hormone Signaling Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:142-151. [PMID: 39718545 DOI: 10.1021/acs.est.4c07890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Chlorpyrifos (CPF) is a widely used organophosphate insecticide with serious toxicological effects on aquatic animals. Although extensively studied for neurotoxicity and endocrine disruption, its stage-specific effects on amphibian metamorphosis and receptor-level interactions remain unclear. This study investigated the effects of CPF on Xenopus laevis metamorphosis at environmentally relevant concentrations (1.8 and 18 μg/L) across key developmental stages, with end points including premetamorphic progression, thyroid hormone (TH)-responsive gene expression, and levels of triiodothyronine (T3) and thyroxine (T4). Additionally, molecular docking, surface plasmon resonance (SPR), and luciferase reporter gene assays were employed to elucidate CPF's interaction with the thyroid hormone receptor alpha (TRα). CPF accelerated premetamorphic development and upregulated TH-responsive genes but delayed later-stage metamorphosis. After 21 days of exposure to 18 μg/L CPF, T3 and T4 levels were reduced by 28% and 39.4%, respectively, compared to controls. Cotreatment with T3 and CPF slowed tadpole development, indicating that CPF affects thyroid signaling in a stage-dependent manner. CPF competed with T3 for TRα binding and stimulated TRα-mediated luciferase activity when administered alone, but this activity decreased when CPF was coexposed to T3. These findings suggest that CPF functions as a partial agonist of TRα, disrupting thyroid signaling and adversely affecting amphibian development.
Collapse
Affiliation(s)
- Aoxue Wang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yuanyuan Liu
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yujia Yan
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yuyao Jiang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Shiyao Shi
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jie Wang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Kun Qiao
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, P. R. China
| | - Long Yang
- Guizhou Institute of Subtropical Crops, Guizhou 562400, P. R. China
| | - Shuting Wang
- Hangzhou Center for Disease Control and Prevention, Hangzhou Health Supervision Institution, Zhejiang 310016, P. R. China
| | - Shuying Li
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, P. R. China
| | - Wenjun Gui
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
4
|
Wang G, Li X, Deng J, Cao J, Meng H, Dong J, Zhang H. Assessing soil cadmium quality standards for different land use types: A global synthesis. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136450. [PMID: 39541885 DOI: 10.1016/j.jhazmat.2024.136450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/15/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
The contamination of cadmium (Cd) in soil has become an increasingly serious issue worldwide, presenting significant risks to human health, crop safety, and ecosystems. Despite its importance, there is a lack of standardized soil threshold values for use in regulating exposure to Cd-contaminated surface soil. By synthesizing soil environmental standards for Cd from 61 countries and 75 regions, this study analyzed and categorized these standards by land use types. The distribution of Cd quality standards among various countries was determined, based on available data primarily from the United States, Canada, Europe, Australia, and China. The established soil Cd quality standards were also determined for different land types, including lands for agricultural, residential, industrial, construction, commercial uses, and parks/green spaces. Using the ecological environment criteria - species sensitivity distribution (ECC-SSD) model, Cd levels were analyzed across different land use types, and it was determined that a log-logistic distribution was the best fitted model. Our findings indicated that soil Cd quality standards ranged from 0.11 to 5.20 mg/kg for agricultural land, 1.25 to 171.51 mg/kg for residential land, and 2.58 to 1845.26 mg/kg for industrial land, all within the 5-95 % percentile range. The 5 % hazard concentration (HC5) value was recommended as the latest national quality standards for each land type. This comprehensive assessment of global soil Cd quality standards provides valuable insight for decision-makers tasked with effectively managing and mitigating Cd pollution in soil.
Collapse
Affiliation(s)
- Guiyun Wang
- College of Global Change and Earth System Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Xianglan Li
- College of Global Change and Earth System Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Jingfei Deng
- Soil Protection and Landscape Design Center, Chinese Academy of Environmental Planning, Beijing 100006, China
| | - Jiameng Cao
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Hao Meng
- Soil Protection and Landscape Design Center, Chinese Academy of Environmental Planning, Beijing 100006, China
| | - Jingqi Dong
- Soil Protection and Landscape Design Center, Chinese Academy of Environmental Planning, Beijing 100006, China
| | - Hongzhen Zhang
- Soil Protection and Landscape Design Center, Chinese Academy of Environmental Planning, Beijing 100006, China.
| |
Collapse
|
5
|
Romero S, Laino A, Gabellone C, Garcia CF. Effect of an organophosphate insecticide on the behaviour and physiology of the spider Misumenops maculissparsus (Araneae: Thomisidae). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104525. [PMID: 39111559 DOI: 10.1016/j.etap.2024.104525] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/01/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
Pests in agriculture cause significant economic damage by reducing production and product quality. While pesticides can be an alternative for pest control, their use has a significant impact on both the environment and human health. Chlorpyrifos, a widely used pesticide, affects both target and non-target organisms, including spiders. In this study, we investigated whether Misumenops maculissparsus spiders at three developmental stages (J0, J2, and adults) recognize the presence of the insecticide and how it affects their enzymatic activity. The results indicated that only J0 was able to recognize the insecticide and avoided surfaces treated with it. On the other hand, J0 and adults exhibited reduced acetylcholinesterase (AChE) activity and the activity of antioxidant enzymes was affected by the treatment. Superoxide dismutase (SOD) increased significantly in J0, catalase (CAT) in all stages, glutathione S-transferase (GST) in J2, and glutathione peroxidase (GPx) in J2 and adults. Chlorpyrifos exposure did not increase reactive oxygen species or alter cellular populations in any model.
Collapse
Affiliation(s)
- S Romero
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner" (INIBIOLP), La Plata, Argentina
| | - A Laino
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner" (INIBIOLP), La Plata, Argentina
| | - C Gabellone
- Centro de Estudios Parasitológicos y Vectores (CEPAVE), La Plata, Argentina
| | - C F Garcia
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner" (INIBIOLP), La Plata, Argentina
| |
Collapse
|
6
|
Garcia CF, Ojanguren A, Seoane A, Iuri H, Gambaro R, Molina G, Laino A. First biochemical and behavioural analysis of the response of the scorpion Urophonius brachycentrus (Thorell: 1876) upon exposure to an organophosphate. MEDICAL AND VETERINARY ENTOMOLOGY 2024; 38:291-302. [PMID: 38554285 DOI: 10.1111/mve.12716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/08/2024] [Indexed: 04/01/2024]
Abstract
Scorpionism is an increasing public health problem in the world. Although no specific methodology or product is currently available for the control of those arachnids, the use of insecticides could be an effective tool. Chlorpyrifos is one of the insecticides used, but to date, whether scorpions recognise surfaces with that insecticide and how it affects their physiology and/or biochemistry is unknown. In the present study, we observed that scorpions recognise surfaces with 0.51 and 8.59 μg/cm2 of chlorpyrifos and avoid those areas. The 0.51 μg/cm2 concentration produced a decrease in acetylcholinesterase and an increase in catalase, superoxide dismutase and glutathione S-transferase, whereas the 8.59 μg/cm2 concentration evoked a decrease in acetylcholinesterase and an increase in catalase and glutathione S-transferase. Using the comet assay, we observed that the insecticide at 0.17, 0.51 and 8.59 μg/cm2 caused DNA damage. Finally, we found that the insecticide does not generate significant variations in glutathione peroxidase, glutathione reductase, the amount of protein or lipid peroxidation. The present results offer a comprehensive understanding of how scorpions respond, both at the biochemical and behavioural levels, when exposed to insecticides.
Collapse
Affiliation(s)
- Carlos F Garcia
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner" (CONICET-UNLP), La Plata, Provincia de Buenos Aires, Argentina
| | - Andrés Ojanguren
- Division de Aracnología, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Buenos Aires, Argentina
| | - Analía Seoane
- Instituto de Genética Veterinaria "Ingeniero Fernando Noel Dulout" (CONICET-UNLP), Facultad de Cs. Veterinarias, UNLP, La Plata, Provincia de Buenos Aires, Argentina
| | - Hernan Iuri
- Division de Aracnología, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Buenos Aires, Argentina
| | - Rocio Gambaro
- Instituto de Genética Veterinaria "Ingeniero Fernando Noel Dulout" (CONICET-UNLP), Facultad de Cs. Veterinarias, UNLP, La Plata, Provincia de Buenos Aires, Argentina
| | - Gabriel Molina
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner" (CONICET-UNLP), La Plata, Provincia de Buenos Aires, Argentina
| | - Aldana Laino
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner" (CONICET-UNLP), La Plata, Provincia de Buenos Aires, Argentina
| |
Collapse
|
7
|
Zhou X, Liu S, Wang T, Li Z. Seawater quality criteria derivation and ecological risk assessment for dichlorvos in China. MARINE POLLUTION BULLETIN 2024; 206:116669. [PMID: 38991609 DOI: 10.1016/j.marpolbul.2024.116669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/14/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
Dichlorvos (DDVP) is a widely used organophosphorus pesticide (OPP) that has been frequently detected in the marine environment of China. Water quality criteria (WQC) is however not available for this emergent pollutant in the marine environment, which hinders its ecological risk assessment. This study, therefore, screened toxicity values of DDVP and conducted toxicity tests on six marine species to supplement toxicity data. The WQC for DDVP was derived with the species sensitivity distribution (SSD) methodology, based on which the ecological risk of DDVP in the seawater of China was assessed. The results showed that the recommended short-term (SWQC) and long-term water quality criteria (LWQC) for DDVP were 1.47 and 0.0521 μg/L, respectively. Most marine waters of China showed low or negligible risk (HQ < 1, ORP < 2 %), whereas some estuarine waters warrant further concern due to higher risk. This study provides the scientific basis for seawater quality standard formulation and ecological risk management for DDVP.
Collapse
Affiliation(s)
- Xingzheng Zhou
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Shuai Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Teng Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Zhengyan Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
8
|
Xu YQ, Huang P, Li XW, Liu SS, Lu BQ. Derivation of water quality criteria for paraquat, bisphenol A and carbamazepine using quantitative structure-activity relationship and species sensitivity distribution (QSAR-SSD). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174739. [PMID: 39009142 DOI: 10.1016/j.scitotenv.2024.174739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/14/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
The risk assessment of an expanding array of emerging contaminants in aquatic ecosystems and the establishment of water quality criteria rely on species sensitivity distribution (SSD), necessitating ample multi-trophic toxicity data. Computational methods, such as quantitative structure-activity relationship (QSAR), enable the prediction of specific toxicity data, thus mitigating the need for costly experimental testing and exposure risk assessment. In this study, robust QSAR models for four aquatic species (Rana pipiens, Crassostrea virginica, Asellus aquaticus, and Lepomis macrochirus) were developed using leave-one-out (LOO) screening variables and the partial least squares algorithm to predict toxicity data for paraquat, bisphenol A, and carbamazepine. These predicted data can be integrated with experimental data to construct SSD models and derive hazardous concentration for 5 % of species (HC5) for the criterion maximum concentration. The chronic water quality criterion for paraquat, bisphenol A, and carbamazepine were determined at 6.7, 11.1, and 3.5 μg/L, respectively. The QSAR-SSD approach presents a viable and cost-effective method for deriving water quality criteria for other emerging contaminants.
Collapse
Affiliation(s)
- Ya-Qian Xu
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Peng Huang
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
| | - Xiang-Wei Li
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shu-Shen Liu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bing-Qing Lu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
9
|
Chen Y, Zhang C, Li W, Lan R, Chen R, Hu J, Yang C, Wang P, Tang B, Wang S. Residues of chlorpyrifos in the environment induce resistance in Aedes albopictus by affecting its olfactory system and neurotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172425. [PMID: 38643874 DOI: 10.1016/j.scitotenv.2024.172425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/23/2024]
Abstract
Aedes albopictus, a virus-vector pest, is primarily controlled through the use of insecticides. In this study, we investigated the mechanisms of resistance in Ae. albopictus in terms of chlorpyrifos neurotoxicity to Ae. albopictus and its effects on the olfactory system. We assessed Ca2+-Mg2+-ATP levels, choline acetyltransferase (ChAT), Monoamine oxidase (MAO), odorant-binding proteins (OBPs), and olfactory receptor (OR7) gene expression in Ae. albopictus using various assays including Y-shaped tube experiments and DanioVision analysis to evaluate macromotor behavior. Our findings revealed that cumulative exposure to chlorpyrifos reduced the activity of neurotoxic Ca2+-Mg2+-ATPase and ChAT enzymes in Ae. albopictus to varying degrees, suppressed MAO-B enzyme expression, altered OBPs and OR7 expression patterns, as well as affected evasive response, physical mobility, and cumulative locomotor time under chlorpyrifos stress conditions for Ae. albopictus individuals. Consequently, these changes led to decreased feeding ability, reproductive capacity, and avoidance behavior towards natural enemies in Ae. albopictus populations exposed to chlorpyrifos stressors over time. To adapt to unfavorable living environments, Ae. albopictus may develop certain tolerance mechanisms against organophosphorus pesticides. This study provides valuable insights for guiding rational insecticide usage or dosage adjustments targeting the nervous system of Ae. albopictus.
Collapse
Affiliation(s)
- Yanrong Chen
- College of life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, People's Republic of China
| | - Chen Zhang
- College of life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, People's Republic of China
| | - Wen Li
- College of life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, People's Republic of China
| | - Ruoyun Lan
- College of life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, People's Republic of China
| | - Rufei Chen
- College of life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, People's Republic of China
| | - Jingchao Hu
- College of life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, People's Republic of China
| | - Chenyu Yang
- College of life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, People's Republic of China
| | - Ping Wang
- College of life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, People's Republic of China
| | - Bin Tang
- College of life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, People's Republic of China
| | - Shigui Wang
- College of life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, People's Republic of China.
| |
Collapse
|
10
|
Ommati MM, Nozhat Z, Sabouri S, Kong X, Retana-Márquez S, Eftekhari A, Ma Y, Evazzadeh F, Juárez-Rojas L, Heidari R, Wang HW. Pesticide-Induced Alterations in Locomotor Activity, Anxiety, and Depression-like Behavior Are Mediated through Oxidative Stress-Related Autophagy: A Persistent Developmental Study in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11205-11220. [PMID: 38708789 DOI: 10.1021/acs.jafc.4c02299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Chlorpyrifos (CPF), dichlorvos (DDV), and cypermethrin (CP), as commonly used pesticides, have been implicated in inducing neuropsychiatric disorders, such as anxiety, depression-like behaviors, and locomotor activity impairment. However, the exact molecular mechanisms of these adverse effects, particularly in both sexes and their next-generation effects, remain unclear. In this study, we conducted behavioral analysis, along with cellular assays (monodansylcadaverine staining) and molecular investigations (qRT-PCR and western blotting of mTOR, P62, and Beclin-1) to clear the potential role of autophagy in pesticide-induced behavioral alterations. For this purpose, 42 adult female and 21 male inbred ICR mice (F0) were distributed into seven groups. Maternal mice (F0) and 112 F1 offspring were exposed to 0.5 and 1 ppm of CPF, DDV, and CP through drinking water. F1 male and female animals were studied to assess the sex-specific effects of pesticides on brain tissue. Our findings revealed pronounced anxiogenic effects and impaired locomotor activity in mice. F1 males exposed to CPF (1 ppm) exhibited significantly elevated depression-like behaviors compared to other groups. Moreover, pesticide exposure reduced mTOR and P62 levels, while enhancing the Beclin-1 gene and protein expression. These changes in autophagy signaling pathways, coupled with oxidative and neurogenic damage in the cerebral cortex and hippocampus, potentially contribute to heightened locomotor activity, anxiety, and depression-like behaviors following pesticide exposure. This study underscores the substantial impact of pesticides on both physiological and behavioral aspects, emphasizing the necessity for comprehensive assessments and regulatory considerations for pesticide use. Additionally, the identification of sex-specific responses presents a crucial dimension for pharmaceutical sciences, highlighting the need for tailored therapeutic interventions and further research in this field.
Collapse
Affiliation(s)
- Mohammad Mehdi Ommati
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71468 64685, Iran
| | - Zahra Nozhat
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Samira Sabouri
- College of Animal Science and Veterinary, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Socorro Retana-Márquez
- Department of Reproductive Biology, Universidad Autónoma Metropolitana-Iztapalapa, México City 09340, Mexico
| | - Aziz Eftekhari
- Department of Biochemistry, Faculty of Science, Ege University, Izmir 35100, Turkey
| | - Yanqin Ma
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Fatemeh Evazzadeh
- Department of Psychology, Science & Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Lizbeth Juárez-Rojas
- Department of Reproductive Biology, Universidad Autónoma Metropolitana-Iztapalapa, México City 09340, Mexico
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 71468 64685, Iran
| | - Hong-Wei Wang
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471000, China
| |
Collapse
|
11
|
Liang W, Zhao X, Wang X, Tang Z, Zhang X, Wang X. Prediction of freshwater ecotoxicological hazardous concentrations of major surfactants using the QSAR-ICE-SSD method. ENVIRONMENT INTERNATIONAL 2024; 185:108472. [PMID: 38368720 DOI: 10.1016/j.envint.2024.108472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/20/2024]
Abstract
Synthetic surfactant products are continuously released into the aquatic environment in large quantities, posing a burden on ecosystems as a "pseudo-persistent" organic pollutant. Threshold derivation for protecting aquatic ecosystems is challenging due to the various homologous components of surfactants. In this study, five commercially available products were chosen as representative major types of surfactants. Corresponding quantitative structure-activity relationships (QSAR) were screened and subsequently combined with interspecific correlation estimation (ICE) to develop species sensitivity distributions (SSDs) for each component. Then, the 5th percentile hazard concentrations (HC5s) were calculated. The results indicated that the developed QSAR-ICE models demonstrated good toxicity prediction performance. The HC5 of each component showed a negatively correlation with alkyl chain length and a positive correlation with the amount of ethylene oxide. The HC5s of surfactants correlate with variations in their charged properties. Quaternary ammonium compounds (QAC) exhibited the lowest HC5s (8.5 ± 18.3 μg/L), followed by alcohol ethoxylates (AE), linear alkylbenzene sulfonates (LAS), and alcohol ethoxylated sulfates (AES); and alkyl oxide (AO) exhibited the highest HC5s (15784.2 ± 21552.6 μg/L). For cationic surfactants, the HC5s in the invertebrates were significantly lower than those in the fish; conversely, for anionic surfactants, the opposite was true, indicating a difference in the toxic mechanisms of surfactants with different charged properties across species taxa. Additionally, among invertebrates, shellfish demonstrated heightened sensitivity to surfactants, owing to their high accumulation and low metabolism of pollutants. Salmoniformes were the most sensitive among all species, indicating the necessity of prioritizing these species for aquatic ecological conservation in surfactant-contaminated waters.
Collapse
Affiliation(s)
- Weigang Liang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Xiaolei Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhi Tang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiao Zhang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xia Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
12
|
Huang Y, Li Z. Streamlining Pesticide Regulation Across International River Basins for Effective Transboundary Environmental Management. ENVIRONMENTAL MANAGEMENT 2024; 73:67-80. [PMID: 37782327 DOI: 10.1007/s00267-023-01891-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
Pesticide standard values (PSVs) are critical for environmental management, environmental quality control, and remediation. Some countries or regions share river basins; however, their pesticide regulations are inconsistent, which could create a barrier to transboundary environmental management. To address this issue, we propose PSV scores for neighboring countries in order to promote pesticide regulatory harmonization within international river basins. Representative pesticides were selected to define PSV scores, including chemicals that are currently and historically widely used. Countries or regions from five international river basins were chosen for analysis: the Amazon, Mekong-Lancang, Rhine-Meuse, Danube, and Great Lakes. PSV scores were calculated for each of four environmental compartments: soil, surface freshwater, groundwater, and drinking water. The results revealed that current regulatory agencies lack PSVs of current used pesticides for surface freshwater. With the exception of the member states of the European Union and the Great Lakes states of the United States, the majority of basin countries or regions lack uniform pesticide regulations in environmental compartments to facilitate transboundary environmental management. In addition, PSVs have not been established for a large number of pesticides currently used in agriculture, which could lead to water contamination by pesticides used in upstream environmental compartments (e.g., croplands). Also, current PSVs do not align across environmental compartments, which could cause inter-environmental contamination by pesticides used in upstream compartments. In light of the fact that current river basins lack uniform pesticide regulations, the following recommendations are provided to promote transboundary environmental management: (1) river basin regions should collaborate on pesticide regulation establishment, (2) pesticide regulations should be aligned across environmental compartments, (3) current-use pesticides should receive more attention, and (4) quantitative approaches should be proposed for linking PSVs across environmental compartments. This study provides a regulatory tool to identify possible gaps in transboundary environmental management and improve the pesticide regulatory policies. It is expected to establish cooperation organizations to enhance regulatory communications and collaborations for transboundary environmental pesticide management.
Collapse
Affiliation(s)
- Yabi Huang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
13
|
Liu C, Geng Z, Xu J, Li Q, Zhang H, Pan J. Advancements, Challenges, and Future Directions in Aquatic Life Criteria Research in China. TOXICS 2023; 11:862. [PMID: 37888712 PMCID: PMC10667990 DOI: 10.3390/toxics11100862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
Aquatic life criteria (ALC) serve as the scientific foundation for establishing water quality standards, and in China, significant strides have been made in the development of freshwater ALC. This comprehensive review traces the evolution of China's WQC, focusing on the methodological advancements and challenges in priority pollutants selection, test organism screening, and standardized ecotoxicity testing protocols. It also provides a critical evaluation of quality assurance measures, data validation techniques, and minimum data requirements essential for ALC assessments. The paper highlights China's technical guidelines for deriving ALC, and reviews the published values for typical pollutants, assessing their impact on environmental quality standards. Emerging trends and future research avenues are discussed, including the incorporation of molecular toxicology data and the development of predictive models for pollutant toxicity. The review concludes by advocating for a tiered WQC system that accommodates China's diverse ecological regions, thereby offering a robust scientific basis for enhanced water quality management.
Collapse
Affiliation(s)
- Chen Liu
- Key Laboratory of Environment and Ecology (Ministry of Education), Ocean University of China, Qingdao 266100, China (J.X.); (Q.L.); (H.Z.)
| | - Zhaomei Geng
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, China;
| | - Jiayin Xu
- Key Laboratory of Environment and Ecology (Ministry of Education), Ocean University of China, Qingdao 266100, China (J.X.); (Q.L.); (H.Z.)
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Qingwei Li
- Key Laboratory of Environment and Ecology (Ministry of Education), Ocean University of China, Qingdao 266100, China (J.X.); (Q.L.); (H.Z.)
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Heng Zhang
- Key Laboratory of Environment and Ecology (Ministry of Education), Ocean University of China, Qingdao 266100, China (J.X.); (Q.L.); (H.Z.)
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Jinfen Pan
- Key Laboratory of Environment and Ecology (Ministry of Education), Ocean University of China, Qingdao 266100, China (J.X.); (Q.L.); (H.Z.)
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao 266200, China
| |
Collapse
|
14
|
Zhang YH, Ding TT, Huang ZY, Liang HY, Du SL, Zhang J, Li HX. Environmental exposure and ecological risk of perfluorinated substances (PFASs) in the Shaying River Basin, China. CHEMOSPHERE 2023; 339:139537. [PMID: 37478992 DOI: 10.1016/j.chemosphere.2023.139537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/09/2023] [Accepted: 07/15/2023] [Indexed: 07/23/2023]
Abstract
There have been concerns raised about the environmental effects of perfluoroalkyl substances (PFASs) because of their toxicity, widespread distribution, and persistence. Understanding the occurrences and ecological risk posed by PFASs is essential, especially for the short-chain replacements perfluorobutanoic acid (PFBA) and perfluorobutane sulfonic acid (PFBS), which are now becoming predominant PFASs. The lack of aquatic life criteria (ALC), however, prevents an accurate assessment of the ecological risks of PFBA and PFBS. This study thus investigated the occurrence of 15 PFASs at 29 sampling sites in Shaying River Basin (in China) systematically, conducted the toxicity tests of PFBA and PFBS on eight resident aquatic organisms in China, and derived the predicted non-effect concentration (PNEC) values for PFBA and PFBS for two environmental media in China. The results showed that the total PFASs concentrations (ΣPFASs) ranged from 5.07 to 20.32 ng/L (average of 10.95 ng/L) in surface water, whereas in sediment, ΣPFASs ranged from 6.46 to 20.05 ng/g (dw) (average of 11.51 ng/g). The presence of PFBS was the most prominent PFASs in both water (0.372-8.194 ng/L) and sediment (4.54-15.72 ng/g), demonstrating that short-chain substitution effects can be observed in watersheds. The PNEC values for freshwater and sediment were 6.60 mg/L and 8.30 mg/kg (ww), respectively, for PFBA, and 14.04 mg/L, 37.08 mg/kg (ww), respectively, for PFBS. Ecological risk assessment of two long-chain PFASs, perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), and two short-chain PFASs, PFBA and PFBS, using the hazard quotient method revealed that Shaying River and other major River Basins in China were at risk of PFOS contamination. This study contributes to a better understanding of the presence and risk of PFASs in the Shaying River and first proposes the ALCs for PFBA and PFBS in China, which could provide important reference information for water quality standards.
Collapse
Affiliation(s)
- Ya-Hui Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Environmental Analysis and Testing Laboratory, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China.
| | - Ting-Ting Ding
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Zi-Yan Huang
- Environmental Analysis and Testing Laboratory, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Hangzhou Yanqu Information Technology Co., Ltd, Hangzhou, 310005, PR China; Key Laboratory of Water Pollution Control and Waste Water Resource of Anhui Province, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, 230601, PR China
| | - Hong-Yi Liang
- Environmental Analysis and Testing Laboratory, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Shi-Lin Du
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China; Environmental Analysis and Testing Laboratory, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| | - Jin Zhang
- Key Laboratory of Water Pollution Control and Waste Water Resource of Anhui Province, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, 230601, PR China
| | - Hui-Xian Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China.
| |
Collapse
|
15
|
Molina G, Laino A, Arrighetti F, Lacava M, Romero S, Mijailovsky S, Garcia CF. Effect of the Insecticide Chlorpyrifos on Behavioral and Metabolic Aspects of the Spider Polybetes pythagoricus. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1293-1308. [PMID: 36919993 DOI: 10.1002/etc.5607] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/09/2023] [Accepted: 03/13/2023] [Indexed: 05/09/2023]
Abstract
The toxicity of pesticides to organisms depends on the total amount of chemical exposure. Toxicity can be minimized if the organism recognizes the pesticide and alters its behavior. Furthermore, the physical barrier of cuticular hydrocarbons can prevent the entrance of the pesticide into the organism. Finally, if the pesticide enters the body, the organism experiences physiological changes favoring detoxification and the maintenance of homeostasis. We analyzed the behavioral and metabolic response of the spider Polybetes pythagoricus at different times of exposure to the organophosphate pesticide chlorpyrifos. First we observed that the individuals are capable of recognizing and avoiding surfaces treated with pesticides based on a behavioral analysis. Subsequently, we characterized cuticular hydrocarbons as a possible barrier against pesticides. Then we observed that the pesticide provoked histological damage, mainly at the level of the midgut diverticula. Finally, we analyzed the activity of several of the spider's enzymes linked to oxidative stress after exposure to chlorpyrifos for different lengths of time (6, 24, and 48 h). We observed that catalase activity was high at the start, whereas the activity of superoxide dismutase and glutathione S-transferase changed significantly at 48 h. Lipid peroxidation became high at 6 h, but decreased at 48 h. In conclusion, although P. pythagoricus can avoid contact with chlorpyrifos, this pesticide causes activation of the antioxidant system when it enters the body. Our results make a significant contribution to the ecotoxicology of spiders. Environ Toxicol Chem 2023;00:1-16. © 2023 SETAC.
Collapse
Affiliation(s)
- Gabriel Molina
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner,", La Plata, Argentina
| | - Aldana Laino
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner,", La Plata, Argentina
| | - Florencia Arrighetti
- Museo Argentino de Ciencias Naturales Bernardino Rivadavia, Consejo National de Investigaciones Cientificas y Téchnicas, Buenos Aires, Argentina
| | - Mariangeles Lacava
- Centro Universitario de Rivera, Universidad de La República, Rivera, Uruguay
| | - Sofia Romero
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner,", La Plata, Argentina
| | - Sergio Mijailovsky
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner,", La Plata, Argentina
| | - Carlos Fernando Garcia
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner,", La Plata, Argentina
| |
Collapse
|
16
|
Switchable hydrophilicity solvent-based microextraction coupled with fluorescent detection of dichlorvos. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
17
|
Gai Y, Zhang MY, Ji PY, You RJ, Ge ZJ, Shen W, Sun QY, Yin S. Melatonin improves meiosis maturation against diazinon exposure in mouse oocytes. Life Sci 2022; 301:120611. [PMID: 35526594 DOI: 10.1016/j.lfs.2022.120611] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/24/2022] [Accepted: 04/30/2022] [Indexed: 10/18/2022]
Abstract
AIMS Organophosphorus pesticide diazinon (DZN) has adverse effects on animals and humans by direct contact or the spread of food chain. The antioxidant melatonin has protective effects on female reproduction. This study aimed to explore the effects of DZN on meiosis maturation in mouse cumulus oocyte complexes (COCs) and the effects of melatonin. MAIN METHODS Different concentrations of DZN and melatonin were added during the in vitro maturation of COCs. Then we detected the extrusion rate of the first polar body, the number of sperms binding to oocyte, mitochondrial membrane potential, reactive oxygen species (ROS), early apoptosis. Subsequently, the expression of Juno, CX37, CX43 and ERK1/2 were detected by immunofluorescence staining and Western blotting. KEY FINDINGS DZN exposure results in the failure of nuclear and cytoplasmic maturation of oocyte meiosis. Destruction of repositioning and function of mitochondria increases the levels of ROS and early apoptosis. The DZN-exposed oocytes express less Juno resulting to bind less sperms than normal. The loss of gap junctions and failure to activate ERK1/2 also contribute to the failure of cytoplasmic maturation. All these ultimately lead to the poor oocyte quality and low fertility. Appropriate melatonin can effectively restore all these defects. SIGNIFICANCE Under DZN exposure, melatonin can significantly improve the quality of oocytes, and melatonin promotes oocyte maturation by protecting gap junction and restoring ERK1/2 pathway, which is a new breakthrough for improving female fertility.
Collapse
Affiliation(s)
- Yang Gai
- College of Life Sciences, Institute of Reproductive Science, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, International Science and Technology Cooperation Base of Animal Developmental Biology, Qingdao Agricultural University, Qingdao 266109, China
| | - Man-Yu Zhang
- College of Life Sciences, Institute of Reproductive Science, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, International Science and Technology Cooperation Base of Animal Developmental Biology, Qingdao Agricultural University, Qingdao 266109, China
| | - Peng-Yuan Ji
- College of Life Sciences, Institute of Reproductive Science, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, International Science and Technology Cooperation Base of Animal Developmental Biology, Qingdao Agricultural University, Qingdao 266109, China
| | - Rong-Jing You
- College of Life Sciences, Institute of Reproductive Science, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, International Science and Technology Cooperation Base of Animal Developmental Biology, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhao-Jia Ge
- College of Life Sciences, Institute of Reproductive Science, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, International Science and Technology Cooperation Base of Animal Developmental Biology, Qingdao Agricultural University, Qingdao 266109, China
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Science, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, International Science and Technology Cooperation Base of Animal Developmental Biology, Qingdao Agricultural University, Qingdao 266109, China
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Shen Yin
- College of Life Sciences, Institute of Reproductive Science, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, International Science and Technology Cooperation Base of Animal Developmental Biology, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
18
|
Huang P, Liu SS, Wang ZJ, Ding TT, Xu YQ. Deriving the predicted no effect concentrations of 35 pesticides by the QSAR-SSD method. CHEMOSPHERE 2022; 298:134303. [PMID: 35288184 DOI: 10.1016/j.chemosphere.2022.134303] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
The widespread use of pesticides results in their frequent detection in water bodies and other environmental media. Pesticide residues may cause certain risks to the environment and human health, and reliable predicted no effect concentrations (PNEC) must be obtained when assessing environmental risks. Species sensitivity distribution (SSD) is an important method for the derivation of chemical PNECs. Construction of the SSD model requires sufficient toxicity data to various species including at least eight families in three phyla, suitable nonlinear fitting functions and assessment factors (AFs) with certain uncertainty. However, most chemicals could not collect sufficient species toxicity data, while some chemicals had sufficient species toxicity data but could not find suitable fitting functions, thus hindering the construction of effective SSD models. To this end, the established QSAR models were applied to predict toxicity of chemicals to specific species to fill in the toxicity data gaps required for SSD and selecting multiple nonlinear functions to optimize the SSD model. Combined with QSAR and SSD methods, a new method of PNEC derivation was developed and successfully applied to the derivation of PNEC for 35 pesticides. Three QSAR models were used to predict the toxicities of six pesticides with few toxicity data. Nine two-parameter nonlinear functions were used to fit the toxicity-cumulative probability data one by one to determine the optimal SSD models. The hazardous concentrations at the cumulative probability of 5% and 10%, i. e, HC5 and HC10, respectively, were calculated by the optimal SSD model. The assessment factor used to determine the PNEC of the chemical based on the HC10 was derived from the quantitative correlation between HC10 and HC5 of pesticides found in this study. When the toxicity data are insufficient, it may be more appropriate to calculate the PNECs of chemicals using HC10 than using HC5.
Collapse
Affiliation(s)
- Peng Huang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Shu-Shen Liu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Ze-Jun Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Ting-Ting Ding
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Ya-Qian Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| |
Collapse
|
19
|
Wang ZJ, Zheng QF, Liu SS, Huang P, Ding TT, Xu YQ. New methods of top-to-down mixture toxicity prediction: A case study of eliminating of the effects of cosolvent from binary mixtures. CHEMOSPHERE 2022; 289:133190. [PMID: 34883133 DOI: 10.1016/j.chemosphere.2021.133190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/04/2021] [Accepted: 12/04/2021] [Indexed: 06/13/2023]
Abstract
At present, the toxicity prediction of mixtures mainly focuses on the concentration addition (CA) and independent action (IA) based on individual toxicants to predict the toxicity of multicomponent mixtures. This process of predicting the toxicity of multicomponent mixtures based on single substances or low component mixtures is called down-to-top method in this study. However, due to the particularity of some toxicants, we have to use the top-to-down idea to obtain or eliminate the toxicity of some components from mixtures. For example, the toxicity of toxicants is obtained from the toxicity of a mixture with, especially toxic, cosolvent added. In the study, two top-to-down methods, the inverse CA (ICA) and inverse IA (IIA) models, were proposed to eliminate the effects of a certain component from multicomponent mixtures. Furthermore, taking the eight binary mixtures consisting of different shapes of cosolvents (isopropyl alcohol (IPA) having hormesis and dimethyl sulfoxide (DMSO)) and toxicants (two ionic liquids and two pesticides) as an example, combined with the interaction evaluated by CA and IA model, the influence of different shapes of components on top-to-down toxicity prediction was explored. The results showed that cosolvent IPA having hormesis may cause unpredictable effects, even at low concentrations, and should be used with caution. For DMSO, most of the toxicant's toxicity obtained by ICA and IIA models were almost in accordance with those observed experimentally, which showed that ICA and IIA could effectively eliminate the effects of cosolvent, even if toxic cosolvent, from the mixture. Ultimately, a frame of cosolvent use and toxicity correction for the hydrophobic toxicant were suggested based on the top-to-down toxicity prediction method. The proposed methods improve the existing framework of mixture toxicity prediction and provide a new idea for mixture toxicity evaluation and risk assessment.
Collapse
Affiliation(s)
- Ze-Jun Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Qiao-Feng Zheng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Shu-Shen Liu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Peng Huang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Ting-Ting Ding
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Ya-Qian Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| |
Collapse
|
20
|
Tao Y, Li Z, Yang Y, Jiao Y, Qu J, Wang Y, Zhang Y. Effects of common environmental endocrine-disrupting chemicals on zebrafish behavior. WATER RESEARCH 2022; 208:117826. [PMID: 34785404 DOI: 10.1016/j.watres.2021.117826] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/05/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Environmental endocrine-disrupting chemicals (EDCs), a type of exogenous organic pollutants, are ubiquitous in natural aquatic environments. Therefor, this review focused on the use of the zebrafish as a model to explore the effect of different EDCs on behavior, as well as the molecular mechanisms that drive these effects. Furthermore, our study summarizes the current knowledge on the neuromodulatory effects of different EDCs in zebrafish. This study also reviews the current state of zebrafish behavior research, in addition to the potential mechanisms of single and mixed pollutant-driven behavioral dysregulation at the molecular level, as well as the applications of zebrafish behavior experiments for neuroscience research. This review broadens our understanding of the influence of EDCs on zebrafish behavior and provides guidance for future research.
Collapse
Affiliation(s)
- Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Zixu Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yang Yang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yaqi Jiao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yifan Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
21
|
Li L, He Y, Song K, Xie F, Li H, Sun F. Derivation of water quality criteria of zinc to protect aquatic life in Taihu Lake and the associated risk assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113175. [PMID: 34243093 DOI: 10.1016/j.jenvman.2021.113175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/08/2021] [Accepted: 06/26/2021] [Indexed: 06/13/2023]
Abstract
Zinc is a widely distributed environmental pollutants and has been listed as priority heavy metal pollutant in China. Similar as other heavy metals, toxicity of zinc to aquatic organisms affects by environmental factors such as water hardness. It is necessary to develop regional water quality criteria (WQC) to protect native aquatic life against zinc due to the diversity of aquatic organisms' variability across different water systems, as a concretization and supplement for national zinc WQC. This study derived WQC for zinc by species sensitivity distribution (SSD) curve method. The zinc toxicity data of the aquatic organisms in Taihu Lake used in SSD curve was collected based on published toxicity data for zinc with hardness values and supplemented with acute toxicity tests conducted in this study. Six aquatic organism natives to Taihu Lake were selected to conduct zinc acute toxicity test in a range of hardness conditions. The relationship between water hardness and zinc toxicity was constructed. The criterion maximum concentration (CMC) and criterion continuous concentration (CCC) for zinc in Taihu Lake were then derived, which considered the water quality and taxonomic groups in Taihu Lake. The CMC and CCC were 100.69 μg/L and 30.79 μg/L, respectively. The environmental risk of zinc to Taihu Lake are acceptable, at moderate to low levels. This study has provided a basis for regional water quality criterion derivation and risk assessment in China.
Collapse
Affiliation(s)
- Lu Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yanjiao He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; School of Materials Science and Chemical Engineering, Anhui Jianzhu University, Hefei, 230022, China
| | - Kang Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Fazhi Xie
- School of Materials Science and Chemical Engineering, Anhui Jianzhu University, Hefei, 230022, China
| | - Huixian Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Fuhong Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
22
|
Wei G, Wang C, Niu W, Huan Q, Tian T, Zou S, Huang D. Occurrence and risk assessment of currently used organophosphate pesticides in overlying water and surface sediments in Guangzhou urban waterways, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:48194-48206. [PMID: 33904132 DOI: 10.1007/s11356-021-13956-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Organophosphate pesticides (OPPs) are one type of the most massively used pesticides and ubiquitously detected in aquatic environments, which may pose potential risks to the aquatic organisms and human health. In the present study, the spatiotemporal distribution and potential risks of OPPs were investigated in overlying water and surficial sediments from urban waterways of Guangzhou. For all studied sites, in general, four target OPPs (i.e., malathion, chlorpyrifos, terbufos, and diazinon) were present in the overlying water, with malathion and chlorpyrifos as major components. Higher concentrations of the four OPPs were found for the water and sediments collected in the dry season compared to the wet season, possibly because of the dilution effect of heavy rains. The results of Pearson's analyses and principal coordinate analyses (PCoA) suggested similar sources for target OPPs in the water and sediments across the Guangzhou urban waterways. Potential ecological risks of the OPPs to three representative taxons (algae, aquatic invertebrates, and fish) were evaluated via toxic units (TUs) and risk quotients (RQs), while risk assessment on human health was performed using hazard index (HI). Although TU results showed no acute risks to the aquatic organisms in the overlying water and surface sediments, RQ results of the mixture showed high risks to the aquatic invertebrate and fish in all water samples. Individual HI values and cumulative HI values were on the order of 10-6-10-3 for children and adults, suggesting no potential risks to either children or adults through drinking and bathing.
Collapse
Affiliation(s)
- Gaoling Wei
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Cong Wang
- College of Forestry, Guangxi University, Nanning, 530004, China
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Wenpeng Niu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Qian Huan
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Tingting Tian
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China.
| | - Shujun Zou
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Deyin Huang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
23
|
Gu Y, Li G, Huang C, Liu P, Hu G, Wu C, Xu Z, Guo X, Liu P. Dichlorvos poisoning caused chicken cerebrum tissue damage and related apoptosis-related gene changes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:147051. [PMID: 34088127 DOI: 10.1016/j.scitotenv.2021.147051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Dichlorvos (DDVP) is an organophosphorus compound with insecticidal effects. Organophosphorus pesticides can easily enter humans or animals through various channels, causing cerebrum nerve cell damage. The purpose of this research was to investigate whether acute dichlorvos poisoning can cause cerebrum neurotoxic injury and change the expression of apoptosis-related genes in broilers, further clarify the neurotoxic mechanism after acute dichlorvos exposure, and provide a research basis for prevention, treatment and gene drug screening in the later stage. In this experiment, healthy yellow-feathered broilers were randomly assigned to the control group, the low-dose group (1.13 mg/kg) and the high-dose group (10.2 mg/kg) for modelling observation, and detection was conducted based on H&E (haematoxylin and eosin) staining, transmission electron microscopy analysis of tissue sections, immunofluorescence techniques and real-time quantitative polymerase chain reaction (qRT-PCR). The results showed that organophosphorus poisoning was accompanied by obvious neurological symptoms such as limb twitching and massive salivation. In addition, we observed that compared with the control group, the number of lysed nuclear neurons, deformed vascular sheaths, and glial cells and the expression of glial fibrillary acidic protein (GFAP) in the poisoned group of broilers increased significantly, and the increase was more obvious in the low-dose group. However, cell apoptosis and mitochondrial structure dissolution were most pronounced in the high-dose group. Moreover, the qRT-PCR results also revealed significant changes in the expression of apoptosis-related genes. The expression levels of ACC, LKB1 and GPAT increased significantly, while the expression of HMGR, PPARα, CPT1 and AMPKα1 decreased significantly. In summary, these results indicated that dichlorvos may cause the lysis of cerebrum nerve cell nuclei, completely destroy the structure of mitochondria, change the expression of related apoptotic genes, enhance cell apoptosis, and cause neurogenic damage to the cerebrum. These research results offer a theoretical foundation for the prevention and treatment of acute organophosphate toxicosis.
Collapse
Affiliation(s)
- Yueming Gu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Guyue Li
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Cheng Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Pei Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Cong Wu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Zheng Xu
- Department of Mathematics and Statistics, Wright State University, Dayton, OH 45435, United States of America
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China.
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China.
| |
Collapse
|
24
|
Bray J, Miranda A, Keely-Smith A, Kaserzon S, Elisei G, Chou A, Nichols SJ, Thompson R, Nugegoda D, Kefford BJ. Sub-organism (acetylcholinesterase activity), population (survival) and chemical concentration responses reinforce mechanisms of antagonism associated with malathion toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146087. [PMID: 34030370 DOI: 10.1016/j.scitotenv.2021.146087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 02/05/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
Within human modified ecosystems the effects of individual stressors are difficult to establish amid co-occurring biological processes, environmental gradients and other stressors. Coupled examination of several endpoints across different levels of organisation may help elucidate the individual and combined effects of stressors and interactions. Malathion is a commonly used organophosphate pesticide that contaminates freshwaters and has strong negative effects on aquatic biota. However, both other stressors (e.g. increased sediment) and common ecosystem components (e.g. macrophytes and variable pH) can reduce the aqueous concentrations of malathion, reducing its toxic effects. We conducted a fully orthogonal bioassay to examine how pH (at 7 and 7.8) and sorptive processes (across two levels of kaoline clay 0 and 24 g L-1) affected aqueous malathion concentrations and toxicity in an aquatic invertebrate genus. Survival and acetylcholinesterase activity as a sub-organism response were examined in the mayfly Coloburiscoides spp. (Ephemeroptera; Coluburiscidae). Measured aqueous malathion concentrations decreased with increased pH and in the presence of kaolin clay. Survival declined with increasing malathion concentrations and exposure period. Results further identify that antagonism of malathion toxicity was associated with both pH (alkaline hydrolysis) and effects associated with sediment independent of pH (driven by sorptive processes). However, model predictions varied associated with target and measured concentrations and concentrations examined. Antagonistic effects were most apparent using subset target malathion concentrations because of the dominant effect of malathion at high concentrations. Acetylcholinesterase activity, identified repression occurred across all treatments and did not identify antagonistic interactions, but these results were similar to survival responses at the time points examined (i.e. 120 h). Examination of chemistry, acetylcholinesterase, and survival, affords greater understanding of stressor effects and their interactions. Measured malathion concentrations may underestimate effects on aquatic biota; not because of synergism among stressors, but because of strong effects despite antagonism.
Collapse
Affiliation(s)
- J Bray
- Center for Applied Water Science, Institute for Applied Ecology, University of Canberra, Canberra, Australia; Gisborne District Council, Gisborne, New Zealand.
| | - A Miranda
- AQUEST research group, RMIT University, Melbourne, Australia
| | - A Keely-Smith
- Center for Applied Water Science, Institute for Applied Ecology, University of Canberra, Canberra, Australia
| | - S Kaserzon
- QAEHS, University of Queensland, Brisbane, Australia
| | - G Elisei
- QAEHS, University of Queensland, Brisbane, Australia
| | - A Chou
- Brigham Young University, UT, United States
| | - S J Nichols
- Center for Applied Water Science, Institute for Applied Ecology, University of Canberra, Canberra, Australia
| | - R Thompson
- Center for Applied Water Science, Institute for Applied Ecology, University of Canberra, Canberra, Australia
| | - D Nugegoda
- AQUEST research group, RMIT University, Melbourne, Australia
| | - B J Kefford
- Center for Applied Water Science, Institute for Applied Ecology, University of Canberra, Canberra, Australia
| |
Collapse
|
25
|
Yu H, Wang M, Cao J, She Y, Zhu Y, Ye J, Abd El-Aty AM, Hacımüftüoğlu A, Wang J, Lao S. Dual-mode detection of organophosphate pesticides in pear and Chinese cabbage based on fluorescence and AuNPs colorimetric assays. Food Chem 2021; 364:130326. [PMID: 34171812 DOI: 10.1016/j.foodchem.2021.130326] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 05/12/2021] [Accepted: 06/06/2021] [Indexed: 10/21/2022]
Abstract
Herein, a dual-mode method based on fluorescent and colorimetric sensor was developed for determination of organophosphate pesticides (OPs). In this study, indoxyl acetate (IDA) was hydrolyzed by esterase into indophenol. Indophenol leads to changes in fluorescence signal and aggregation of gold nanoparticles (AuNPs); ultimately changing the color from red to blue. When OPs exist, the formation of indophenol was inhibited. With increasing the concentrations of OPs, the enhancement rate of fluorescence signal decreases, and the color change of AuNPs weakened gradually. The assay was applied for determination of dichlorvos, trichlorfon, and paraoxon, and the limits of detection (LODs) were 0.0032 mg/kg, 0.0096 mg/kg, and 0.0074 mg/kg (fluorometric assay), and 0.0120 mg/kg, 0.0224 mg/kg, and 0.0106 mg/kg (colorimetric assay), respectively. Finally, such a convenient and sensitive sensing assay was successfully applied for quantification of OPs in pear and Chinese cabbage with good recoveries ranged between 80.19 and 116.93%.
Collapse
Affiliation(s)
- He Yu
- Institute of Quality Standard & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, 100081 Beijing, China; Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture, 100081 Beijing, China
| | - Miao Wang
- Institute of Quality Standard & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, 100081 Beijing, China; Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture, 100081 Beijing, China.
| | - Jing Cao
- Institute of Quality Standard & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, 100081 Beijing, China; Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture, 100081 Beijing, China
| | - Yongxin She
- Institute of Quality Standard & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, 100081 Beijing, China; Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture, 100081 Beijing, China
| | - Yongan Zhu
- Institute of Quality Standard & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, 100081 Beijing, China; Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture, 100081 Beijing, China
| | - Jiaming Ye
- Yangtze Delta Region Institute of Tsinghua University, 314006 Jiaxing, China
| | - A M Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240 Erzurum, Turkey.
| | - Ahmet Hacımüftüoğlu
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240 Erzurum, Turkey
| | - Jing Wang
- Institute of Quality Standard & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, 100081 Beijing, China; Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture, 100081 Beijing, China; Agro-products Quality Safety and Testing Technology Research Institute, Guangxi Academy of Agricultural Sciences, 53003 Nanning, China.
| | - Shuibing Lao
- Agro-products Quality Safety and Testing Technology Research Institute, Guangxi Academy of Agricultural Sciences, 53003 Nanning, China
| |
Collapse
|
26
|
Ding TT, Du SL, Huang ZY, Wang ZJ, Zhang J, Zhang YH, Liu SS, He LS. Water quality criteria and ecological risk assessment for ammonia in the Shaying River Basin, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 215:112141. [PMID: 33740491 DOI: 10.1016/j.ecoenv.2021.112141] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/01/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Current Chinese surface water environmental quality standard GB3838-2002 for ammonia fails to take water quality factors and native organism distributions in different basins into consideration. In this study, ammonia toxicity tests were performed using three aquatic organisms native to the Shaying River Basin (China). Published ammonia toxicity data with pH and temperature, and toxicity data acquired in this study were used to establish water quality criteria. The final criterion maximum concentration (CMC) and criterion continuous concentration (CCC) for the Shaying River Basin were 5.09 and 1.36 (mg total ammonia nitrogen (TAN))/L (pH 7 and 20 °C), respectively. In addition, based on the corresponding relationship between ammonia toxicity and temperature and pH, the ecological risk assessment of ammonia was conducted in different seasons for the Shaying River using a tiered approach of both hazard quotient (HQ) and the joint probability (JPC) methods. Two methods gave consistent results: the ecological risks of ammonia to aquatic species in the Shaying River Basin were severe and the risk could be ranked as wet season > flat season > dry season. It is therefore indicating that monitoring, evaluation, and early warning of ammonia pollution need to be taken to prevent and control the risks posed by ammonia pollution, especially for wet season (because of high temperatures and pH) or flat season (because of high pH values). We hope the present work could provide valuable information to manage and control ammonia pollution in the Shaying River Basin.
Collapse
Affiliation(s)
- Ting-Ting Ding
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Shi-Lin Du
- Environmental Analysis and Testing Laboratory, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Zi-Yan Huang
- Environmental Analysis and Testing Laboratory, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Key Laboratory of Water Pollution Control and Waste Water Resource of Anhui Province, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China
| | - Ze-Jun Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Jin Zhang
- Key Laboratory of Water Pollution Control and Waste Water Resource of Anhui Province, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China
| | - Ya-Hui Zhang
- Environmental Analysis and Testing Laboratory, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Shu-Shen Liu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Lian-Sheng He
- Environmental Analysis and Testing Laboratory, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| |
Collapse
|
27
|
Yang G, Lv L, Di S, Li X, Weng H, Wang X, Wang Y. Combined toxic impacts of thiamethoxam and four pesticides on the rare minnow (Gobiocypris rarus). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:5407-5416. [PMID: 32965645 DOI: 10.1007/s11356-020-10883-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
To examine pesticide mixture toxicity to aqueous organisms, we assessed the single and combined toxicities of thiamethoxam and other four pesticides (chlorpyrifos, beta-cypermethrin, tetraconazole, and azoxystrobin) to the rare minnow (Gobiocypris rarus). Data from 96-h semi-static toxicity assays of various developmental phases (embryonic, larval, juvenile, and adult phases) showed that beta-cypermethrin, chlorpyrifos, and azoxystrobin had the highest toxicities to G. rarus, and their LC50 values ranged from 0.0031 to 0.86 mg a.i. L-1, from 0.016 to 6.38 mg a.i. L-1, and from 0.39 to 1.08 mg a.i. L-1, respectively. Tetraconazole displayed a comparatively high toxicity, and its LC50 values ranged from 3.48 to 16.73 mg a.i. L-1. By contrast, thiamethoxam exhibited the lowest toxic effect with LC50 values ranging from 37.85 to 351.9 mg a.i. L-1. Rare minnow larvae were more sensitive than embryos to all the pesticides tested. Our data showed that a pesticide mixture of thiamethoxam-tetraconazole elicited synergetic toxicity to G. rarus. Moreover, pesticide mixtures containing beta-cypermethrin in combination with chlorpyrifos or tetraconazole also had synergetic toxicities to fish. The majority of pesticides are presumed to have additive toxicity, while our data emphasized that the concurrent existence of some chemicals in the aqueous circumstance could cause synergetic toxic effect, leading to severe loss to the aqueous environments in comparison with their single toxicities. Thence, the synergetic impacts of chemical mixtures should be considered when assessing the ecological risk of chemicals.
Collapse
Affiliation(s)
- Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Zhejiang, 310021, Hangzhou, China
| | - Lu Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Zhejiang, 310021, Hangzhou, China
| | - Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Zhejiang, 310021, Hangzhou, China
| | - Xinfang Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Zhejiang, 310021, Hangzhou, China
| | - Hongbiao Weng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Zhejiang, 310021, Hangzhou, China
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Zhejiang, 310021, Hangzhou, China
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Zhejiang, 310021, Hangzhou, China.
| |
Collapse
|
28
|
Huang X, Cui H, Duan W. Ecotoxicity of chlorpyrifos to aquatic organisms: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 200:110731. [PMID: 32450436 DOI: 10.1016/j.ecoenv.2020.110731] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 05/08/2023]
Abstract
Pesticides play an important role in promoting agricultural development, while their unreasonable use has led to environmental problems. Chlorpyrifos (CPF), a typical organophosphate pesticide, is used globally as an insecticide in agriculture. The extensive application of CPF has resulted in water contamination, and CPF has been detected in rivers, lakes, seawater, and even in rain. In the present review, CPF was selected due to its extensive use in agriculture and higher detection rate in surface waters. In this review we summarised the evidence related to CPF pollution and focused on discussing the ecotoxicity of CPF to aquatic systems and revealed the mechanism of action of CPF. The aim of this literature review was to summarise the knowledge of the toxicity to marine and freshwater organisms of CPF as well as try to select a series of sensitive biomarkers, which are suitable for ecotoxicological assessment and environmental monitoring in aquatic systems.
Collapse
Affiliation(s)
- Xiao Huang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, Jiangsu Province, PR China
| | - Hongwu Cui
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong Province, PR China
| | - Weiyan Duan
- Ocean College of Hebei Agricultural University, Qinhuangdao, Hebei Province, PR China.
| |
Collapse
|
29
|
Ding T, Du S, Zhang Y, Wang H, Zhang Y, Cao Y, Zhang J, He L. Hardness-dependent water quality criteria for cadmium and an ecological risk assessment of the Shaying River Basin, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 198:110666. [PMID: 32361493 DOI: 10.1016/j.ecoenv.2020.110666] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/15/2020] [Accepted: 04/19/2020] [Indexed: 06/11/2023]
Abstract
Hardness is one important water quality parameter that influences the toxicity of cadmium. Several studies have derived water quality criteria (WQC) for cadmium, but most of these studies did not consider environmental factors. Moreover, few studies considered environmental factors when carrying out ecological risk assessments (ERA) based on environmental factors. In this research, six native aquatic organisms in the Shaying River were adopted to conduct toxicity tests for cadmium. By combining published toxicity data for cadmium with hardness values and toxicity data from this study, hardness-dependent WQC were established. When normalized to a hardness of 100 mg/L CaCO3, the criterion maximum concentration (CMC) of 6.46 μg/L and criterion continuous concentration (CCC) of 1.49 μg/L in the Shaying River Basin were derived according to the USEPA guidelines. The acute predicted no effect concentrations (PNECs) derived by species sensitivity distribution (SSD) methods based on log-logistic, log-normal and Burr Type III models were 1.03, 2.41 and 1.66 μg/L, respectively. Recommended WQC values finally expressed as a function of hardness: (1) CMC=(1.136672-0.041838 × lnH) × e0.9969×lnH-2.6676; and (2) CCC=(1.101672-0.041838 × lnH) × e1.0083×lnH-6.1156. In addition, three tiers of ERA of cadmium in surface waters were conducted based on hardness obtained during different seasons in the Shaying River using the hazard quotient (HQ), the margin of safety (MOS10), and the joint probability (JPC) methods. In tiered 1, 2, and 3 ERA, cadmium exposure concentrations were standardized to a hardness of 100 mg/L. The three levels of the ERA method in the tiered framework gave consistent results: the ecological risks of cadmium in the Shaying River Basin were at acceptable levels. The present study provides a reference for the derivation of WQC and risk assessment of pollution affected by differences in aquatic species and water quality factors such as hardness.
Collapse
Affiliation(s)
- Tingting Ding
- Environmental Analysis and Testing Laboratory, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Key Laboratory of Water Pollution Control and Waste Water Resource of Anhui Province, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, 230601, China
| | - Shilin Du
- Environmental Analysis and Testing Laboratory, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Yahui Zhang
- Environmental Analysis and Testing Laboratory, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Hongliang Wang
- Environmental Analysis and Testing Laboratory, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yu Zhang
- Environmental Analysis and Testing Laboratory, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ying Cao
- Environmental Analysis and Testing Laboratory, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jin Zhang
- Key Laboratory of Water Pollution Control and Waste Water Resource of Anhui Province, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, 230601, China
| | - Liansheng He
- Environmental Analysis and Testing Laboratory, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|