1
|
Engelbrecht I, Horn SR, Giesy JP, Pieters R. Quantification of Pesticides and In Vitro Effects of Water-Soluble Fractions of Agricultural Soils in South Africa. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2025; 88:230-250. [PMID: 39955400 PMCID: PMC11870950 DOI: 10.1007/s00244-025-01115-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/20/2025] [Indexed: 02/17/2025]
Abstract
Although agrochemicals protect crops and reduce losses, these chemicals can migrate to non-target environments via run-off and leaching following irrigation or heavy rainfall, where non-target organisms can be exposed to a mixture of water-soluble compounds. This study investigated whether the water-soluble fractions of selected agricultural soils from South Africa contain quantifiable concentrations of four commonly used pesticides, 2,4-dichlorophenoxyacetic acid (2,4-D), atrazine, dicamba and imidacloprid, and whether the aqueous extracts induce effects in vitro. Effects investigated included cytotoxicity using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] cell viability assay; xenobiotic metabolism using the H4IIE-luc rat hepatoma cell line; and (anti-)androgenic and (anti-)oestrogenic effects were screened for with the human breast carcinoma cell lines MDA-kb2 and T47D-KBluc, respectively. Oxidative stress responses were measured in H4IIE-luc and human duodenum adenocarcinoma (HuTu-80) cells. All extracts of soil induced oxidative stress, while several samples caused moderate to severe cytotoxicity and/or anti-androgenic effects. The herbicide atrazine had the greatest frequency of detection (89%), followed by dicamba (84%), 2,4-D (74%) and imidacloprid (32%). Concentrations of atrazine [2.0 × 10-1 to 2.1 × 102 ng/g, dry mass (dm)] and the neonicotinoid insecticide, imidacloprid (2.0 × 101 to 9.7 × 101 ng/g, dm), exceeded international soil quality guidelines. Overall, there was no observable trend between the biological effects and pesticides quantified. Nonetheless, the findings of this study show that agricultural soils in South Africa can elicit effects in vitro and contain quantifiable concentrations of polar pesticides. These agrochemicals might pose risks to the health of humans and the environment, but more assessment is necessary to quantify such potential effects.
Collapse
Affiliation(s)
- Ilzé Engelbrecht
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom, 2520, South Africa.
- Occupational Hygiene and Health Research Initiative, North-West University, Potchefstroom, 2520, South Africa.
| | - Suranie R Horn
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom, 2520, South Africa
- Occupational Hygiene and Health Research Initiative, North-West University, Potchefstroom, 2520, South Africa
| | - John P Giesy
- Toxicology Program Faculty, Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
- Department of Integrative Biology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX, 76798-7266, USA
| | - Rialet Pieters
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom, 2520, South Africa
| |
Collapse
|
2
|
Qayoom I, Balkhi M, Mukhtar M, Abubakr A, Siddiqui U, Khan S, Sherwani A, Jan I, Sayyed R, Mastinu A. Assessing organophosphate insecticide retention in muscle tissues of juvenile common carp fish under acute toxicity tests. Toxicol Rep 2024; 12:253-259. [PMID: 38379553 PMCID: PMC10877174 DOI: 10.1016/j.toxrep.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/28/2024] [Accepted: 02/08/2024] [Indexed: 02/22/2024] Open
Abstract
Organophosphate insecticide spray poses potential threat of contamination of environmental components their accumulation in aquatic organisms. Although various physiological deficits associated with their exposure in fishes are documented, yet their retention in their edible muscle tissues has been poorly studied. In this context, the study was undertaken to ascertain the bioaccumulation of two organophosphate insecticide compounds (dimethoate and chlorpyrifos) in the muscles of juvenile Cyprinus carpio. The study could provide insight into the risks to human health associated with consuming contaminated fish flesh. The fishes exposed to various concentrations of dimethoate and chlorpyrifos in-vivo for 96 to ascertain the uptake and retention of these insecticides in the muscle. Results indicated that fish muscles accumulated the residues at all the concentrations with the recovery of 2.99% (0.032 ppm) of dimethoate exposed to LC50 concentrations. In contrast, the chlorpyrifos residues were found Below the Detection Level (BDL) in the fishes exposed to LC50 concentrations. The percentage bioaccumulation of dimethoate in fish muscle was 88.10%, and that of chlorpyrifos was BDL. The bio-concentration factor was dose-dependent and increased with increasing doses of both insecticides. The study invites attention to human health risk assessment in the regions where contaminated fish are consumed without scientific supervision.
Collapse
Affiliation(s)
- Imtiyaz Qayoom
- Division of AEM, Faculty of Fisheries, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Rangil Ganderbal, Jammu and Kashmir 191201, India
| | - Masood Balkhi
- Division of AEM, Faculty of Fisheries, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Rangil Ganderbal, Jammu and Kashmir 191201, India
| | - Malik Mukhtar
- Division of Entomology, Faculty of Horticulture, Sher-e-Kashmir University of Agricultural Sciences and Technology, Shalimar, Srinagar, Jammu and Kashmir 190025, India
| | - Adnan Abubakr
- Division of AEM, Faculty of Fisheries, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Rangil Ganderbal, Jammu and Kashmir 191201, India
| | - Uzma Siddiqui
- Department Zoology, DSB-Campus Kumaun University, Nainital 263001, India
| | - Sameena Khan
- Division of AEM, Faculty of Fisheries, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Rangil Ganderbal, Jammu and Kashmir 191201, India
| | - Asma Sherwani
- Division of Entomology, Faculty of Horticulture, Sher-e-Kashmir University of Agricultural Sciences and Technology, Shalimar, Srinagar, Jammu and Kashmir 190025, India
| | - Ishrat Jan
- Research Centre for Residue and Quality Analysis, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-K), Shalimar Campus, Srinagar 190025, India
| | - Riyazali Sayyed
- Department of Microbiology, PSGVP Mandal’s S I Arts, G B Patel Science and STKV Sangh Commerce College, Shahada 425409, India
- Faculty of Health and Life Sciences, INTI International University, 71800 Nilai, Negeri Sembilan, Malaysia
| | - Andrea Mastinu
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
3
|
Curi LM, Barrios CE, Attademo AM, Caramello C, Peltzer PM, Lajmanovich RC, Sánchez S, Hernández DR. A realistic combined exposure scenario: effect of microplastics and atrazine on Piaractus mesopotamicus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29794-29810. [PMID: 38592632 DOI: 10.1007/s11356-024-33177-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 03/28/2024] [Indexed: 04/10/2024]
Abstract
Microplastics, considered emerging environmental contaminants resulting from plastic degradation, are discovered in diverse aquatic ecosystems and can be unintentionally ingested by fish. Therefore, it is essential to characterize their interaction with other contaminants, such as agrochemicals, in aquatic environments. This study aimed to assess histological, enzymatic, and genotoxic biomarkers in juvenile pacú (Piaractus mesopotamicus) exposed to polyethylene (PE) microplastic particles and the herbicide atrazine, individually or combined, for 15 days. Four treatments were used: a negative control (CON), PE in the fish diet (0.1% w/w, FPE), atrazine through water (100 μg L-1, ATZ), and the mixture (ATZ+FPE). Results confirmed histological alterations in gills (edema and lamellar fusion) and liver (necrotic areas and congestion) of fish exposed to ATZ and ATZ+FPE. The number of goblet cells increased in the posterior intestine of fish under ATZ+FPE compared to CON and FPE. Enzyme activities (CAT, GST, AChE, and BChE) significantly increased in ATZ+FPE compared to CON. However, no genotoxic effect was demonstrated. These findings provide insights into the complex impacts of simultaneous exposure to atrazine and microplastics, emphasizing the need for continued research to guide effective environmental management strategies against these contaminants that represent a risk to aquatic organisms.
Collapse
Affiliation(s)
- Lucila Marilén Curi
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina.
- Instituto de Materiales de Misiones (IMAM). Facultad de Ciencias Exactas, Químicas y Naturales (FCEQyN), Universidad Nacional de Misiones (UNAM-CONICET), Félix de Azara, 1552, Posadas, Argentina.
| | - Carlos Eduardo Barrios
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Ictiología del Nordeste (INICNE). Facultad de Ciencias Veterinarias (FCV), Universidad Nacional del Nordeste (UNNE), Sargento Cabral, 2139, Corrientes, Argentina
| | - Andrés Maximiliano Attademo
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (FBCB -UNL-CONICET), Ciudad Universitaria, Paraje "El Pozo", RNN 168, Km, 472, Santa Fe, Argentina
| | - Cynthia Caramello
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Materiales de Misiones (IMAM). Facultad de Ciencias Exactas, Químicas y Naturales (FCEQyN), Universidad Nacional de Misiones (UNAM-CONICET), Félix de Azara, 1552, Posadas, Argentina
| | - Paola Mariela Peltzer
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (FBCB -UNL-CONICET), Ciudad Universitaria, Paraje "El Pozo", RNN 168, Km, 472, Santa Fe, Argentina
| | - Rafael Carlos Lajmanovich
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (FBCB -UNL-CONICET), Ciudad Universitaria, Paraje "El Pozo", RNN 168, Km, 472, Santa Fe, Argentina
| | - Sebastián Sánchez
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Ictiología del Nordeste (INICNE). Facultad de Ciencias Veterinarias (FCV), Universidad Nacional del Nordeste (UNNE), Sargento Cabral, 2139, Corrientes, Argentina
| | - David Roque Hernández
- Instituto de Ictiología del Nordeste (INICNE). Facultad de Ciencias Veterinarias (FCV), Universidad Nacional del Nordeste (UNNE), Sargento Cabral, 2139, Corrientes, Argentina
| |
Collapse
|
4
|
Belhassen D, Bejaoui S, Martins R, Perina F, Figueiredo J, Ben Abdallah B, Khila Z, Boubaker S, Ben Fayala C, Trabelsi M, Soudani N. Alteration of redox status and fatty acid profile in gills from the green crab (Carcinus aestuarii) following dimethoate exposure. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105699. [PMID: 38072554 DOI: 10.1016/j.pestbp.2023.105699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/05/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023]
Abstract
Dimethoate is a broad-spectrum organophosphate insecticide and acaricide. Through various pathways, such as runoff and drift, dimethoate can reach marine environment, and easily impact common organisms in coastal areas, close to agriculture lands, namely crustaceans. The purpose of this study was to investigate the potential effects of dimethoate exposure (50, 100, and 200 μg/l), for 1 day, on a wide range of markers of oxidative stress and neurotransmission impairment, as well as fatty acids composition and histopathological aspect in the gills of the green crab Carcinus aestuarii. A significant increase in n-3 polyunsaturated fatty acids series, namely the eicosapentaenoic acid (C20: 5n3) and its precursor alpha-linolenic acid (C 18: 3n3) in dimethoate-treated crabs was recorded. Concerning n-6 polyunsaturated fatty acids, we noted a high reduction in arachidonic acid (C20:4n-6) levels. Dimethoate exposure increased the levels of hydrogen peroxide, malondialdehyde, lipid hydroperoxides, protein carbonyl, and caused the advanced oxidation of protein products along with enzymatic and non-enzymatic antioxidant-related markers. Acetylcholinesterase activity was highly inhibited following exposure to dimethoate in a concentration-dependent manner. Finally, deleterious histopathological changes with several abnormalities were noted in exposed animals confirming our biochemical findings. The present study offered unique insights to establish a relationship between redox status and alterations in fatty acid composition, allowing a better understanding of dimethoate-triggered toxicity.
Collapse
Affiliation(s)
- Dalya Belhassen
- Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Department of Biology, Tunis Faculty of Sciences, University of Tunis El Manar, Tunis 2092, Tunisia.
| | - Safa Bejaoui
- Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Department of Biology, Tunis Faculty of Sciences, University of Tunis El Manar, Tunis 2092, Tunisia
| | - Roberto Martins
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal
| | - Fernando Perina
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal
| | - Joana Figueiredo
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal
| | - Boutheina Ben Abdallah
- Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Department of Biology, Tunis Faculty of Sciences, University of Tunis El Manar, Tunis 2092, Tunisia
| | - Zeineb Khila
- Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Department of Biology, Tunis Faculty of Sciences, University of Tunis El Manar, Tunis 2092, Tunisia; Interdisciplinary Laboratory for Continental Environments, UMR 7360 LIEC CNRS University of Lorraine, Metz 57070, France
| | - Samir Boubaker
- Pasteur Institute of Tunis, Department of Human and Experimental Anatomy Pathology, 13, place Pasteur, B.P. 74 Tunis, Belvedere 1002, Tunisia
| | - Chayma Ben Fayala
- Pasteur Institute of Tunis, Department of Human and Experimental Anatomy Pathology, 13, place Pasteur, B.P. 74 Tunis, Belvedere 1002, Tunisia
| | - Monia Trabelsi
- Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Department of Biology, Tunis Faculty of Sciences, University of Tunis El Manar, Tunis 2092, Tunisia
| | - Nejla Soudani
- Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Department of Biology, Tunis Faculty of Sciences, University of Tunis El Manar, Tunis 2092, Tunisia
| |
Collapse
|
5
|
Horak I, Horn S, Pieters R. The benefit of using in vitro bioassays to screen agricultural samples for oxidative stress: South Africa's case. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2023; 58:689-710. [PMID: 37814453 DOI: 10.1080/03601234.2023.2264739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Applied pesticides end up in non-target environments as complex mixtures. When bioavailable, these chemicals pose a threat to living organisms and can induce oxidative stress (OS). In this article, attention is paid to OS and the physiological role of the antioxidant defense system. South African and international literature was reviewed to provide extensive evidence of pesticide-induced OS in non-target organisms, in vivo and in vitro. Although in vitro approaches are used internationally, South African studies have only used in vivo methods. Considering ethical implications, the authors support the use of in vitro bioassays to screen environmental matrices for their OS potential. Since OS responses are initiated and measurable at lower cellular concentrations compared to other toxicity endpoints, in vitro OS bioassays could be used as an early warning sign for the presence of chemical mixtures in non-target environments. Areas of concern in the country could be identified and prioritized without using animal models. The authors conclude that it will be worthwhile for South Africa to include in vitro OS bioassays as part of a battery of tests to screen environmental matrices for biological effects. This will facilitate the development and implementation of biomonitoring programs to safeguard the South African environment.
Collapse
Affiliation(s)
- Ilzé Horak
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- Occupational Hygiene and Health Research Initiative, North-West University, Potchefstroom, South Africa
| | - Suranie Horn
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- Occupational Hygiene and Health Research Initiative, North-West University, Potchefstroom, South Africa
| | - Rialet Pieters
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
6
|
Li BA, Li BM, Bao Z, Li Q, Xing M, Li B. Dichlorodiphenyltrichloroethane for Malaria and Agricultural Uses and Its Impacts on Human Health. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 111:45. [PMID: 37730942 DOI: 10.1007/s00128-023-03789-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 08/12/2023] [Indexed: 09/22/2023]
Abstract
Pesticides are widely used in agriculture and disease control, and dichlorodiphenyltrichloroethane (DDT) is one of the most used pesticides in human history. Besides its significant contributions in pest control in agriculture, DDT was credited as having saved millions of human lives for controlling malaria and other deadly insect-transmitted diseases. Even today, the use of DDT in some countries for malaria control cannot be replaced without endangering people who live there. The recent COVID-19 pandemic has changed our lives and reminded us of the challenges in dealing with infectious diseases, especially deadly ones including malaria. However, DDT and its metabolites are stable, persist long, are found in almost every corner of the world, and their persistent effects on humans, animals, and the environment must be seriously considered. This review will focus on the history of DDT use for agriculture and malaria control, the pathways for the spread of DDT, benefits and risks of DDT use, DDT exposure to animals, humans, and the environment, and the associated human health risks. These knowledge and findings of DDT will benefit the selection and management of pesticides worldwide.
Collapse
Affiliation(s)
- Benjamin A Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, 26506-9196, WV, USA
- Morgantown High School, Morgantown, WV, USA
| | | | - Zhenghong Bao
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, 26506-9196, WV, USA
| | - Qingyang Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, 26506-9196, WV, USA
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, and The Children's Hospital Research Institute of Manitoba, MB, Winnipeg, Canada
| | - Bingyun Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, 26506-9196, WV, USA.
| |
Collapse
|
7
|
Canesini G, Galoppo GH, Tavalieri YE, Lazzarino GP, Stoker C, Luque EH, Ramos JG, Muñoz-de-Toro M. Disruption of the developmental programming of the gonad of the broad snouted caiman (Caiman latirostris) after in ovo exposure to atrazine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:40132-40146. [PMID: 36607581 DOI: 10.1007/s11356-022-25104-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Environmental exposure to agrochemicals during early stages of development can induce subtle alterations that could permanently affect normal physiology. Previously, we reported that in ovo exposure to atrazine (ATZ) disrupts testicular histoarchitecture in postnatal caimans (Caiman latirostris). To assess whether such alterations are the result of disruption of gonadal developmental programming, this study aimed to evaluate the expression of histofunctional biomarkers (VASA, ER, PR, PCNA, and aromatase) and genes involved in gonadal development and differentiation (amh, sox-9, sf-1 and cyp19-a1) in the gonads of male and female caiman embryos and to assess the effect of ATZ exposure on these biomarkers and genes in the gonads of male embryos. Our results suggest that amh, aromatase and sox-9 play a role in sex determination and gonadal differentiation. In male caiman embryos, ATZ exposure increased aromatase expression and altered the temporal expression pattern of amh and sox-9 evidencing an ATZ-induced disruption of gonadal developmental programming. Since the effects of ATZ are consistent across all vertebrate classes, the ATZ-mediated disruptive effects here observed could be present in other vertebrate species.
Collapse
Affiliation(s)
- Guillermina Canesini
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Casilla de Correo 242, Santa Fe 3000, Argentina
| | - Germán H Galoppo
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Casilla de Correo 242, Santa Fe 3000, Argentina.
| | - Yamil E Tavalieri
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Casilla de Correo 242, Santa Fe 3000, Argentina
| | - Gisela P Lazzarino
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Casilla de Correo 242, Santa Fe 3000, Argentina
| | - Cora Stoker
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Casilla de Correo 242, Santa Fe 3000, Argentina
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Casilla de Correo 242, Santa Fe 3000, Argentina
| | - Jorge G Ramos
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Casilla de Correo 242, Santa Fe 3000, Argentina
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Mónica Muñoz-de-Toro
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Casilla de Correo 242, Santa Fe 3000, Argentina
| |
Collapse
|
8
|
Okogwu OI, Elebe FA, Nwonumara GN. Combinations of cypermethrin and dimethoate alter behavior, hematology and histology of African Catfish, Clarias gariepinus. Environ Anal Health Toxicol 2022; 37:e2022028-0. [PMID: 36916041 PMCID: PMC10014742 DOI: 10.5620/eaht.2022028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/26/2022] [Indexed: 11/11/2022] Open
Abstract
Cypermethrin and dimethoate are pesticides frequently used in agriculture to eliminate pests. Contemporaneity of these and other pesticides in commercial preparations and several aquatic ecosystems is well known, though poorly studied. This study aims to evaluate the effect of sublethal concentrations of combinations of cypermethrin and dimethoate on juvenile catfish, Clarias gariepinus, given that the pesticides concomitantly occur in the floodplains were the fish breed. Behavioral, hematological and histopathological changes in juvenile fish exposed to sublethal concentrations were monitored for 96 hours. Pesticide exposed fish exhibited abnormal behaviors such as erratic swimming, frequent air gulping, sudden jerk movement and rapid opercula movement and these were more pronounced in higher concentrations. Significant reductions in erythrocytes (0.83-20.94%), hemoglobin (4.12-29.23%) and PVC (7.14-28.57%) and increase in leucocytes (4.84-9.32%) were observed (p<0.05). Mean corpuscular hemoglobin concentration (MCHC), mean corpuscular hemoglobin (MCH) and mean cell volume (MCV) reduced significantly in the exposed groups compared to the control. Infiltration of inflammatory cells, distortion of cell architecture, hemorrhage and necrosis were the observed histopathological damages in the heart, brain, gill, liver, kidney and fin of exposed fish. These pathological damages were more severe than previously reported for either chemical. Therefore, the use of these chemicals in agriculture should be regulated, especially near fish breeding sites.
Collapse
Affiliation(s)
- Okechukwu Idumah Okogwu
- Department of Applied Biology, Ebonyi State University, PMB 53 Abakaliki, Ebonyi State, Nigeria
| | | | - Godwin Nkwuda Nwonumara
- Department of Applied Biology, Ebonyi State University, PMB 53 Abakaliki, Ebonyi State, Nigeria
| |
Collapse
|
9
|
Fu H, Tan P, Wang R, Li S, Liu H, Yang Y, Wu Z. Advances in organophosphorus pesticides pollution: Current status and challenges in ecotoxicological, sustainable agriculture, and degradation strategies. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127494. [PMID: 34687999 DOI: 10.1016/j.jhazmat.2021.127494] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Organophosphorus pesticides (OPPs) are one of the most widely used types of pesticide that play an important role in the production process due to their effects on preventing pathogen infection and increasing yield. However, in the early development and application of OPPs, their toxicological effects and the issue of environmental pollution were not considered. With the long-term overuse of OPPs, their hazards to the ecological environment (including soil and water) and animal health have attracted increasing attention. Therefore, this review first clarified the classification, characteristics, applications of various OPPs, and the government's restriction requirements on various OPPs. Second, the toxicological effects and metabolic mechanisms of OPPs and their metabolites were introduced in organisms. Finally, the existing methods of degrading OPPs were summarized, and the challenges and further addressing strategy of OPPs in the sustainable development of agriculture, the environment, and ecology were prospected. However, methods to solve the environmental and ecological problems caused by OPPs from the three aspects of use source, use process, and degradation methods were proposed, which provided a theoretical basis for addressing the stability of the ecological environment and improving the structure of the pesticide industry in the future.
Collapse
Affiliation(s)
- Huiyang Fu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Peng Tan
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Renjie Wang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Senlin Li
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Haozhen Liu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China.
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
10
|
Brovini EM, de Deus BCT, Vilas-Boas JA, Quadra GR, Carvalho L, Mendonça RF, Pereira RDO, Cardoso SJ. Three-bestseller pesticides in Brazil: Freshwater concentrations and potential environmental risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:144754. [PMID: 33736156 DOI: 10.1016/j.scitotenv.2020.144754] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/11/2020] [Accepted: 12/22/2020] [Indexed: 05/22/2023]
Abstract
Agricultural production in Brazil is favored by weather conditions and by the large amount of available land. Therefore, currently, Brazil is the second largest exporter of agricultural products globally. Pesticides are widely used in Brazilian crops due to their high efficiency, their low cost, and permissive legislation. However, pesticides tend to reach water resources threatening organisms and the water quality. Thereby, we aimed to review the surface freshwater concentrations of the three-bestseller pesticides in Brazil (glyphosate, 2,4D, and atrazine), and discuss the results with sales, legislation, toxicity and potential risks. For that, we performed a systematic review of quantitative studies of glyphosate, atrazine, and 2,4D in Brazilian freshwater and included monitoring data provided by the Brazilian Ministry of Health in our analysis. Finally, we calculated the risk assessment for the three pesticides. Only a few scientific studies reported concentrations of either of the three-bestseller pesticides in Brazilian freshwaters. Between 2009 and 2018, an increase in the sales of 2,4D, atrazine, and glyphosate was observed. It was not possible to evaluate the relation between concentrations and sales, due to limited number of studies, lack of standard criteria for sampling, individual environmental properties, and type of pesticide. Atrazine showed a higher toxicity compared to 2,4D and glyphosate. Regarding the environmental risks, 65%, 72%, and 94% of the Brazilian states had a medium to high risk to 2,4D, atrazine, and glyphosate, respectively. Finally, 80% of the Brazilian states evaluated showed a high environmental risk considering a mixture of the three pesticides. Although most of the environmental concentrations registered were below the allowed limits according to the Brazilian legislation, they are already enough to pose a high risk for the aquatic ecosystems. We, therefore, strongly recommend a revaluation of the maximum allowed values in the national surface freshwater Brazilian legislation.
Collapse
Affiliation(s)
- Emília Marques Brovini
- Laboratório de Ecologia Aquática, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, 36036-900 Juiz de Fora, Minas Gerais, Brazil; Programa de Pós-Graduação em Biodiversidade e Conservação da Natureza, Universidade Federal de Juiz de Fora, 36036-900, Brazil.
| | - Beatriz Corrêa Thomé de Deus
- Programa de Pós-Graduação em Engenharia Civil, Universidade Federal de Juiz de Fora, Juiz de Fora, MG 36036-900, Brazil
| | - Jéssica Andrade Vilas-Boas
- Programa de Pós-Graduação em Biodiversidade e Conservação da Natureza, Universidade Federal de Juiz de Fora, 36036-900, Brazil; Laboratório de Protozoologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, 36036-900 Juiz de Fora, Minas Gerais, Brazil
| | - Gabrielle Rabelo Quadra
- Laboratório de Ecologia Aquática, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, 36036-900 Juiz de Fora, Minas Gerais, Brazil; Programa de Pós-Graduação em Biodiversidade e Conservação da Natureza, Universidade Federal de Juiz de Fora, 36036-900, Brazil
| | - Luana Carvalho
- Laboratório de Protozoologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, 36036-900 Juiz de Fora, Minas Gerais, Brazil
| | - Raquel Fernandes Mendonça
- Laboratório de Ecologia Aquática, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, 36036-900 Juiz de Fora, Minas Gerais, Brazil; Programa de Pós-Graduação em Biodiversidade e Conservação da Natureza, Universidade Federal de Juiz de Fora, 36036-900, Brazil
| | - Renata de Oliveira Pereira
- Programa de Pós-Graduação em Engenharia Civil, Universidade Federal de Juiz de Fora, Juiz de Fora, MG 36036-900, Brazil
| | - Simone Jaqueline Cardoso
- Laboratório de Ecologia Aquática, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, 36036-900 Juiz de Fora, Minas Gerais, Brazil; Programa de Pós-Graduação em Biodiversidade e Conservação da Natureza, Universidade Federal de Juiz de Fora, 36036-900, Brazil
| |
Collapse
|
11
|
Abdel-Warith AWA, Younis EM, Al-Asgah NA, Gewaily MS, El-Tonoby SM, Dawood MAO. Role of Fucoidan on the Growth Behavior and Blood Metabolites and Toxic Effects of Atrazine in Nile Tilapia Oreochromis niloticus (Linnaeus, 1758). Animals (Basel) 2021; 11:ani11051448. [PMID: 34069982 PMCID: PMC8157872 DOI: 10.3390/ani11051448] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/01/2021] [Accepted: 05/12/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Toxic derivatives reach the ponds and cages where fish are grown, and the continuous exposure to these contaminants proved to impair the healthy status of several finfish species. In some countries famous for cultivating rice and corn, atrazine (ATZ) is massively applied to protect plants from invaders. Many functional additives are permitted for application in the aquaculture sector as natural alternatives for chemotherapies. In this study, the toxicity impacts of ATZ and the protective role of fucoidan were investigated on the health performance of Nile tilapia. Long-term exposure to ATZ resulted in low growth rate, impaired hepato-renal function, intestinal inflammation, and oxidative stress in Nile tilapia. However, the obtained results soundly support fucoidan’s potential role to cope with the impacts of ATZ on Nile tilapia. Abstract Waterborne herbicides are stressful agents that threaten the productivity and safety of finfish species. In this study, the toxicity impacts of atrazine (ATZ) and the protective role of fucoidan were investigated on the health performance of Nile tilapia. For 40 days, the total number of 180 Nile tilapia was assigned in four groups (triplicates, 15 fish/replicate), where the first (control) and third groups were offered the control diet, while the second and fourth groups were offered a fucoidan (FCN). Further, in the third and fourth groups, the water was mixed with atrazine (ATZ) at 1.39 mg/L daily. The growth rate, FCR, and survival rate were markedly enhanced by fucoidan but severely declined by ATZ exposure (p < 0.05). The morphological structure of the intestine in the control fish revealed normal structure, while fucoidan-treated groups showed eminent enhancement and branching of the intestinal villi. The intestine of ATZ-treated fish revealed deterioration and the intestinal mucosa, inflammatory cell infiltration, and separation of lining epithelium. The highest Hb, PCV, RBCs, WBCs, total protein, and albumin were observed in Nile tilapia fed fucoidan, but the worst values were seen in ATZ-intoxicated fish (p < 0.05). The liver-related enzymes (ALT and AST) and kidney function (urea and creatinine) showed impaired values by ATZ toxicity and were regulated by dietary fucoidan. Meanwhile, fish fed fucoidan and exposed to ATZ had lower total cholesterol and triglyceride values than fish exposed to ATZ without fucoidan feeding (p < 0.05). The SOD, CAT, GPx, cortisol, and glucose levels were increased in ATZ-exposed fish and reduced by fucoidan (p < 0.05). However, the level of malondialdehyde (MDA) was reduced in fucoidan-fed fish and increased in ATZ-exposed fish (p < 0.05). Altogether, dietary fucoidan is required in fish diets to alleviate the impacts of ATZ-induced toxicity.
Collapse
Affiliation(s)
- Abdel-Wahab A. Abdel-Warith
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.-W.A.A.-W.); (E.M.Y.); (N.A.A.-A.)
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo 11651, Egypt
| | - Elsayed M. Younis
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.-W.A.A.-W.); (E.M.Y.); (N.A.A.-A.)
| | - Nasser A. Al-Asgah
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.-W.A.A.-W.); (E.M.Y.); (N.A.A.-A.)
| | - Mahmoud S. Gewaily
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Shaimaa M. El-Tonoby
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Mahmoud A. O. Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
- Correspondence:
| |
Collapse
|
12
|
Brodeur JC, Poletta GL, Simoniello MF, Carriquiriborde P, Cristos DS, Pautasso N, Paravani E, Poliserpi MB, D'Andrea MF, Gonzalez PV, Aca VL, Curto AE. The problem with implementing fish farms in agricultural regions: A trial in a pampean pond highlights potential risks to both human and fish health. CHEMOSPHERE 2021; 262:128408. [PMID: 33182150 DOI: 10.1016/j.chemosphere.2020.128408] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/12/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
The safety of creating fish farms in agricultural settings was evaluated by growing Piaractus mesopotamicus in a pond, while crops where cultivated in a nearby field under a pesticide application regime typical of the Pampa region. Atrazine, glyphosate and its metabolite, aminomethylphosphonic acid (AMPA), were detected in the water of the pond at concentrations ranging between 92 and 118 μg/L for atrazine, 12 and 221 μg/L for glyphosate and 21 and 117 μg/L for AMPA. Atrazine and malathion were detected in fish muscles at concentrations ranging between 70 and 105 μg/kg for atrazine and 8.6 and 23.7 μg/kg for malathion. Compared to fish raised in a pisciculture, fish from the agricultural pond presented reduced values of pack cell volume, hemoglobin, mean corpuscular hemoglobin and mean corpuscular hemoglobin concentration, together with significantly greater cholinesterase activity in both plasma and liver and reduced glutathione-S-transferase activity in the liver. A comet assay also demonstrated that P. mesopotamicus from the agricultural pond presented a significantly greater level of DNA damage in both erythrocytes and gill cells. Overall, the present study demonstrates that pisciculture ponds established in an agricultural setting may receive pesticides applied to nearby cultures and that these pesticides may be taken up by the fish and affect their physiology and health. The accumulation of pesticides residues in fish flesh may also present a risk to human consumers and should be closely controlled.
Collapse
Affiliation(s)
- Julie C Brodeur
- Instituto de Recursos Biológicos, Centro de Investigaciones de Recursos Naturales (CIRN), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Gisela L Poletta
- Cátedra de Toxicología, Farmacología y Bioquímica Legal, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Littoral, Ciudad Universitaria, Paraje El Pozo S/N (3000), Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - M Fernanda Simoniello
- Cátedra de Toxicología, Farmacología y Bioquímica Legal, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Littoral, Ciudad Universitaria, Paraje El Pozo S/N (3000), Santa Fe, Argentina
| | - Pedro Carriquiriborde
- Centro de Investigaciones del Medioambiente (CIM) Departamento de Química, Facultad de Ciencias Exactas Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Diego S Cristos
- Instituto Tecnología de Alimentos, Centro de Investigación de Agroindustria (CIA), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
| | - Nestor Pautasso
- Estacion Experimental Paraná, Centro Regional Entre Ríos, Instituto Nacional de Tecnología Agropecuaria (INTA), Ruta 11, Km. 12.5 (3100), Paraná, Entre Ríos, Argentina
| | - Enrique Paravani
- Facultad de Ingeniería. Universidad de Entre Ríos, Oro Verde, Entre Ríos, Argentina
| | - M Belen Poliserpi
- Instituto de Recursos Biológicos, Centro de Investigaciones de Recursos Naturales (CIRN), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
| | - M Florencia D'Andrea
- Instituto de Recursos Biológicos, Centro de Investigaciones de Recursos Naturales (CIRN), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Patricia V Gonzalez
- Centro de Investigaciones del Medioambiente (CIM) Departamento de Química, Facultad de Ciencias Exactas Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Viviana López Aca
- Centro de Investigaciones del Medioambiente (CIM) Departamento de Química, Facultad de Ciencias Exactas Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Alejandro E Curto
- Dirección Centro Regional Entre Ríos, Instituto Nacional de Tecnología Agropecuaria (INTA), Ruta 11, Km. 12.5 (3100), Paraná, Entre Ríos, Argentina
| |
Collapse
|