1
|
Carnib BL, Cirqueira F, de Oliveira JM, Rocha TL. Ecotoxicological impact of the fungicide tebuconazole on fish: a historical review, global trends and challenges. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 284:107398. [PMID: 40367844 DOI: 10.1016/j.aquatox.2025.107398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/02/2025] [Accepted: 05/03/2025] [Indexed: 05/16/2025]
Abstract
Tebuconazole (TBZ) is a triazole fungicide broadly used to control fungal diseases in agricultural crops, fruit-bearing plants and forestry plantations. However, its increasing use and release into aquatic environments has raised concerns about its hazardous effects on the health of fish. Thus, the aim of the present study was to review the scientific literature on the ecotoxicological effects of TBZ and TBZ-based commercial formulations on fish. Historical review data (publication year and geographical distribution), TBZ type, experimental design, fish species, habitat, life stage, tissue/organ, lethal concentration (LC50), concentration and exposure time, biomarkers and effects were compiled and critically analyzed. Studies were mainly conducted with freshwater species at adult and larval stages, whereas no data were find for marine fish species. Zebrafish, (Danio rerio) was the most assessed species. Both TBZ and TBZ-based commercial formulations induced oxidative stress, endocrine disruption, neurotoxicity, genotoxicity, histopathologies, behavior impairments and mortality on fish. TBZ can induce synergistic and antagonistic effects on fish when it is combined to other pesticides. Overall, the current study has shown the potential hazardous effects of TBZ and TBZ-based commercial formulations on the health of fish.
Collapse
Affiliation(s)
- Bianca Leite Carnib
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Felipe Cirqueira
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Jerusa Maria de Oliveira
- Strategic Materials Laboratory, Institute of Physics, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
2
|
Ihle V, Flach H, Kaminski F, Dietmann P, Pfeffer S, Kühl SJ. Tebuconazole-based fungicide impairs embryonic development of the South African Clawed Frog Xenopus laevis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 116:104708. [PMID: 40311790 DOI: 10.1016/j.etap.2025.104708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/28/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
Tebuconazole (TBZ) is a broad-spectrum fungicide that disrupts fungal cell membrane. Due to its extensive application in agriculture, TBZ is frequently detected in aquatic ecosystems, posing potential risks to amphibians. However, the effects of TBZ-based formulations on amphibian development remain poorly understood. The present study investigates the effects of the TBZ-based fungicide Tebucur on the embryogenesis of the South African clawed frog. Two-cell stage embryos were exposed to varying concentrations of Tebucur (0.01-100 mg a.i./L) in a static non-renewal bioassay. The exposure time varied between four and 14 days, depending on the desired developmental stage of the embryos and the analysis method. Tebucur exposure resulted in mortality with a LC50-value of 8.0 mg a.i./L at 14 days. As well, various morphological abnormalities during neural and cardiac development emerged. Additionally, a reduction of overall mobility was observed. This underlines the need for strict regulation of the use of TBZ-formulations.
Collapse
Affiliation(s)
- Vanessa Ihle
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, German
| | - Hannah Flach
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, German
| | - Florian Kaminski
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, German
| | - Petra Dietmann
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, German
| | - Sarah Pfeffer
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, German
| | - Susanne J Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, German.
| |
Collapse
|
3
|
Zhang Y, Hou L, Guo T, Lu H, Zhang X, Xing M. An in-depth analysis of the effects of excessive acetochlor exposure on chicken liver health. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106280. [PMID: 40015872 DOI: 10.1016/j.pestbp.2024.106280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/19/2024] [Accepted: 12/25/2024] [Indexed: 03/01/2025]
Abstract
Acetochlor, a commonly used herbicide, poses significant risks to ecosystem and organism health through contamination of the food chain. Despite its widespread use, there is a lack of comprehensive studies on its toxicological effects on avian species. This study investigates the impact of environmental acetochlor exposure on chicken liver health using metabolomics analysis and histopathological techniques. Microscopic examination revealed autophagy-like structures and endoplasmic reticulum (ER) expansion, with significant effects observed at higher exposure levels. Biochemical analysis and metabolomics also demonstrated acetochlor-induced ferroptosis, highlighting disruptions in liver function. Further, in vitro studies revealed that acetochlor stimulates autophagy, which regulates ferroptosis via ferritin degradation, mediated through the ER-CaMKII pathway. These findings emphasize the importance of understanding the molecular mechanisms involved in acetochlor toxicity, particularly the role of the Ca2+/CaMKII pathway, ER stress, and autophagy in ferroptosis. The study contributes to a deeper understanding of how environmental contaminants affect avian species, providing critical insights for better herbicide risk assessment, pollution control, and sustainable agricultural practices.
Collapse
Affiliation(s)
- Yue Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Lulu Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Tiantian Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Hongmin Lu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Xin Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| |
Collapse
|
4
|
Mackei M, Huber F, Sebők C, Vörösházi J, Tráj P, Márton RA, Neogrády Z, Mátis G. Effective adaptation of flight muscles to tebuconazole-induced oxidative stress in honey bees. Heliyon 2025; 11:e41291. [PMID: 39811324 PMCID: PMC11730214 DOI: 10.1016/j.heliyon.2024.e41291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
The widespread and excessive agricultural use of azole fungicide tebuconazole poses a major threat to pollinator species including honey bee colonies as highlighted by recent studies. This issue is of growing importance, due to the intensification of modern agriculture and the increasing amount of the applied chemicals, serving as a major and recent problem from both an ecotoxicological and an agricultural point of view. The present study aims to detect the effects of acute sublethal tebuconazole exposure focusing on the redox homeostasis of honey bee flight muscles. The results show that the redox homeostasis, especially the glutathione system, of the exposed animals is severely impaired by the treatment, but flight muscles are able to successfully counteract the detrimental effects by the effective activation of protective processes. This efficient adaptation may have led to overcompensation processes eventually resulting in lower hydrogen peroxide and malondialdehyde concentrations after exposure. It could also be assumed that tebuconazole has a non-monotonic dose-response curve similarly to many other substances with endocrine-disrupting activity concerning parameters such as superoxide dismutase activity or total antioxidant capacity. These findings shed light on the detrimental impact of tebuconazole on the redox balance of honey bee flight muscles, also highlighting, that unlike other organs such as the brain, they may effectively adapt to acute tebuconazole exposure.
Collapse
Affiliation(s)
- Máté Mackei
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, István Street 2, H-1078, Hungary
| | - Fanni Huber
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078, Budapest, Hungary
| | - Csilla Sebők
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078, Budapest, Hungary
| | - Júlia Vörösházi
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078, Budapest, Hungary
| | - Patrik Tráj
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078, Budapest, Hungary
| | - Rege Anna Márton
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, István Street 2, H-1078, Hungary
| | - Zsuzsanna Neogrády
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078, Budapest, Hungary
| | - Gábor Mátis
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, István Street 2, H-1078, Hungary
| |
Collapse
|
5
|
Ranjan H, Senthil Kumar S, Priscilla S, Swaminathan S, Umezawa M, Sheik Mohideen S. Polyethylene microplastics affect behavioural, oxidative stress, and molecular responses in the Drosophila model. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:2203-2214. [PMID: 39484827 DOI: 10.1039/d4em00537f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The escalating presence of microplastic pollution poses a significant environmental threat, with far-reaching implications for both ecosystems and human health. This study investigated the toxicological impact of polyethylene microplastics (PE MPs) using Drosophila melanogaster, fruit flies, as a model organism. Drosophila were exposed to PE MPs orally at concentrations of 1 mg ml-1 and 10 mg ml-1 agar food. The study assessed behavioural parameters and biochemical markers including reactive oxygen species (ROS), superoxide dismutase (SOD), and glutathione-S-transferase (GST) activity. The expression levels of key genes (Hsp70Bc, rpr, and p53) were also analysed using the RT-qPCR technique. Results indicated a significant decline in climbing activity among adult flies and crawling behaviour in larvae, indicating potential disruption of motor function. Biochemical analysis revealed elevated ROS levels, indicative of oxidative stress, in both larval and fly stages. Moreover, the antioxidant defence system exhibited decreased SOD activity and a concentration-dependent increase in GST activity indicating the functioning of a quick xenobiotic clearance mechanism. Gene expression analysis demonstrated upregulation of rpr, p53, and Hsp70Bc genes, suggesting activation of cell death pathways and stress response mechanisms. Overall, these findings underline the adverse effects of PE MPs on Drosophila, including behavioural impairment, oxidative stress, and activation of stress response pathways.
Collapse
Affiliation(s)
- Himanshu Ranjan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur-603203, India.
| | - Swetha Senthil Kumar
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur-603203, India.
| | - Sharine Priscilla
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur-603203, India.
| | - Subhashini Swaminathan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur-603203, India.
| | - Masakazu Umezawa
- Department of Medical and Robotic Engineering Design, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo, 125-8585, Japan.
| | - Sahabudeen Sheik Mohideen
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur-603203, India.
| |
Collapse
|
6
|
Orou-Seko A, Chirawurah D, Houndji A, Achana F, Aputere Ndago J, Nkansah-Baidoo M, Adokiya MN. Occurrence of pesticide residues and associated ecological risks assessment in water and sediment from selected dams in northern Ghana. PLoS One 2024; 19:e0312273. [PMID: 39432548 PMCID: PMC11493270 DOI: 10.1371/journal.pone.0312273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/25/2024] [Indexed: 10/23/2024] Open
Abstract
Pesticides are chemicals used to enhance crop production. However, their residues can persist and accumulate in various environmental settings. This study assessed the occurrence of pesticide residues and ecological risks in surface water and sediment from the Libga and Builpela dams in northern Ghana. A total of 42 pesticides were analysed. Toxic units were used to assess the acute risk to sediment-dwelling organisms and aquatic biota. Risk quotients were employed to assess the chronic risk to aquatic organisms. Chlorpyrifos, atrazine, profenofos, and chlorfenvinphos were the main chemicals found in surface water. The concentrations were highest near the Builpela dam (0.413μg/L, 2.927μg/L, 0.304μg/L, 0.692μg/L, 0.073μg/L, 0.290μg/L, 0.06μg/L, and absent in the Libga dam). In the sediment, the organophosphates pyrimiphos-methyl and chlorpyrifos were found at high concentrations. They were found in higher quantities in the Libga dam (0.554mg/kg and 0.052mg/kg, respectively) and Builpela dam (0.051mg/kg and 0.043mg/kg, respectively). For organochlorines, p,p'-DDE and p,p'-DDD were the main residues detected at high concentrations. However, concentrations were higher for p,p'-DDD at Builpela than for p,p'-DDE. Additionally, high concentrations of atrazine were detected in this study. The toxic units showed a high acute risk for organisms that live in sediment as a result of chlorpyrifosfos and chlorfenvinphos residues. Similarly, pirimiphos-methyl and chlorfenvinphos, followed by chlorpyrifos, contributed to high acute risk in aquatic invertebrates. Risk quotients showed that both dams had a high long-term risk for aquatic life; however, the risk was higher at the Builpela dam due to Pirimiphos-methyl and Chlorfenvinphos. Ghana's pesticide regulations are less comprehensive and enforcement is often weaker in protecting aquatic organisms. It is recommended to enforce strict limits on pesticide residues. Additionally, there is a need to regularly review and update these regulations based on new scientific data to protect aquatic ecosystems.
Collapse
Affiliation(s)
- Abdou Orou-Seko
- Department of Environmental and Occupational Health, University for Development Studies, Tamale, Ghana
- Research Laboratory in Aquaculture and Aquatic Ecotoxicology, University of Parakou, Parakou, Benin
| | - Dennis Chirawurah
- Department of Environmental and Occupational Health, University for Development Studies, Tamale, Ghana
| | - Alexis Houndji
- Research Laboratory in Aquaculture and Aquatic Ecotoxicology, University of Parakou, Parakou, Benin
| | - Felix Achana
- Department of Epidemiology, Biostatistics and Disease Control, University for Development Studies, Tamale, Ghana
| | - Joyce Aputere Ndago
- Department of Social and Behavioral Change, School of Public Health, University for Development Studies, Tamale, Ghana
- Department of Social and Behavioral Sciences, School of Public Health, University of Ghana, Legon, Ghana
| | | | - Martin Nyaaba Adokiya
- Department of Epidemiology, Biostatistics and Disease Control, University for Development Studies, Tamale, Ghana
| |
Collapse
|
7
|
Chen WJ, Chen SF, Song H, Li Z, Luo X, Zhang X, Zhou X. Current insights into environmental acetochlor toxicity and remediation strategies. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:356. [PMID: 39083106 DOI: 10.1007/s10653-024-02136-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/16/2024] [Indexed: 09/07/2024]
Abstract
Acetochlor is a selective pre-emergent herbicide that is widely used to control annual grass and broadleaf weeds. However, due to its stable chemical structure, only a small portion of acetochlor exerts herbicidal activity in agricultural applications, while most of the excess remains on the surfaces of plants or enters ecosystems, such as soil and water bodies, causing harm to the environment and human health. In recent years, researchers have become increasingly focused on the repair of acetochlor residues. Compared with traditional physical and chemical remediation methods, microorganisms are the most effective way to remediate chemical pesticide pollution, such as acetochlor, because of their rich species, wide distribution, and diverse metabolic pathways. To date, researchers have isolated and identified many high-efficiency acetochlor-degrading strains, such as Pseudomonas oleovorans, Klebsiella variicola, Bacillus subtilus, Rhodococcus, and Methylobacillus, among others. The microbial degradation pathways of acetochlor include dechlorination, hydroxylation, N-dealkylation, C-dealkylation, and dehydrogenation. In addition, the microbial enzymes, including hydrolase (ChlH), debutoxylase (Dbo), and monooxygenase (MeaXY), responsible for acetochlor biodegradation are also being investigated. In this paper, we review the migration law of acetochlor in the environment, its toxicity to nontarget organisms, and the main metabolic methods. Moreover, we summarize the latest progress in the research on the microbial catabolism of acetochlor, including the efficient degradation of microbial resources, biodegradation metabolic pathways, and key enzymes for acetochlor degradation. At the end of the article, we highlight the existing problems in the current research on acetochlor biodegradation, provide new ideas for the remediation of acetochlor pollution in the environment, and propose future research directions.
Collapse
Affiliation(s)
- Wen-Juan Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Shao-Fang Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Haoran Song
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Zeren Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaofang Luo
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Xidong Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
8
|
Lima SC, de Oliveira AC, Tavares CPS, Costa MLL, Roque RA. Essential oil from Piper tuberculatum Jacq. (Piperaceae) and its majority compound β-caryophyllene: mechanism of larvicidal action against Aedes aegypti (Diptera: Culicidae) and selective toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33454-33463. [PMID: 38684608 DOI: 10.1007/s11356-024-33416-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Synthetic insecticides have been the primary approach in controlling Aedes aegypti; however, their indiscriminate use has led to the development of resistance and toxicity to non-target animals. In contrast, essential oils (EOs) are alternatives for vector control. This study investigated the mechanism of larvicidal action of the EO and β-caryophyllene from Piper tuberculatum against A. aegypti larvae, as well as evaluated the toxicity of both on non-target animals. The EO extracted from P. tuberculatum leaves was majority constituted of β-caryophyllene (54.8%). Both demonstrated larvicidal activity (LC50 of 48.61 and 57.20 ppm, p < 0.05), acetylcholinesterase inhibition (IC50 of 57.78 and 71.97 ppm), and an increase in the production of reactive oxygen and nitrogen species in larvae after exposure to the EO and β-caryophyllene. Furthermore, EO and β-caryophyllene demonstrate no toxicity to non-target animals Toxorhynchites haemorrhoidalis, Anisops bouvieri, and Diplonychus indicus (100% of survival rate), while the insecticide α-cypermethrin was highly toxic (100% of death). The results demonstrate that the EO from P. tuberculatum and β-caryophyllene are important larvicidal agents.
Collapse
Affiliation(s)
- Suelen C Lima
- Laboratório de Malária e Dengue, Coordenação de Sociedade, Ambiente e Saúde, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, 69067-375, Brazil.
| | - André C de Oliveira
- Laboratório de Malária e Dengue, Coordenação de Sociedade, Ambiente e Saúde, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, 69067-375, Brazil
- Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Manaus, Amazonas, 69080-900, Brazil
| | - Claudia P S Tavares
- Laboratório de Malária e Dengue, Coordenação de Sociedade, Ambiente e Saúde, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, 69067-375, Brazil
| | - Maria Luiza L Costa
- Laboratório de Malária e Dengue, Coordenação de Sociedade, Ambiente e Saúde, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, 69067-375, Brazil
| | - Rosemary A Roque
- Laboratório de Malária e Dengue, Coordenação de Sociedade, Ambiente e Saúde, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, 69067-375, Brazil
| |
Collapse
|
9
|
Gao X, Ren H, Huang Y, Li Y, Shen J. Influence of multi-walled carbon nanotubes on the toxicity of ZnO nanoparticles in the intestinal histopathology, apoptosis, and microbial community of common carp. Comp Biochem Physiol C Toxicol Pharmacol 2024; 276:109790. [PMID: 37951286 DOI: 10.1016/j.cbpc.2023.109790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/25/2023] [Accepted: 11/08/2023] [Indexed: 11/13/2023]
Abstract
In recent years, carbon nanotubes (CNTs) have gained tremendous attention due to their widespread application. Previous research indicated that carbon nanomaterials can affect the toxicity of some pollutants. In this study, we investigated the influence of multi-walled CNTs (MWCNTs) on the toxicity of ZnO nanoparticles (ZnONPs) in the intestine of common carp (Cyprinus carpio). After four-week exposure, histopathological observation and TUNEL assay showed concentration ratio-dependent intestinal lesions and apoptosis, with the most severe in the HSC-ZnONPs group (50 mg L-1 ZnONPs and 2.5 mg L-1 MWCNTs), less severe in the ZnONPs group (50 mg L-1 ZnONPs) and the least in the LSC-ZnONPs group (50 mg L-1 ZnONPs and 0.25 mg L-1 MWCNTs). Furthermore, ICP-OES indicated that intercellular zinc accumulation was significantly decreased by the presence of the MWCNTs, which suggested the varied contribution of ZnONPs to intestine injury in different groups. Moreover, 16 s rDNA sequencing revealed that ZnONPs alone and in combination with MWCNTs significantly altered the microbial community diversity and composition of the gut microbiota compared with controls. In addition, the predominant phylum, class, order, family, and genus were significantly different among these groups. In conclusion, the influence of MWCNTs on the toxicity of ZnONPs was related to the concentration and concentration ratio of the mixture.
Collapse
Affiliation(s)
- Xiaochan Gao
- School of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China.
| | - Hongtao Ren
- School of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Yong Huang
- School of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Yimin Li
- School of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Jiaqi Shen
- School of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| |
Collapse
|
10
|
Dong B. A comprehensive review on toxicological mechanisms and transformation products of tebuconazole: Insights on pesticide management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168264. [PMID: 37918741 DOI: 10.1016/j.scitotenv.2023.168264] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/07/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Tebuconazole has been widely applied over three decades because of its high efficiency, low toxicity, and broad spectrum, and it is still one of the most popular fungicides worldwide. Tebuconazole residues have been frequently detected in environmental samples and food, posing potential hazards for humans. Understanding the toxicity of pesticides is crucial to ensuring human and ecosystem health, but the toxic mechanisms and toxicity of tebuconazole are still unclear. Moreover, pesticides could transform into transformation products (TPs) that may be more persistent and toxic than their parents. Herein, the toxicities of tebuconazole to humans, mammals, aquatic organisms, soil animals, amphibians, soil microorganisms, birds, honeybees, and plants were summarized, and its TPs were reviewed. In addition, the toxicity of tebuconazole TPs to aquatic organisms and mammals was predicted. Tebuconazole posed potential developmental toxicity, genotoxicity, reproductive toxicity, mutagenicity, hepatotoxicity, neurotoxicity, cardiotoxicity, and nephrotoxicity, which were induced via reactive oxygen species-mediated apoptosis, metabolism and hormone perturbation, DNA damage, and transcriptional abnormalities. In addition, tebuconazole exhibited apparent endocrine-disrupting effects by modulating hormone levels and gene transcription. The toxicity of some TPs was equivalent to and higher than tebuconazole. Therefore, further investigation is necessary into the toxicological mechanisms of tebuconazole and the combined toxicity of a mixture of tebuconazole and its TPs.
Collapse
Affiliation(s)
- Bizhang Dong
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
11
|
An X, Di S, Wang X, Cao C, Wang D, Chen L, Wang Y. Combined toxicity of aflatoxin B1 and tebuconazole to the embryo development of zebrafish (Danio rerio). CHEMOSPHERE 2024; 346:140612. [PMID: 37931711 DOI: 10.1016/j.chemosphere.2023.140612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023]
Abstract
Mycotoxins and pesticides are pervasive elements within the natural ecosystem. Furthermore, many environmental samples frequently exhibit simultaneous contamination by multiple mycotoxins and pesticides. Nevertheless, a significant portion of previous investigations has solely reported the occurrence and toxicological effects of individual chemicals. Global regulations have yet to consider the collective impacts of mycotoxins and pesticides. In our present study, we undertook a comprehensive analysis of multi-level endpoints to elucidate the combined toxicity of aflatoxin B1 (AFB1) and tebuconazole (TCZ) on zebrafish (Danio rerio). Our findings indicated that AFB1 (with a 10-day LC50 value of 0.018 mg L-1) exhibits higher toxicity compared to TCZ (with a 10-day LC50 value of 2.1 mg L-1) toward D. rerio. The co-exposure of AFB1 and TCZ elicited synergistic acute responses in zebrafish. The levels of GST, CYP450, SOD, and Casp-9 exhibited significant variations upon exposure to AFB1, TCZ, and their combined mixture, in contrast to the control group. Additionally, eight genes, namely cat, cxcl-cic, il-1β, bax, apaf-1, trβ, ugtlab, and vtg1, displayed marked alterations when exposed to the chemical mixture as opposed to individual substances. Therefore, further exploration of the underlying mechanisms governing joint toxicity is imperative to establish a scientific basis for evaluating the risk associated with the combined effects of AFB1 and TCZ. Moreover, it is essential to thoroughly elucidate the organ system toxicity triggered by the co-occurrence of mycotoxins and pesticides.
Collapse
Affiliation(s)
- Xuehua An
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Chong Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Dou Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Liezhong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| |
Collapse
|
12
|
Zheng T, Wang P, Hu B, Wang X, Ma J, Liu C, Li D. Gross yield driving the mass fluxes of fishery drugs: Evidence of occurrence from full aquaculture cycle in lower Yangtze River Basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166581. [PMID: 37634728 DOI: 10.1016/j.scitotenv.2023.166581] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
Expanding aquaculture has generated pollutants like fishery drugs in wastewater, which affects the aquatic environments and hinders sustainable development of aquaculture. To evaluate the occurrence, mass fluxes and production factors of fishery drugs in aquaculture, full-aquaculture-cycle monitoring in finfish and crustacean wastewater was conducted in the lower Yangtze River Basin, and 28 pesticides and 15 antibiotics were detected. The results showed that individual fishery drugs varied from ppt to ppb levels. Among them, sulfonamides were dominant with a mean concentration of 105.95 ± 4.13 ng·L-1 in finfish aquacultural wastewater, and insecticides were prevailing in crustacean aquacultural wastewater with a content of 146.56 ± 0.66 ng·L-1. Since the susceptibility to finfish disease determined the aquaculture practice, there were significant differences between two types of aquacultural wastewater. Finfish aquacultural wastewater contained more drugs and reached peak earlier in rapid-growth period, yet crustacean aquacultural wastewater peaked at the harvest period, to prevent against disease. Meanwhile, higher ecological risk, especially for florfenicol, were found in finfish wastewater. With 6 production factors from Good Aquaculture Practice, the gross yield was the most influential factor of drug mass flux, explaining 98 % variance by stepwise regression. Apart from increasing concentrations of fishery drugs in wastewater, regional high-yield aquaculture also significantly impacted the corresponding mass flux. As estimated by linear regression, 1.63 tons of target drugs would be discharged by 1 Mt. aquatic products, and 7.77 tons were discharged from aquaculture in the lower Yangtze River Basin in 2021. This is the first report to quantify mass fluxes of fishery drugs and to highlight gross yield as the most influential factor, which provides guidance for the supervision and regulation of sustainable aquaculture.
Collapse
Affiliation(s)
- Tianming Zheng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Bin Hu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xun Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jingjie Ma
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Chongchong Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Dingxin Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
13
|
Liu H, Wang K, Han D, Sun W, Xu S. Co-exposure of avermectin and imidacloprid induces DNA damage, pyroptosis, and immune dysfunction in epithelioma papulosum cyprini cells via ROS-mediated Keap1/Nrf2/TXNIP axis. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108985. [PMID: 37536468 DOI: 10.1016/j.fsi.2023.108985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023]
Abstract
Pesticide mixtures can reduce pest resistance, however, their overuse severely threatens aquatic animal survival and public health. Avermectin (AVM) and imidacloprid (IMI) are potent insecticides often employed in agriculture. By inducing oxidative stress, these chemicals can induce cell death. Here, we evaluated the combined toxicity of AVM and IMI on EPC cells based on the concept of toxicity units (TU). We established EPC cell models exposed to AVM and IMI alone and in combination. The results showed that AVM and IMI had additive effects on the toxicity of EPC cells. Meanwhile, the co-exposure of AVM and IMI exacerbated oxidative stress and induced excessive production of reactive oxygen species (ROS), triggered Keap1/Nrf2/TXNIP axis, caused DNA damage and increased the expression of genes related to pyroptosis. In addition, co-exposure to AVM and IMI caused immunosuppression of EPC cells. The ROS inhibitor N-Acetyl-l-cysteine (NAC) can dramatically reverse these alterations brought on by AVM and IMI co-exposure. The findings above conclude that co-exposure to AVM and IMI causes DNA damage, pyroptosis, and immunosuppression in EPC cells through the ROS-mediated Keap1/Nrf2/TXNIP pathway. This study revealed the joint toxicity of AVM and IMI on EPC cells, and reminded people to consider its impact on aquatic animals when using pesticide mixtures.
Collapse
Affiliation(s)
- Huanyi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Kun Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Dongxu Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Wenying Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
14
|
Ismail RF, Hamed M, Sayed AEDH. Lycopene supplementation: effects on oxidative stress, sex hormones, gonads and thyroid tissue in tilapia Oreochromis niloticus during Harness ® exposure. Front Physiol 2023; 14:1237159. [PMID: 37637141 PMCID: PMC10454902 DOI: 10.3389/fphys.2023.1237159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/20/2023] [Indexed: 08/29/2023] Open
Abstract
Harness® is a commercial herbicide that contains acetochlor at a concentration of 84% as an active ingredient. Ubiquitous, persistent, and substantial uses of Harness® in agricultural processes have resulted in the pollution of nearby water sources, posing a threat to various aquatic biotas, including fish. The effects of Harness® toxicity on fish health are little known. So, this study aimed to describe the impact of herbicide Harness® on the oxidative stress and reproductive and thyroid performance of male and female tilapia (Oreochromis niloticus) and also investigate the prospective role of the natural antioxidant lycopene supplementation in dismissing the adverse properties of Harness®. Antioxidant enzyme (catalase, superoxide dismutase, and total antioxidant capacity) and hormone measurements (T, E2, T3, and T4) were carried out, and gonadal and thyroid follicle histological sections were examined as a method to investigate the effects of Harness® toxicity on fish. Male and female tilapia were exposed to 10 μmol/L and 100 μmol/L of Harness® and treated with 10 mg lycopene/kg for 15 days of exposure. Our results demonstrated that the antioxidant enzyme activity was altered by Harness exposure and serum T for both males and females dropped; also, female E2 levels decreased, but male E2 increased. Exposure to higher dose of Harness® induced elevation in both T3 and T4 levels, although the low exposure dose stimulated T4 levels. Harness® exposure prompted histological variations and degenerative changes in testicular, ovarian, and thyroid follicle tissues. Lycopene supplement administration diminished oxidative stress induced by Harness®, alleviating its endocrine disparaging effects by neutralizing T3, T4, T, and E2 and ameliorating the histological structure of gonadal and thyroid tissues. In conclusion, lycopene supplementation was preformed to normalize the alterations and oxidative damage caused by Harness® in Nile tilapia, suggesting that lycopene-supplemented diet functioned as potent antioxidants and had the ability to alleviate oxidative stress and thyroid and reproductive toxicity caused by herbicide Harness®. Moreover, it is crucial to take appropriate care when consuming herbicides to defend the aquatic environment.
Collapse
Affiliation(s)
- Rania F. Ismail
- National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt
| | - Mohamed Hamed
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut branch), Assiut, Egypt
| | - Alaa El-Din H. Sayed
- Zoology Department, Faculty of Science, Assiut University, Assiut, Egypt
- Molecular Biology Research and Studies Institute, Assiut University, Assiut, Egypt
| |
Collapse
|
15
|
Mackei M, Sebők C, Vöröházi J, Tráj P, Mackei F, Oláh B, Fébel H, Neogrády Z, Mátis G. Detrimental consequences of tebuconazole on redox homeostasis and fatty acid profile of honeybee brain. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 159:103990. [PMID: 37488035 DOI: 10.1016/j.ibmb.2023.103990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
Excessive use of azole fungicides in agriculture poses a potential threat to honeybees and other pollinator insects; however, the detailed effects of these molecules remain largely unclear. Hence, in the present study it was aimed to investigate the acute sublethal effects of tebuconazole on the redox homeostasis and fatty acid composition in the brain of honeybees. Our findings demonstrate that tebuconazole decreased total antioxidant capacity, the ratio of reduced to oxidized glutathione and disturbed the function of key antioxidant defense enzymes along with the induction of lipid peroxidation indicated by increased malondialdehyde levels, while it also altered the fatty acid profile of the brain. The present study highlights the negative impact of tebuconazole on honeybees and contributes to the understanding of potential consequences related to azole exposure on pollinator insects' health, such as the occurrence of colony collapse disorder.
Collapse
Affiliation(s)
- Máté Mackei
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary; National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, István Street 2, H-1078, Hungary.
| | - Csilla Sebők
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary
| | - Júlia Vöröházi
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary
| | - Patrik Tráj
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary
| | - Fruzsina Mackei
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary
| | - Barnabás Oláh
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary
| | - Hedvig Fébel
- Nutrition Physiology Research Group, Institute of Physiology and Nutrition, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Gesztenyés Street 1, H-2053 Herceghalom, Hungary
| | - Zsuzsanna Neogrády
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary
| | - Gábor Mátis
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine Budapest, István Street 2, H-1078 Budapest, Hungary; National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, István Street 2, H-1078, Hungary
| |
Collapse
|
16
|
Okagu IU, Okeke ES, Ezeorba WCF, Ndefo JC, Ezeorba TPC. Overhauling the ecotoxicological impact of synthetic pesticides using plants' natural products: a focus on Zanthoxylum metabolites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:67997-68021. [PMID: 37148518 DOI: 10.1007/s11356-023-27258-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 04/23/2023] [Indexed: 05/08/2023]
Abstract
The reduction in agricultural production due to the negative impact of insects and weeds, as well as the health and economic burden associated with vector-borne diseases, has promoted the wide use of chemicals that control these "enemies." However, the use of these synthetic chemicals has been recognized to elicit negative impacts on the environment as well as the health and wellbeing of man. In this study, we presented an overview of recent updates on the environmental and health impacts of synthetic pesticides against agro-pest and disease vectors while exhaustive reviewing the potentials of natural plant products from Zanthoxylum species (Rutaceae) as sustainable alternatives. This study is expected to spur further research on exploiting these plants and their chemicals as safe and effective pesticide entities to minimize the impact of their chemical and synthetic counterparts on health and the environment.
Collapse
Affiliation(s)
- Innocent Uzochukwu Okagu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
| | - Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | | | - Joseph Chinedum Ndefo
- Department of Science Laboratory Technology, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
| | - Timothy Prince Chidike Ezeorba
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria.
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria.
- Department of Molecular Biotechnology, School of Biosciences, University of Birmingham Edgbaston, Birmingham, B15 2TT, United Kingdom.
| |
Collapse
|
17
|
Xu Y, Zhang Y, Tao Q, Sun Q, Zheng Y, Yin D, Yang Y. A possible but unrecognized risk of acceptable daily intake dose triazole pesticides exposure-bile acid disturbance induced pharmacokinetic changes of oral medication. CHEMOSPHERE 2023; 322:138209. [PMID: 36822518 DOI: 10.1016/j.chemosphere.2023.138209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Triazole antifungal pesticides work by inhibiting the activity of lanosterol-14-α-demethylase, a member of cytochrome P450 enzymes (CYPs), but this effect is non-specific. Bile acids (BAs) are important physical surfactants for lipids absorption in intestine, and synthesized by CYPs 7A1/27A1. Thus, we presume that triazole exposure might influence the therapeutic effect or safety of oral medication through disturbing the BAs pool, even though the exposure is under an acceptable daily intake (ADI) dose. Short- and long-term of ADI dose tebuconazole (TEB) exposure animal models were established through various routes, and statins with different hydrophilic and lipophilic properties were gavaged. It exhibited that the activity of CYP7A1/27A1 was indeed inhibited but the expression was up-regulated, the BAs pool was changed either the content and the composition, and the absorption behavior of statins with strong and medium degree of lipid-solubility were significantly changed. A series of experiments performed on models of intestinal mucus, Caco-2 cell monolayer and Caco-2/HT29 co-culture system revealed that the TEB-exposure induced BAs disturbance made impacts on drug absorption in many aspects, including drug solubility and the structure of intestinal barriers. This study suggests us to be more alert about the hazard of pesticides residues for elderly and chronically ill groups.
Collapse
Affiliation(s)
- Yujing Xu
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Rd, Hefei, 230012, China
| | - Yufeng Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Rd, Hefei, 230012, China
| | - Quan Tao
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Rd, Hefei, 230012, China
| | - Quanwei Sun
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Rd, Hefei, 230012, China
| | - Yuyu Zheng
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Rd, Hefei, 230012, China
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Rd, Hefei, 230012, China; Anhui Provincial Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230012, China; Anhui Provincial Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China.
| | - Ye Yang
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Rd, Hefei, 230012, China; Anhui Provincial Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, 230012, China; Anhui Provincial Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
18
|
Liu S, Wang T, Lu J, Li Z. Seawater quality criteria derivation and ecological risk assessment for the neonicotinoid insecticide imidacloprid in China. MARINE POLLUTION BULLETIN 2023; 190:114871. [PMID: 37023546 DOI: 10.1016/j.marpolbul.2023.114871] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
As a broad-spectrum nicotinoid insecticide, imidacloprid (IMI) has been frequently recorded in seawater environments. Water quality criteria (WQC) is the maximum concentration of chemicals, which will not pose harmful effects on aquatic species in the studied water body. Nevertheless, the WQC is not available for IMI in China, which hinders the risk assessment of this emerging pollutant. This study, therefore, aims to derive the WQC for IMI through the toxicity percentile rank (TPR) and species sensitivity distribution (SSD) methodology, and to assess its ecological risk in aquatic environments. Results showed that the recommended short-term water quality criterion (SWQC) and long-term criterion (LWQC) in seawater were derived as 0.8 μg/L and 0.056 μg/L, respectively. The ecological risk of IMI in seawater shows a wide range with hazard quotient (HQ) values of up to 11.4. The environmental monitoring, risk management and pollution control for IMI, therefore, warrant further study.
Collapse
Affiliation(s)
- Shuai Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Teng Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jinyu Lu
- College of Environment, Nanjing University, Nanjing 210000, China
| | - Zhengyan Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
19
|
Santiago MR, Salvo LM, Badaró-Pedroso C, Costa EMF. Single and mixed exposure to distinct groups of pesticides suggests endocrine disrupting properties of imidacloprid in zebrafish embryos. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2023; 58:217-228. [PMID: 36861322 DOI: 10.1080/03601234.2023.2184158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Due to their selective toxicity to insects, nicotinoid compounds have been widely used to control pests in crops and livestock around the world. However, despite the advantages presented, much has been discussed about their harmful effects on exposed organisms, either directly or indirectly, with regards to endocrine disruption. This study aimed to evaluate the lethal and sublethal effects of imidacloprid (IMD) and abamectin (ABA) formulations, separately and combined, on zebrafish (Danio rerio) embryos at different developmental stages. For this, Fish Embryo Toxicity (FET) tests were carried out, exposing two hours post-fertilization (hpf) zebrafish to 96 hours of treatments with five different concentrations of abamectin (0.5-11.7 mg L-1), imidacloprid (0.0001-1.0 mg L-1), and imidacloprid/abamectin mixtures (LC50/2 - LC50/1000). The results showed that IMD and ABA caused toxic effects in zebrafish embryos. Significant effects were observed regarding egg coagulation, pericardial edema, and lack of larvae hatching. However, unlike ABA, the IMD dose-response curve for mortality had a bell curve display, where medium doses caused more mortality than higher and lower doses. These data demonstrate the toxic influence of sublethal IMD and ABA concentrations on zebrafish, suggesting that these compounds should be listed for river and reservoir water-quality monitoring.
Collapse
Affiliation(s)
- Magda Regina Santiago
- Center of Research and Development of Environmental Protection of the Biological Institute, APTA, São Paulo, Brazil
| | - Lígia Maria Salvo
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Elaine Maria Frade Costa
- Chief of Developmental Endocrinology Unit, Clinicas' Hospital University of Sao Paulo, Medical School, São Paulo, Brazil
| |
Collapse
|
20
|
Yan W, Li G, Lu Q, Hou J, Pan M, Peng M, Peng X, Wan H, Liu X, Wu Q. Molecular Mechanisms of Tebuconazole Affecting the Social Behavior and Reproduction of Zebrafish. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3928. [PMID: 36900939 PMCID: PMC10002025 DOI: 10.3390/ijerph20053928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
The aim of this study was to explore the underlying mechanism of adverse effects caused by tebuconazole (TEB) on the reproduction of aquatic organisms In the present study, in order to explore the effects of TEB on reproduction, four-month-old zebrafish were exposed to TEB (0, DMSO, 0.4 mg/L, 0.8 mg/L, and 1.6 mg/L) for 21 days. After exposure, the accumulations of TEB in gonads were observed and the cumulative egg production was evidently decreased. The decline of fertilization rate in F1 embryos was also observed. Then the changes in sperm motility and histomorphology of gonads were discovered, evaluating that TEB had adverse effects on gonadal development. Additionally, we also found the alternations of social behavior, 17β-estradiol (E2) level, and testosterone (T) level. Furthermore, the expression levels of genes involved in the hypothalamic-pituitary-gonadal (HPG) axis and social behavior were remarkably altered. Taken together, it could be concluded that TEB affected the egg production and fertilization rate by interfering with gonadal development, sex hormone secretion, and social behavior, which were eventually attributed to the disruption of the expressions of genes associated with the HPG axis and social behavior. This study provides a new perspective to understanding the mechanism of TEB-induced reproductive toxicity.
Collapse
Affiliation(s)
- Wei Yan
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiqi Lu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi 435002, China
- Huangshi Key Laboratory of Lake Biodiversity and Environmental Conservation, Hubei Normal University, Huangshi 435002, China
- Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, Huangshi 435002, China
| | - Jianjun Hou
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi 435002, China
- Huangshi Key Laboratory of Lake Biodiversity and Environmental Conservation, Hubei Normal University, Huangshi 435002, China
- Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, Huangshi 435002, China
| | - Meiqi Pan
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Maomin Peng
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Xitian Peng
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Hui Wan
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi 435002, China
- Huangshi Key Laboratory of Lake Biodiversity and Environmental Conservation, Hubei Normal University, Huangshi 435002, China
- Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, Huangshi 435002, China
| | - Xixia Liu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi 435002, China
- Huangshi Key Laboratory of Lake Biodiversity and Environmental Conservation, Hubei Normal University, Huangshi 435002, China
- Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, Huangshi 435002, China
| | - Qin Wu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi 435002, China
- Huangshi Key Laboratory of Lake Biodiversity and Environmental Conservation, Hubei Normal University, Huangshi 435002, China
- Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, Huangshi 435002, China
| |
Collapse
|
21
|
San Juan MRF, Lavarías SML, Aparicio V, Larsen KE, Lerner JEC, Cortelezzi A. Ecological risk assessment of pesticides in sediments of Pampean streams, Argentina. CHEMOSPHERE 2023; 313:137598. [PMID: 36549510 DOI: 10.1016/j.chemosphere.2022.137598] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
After their application in agricultural areas, pesticides are dispersed throughout the environment, causing contamination problems. In Argentina, the main promoter of transgenic biotechnology in the region, the total consumption of agrochemicals has increased significantly in recent years. Most chemicals dumped near surface waters eventually end up in bottom sediments and can be toxic to the organisms that live there. However, published data on the mixing of pesticides in this compartment is still scarce. The objective of this work was to detect and quantify pesticide residues in the sediment of rural streams in the Pampas region and to carry out acute and chronic risk assessment in these aquatic ecosystems. The study area comprises the mountainous system of Tandilia, located in one of the most productive agricultural areas in the country. The concentration of atrazine, acetochlor, chlorpyrifos, cypermethrin, and 2,4-D in the sediment of four rural streams was determined in three different seasons, and the toxic units (TU) and the risk ratios (RQ) were calculated. All the compounds analyzed were detected in most of the sampling seasons and study sites, at concentrations higher than those established in the national and international quality guidelines for the protection of aquatic biota in surface waters and for human consumption. Chlorpyrifos, cypermethrin, and acetochlor were the main pesticides contributing to the TU and RQ values, representing a medium or high ecological risk in most of the sites. Therefore, the evaluation of these pesticides in the bottom sediments could be a decisive factor in assessing the risk to the aquatic environment.
Collapse
Affiliation(s)
- M R Fernández San Juan
- Instituto Multidisciplinario Sobre Ecosistemas y Desarrollo Sustentable (ECOSISTEMAS), UNICEN, Tandil, Argentina; Laboratorio de Ecotoxicología y Biología, Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria Tandil (CIVETAN-CIC-CONICET), UNICEN, Tandil, Argentina.
| | - S M L Lavarías
- Instituto de Limnología "Dr. Raúl A. Ringuelet" (ILPLA-CCT CONICET) La Plata - UNLP, La Plata, Argentina.
| | - V Aparicio
- Instituto Nacional de Tecnología Agropecuaria (INTA), EEA Balcarce, Ruta 226 Km 73,3, Balcarce, Argentina; CONICET, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Argentina.
| | - K E Larsen
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN-CIC-CONICET), Facultad de Ciencias Veterinarias, UNICEN, Tandil, Argentina.
| | - J E Colman Lerner
- Centro de Investigación y Desarrollo en Ciencias Aplicadas "Dr. Jorge J. Ronco" (CONICET-UNLP-CICPBA), La Plata, Argentina.
| | - A Cortelezzi
- Instituto Multidisciplinario Sobre Ecosistemas y Desarrollo Sustentable (ECOSISTEMAS), UNICEN, Tandil, Argentina; CONICET, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Argentina.
| |
Collapse
|
22
|
Fonseca Peña SVD, Natale GS, Brodeur JC. Toxicity of the neonicotinoid insecticides thiamethoxam and imidacloprid to tadpoles of three species of South American amphibians and effects of thiamethoxam on the metamorphosis of Rhinella arenarum. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:1019-1039. [PMID: 36424857 DOI: 10.1080/15287394.2022.2147113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The present study examined the acute and chronic toxicity of the neonicotinoid insecticides imidacloprid (IMI) and thiamethoxam (TIA) on the neotropical amphibian species Rhinella arenarum, Rhinella fernandezae and Scinax granulatus. The median lethal concentration after 96 hr exposure (96 hr-LC50) ranged between 11.28 and >71.2 mg/L amongst all species and development stages tested, indicating that these pesticides are not likely to produce acute toxicity in the wild. The subchronic toxicity was also low, with 21 day-LC50 values ranging between 27.15 and >71.2 mg/L. However, tadpoles of Rhinella arenarum exposed to thiamethoxam from stage 27 until completion of metamorphosis presented a significantly lower metamorphic success rate together with a smaller size at metamorphosis, starting from the lowest concentration tested. Although a number of studies previously examined the effects of neonicotinoids on amphibian tadpoles, these investigations focused on the time to metamorphosis and reported a variety of results including retardation, acceleration or lack of effect. Here, data demonstrated that thiamethoxam predominantly impacts metamorphosis through reduction of the transformation success and body weight, rather than by affecting the timings of metamorphosis. By closely monitoring progression of tadpoles through the different stages, impairment of metamorphosis was demonstrated to occur during the transition from stage 39 to 42, suggesting an effect on the thyroid system. An asymmetry in the length of the arms was also observed in metamorphs treated with thiamethoxam. Overall, these results indicate that thiamethoxam, and conceivably other neonicotinoids, have the potential to significantly impair metamorphosis of amphibians and diminish their performance and survival in the wild.
Collapse
Affiliation(s)
- Shirley Vivian Daniela Fonseca Peña
- Instituto de Recursos Biológicos Centro de Investigaciones de Recursos Naturales (CIRN) Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Guillermo Sebastián Natale
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
- Centro de Investigaciones del Medio Ambiente (CIM) Departamento de Química, Facultad de Ciencias Exactas Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Julie Céline Brodeur
- Instituto de Recursos Biológicos Centro de Investigaciones de Recursos Naturales (CIRN) Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
23
|
Lu Q, Shen Z, Zheng K, Chang Q, Xue J, Wu X. Estimating the bioavailability of acetochlor to wheat using in situ pore water and passive sampling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155239. [PMID: 35421494 DOI: 10.1016/j.scitotenv.2022.155239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
The intensive use of acetochlor in China leads to its extensive existence in soil which may result in contamination of crops and commodities. Therefore, it is vital to assess the bioavailability and phytotoxicity of acetochlor to crops. In this study, four measurements involved in in situ pore water extraction (CIPW), passive sampling extraction (Cfree), ex situ pore water extraction (CEPW), and organic solvent extraction (Csoil) were conducted to assess the bioavailability and phytotoxicity of acetochlor to wheat plant plants in five soils. The results showed that the acetochlor concentrations accumulated in wheat foliage and roots were in the range of 0.11-0.87 mg/kg and 0.09-2.02 mg/kg in the five tested soils, respectively, and had a significant correlation with the acetochlor values analyzed by CIPW (R2 = 0.83-0.90, p < 0.0001) or the Cfree method (R2 = 0.86-0.92, p < 0.0001). The acetochlor concentrations in the five soils measured by these two methods were also correlated with the IC50 values of acetochlor in wheat foliage and roots (R2 > 0.69, p ≤ 0.05). The results indicated that the CIPW and Cfree methods were effective in evaluating acetochlor toxicity to wheat and the acetochlor concentrations in wheat. The effects of soil physical and chemical properties including pH, organic matter content (OMC), clay content, and cation exchange capacity (CEC) on the acetochlor toxicity to wheat were analyzed, and soil OMC was found to be the dominant factor affecting the toxicity of acetochlor in the soil-wheat system.
Collapse
Affiliation(s)
- Qingxiang Lu
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, China
| | - Zhen Shen
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, China
| | - Kaiyuan Zheng
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, China
| | - Qing Chang
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, China
| | - Jiaying Xue
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, China
| | - Xiangwei Wu
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, China.
| |
Collapse
|
24
|
Saleh SMM, Mohamed IA, Fathy M, Sayed AEDH. Neuro-hepatopathological changes in juvenile Oreochromis niloticus exposed to sublethal concentrations of commercial herbicides. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 93:103871. [PMID: 35500867 DOI: 10.1016/j.etap.2022.103871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/26/2022] [Indexed: 02/07/2023]
Abstract
The current study estimates the impact of different common herbicides on antioxidant defenses and histological structure of liver and spinal cord of juvenile tilapia. Eighty-four fish were divided into seven groups: group 1 fish acted as controls and the remaining fish were exposed to sublethal concentrations of acetochlor, bispyribac-sodium, bentazon, bensulfuron-methyl, halosulfuron-methyl, or quinclorac at sublethal concentrations 2.625, 0.800, 36.00, 2.50, 1.275, and 11.250 mg/l, respectively, for 96 h. Antioxidant parameters changed in response to some test herbicides and the greatest effects were caused by exposure to acetochlor and quinelorac for all antioxidant measurements. Prominent histological changes in liver tissue included loss of liver architecture and the appearance of fatty liver cells, necrotic areas, foci of leukocytic infiltration and many apoptotic cells. The most obvious changes in the spinal cord in all treated fish were degradation of myelinated white matter fibers with the emergence of empty spaces, large aggregation of pyknotic neuroglial nuclei, and damaged areas in the dorsal horn of gray matter. Collectively, the harmful effect of tested herbicides on antioxidant capacity and significant alterations in histological structures of liver and spinal cord of Oreochromis niloticus.
Collapse
Affiliation(s)
- Shaimaa M M Saleh
- Department of Zoology and Entomology, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Ibrahim A Mohamed
- Plant protection Department, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
| | - Mohamed Fathy
- Plant protection Department, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
| | - Alaa El-Din H Sayed
- Department of Zoology and Entomology, Faculty of Science, Assiut University, Assiut 71516, Egypt.
| |
Collapse
|
25
|
Gao Z, Yu H, Li M, Li X, Lei J, He D, Wu G, Fu Y, Chen Q, Shi H. A battery of baseline toxicity bioassays directed evaluation of plastic leachates-Towards the establishment of bioanalytical monitoring tools for plastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154387. [PMID: 35276177 DOI: 10.1016/j.scitotenv.2022.154387] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
There are increasing concerns regarding the ecological risks of plastics to the natural environment, especially the potential effects of plastic leachates on organisms, which contain various toxic components. However, appropriate methods to assess the overall environmental risks of plastics are limited. In this study, five different plastic products (three conventional and two biodegradable plastics) were immersed in simulated freshwater, and their toxicity was assessed using a battery of bioassays. We evaluated the effects of plastic leachates effects on organisms from four trophic levels of species (nematodes, Caenorhabditis elegans; algae, Scenedesmus obliquus; daphnids, Daphnia magna; and fish, Danio rerio) by measuring their acute and chronic toxicity. Our results indicated that all plastic leachates exhibited poor acute and chronic toxicity to the organisms. The acute toxicity of conventional plastic leachates with EC20 values <1.6 g plastic/L was higher than that of the biodegradable polydioxanone (PPDO) leachate (EC20: 16.2-796.1 g plastic/L); however, the toxicity of PPDO-octane (EC20: 0.04-1.9 g plastic/L) was similar to that of polyethylene or polystyrene (excluding toxicity in D. magna). Similarly, the leachates of the three conventional plastics and PPDO-octane had obvious inhibitory effects on the growth of C. elegans at exposure concentrations higher than 0.01 g plastic/L; however, the toxicity of the PPDO leachates was at least an order of magnitude lower. Therefore, the environmental related concentration of the plastic leachates did not have significant toxic effects. Considering that a single bioassay does not provide comprehensive information on biological implications, this study provided a new integrated and efficient method for the environmental risk assessment (ERA) of plastic leachates. Moreover, the toxicity sensitivity of different organisms varied following exposure to different plastics, thus demonstrating that multiple organisms from different trophic levels should be included in the ERA for plastics.
Collapse
Affiliation(s)
- Zhuo Gao
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Hairui Yu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Mingyuan Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Xinyu Li
- School of Ecological and Environmental Sciences, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China
| | - Jin Lei
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Defu He
- School of Ecological and Environmental Sciences, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China
| | - Gang Wu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Ye Fu
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100037, China
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| | - Huahong Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| |
Collapse
|
26
|
Mahmood Y, Hussain R, Ghaffar A, Ali F, Nawaz S, Mehmood K, Khan A. Acetochlor Affects Bighead Carp ( Aristichthys Nobilis) by Producing Oxidative Stress, Lowering Tissue Proteins, and Inducing Genotoxicity. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9140060. [PMID: 35655481 PMCID: PMC9152400 DOI: 10.1155/2022/9140060] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/09/2022] [Indexed: 12/24/2022]
Abstract
Acetochlor is persistently used in the agroproduction sector to control broadleaf weeds. Due to frequent and continuous applications, this herbicide can reach nearby water bodies and may induce deleterious changes in aquatic life. Therefore, investigation of harmful impacts of different environmental pollutants, including herbicides, is vital to knowing the mechanisms of toxicity and devising control strategies. The current experiment included bighead carp (n = 80) to estimate adverse impacts. Fish were randomly placed in 4 different experimental groups (T0-T3) and were treated for 36 days with acetochlor at 0, 300, 400, and 500 μg/L. Fresh blood without any anticoagulant was obtained and processed for nuclear and morphological changes in erythrocytes. At the same time, various visceral organs, including the gills, liver, brain, and kidneys, were removed and processed on days 12, 24, and 36 to determine oxidative stress and various antioxidant biomarkers. Comet assays revealed significantly increased DNA damage in isolated cells of the liver, kidneys, brain, and gills of treated fish. We recorded increased morphological and nuclear changes (P ≤ 0.05) in the erythrocyte of treated fish. The results on oxidative stress showed a higher quantity of oxidative biomarkers and a significantly (P ≤ 0.05) low concentration of cellular proteins in the gills, liver, brain, and kidneys of treated fish compared to unexposed fish. Our research findings concluded that acetochlor renders oxidative stress in bighead carp.
Collapse
Affiliation(s)
- Yasir Mahmood
- Department of Zoology, Islamia University of Bahawalpur, 63100, Pakistan
| | - Riaz Hussain
- Department of Pathology, Faculty of Veterinary and Animal Sciences, Islamia University of Bahawalpur-63100, Pakistan
| | - Abdul Ghaffar
- Department of Zoology, Islamia University of Bahawalpur, 63100, Pakistan
| | - Farah Ali
- Department of Theriogenology, Faculty of Veterinary and Animal Sciences, Islamia University of Bahawalpur-63100, Pakistan
| | - Sadia Nawaz
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Khalid Mehmood
- Department of Clinical Medicine and Surgery, Faculty of Veterinary and Animal Sciences, Islamia University of Bahawalpur-63100, Pakistan
| | - Ahrar Khan
- Faculty of Veterinary Science, University of Agriculture, Faisalabad 38040, Pakistan
- Shandong Vocational Animal Science and Veterinary College, Weifang 261061, China
| |
Collapse
|
27
|
Zhang H, Zhang R, Zeng X, Wang X, Wang D, Jia H, Xu W, Gao Y. Exposure to neonicotinoid insecticides and their characteristic metabolites: Association with human liver cancer. ENVIRONMENTAL RESEARCH 2022; 208:112703. [PMID: 35016862 DOI: 10.1016/j.envres.2022.112703] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Neonicotinoid insecticides (NEOs) are commonly applied for pest control in China and around the world. Previous studies reported that NEOs are hepatotoxic to mammals. However, limited studies have explored the associations between NEOs exposure and liver disease. In the present study, we detected six parent NEOs (p-NEOs), including acetamiprid, thiacloprid, dinotefuran, clothianidin, imidacloprid, and thiamethoxam, and five characteristic metabolites (m-NEOs), including 5-hydroxy-imidacloprid, olefin-imidacloprid, N-desmethyl-acetamiprid, 1-methyl-3-(tetrahydro-3-furylmethyl) guanidine and 1-methyl-3-(tetrahydro-3-furyl methyl) urea, in blood samples collected from healthy donors (n = 100; females vs. males: 45 vs. 55; age: 22-91 years) and liver cancer patients (n = 274; females vs. males: 118 vs. 156; age: 11-88 years) in one hospital from Guangzhou city, South China. NEOs were frequently detected (61%-94%) in blood samples, with median concentrations ranging from 0.19 ng/mL to 1.28 ng/mL and 0.20 ng/mL to 2.03 ng/mL for healthy and liver cancer populations, respectively. olefin-imidacloprid was the most abundant NEOs in healthy and liver cancer populations, accounting for 23.4% and 20.7%, respectively. Significant positive correlations among most m-NEOs concentrations were found, and associations between m-NEOs and their corresponding p-NEOs were positively correlated. These findings indicated that the sources of m-NEOs were both endogenous and exogeneous. Females had higher median concentrations of NEOs and their metabolites than males. Moreover, the α-fetoprotein values and blood concentrations of target analytes (r = 0.428-0.601, p < 0.05) were positively correlated. Meanwhile, associations between the concentrations of p-NEOs and m-NEOs and liver cancer were found (odds ratio = 2.33-9.02, 95% confidence interval = 0.31-22.7, p < 0.05), indicating that human exposure to NEOs and their metabolites might increase the odds of liver cancer prevalence. Our work provided a new insight into the hepatotoxicity of NEOs and their metabolites, and human health risks of exposure to these pollutants warranted further studies.
Collapse
Affiliation(s)
- Hua Zhang
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, Guangdong, PR China; The Biomedical Translational Research Institute, Jinan University Faculty of Medical Science, Jinan University, Guangzhou, 510632, PR China
| | - Renwen Zhang
- The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, PR China
| | - Xujia Zeng
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, Guangdong, PR China; The Biomedical Translational Research Institute, Jinan University Faculty of Medical Science, Jinan University, Guangzhou, 510632, PR China
| | - Xiao Wang
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, Guangdong, PR China; The Biomedical Translational Research Institute, Jinan University Faculty of Medical Science, Jinan University, Guangzhou, 510632, PR China
| | - Desheng Wang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Hongling Jia
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, 510632, Guangzhou, Guangdong, PR China.
| | - Weiguo Xu
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, Guangdong, PR China.
| | - Yunfei Gao
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, Guangdong, PR China; The Biomedical Translational Research Institute, Jinan University Faculty of Medical Science, Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
28
|
Xiong Y, Chen X, Li F, Chen Z, Qin Z. Zebrafish larvae acute toxicity test: A promising alternative to the fish acute toxicity test. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 246:106143. [PMID: 35325807 DOI: 10.1016/j.aquatox.2022.106143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/25/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Aquatic toxicity is a mandatory component in risk assessment of chemicals. The currently recommended used acute fish toxicity (AFT) test requires a large test system, bringing onerous experimental operation and discharge of much experimental wastewater. In this study, we established a more convenient and efficient test defined as the zebrafish larvae acute toxicity (FLT) test, which employed zebrafish larvae at four days post fertilization as the test organisms and implemented a 48-hour exposure in 6-well plates. Based on validated reproducibility, we applied this test to evaluate the acute toxicity of 35 chemicals. By comparing the results with the existing acute toxicity data reported in the literature, we found that most chemicals exhibited highly positive correlated LC50 in the FLT and the AFT test, with the same or similar toxicity grade. The FLT test showed more comparable sensitivity with the current AFT test than the previously recommended fish embryo acute toxicity test (FET). Moreover, the FLT test is easier to implement than the FET test which requires microscopic observation to identify the fertilization and development status of the embryos. Despite a limitation similar to the FET test in terms of detecting neurotoxicants, the FLT test could be a more promising alternative to the AFT test relative to the FET test.
Collapse
Affiliation(s)
- Yiming Xiong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuanyue Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Li
- Hebei Key Laboratory of Wetland Ecology and Conservation, Hebei 053000, China; Department of Life Sciences, Hengshui University, Hebei 053000, China
| | | | - Zhanfen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Life Sciences, Hengshui University, Hebei 053000, China.
| |
Collapse
|
29
|
Preparation and application of tebuconazole molecularly imprinted polymer for detection of pesticide residues in tobacco leaves. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03036-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Vieira RSF, Venâncio CAS, Félix LM. Behavioural impairment and oxidative stress by acute exposure of zebrafish to a commercial formulation of tebuconazole. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 91:103823. [PMID: 35123019 DOI: 10.1016/j.etap.2022.103823] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/17/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Tebuconazole is a systemic follicular fungicide known to cause diverse problems in non-target organisms namely associated to the pure active ingredient. As such, the objective of this work was to evaluate developmental changes induced by a tebuconazole commercial formulation to a non-target animal model. Zebrafish embryos at ± 2 h post-fertilization were exposed to tebuconazole wettable powder concentrations (0.05, 0.5 and 5 mg L-1) for 96 h with developmental toxicity assessed throughout the exposure period and biochemical parameters evaluated at the end of the exposure. Behavioural assessment (spatial exploration and response to stimuli) was conducted 24 h after the end of the exposure. While no developmental and physiological alterations were observed, exposure to tebuconazole resulted in an increased generation of reactive oxidative species at the 0.05 and 0.5 mg L-1 concentrations and a decreased GPx activity at the 0.5 mg L-1 concentration suggesting a potential protection mechanism. There was also a change in the avoidance-escape behaviour supporting an anxiolytic effect suggesting possible alterations in the central nervous system development demanding further studies.
Collapse
Affiliation(s)
- Raquel S F Vieira
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Carlos A S Venâncio
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Department of Animal Science, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Animal and Veterinary Research Center (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Luís M Félix
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade of Porto, Porto, Portugal; Laboratory Animal Science, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto (UP), Porto, Portugal.
| |
Collapse
|
31
|
Comparative Study on Synergistic Toxicity of Enrofloxacin Combined with Three Antibiotics on Proliferation of THLE-2 Cell. Antibiotics (Basel) 2022; 11:antibiotics11030394. [PMID: 35326859 PMCID: PMC8944827 DOI: 10.3390/antibiotics11030394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/01/2022] [Accepted: 03/10/2022] [Indexed: 01/27/2023] Open
Abstract
Little attention has been paid to the problem of the combined toxicity of accumulated antibiotics on humans from food and clinical treatments. Therefore, we used human hepatocytes to study the joint toxicity of four common antibiotics. The cytotoxicity of enrofloxacin (ENR), combined with ciprofloxacin (CFX), florfenicol (FFC), or sulfadimidine (SMD) on THLE-2 cells was determined by CCK-8 assays; then their joint toxicity was evaluated using CalcuSyn 2.0. Dose–effect curves and median-effect plots established on large amounts of data and CI values were calculated to judge the nature of the combination’s interaction. ED50, ED75, and ED90 were predicted to elucidate the changing trend of the concentration on the toxicity of each drug pair. The ENR-CFX and ENR-FFC pairs exhibited synergistic toxicity only at special concentration rates, while ENR and SMD synergistically induced cytotoxicity at almost all the concentration rates studied. The mixed ratio was a significant factor for synergistic toxicity and should be evaluated in all combined effect studies. These results suggested that the combined toxicity of these four drugs should be taken into account in their risk assessment.
Collapse
|
32
|
Macirella R, Curcio V, Ahmed AIM, Pellegrino D, Brunelli E. Effect of short-term exposure to low concentration of tebuconazole: morphological, histometric and functional modifications in Danio rerio liver. THE EUROPEAN ZOOLOGICAL JOURNAL 2022. [DOI: 10.1080/24750263.2022.2043469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- R. Macirella
- Department of Biology, Ecology and Earth Science, University of Calabria, Cosenza, Italy
| | - V. Curcio
- Department of Biology, Ecology and Earth Science, University of Calabria, Cosenza, Italy
| | - A. I. M. Ahmed
- Department of Biology, Ecology and Earth Science, University of Calabria, Cosenza, Italy
| | - D. Pellegrino
- Department of Biology, Ecology and Earth Science, University of Calabria, Cosenza, Italy
| | - E. Brunelli
- Department of Biology, Ecology and Earth Science, University of Calabria, Cosenza, Italy
| |
Collapse
|
33
|
Sayed AEDH, Hamed M, Soliman HAM, Authman MMN. The protective role of lycopene against toxic effects induced by the herbicide Harness® and its active ingredient acetochlor on the African catfish Clarias gariepinus (Burchell, 1822). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:14561-14574. [PMID: 34617222 DOI: 10.1007/s11356-021-16518-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023]
Abstract
The effects of Harness® toxicity on fish health are little known. So, current work aimed to study the impact of sub-lethal doses of Harness® (an acetochlor-based herbicide) on the African catfish, Clarias gariepinus, and also investigated the potential role of lycopene (LYCO) administration in alleviating Harness® negative effects. Fish were divided into five groups in triplicates as follows: group 1 (control) received no treatment, group 2 was exposed to 10 μm Harness®/L, group 3 was orally administered 10 mg LYCO/kg body weight and exposed to 10 μm Harness®/L, group 4 was exposed to 100 μm Harness®/L, and group 5 was orally administered 10 mg LYCO/kg body weight and exposed to 100 μm Harness®/L for 2 weeks. Some hemato-biochemical parameters, genotoxicity, and histopathological changes were assessed at the end of this period. Sub-lethal doses of Harness® altered the shape of erythrocytes in contrast to the control sample. Also, hematological parameters of exposed fish exhibited a significant (P < 0.05) reduction in the values of red blood cell count (RBCs), hemoglobin (Hb), hematocrit (HCT), and platelets (PL), as well as an insignificant (P > 0.05) drop in mean corpuscular volume (MCV). Harness® was also found to cause genotoxicity as well as histopathological alterations. LYCO administration decreased hemato-biochemical changes and returned them to near-normal levels. The findings showed that LYCO administration (10 mg LYCO/kg body weight) decreased Harness® toxicity in C. gariepinus and alleviated its destructive effects.
Collapse
Affiliation(s)
- Alaa El-Din H Sayed
- Zoology Department, Faculty of Sciences, Assiut University, Assiut, 71516, Egypt.
| | - Mohamed Hamed
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut Branch), Assiut, 71524, Egypt
| | - Hamdy A M Soliman
- Department of Zoology, Faculty of Science, Sohag University, Sohag, 8562, Egypt
| | | |
Collapse
|
34
|
Fan R, Zhang W, Li L, Jia L, Zhao J, Zhao Z, Peng S, Yuan X, Chen Y. Individual and synergistic toxic effects of carbendazim and chlorpyrifos on zebrafish embryonic development. CHEMOSPHERE 2021; 280:130769. [PMID: 34162088 DOI: 10.1016/j.chemosphere.2021.130769] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/21/2021] [Accepted: 04/29/2021] [Indexed: 06/13/2023]
Abstract
The fungicide carbendazim and the insecticide chlorpyrifos are frequently used together to protect various fruit and vegetable crops in China. At high doses, carbendazim is a known carcinogen while chlorpyrifos has neurotoxic potential, but the combined toxicity of these two compounds has not been systematically investigated. In this study, we examined the separate and combined effects of these compounds on zebrafish embryonic development. The LC50 values for carbendazim and chlorpyrifos at 96 h post-fertilization (hpf) were 0.89 mg/L and 3.83 mg/L, respectively. Carbendazim dose-dependently increased the spontaneous tail-wagging frequency of 24 hpf embryos, the hatching rate of 48 hpf embryos, and the mortality and deformity rate of 96 hpf embryos, while chlorpyrifos increased the heart rate of 48 hpf embryos as well as the mortality and deformity rate of 96 hpf embryos. Mixed exposure at an equipotent concentration ratio (Mix1) and at the ratio of maximum residue limits for typical fruits (apples) (Mix2) revealed significant synergistic effects on lethality at 96 hpf within the 0%-90% effect levels range. In contrast, there was an antagonistic effect of the equipotent concentration ratio on lethality in the 90%-100% concentration range, while the ratio at the maximum residue limits still showed a synergistic effect. Mix1 exhibited antagonism on hatching rate in the 0%-35% range and synergy in the 40%-100% range, while Mix2 had a synergistic effect on hatching rate in the 0%-35% range, an additive effect at 40%, and an antagonistic effect at >40%. Both mixtures had a synergistic effect on deformity rate over all concentration ranges. Carbendazim and chlorpyrifos demonstrate synergistic developmental toxicity, indicating that health and environmental risk assessments should be conducted for various combinations of these agents.
Collapse
Affiliation(s)
- Ruiqi Fan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, PR China; Center of Disease Control and Prevention, PLA, Beijing, PR China
| | - Wanjun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, PR China; Center of Disease Control and Prevention, PLA, Beijing, PR China
| | - Lizhong Li
- Center of Disease Control and Prevention, PLA, Beijing, PR China
| | - Li Jia
- Center of Disease Control and Prevention, PLA, Beijing, PR China
| | - Jun Zhao
- Center of Disease Control and Prevention, PLA, Beijing, PR China
| | - Zengming Zhao
- Center of Disease Control and Prevention, PLA, Beijing, PR China
| | - Shuangqing Peng
- Center of Disease Control and Prevention, PLA, Beijing, PR China
| | - Xiaoyan Yuan
- School of Nursing and Health, Henan University, Kaifeng, PR China; Center of Disease Control and Prevention, PLA, Beijing, PR China.
| | - Yiqiang Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, PR China.
| |
Collapse
|
35
|
Kaczyński P, Łozowicka B, Perkowski M, Zoń W, Hrynko I, Rutkowska E, Skibko Z. Impact of broad-spectrum pesticides used in the agricultural and forestry sector on the pesticide profile in wild boar, roe deer and deer and risk assessment for venison consumers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147215. [PMID: 34088076 DOI: 10.1016/j.scitotenv.2021.147215] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/08/2021] [Accepted: 04/14/2021] [Indexed: 05/15/2023]
Abstract
The present work is the first extensive study of large-scale pesticides research in wild animals. The investigation covered three game species: wild boar (n = 42), roe deer (n = 79) and deer (n = 15) collected from north-eastern Poland. To characterize the 480 pesticides in muscle samples, LC-GC-MS/MS techniques were used. A total of 28 compounds were detected: 5 neonicotinoids, 6 organochlorine and 5 other insecticides, 9 fungicides and 4 herbicides, in the range of 0.1-85.3 ng g-1. Over four hundred detections were done. The highest mean concentrations were as follows: anthraquinone (85.3 ng g-1) > DDT-p,p' (4.6 ng g-1) > imidacloprid (4.3 ng g-1) > permethrin (3.6 ng g-1) > thiacloprid (2.8 ng g-1). DDT and metabolites were the most frequently detected, followed by acetamiprid, tebuconazole, clothianidin and imidacloprid. Overall, 92% samples with residues were recorded, including 100% of wild boar, 88% of roe deer and 86% of deer. More than one pesticide (up to 9) was found in over 73% of the tested samples. The estimated chronic and acute risk to consumers of venison were very low (below 1% ADI and ARfD). This interdisciplinary study may be helpful for estimating ecological risk to wild animals and risk to consumers of wild animal products, and also as a source of biomonitoring data.
Collapse
Affiliation(s)
- Piotr Kaczyński
- Institute of Plant Protection - National Research Institute, Chełmońskiego 22, 15-195 Białystok, Poland.
| | - Bożena Łozowicka
- Institute of Plant Protection - National Research Institute, Chełmońskiego 22, 15-195 Białystok, Poland
| | - Maciej Perkowski
- University of Białystok, Faculty of Law, Department of Public International Law and European Law, Mickiewicza 1, 15-213 Białystok, Poland
| | - Wojciech Zoń
- University of Białystok, Faculty of Law, Department of Public International Law and European Law, Mickiewicza 1, 15-213 Białystok, Poland
| | - Izabela Hrynko
- Institute of Plant Protection - National Research Institute, Chełmońskiego 22, 15-195 Białystok, Poland
| | - Ewa Rutkowska
- Institute of Plant Protection - National Research Institute, Chełmońskiego 22, 15-195 Białystok, Poland
| | - Zbigniew Skibko
- Bialystok University of Technology, Wiejska 45D, 15-351 Białystok, Poland
| |
Collapse
|
36
|
Luo T, Weng Y, Huang Z, Zhao Y, Jin Y. Combined hepatotoxicity of imidacloprid and microplastics in adult zebrafish: Endpoints at gene transcription. Comp Biochem Physiol C Toxicol Pharmacol 2021; 246:109043. [PMID: 33862234 DOI: 10.1016/j.cbpc.2021.109043] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/18/2021] [Accepted: 04/01/2021] [Indexed: 02/08/2023]
Abstract
Microplastics (MPs) and pesticides are two kinds of ubiquitous pollutants that can pose a health risk to aquatic organisms. However, researches about the combined effects of MPs and pesticides are very limited. A simple combined exposure model was established in this study, adult zebrafish were exposed to 100 μg/L imidacloprid (IMI), 20 μg/L polystyrene microplastics (PS), and a combination of PS and IMI (PS + IMI) for 21 days. The results demonstrated that exposure to PS and IMI inhibited the growth of zebrafish and altered the levels of glycolipid metabolism and oxidative stress-related biochemical parameters. While gene expression analysis revealed that, compared with PS or IMI treatment group, combined exposure caused a greater change in gene expression levels involving the process of glycolipid metabolism (Gk, Hk1, Aco, PPar-α, Cpt1, Acc, Fas, PPar-γ, Apo) and inflammatory response (IL-1β, IL-6, IL-8, TNF-α, IL-10). The results demonstrated that even combined exposure of low concentrations of PS and IMI could cause more severe hepatotoxicity in zebrafish, especially in terms of gene transcription. And more combined toxicity studies are essential for MPs and pesticides risk assessment.
Collapse
Affiliation(s)
- Ting Luo
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - You Weng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhuizui Huang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yao Zhao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
37
|
Liu Y, Fang K, Zhang X, Liu T, Wang X. Enantioselective toxicity and oxidative stress effects of acetochlor on earthworms (Eisenia fetida) by mediating the signaling pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:142630. [PMID: 33069465 DOI: 10.1016/j.scitotenv.2020.142630] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
Acetochlor (ACT) as a widely used chiral chloroacetamide herbicide is appropriate to evaluate the potential toxicity in soil ecosystems at enantiomeric level. The acute and subchronic toxicities of R-acetochlor (R-ACT) and S-acetochlor (S-ACT) on earthworms (Eisenia fetida) were investigated in the present study. Residual analyses showed that S-ACT degraded faster than R-ACT in artificial soil with half-lives of 16.5 and 21.7 d, respectively. Additionally, significant enantioselective acute toxicity in earthworms from between S-ACT and R-ACT (p < 0.05) was observed, and the acute toxicity of R-ACT were 1.9 and 1.5 times higher than those of S-ACT in the filter paper test and artificial soil test. The hydroxyl radical (OH-) content, superoxide dismutase (SOD) and antioxidant enzyme catalase (CAT) activities, and cytochrome P450 content in earthworms significantly increased under the influence of ACT enantiomers; however, the acetylcholinesterase (AchE) activity was significantly inhibited after exposure to the two enantiomers. Moreover, lipid peroxidation and DNA damage were induced by ACT enantiomers. The results of transcriptome sequencing indicated that R-ACT induced a stronger oxidative stress effect than S-ACT in earthworms by mediating signaling pathways, which may be the primary reason for the enantioselective toxicity between S-ACT and R-ACT. Overall, the results demonstrated that R-ACT has a higher risk than S-ACT in the soil environment, which is important for understanding the enantioselective behavior of chloroacetamide pesticides.
Collapse
Affiliation(s)
- Yalei Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Kuan Fang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Xiaolian Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China
| | - Tong Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China.
| | - Xiuguo Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, PR China.
| |
Collapse
|
38
|
Luo T, Wang X, Jin Y. Low concentrations of imidacloprid exposure induced gut toxicity in adult zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2021; 241:108972. [PMID: 33418081 DOI: 10.1016/j.cbpc.2020.108972] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/26/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022]
Abstract
Neonicotinoid insecticide imidacloprid (IMI) is widely used in agriculture, and its repeated application may result in environmental pollution. Recently, the toxicity of IMI to non-target animals has received increasing attention. In the current study, adult zebrafish were exposed to low concentrations of IMI (100 and 1000 μg/L) for 21 days. The results showed that IMI exposure induced intestinal histological injury and oxidative stress in the gut of zebrafish, and the levels of superoxide dismutase (SOD), catalase (CAT) were noticeably increased. Furthermore, IMI exposure also resulted in higher intestinal LPS levels and significant increases in the expression of inflammatory factors. Simultaneously, IMI exposure also slightly induced gut microbiota dysbiosis and specific bacteria alterations. These findings indicated that low concentrations of IMI could induce gut toxicity in adult zebrafish, which could provide new insights into the potential risks of IMI to aquatic animals.
Collapse
Affiliation(s)
- Ting Luo
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xiaoyu Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
39
|
He J, Ma S, Liu L, Liu C, Dong S. A comparison study of test organism species and methodologies for combined toxicity assay of copper ions and zinc ions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:45992-46002. [PMID: 33140302 DOI: 10.1007/s11356-020-11444-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
The general toxicity assays for evaluating the risk of aquatic environment were commonly based on single-species test organism models. Thus, the lack and conflict of the different responses among species had hindered researchers to assess the real toxicity of a target toxicant. Therefore, the difference between the test species and their corresponding methodologies was investigated in this work and three species, Escherichia coli, Saccharomyces cerevisiae and Misgurnus anguillicaudatus (a fish), were chosen as the test organism for typical prokaryotes, eukaryotes, and vertebrates, respectively. More specifically, we investigated (i) the individual and combined toxicity of Cu2+ and Zn2+ by the three test organisms; (ii) the different evaluation manners for the test organisms, including IC50 and toxic unit (TU) model for microorganisms by respiratory toxicity assay and enzyme-substrate assay, while survival time for fish; and (iii) the states of test organism, including suspended and immobilized states for microorganisms. The combined effects, including synergistic (Vt < Vp), antagonistic (Vt > Vp) and additive effects for the three species, were complex as that they were usually dose-dependent and could be changed by the different evaluation manners. The present work was useful for enriching of the associated theory and the insights from this work could open the way for further practical risk assessments.
Collapse
Affiliation(s)
- Jingting He
- College of Pharmacy, Jinzhou Medical University, Jinzhou, 121001, People's Republic of China
| | - Shuaining Ma
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China
| | - Ling Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China.
| | - Chang Liu
- College of Pharmacy, Jinzhou Medical University, Jinzhou, 121001, People's Republic of China.
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China
| |
Collapse
|
40
|
Pang S, Lin Z, Zhang Y, Zhang W, Alansary N, Mishra S, Bhatt P, Chen S. Insights into the Toxicity and Degradation Mechanisms of Imidacloprid Via Physicochemical and Microbial Approaches. TOXICS 2020; 8:toxics8030065. [PMID: 32882955 PMCID: PMC7560415 DOI: 10.3390/toxics8030065] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023]
Abstract
Imidacloprid is a neonicotinoid insecticide that has been widely used to control insect pests in agricultural fields for decades. It shows insecticidal activity mainly by blocking the normal conduction of the central nervous system in insects. However, in recent years, imidacloprid has been reported to be an emerging contaminant in all parts of the world, and has different toxic effects on a variety of non-target organisms, including human beings, due to its large-scale use. Hence, the removal of imidacloprid from the ecosystem has received widespread attention. Different remediation approaches have been studied to eliminate imidacloprid residues from the environment, such as oxidation, hydrolysis, adsorption, ultrasound, illumination, and biodegradation. In nature, microbial degradation is one of the most important processes controlling the fate of and transformation from imidacloprid use, and from an environmental point of view, it is the most promising means, as it is the most effective, least hazardous, and most environmentally friendly. To date, several imidacloprid-degrading microbes, including Bacillus, Pseudoxanthomonas, Mycobacterium, Rhizobium, Rhodococcus, and Stenotrophomonas, have been characterized for biodegradation. In addition, previous studies have found that many insects and microorganisms have developed resistance genes to and degradation enzymes of imidacloprid. Furthermore, the metabolites and degradation pathways of imidacloprid have been reported. However, reviews of the toxicity and degradation mechanisms of imidacloprid are rare. In this review, the toxicity and degradation mechanisms of imidacloprid are summarized in order to provide a theoretical and practical basis for the remediation of imidacloprid-contaminated environments.
Collapse
Affiliation(s)
- Shimei Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (S.P.); (Z.L.); (Y.Z.); (W.Z.); (N.A.); (S.M.); (P.B.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (S.P.); (Z.L.); (Y.Z.); (W.Z.); (N.A.); (S.M.); (P.B.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yuming Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (S.P.); (Z.L.); (Y.Z.); (W.Z.); (N.A.); (S.M.); (P.B.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (S.P.); (Z.L.); (Y.Z.); (W.Z.); (N.A.); (S.M.); (P.B.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Nasser Alansary
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (S.P.); (Z.L.); (Y.Z.); (W.Z.); (N.A.); (S.M.); (P.B.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (S.P.); (Z.L.); (Y.Z.); (W.Z.); (N.A.); (S.M.); (P.B.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (S.P.); (Z.L.); (Y.Z.); (W.Z.); (N.A.); (S.M.); (P.B.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (S.P.); (Z.L.); (Y.Z.); (W.Z.); (N.A.); (S.M.); (P.B.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Correspondence: ; Tel.: +86-20-8528-8229
| |
Collapse
|