1
|
Farley G, Bouchard P, Faille C, Trottier S, Gagné F. Towards the standardization of Hydra vulgaris bioassay for toxicity assessments of liquid samples. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117560. [PMID: 39708447 DOI: 10.1016/j.ecoenv.2024.117560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
The Hydra vulgaris bioassay is recognized as sensitive invertebrate test species for toxicity assessment of real-life environmental mixtures for enforcement and monitoring investigations. The purpose of this study was to characterize the intra-laboratory variability, study the influence of environmental variables (temperature, luminosity, inter-individual and day of analysis) on ZnSO4 toxicity, a reference model toxicant for hydra. The sublethal (effect concentration for 50 % of hydra-EC50) and lethal (lethal concentration for 50 % of hydra-LC50) were determined based on characteristic morphological changes for this species. The influence of water hardness, ammonia and dissolved oxygen for over 50 real-life environmental liquid mixtures (effluents and leachates) were examined and compared with rainbow trout and Daphnia magna acute lethality tests. A control chart for Zn was developed from over 40 trials yielding an 96 h LC50 of 0.7 mg/L (0.66-0.77 95 % confidence interval-CI) and EC50 of 0.19 mg/L (0.17-0.21 95 % CI). The influence of 8 different analysts, the trial days and luminosity did not significantly influence the LC50 and EC50. Only higher temperature significantly decreased the toxicity of ZnSO4 within 15-30 °C range. The hydra bioassay was then practiced on more than 50 real-life effluents/leachates and compared with the 96 h rainbow trout and 48 h Daphnia magna survival tests. The data revealed that water hardness, dissolved oxygen and ammonia were not significantly correlated with either the LC50 or EC50 values. Moreover, the hydra LC50 data predictive (rank correlation of 0.6) the rainbow trout LC50 with the absence of false negatives. The hydra data were at least as if not more sensitive than the rainbow trout LC50 making it a relevant alternative method to reduce fish use for screening potentially toxic environmental mixtures.
Collapse
Affiliation(s)
- G Farley
- Québec Laboratory for Environmental Evaluations, Environment and Climate Change Canada, Montréal, Québec, Canada
| | - P Bouchard
- Québec Laboratory for Environmental Evaluations, Environment and Climate Change Canada, Montréal, Québec, Canada
| | - C Faille
- Québec Laboratory for Environmental Evaluations, Environment and Climate Change Canada, Montréal, Québec, Canada
| | - S Trottier
- Québec Laboratory for Environmental Evaluations, Environment and Climate Change Canada, Montréal, Québec, Canada
| | - F Gagné
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Montréal, Québec, Canada.
| |
Collapse
|
2
|
Santos A, Oliveira M, Almeida M, Lopes I, Venâncio C. Short- and long-term toxicity of nano-sized polyhydroxybutyrate to the freshwater cnidarian Hydra viridissima. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170282. [PMID: 38272078 DOI: 10.1016/j.scitotenv.2024.170282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
The accumulation of increasingly smaller plastic particles in aquatic ecosystems is a prominent environmental issue and is causing a significant impact on aquatic biota. In response to this challenge, biodegradable plastics have emerged as a potential ecological alternative. Nevertheless, despite recent progress in polymer toxicology, there is still limited understanding of the ecological implications of biodegradable plastics in freshwater ecosystems. This study evaluated the toxicity of polyhydroxybutyrate nano-sized particles (PHB-NPLs) on the freshwater cnidarian Hydra viridissima assessing individual and population-level effects. Data revealed low toxicity of PHB-NPLs to H. viridissima in the short-term, as evidenced by the absence of significant malformations and mortality after the 96-h assays. In addition, hydras exhibited rapid and complete regeneration after 96 h of exposure to PHB-NPLs. Feeding assays revealed no significant alterations in prey consumption behavior in the 96-h mortality and malformations assay and the regeneration assay. However, significantly increased feeding rates were observed after long-term exposure, across all tested concentrations of PHB-NPLs. This increase may be attributed to the organisms' heightened energetic demand, stemming from prolonged activation of detoxification mechanisms. These changes may have a cascading effect within the food web, influencing community dynamics and ecosystem stability. Furthermore, a dose-dependent response on the hydras' populational growth was found, with an estimated 20 % effect concentration (EC20,8d) on this endpoint of 10.9 mg PHB-NPLs/L that suggests potential long-term impacts on the population's reproductive output and potential depression and local extinction upon long-term exposure to PHB-NPLs on H. viridissima. The obtained data emphasizes the importance of evaluating sublethal effects and supports the adoption of long-term assays when assessing the toxicity of novel polymers, providing crucial data for informed regulation to safeguard freshwater ecosystems. Future research should aim to unravel the underlying mechanisms behind these sublethal effects, as well as the impact of the generated degradation products.
Collapse
Affiliation(s)
- Ana Santos
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Miguel Oliveira
- CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Mónica Almeida
- CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Isabel Lopes
- CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Cátia Venâncio
- CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
3
|
Wang M, Lilly K, Martin LMA, Xu W, Tamamis P, Phillips TD. Adsorption and removal of polystyrene nanoplastics from water by green-engineered clays. WATER RESEARCH 2024; 249:120944. [PMID: 38070346 PMCID: PMC11824905 DOI: 10.1016/j.watres.2023.120944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
Human exposure to micro- and nanoplastics (MNPs) commonly occurs through the consumption of contaminated drinking water. Among these, polystyrene (PS) is well-characterized and is one of the most abundant MNPs, accounting for 10 % of total plastics. Previous studies have focused on carbonaceous materials to remove MNPs by filtration, but most of the work has involved microplastics since nanoplastics (NPs) are smaller in size and more difficult to measure and remove. To address this need, green-engineered chlorophyll-amended sodium and calcium montmorillonites (SMCH and CMCH) were tested for their ability to bind and detoxify parent and fluorescently labeled PSNP using in vitro, in silico, and in vivo assays. In vitro dosimetry, isothermal analyses, thermodynamics, and adsorption/desorption kinetic models demonstrated 1) high binding capacities (173-190 g/kg), 2) high affinities (103), and 3) chemisorption as suggested by low desorption (≤42 %) and high Gibbs free energy and enthalpy (>|-20| kJ/mol) in the Langmuir and pseudo-second-order models. Computational dynamics simulations for 30 and 40 monomeric units of PSNP depicted that chlorophyll amendments increased the binding percentage and contributed to the sustained binding. Also, 64 % of PSNP bind to both the head and tail of chlorophyll aggregates, rather than the head or tail only. Fluorescent PSNP at 100 nm and 30 nm that were exposed to Hydra vulgaris showed concentration-dependent toxicity at 20-100 µg/mL. Importantly, the inclusion of 0.05-0.3 % CMCH and SMCH significantly (p ≤ 0.01) and dose-dependently reduced PSNP toxicity in morphological changes and feeding rate. The bioassay validated the in vitro and in silico predictions about adsorption efficacy and mechanisms and suggested that CMCH and SMCH are efficacious binders for PSNP in water.
Collapse
Affiliation(s)
- Meichen Wang
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Kendall Lilly
- Department of Materials Science and Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA; Artie McFerrin Department of Chemical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Leisha M A Martin
- Department of Life Sciences, Texas A&M University, Corpus Christi, TX 78412, USA
| | - Wei Xu
- Department of Life Sciences, Texas A&M University, Corpus Christi, TX 78412, USA
| | - Phanourios Tamamis
- Department of Materials Science and Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA; Artie McFerrin Department of Chemical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Timothy D Phillips
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
4
|
Gagné F, Roubeau-Dumont E, André C, Auclair J. Micro and Nanoplastic Contamination and Its Effects on Freshwater Mussels Caged in an Urban Area. J Xenobiot 2023; 13:761-774. [PMID: 38132709 PMCID: PMC10744427 DOI: 10.3390/jox13040048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Plastic-based contamination has become a major cause of concern as it pervades many environments such as air, water, sediments, and soils. This study sought to examine the presence of microplastics (MPs) and nanoplastics (NPs) in freshwater mussels placed at rainfall/street runoff overflows, downstream (15 km) of the city centre of Montréal, and 8 km downstream of a municipal effluent dispersion plume. MPs and NPs were determined using flow cytometry and size exclusion chromatography using fluorescence detection. Following 3 months of exposure during the summer season, mussels contained elevated amounts of both MPs and NPs. The rainfall overflow and downstream of the city centre were the most contaminated sites. Lipid peroxidation, metallothioneins, and protein aggregates (amyloids) were significantly increased at the most contaminated sites and were significantly correlated with NPs in tissues. Based on the levels of MPs and NPs in mussels exposed to municipal effluent, wastewater treatment plants appear to mitigate plastic contamination albeit not completely. In conclusion, the data support the hypothesis that mussels placed in urbanized areas are more contaminated by plastics, which are associated with oxidative damage. The highest responses observed at the overflow site suggest that tire wear and/or asphalt (road) erosion MPs/NPs represent important sources of contamination for the aquatic biota.
Collapse
Affiliation(s)
- François Gagné
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Montréal, QC H2Y 2E7, Canada; (E.R.-D.); (C.A.); (J.A.)
| | | | | | | |
Collapse
|
5
|
Silva MSS, Pires A, Vethaak AD, Martínez-Gómez C, Almeida M, Pinto R, Figueira E, Oliveira M. Effects of polymethylmethacrylate nanoplastics on the polychaete Hediste diversicolor: Behavioural, regenerative, and biochemical responses. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106743. [PMID: 37931377 DOI: 10.1016/j.aquatox.2023.106743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023]
Abstract
Plastics, particularly microplastics (MPs) and nanoplastics (NPs), have been regarded as pollutants of emerging concern due to their effects on organisms and ecosystems, especially considering marine environments. However, in terms of NPs, there is still a knowledge gap regarding the effects of size and polymer on marine invertebrates, such as benthic organisms. Therefore, this study aimed to understand, regarding behavioural, physiological, and biochemical endpoints (neurotransmission, energy metabolism, antioxidant status, and oxidative damage), the effects of 50 nm waterborne polymethylmethacrylate (PMMA) NPs (0.5 to 500 µg/L) on the marine benthic polychaete Hediste diversicolor, a key species in estuarine and coastal ecosystems. Results demonstrated that worms exposed to PMMA NPs had a shorter burrowing time than control organisms. Nevertheless, worms exposed to PMMA NPs (0.5 and 500 µg/L) decreased cholinesterase activity. Energy metabolism was decreased at 50 and 500 µg/L, and glycogen content decreased at all concentrations of PMMA NPs. Enzymes related to the antioxidant defence system (superoxide dismutase and glutathione peroxidase) displayed increased activities in H. diversicolor specimens exposed to concentrations between 0.5 and 500 µg/L, which led to no damage at the cell membrane and protein levels. In this study, polychaetes also displayed a lower regenerative capacity when exposed to PMMA NPs. Overall, the data obtained in this study emphasize the potential consequences of PMMA NPs to benthic worms, particularly between 0.5 and 50 µg/L, with polychaetes exposed to 50 µg/L being the most impacted by the analysed NPs. However, since sediments are considered to be sinks and sources of plastics, further studies are needed to better understand the impacts of different sizes and polymers on marine organisms, particularly benthic species.
Collapse
Affiliation(s)
- M S S Silva
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Adília Pires
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - A Dick Vethaak
- Department of Environment and Health, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Deltares, Marine and Coastal Systems, Delft, the Netherlands
| | - Concepción Martínez-Gómez
- Instituto Español de Oceanografía (IEO), CSIC, Centro Oceanográfico de Murcia, C/Varadero, 1, San Pedro del Pinatar, Murcia 30740, Spain
| | - Mónica Almeida
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ricardo Pinto
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Etelvina Figueira
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Miguel Oliveira
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
6
|
Cesarini G, Secco S, Taurozzi D, Venditti I, Battocchio C, Marcheggiani S, Mancini L, Fratoddi I, Scalici M, Puccinelli C. Teratogenic effects of environmental concentration of plastic particles on freshwater organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165564. [PMID: 37467998 DOI: 10.1016/j.scitotenv.2023.165564] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023]
Abstract
Given the widespread presence of plastics, especially in micro- and nanoscale sizes, in freshwater systems, it is crucial to identify a suitable model organism for assessing the potential toxic and teratogenic effects of exposure to plastic particles. Until now, the early life stage of freshwater organisms and the regeneration capacity in relation to plastic particles exposure is a still poorly investigated topic. In this study, we examine the teratogenic effect on diatom Cocconeis placentula and cnidarian Hydra vulgaris under controlled exposure conditions of poly(styrene-co-methyl methacrylate) (P(S-co-MMA)) particles. Significant effects were observed at the lowest concentrations (0.1 μg/L). A significant increase in the teratological frequency in C. placentula and a significant decrease in the regeneration rate in H. vulgaris were found at the lowest concentration. The delay in hydra regeneration impaired the feeding capacity and tentacles reactivity at 96 h of exposure. No effects on diatom growth were observed upon exposure to P(S-co-MMA) particles (0.1, 1, 100, 10,000 μg/L) for 28 days and these findings agree with other studies investigating algal growth. The application of the Teratogenic Risk Index, modified for diatoms, highlighted a moderate risk for the lowest concentration evaluating C. placentula and low risk at the lowest and the highest concentrations considering H. vulgaris. This study suggests the importance of testing organisms belonging to different trophic levels as diverse teratogenic effects can be found and the need to evaluate environmentally relevant concentrations of plastic particles.
Collapse
Affiliation(s)
- Giulia Cesarini
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy
| | - Silvia Secco
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy
| | - Davide Taurozzi
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy
| | - Iole Venditti
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy
| | - Chiara Battocchio
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy
| | - Stefania Marcheggiani
- Department of Environment and Health, Italian National Institute of Health (ISS), Viale Regina Elena, 299, 00161 Rome, Italy
| | - Laura Mancini
- Department of Environment and Health, Italian National Institute of Health (ISS), Viale Regina Elena, 299, 00161 Rome, Italy
| | - Ilaria Fratoddi
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Massimiliano Scalici
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy.
| | - Camilla Puccinelli
- Department of Environment and Health, Italian National Institute of Health (ISS), Viale Regina Elena, 299, 00161 Rome, Italy.
| |
Collapse
|
7
|
Costa E, Gambardella C, Miroglio R, Di Giannantonio M, Lavorano S, Minetti R, Sbrana F, Piazza V, Faimali M, Garaventa F. Nanoplastic uptake temporarily affects the pulsing behavior in ephyrae of the moon jellyfish Aurelia sp. ECOTOXICOLOGY (LONDON, ENGLAND) 2023:10.1007/s10646-023-02669-0. [PMID: 37269410 DOI: 10.1007/s10646-023-02669-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 06/05/2023]
Abstract
The aim of this study is to investigate for the first time the uptake and ecotoxicological effects of nanoplastics (NPs) in a marine cnidarian. Ephyrae of the moon jellyfish Aurelia sp. of different ages (0 and 7 days old) were exposed to negatively charged polystyrene NPs for 24 h; then, the uptake was assessed through traditional and novel techniques, namely microscopy and three-dimensional (3D) holotomography. Immobility and behavioral responses (frequency of pulsations) of ephyrae were also investigated to clarify if NP toxicity differed along the first life stages. NP uptake was observed in ephyrae thanks to the 3D technique. Such internalization did not affect survival, but it temporarily impaired the pulsation mode only in 0 day old ephyrae. This may be ascribed to the negative charged NPs, contributing to jellyfish behavioral alteration. These findings promote 3D holotomography as a suitable tool to detect NPs in marine organisms. Moreover, this study recommends the use of cnidarians of different ages to better assess NP ecotoxicological effects in these organisms, key components of the marine food web.
Collapse
Affiliation(s)
- Elisa Costa
- National Research Council (CNR) - Institute for the Study of Anthropic Impacts and Sustainability in Marine Environment (IAS), Via De Marini 16, 16149, Genova, Italy
| | - Chiara Gambardella
- National Research Council (CNR) - Institute for the Study of Anthropic Impacts and Sustainability in Marine Environment (IAS), Via De Marini 16, 16149, Genova, Italy.
- National Biodiversity Future Center (NBFC) S.c.a.r.l., Piazza Marina 61 (c/o palazzo Steri), Palermo, Italy.
| | - Roberta Miroglio
- National Research Council (CNR) - Institute for the Study of Anthropic Impacts and Sustainability in Marine Environment (IAS), Via De Marini 16, 16149, Genova, Italy
| | - Michela Di Giannantonio
- National Research Council (CNR) - Institute for the Study of Anthropic Impacts and Sustainability in Marine Environment (IAS), Via De Marini 16, 16149, Genova, Italy
- Early PostDoc Mobility Grant - Swiss National Science Foundation, Bern, Switzerland
| | - Silvia Lavorano
- Costa Edutainment SpA - Acquario di Genova, Area Porto Antico, Ponte Spinola, 16128, Genova, Italy
| | - Roberta Minetti
- National Research Council (CNR) - Institute for the Study of Anthropic Impacts and Sustainability in Marine Environment (IAS), Via De Marini 16, 16149, Genova, Italy
| | - Francesca Sbrana
- National Research Council (CNR) - Institute of Biophysics (IBF), Via De Marini 16, 16149, Genova, Italy
- Schaefer SEE srl, Via delle Genziane 96, 16148, Genova, Italy
| | - Veronica Piazza
- National Research Council (CNR) - Institute for the Study of Anthropic Impacts and Sustainability in Marine Environment (IAS), Via De Marini 16, 16149, Genova, Italy
| | - Marco Faimali
- National Research Council (CNR) - Institute for the Study of Anthropic Impacts and Sustainability in Marine Environment (IAS), Via De Marini 16, 16149, Genova, Italy
- National Biodiversity Future Center (NBFC) S.c.a.r.l., Piazza Marina 61 (c/o palazzo Steri), Palermo, Italy
| | - Francesca Garaventa
- National Research Council (CNR) - Institute for the Study of Anthropic Impacts and Sustainability in Marine Environment (IAS), Via De Marini 16, 16149, Genova, Italy
- National Biodiversity Future Center (NBFC) S.c.a.r.l., Piazza Marina 61 (c/o palazzo Steri), Palermo, Italy
| |
Collapse
|
8
|
André C, Turgeon S, Peyrot C, Wilkinson KJ, Auclair J, Ménard N, Gagné F. Comparative toxicity of micro and nanopolystyrene particles in Mya arenaria clams. MARINE POLLUTION BULLETIN 2023; 192:115052. [PMID: 37257412 DOI: 10.1016/j.marpolbul.2023.115052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/03/2023] [Accepted: 05/07/2023] [Indexed: 06/02/2023]
Abstract
The contamination of coastal marine environments by plastics of sizes ranging from mm down to the nanoscale (nm) could pose a threat to aquatic organisms. The purpose of this study was to examine the toxicity of polystyrene nanoparticles (PsNP) of various sizes (50, 100 and 1000 nm) to the marine clams Mya arenaria. Clams were exposed to concentrations of PsPP for 7 days at 15 °C and analyzed for uptake/transformation, changes in energy metabolism, oxidative stress, genotoxicity and circadian neural activity. The results revealed that PsNP accumulated in the digestive gland was 50 nm > 100 nm > 1000 nm. All sized increased oxidative stress as follows: 50 nm (peroxidase, antioxidant potential and LPO), 100 nm (LPO and antioxidant potential) and 1000 nm (LPO). Tissue damage was also size dependent by increasing genotoxicity. The 100 nm PsPP altered the levels of the circadian metabolite melatonin. We conclude that the toxicity of plastics is size dependent in clams.
Collapse
Affiliation(s)
- Chantale André
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 105 McGill, Montréal, QC H2Y 2E7, Canada
| | - Samuel Turgeon
- Parks Canada, Saguenay-St. Lawrence Marine Park, 182, Rue de l'Église, Tadoussac, QC G0T 2A0, Canada
| | - Caroline Peyrot
- Chemistry Department, Montreal University, Montréal, Québec H2V 2B8, Canada
| | | | - Joëlle Auclair
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 105 McGill, Montréal, QC H2Y 2E7, Canada
| | - Nadia Ménard
- Parks Canada, Saguenay-St. Lawrence Marine Park, 182, Rue de l'Église, Tadoussac, QC G0T 2A0, Canada
| | - François Gagné
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 105 McGill, Montréal, QC H2Y 2E7, Canada.
| |
Collapse
|
9
|
Tamayo-Belda M, Venâncio C, Fernandez-Piñas F, Rosal R, Lopes I, Oliveira M. Effects of petroleum-based and biopolymer-based nanoplastics on aquatic organisms: A case study with mechanically degraded pristine polymers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163447. [PMID: 37094675 DOI: 10.1016/j.scitotenv.2023.163447] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
Mismanaged plastic litter submitted to environmental conditions may breakdown into smaller fragments, eventually reaching nano-scale particles (nanoplastics, NPLs). In this study, pristine beads of four different types of polymers, three oil-based (polypropylene, PP; polystyrene, PS; and low-density polyethylene, LDPE) and one bio-based (polylactic acid, PLA) were mechanically broken down to obtain more environmentally realistic NPLs and its toxicity to two freshwater secondary consumers was assessed. Thus, effects on the cnidarian Hydra viridissima (mortality, morphology, regeneration ability, and feeding behavior) and the fish Danio rerio (mortality, morphological alterations, and swimming behavior) were tested at NPLs concentrations in the 0.001 to 100 mg/L range. Mortality and several morphological alterations were observed on hydras exposed to 10 and 100 mg/L PP and 100 mg/L LDPE, whilst regeneration capacity was overall accelerated. The locomotory activity of D. rerio larvae was affected by NPLs (decreased swimming time, distance or turning frequency) at environmentally realistic concentrations (as low as 0.001 mg/L). Overall, petroleum- and bio-based NPLs elicited pernicious effects on tested model organisms, especially PP, LDPE and PLA. Data allowed the estimation of NPLs effective concentrations and showed that biopolymers may also induce relevant toxic effects.
Collapse
Affiliation(s)
- Miguel Tamayo-Belda
- Department of Biology, Faculty of Science, Universidad Autónoma de Madrid, Madrid, Spain
| | - Cátia Venâncio
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | - Roberto Rosal
- Department of Chemical Engineering, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Isabel Lopes
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Miguel Oliveira
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
10
|
Gagné F, André C, Turgeon S, Ménard N. Evidence of polystyrene nanoplastic contamination and potential impacts in Mya arenaria clams in the Saint-Lawrence estuary (Canada). Comp Biochem Physiol C Toxicol Pharmacol 2023; 266:109563. [PMID: 36738902 DOI: 10.1016/j.cbpc.2023.109563] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/09/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
Plastic materials found in the environment are expected to degrade into smaller plastic nanoparticles (NPs) posing a greater toxic risk because they sorb contaminants and pass physiological barriers. Moreover the presence and effects of NPs is difficult to tease out from the contamination background at polluted sites. The purpose of this study was to examine for the presence of polystyrene NPs in feral Mya arenaria clam population near anthropogenic sources of pollution and potential toxic effects. Polystyrene NPs were determined by a newly developed fluorescence-based and size exclusion chromatography methodologies. Clam health status was determined by following changes in air survival time, condition factor, growth, alcohol/aldehyde dehydrogenase (AADH), protein aggregation and lactate dehydrogenase (LDH). In addition, multi-elemental analysis in tissues was also determined. The results revealed that clams collected at 2 polluted sites contained elevated amounts of polystyrene-like NPs between 10 and 110 nm in size based on size exclusion chromatography. Elevated levels of AADH suggest the presence of hydroxylated products and were correlated with plastic NPs in tissues. Moreover, principal component analysis revealed that As, Ca, Cu, Sn and V were closely related to either polystyrene-like NPs in tissues or AADH activity. Although we cannot rule out other pollutants, clams contaminated by polystyrene-like NPs had lower condition, growth rate, air survival time and LDH activity. Increased metal/element contamination reported to sorb onto plastic polymers were also related to NPs in tissues. In conclusion, clams populations close to anthropogenic sources of pollution show evidence of polystyrene-like NPs contamination and could contribute to decreased clam health status.
Collapse
Affiliation(s)
- F Gagné
- Environment and Climate Change Canada, 105 McGill, Montréal, QC H2Y 2E7, Canada.
| | - C André
- Environment and Climate Change Canada, 105 McGill, Montréal, QC H2Y 2E7, Canada
| | - S Turgeon
- Parks Canada, Saguenay-St. Lawrence Marine Park, 182, Rue de l'Église, Tadoussac, QC G0T 2A0, Canada
| | - N Ménard
- Parks Canada, Saguenay-St. Lawrence Marine Park, 182, Rue de l'Église, Tadoussac, QC G0T 2A0, Canada
| |
Collapse
|
11
|
Petersen E, Barrios AC, Bjorkland R, Goodwin DG, Li J, Waissi G, Henry T. Evaluation of bioaccumulation of nanoplastics, carbon nanotubes, fullerenes, and graphene family materials. ENVIRONMENT INTERNATIONAL 2023; 173:107650. [PMID: 36848829 DOI: 10.1016/j.envint.2022.107650] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/15/2022] [Accepted: 11/19/2022] [Indexed: 06/18/2023]
Abstract
Bioaccumulation is a key factor in understanding the potential ecotoxicity of substances. While there are well-developed models and methods to evaluate bioaccumulation of dissolved organic and inorganic substances, it is substantially more challenging to assess bioaccumulation of particulate contaminants such as engineered carbon nanomaterials (CNMs; carbon nanotubes (CNTs), graphene family nanomaterials (GFNs), and fullerenes) and nanoplastics. In this study, the methods used to evaluate bioaccumulation of different CNMs and nanoplastics are critically reviewed. In plant studies, uptake of CNMs and nanoplastics into the roots and stems was observed. For multicellular organisms other than plants, absorbance across epithelial surfaces was typically limited. Biomagnification was not observed for CNTs and GFNs but were observed for nanoplastics in some studies. However, the reported absorption in many nanoplastic studies may be a consequence of an experimental artifact, namely release of the fluorescent probe from the plastic particles and subsequent uptake. We identify that additional work is needed to develop analytical methods to provide robust, orthogonal methods that can measure unlabeled (e.g., without isotopic or fluorescent labels) CNMs and nanoplastics.
Collapse
Affiliation(s)
- Elijah Petersen
- Biosystems and Biomaterials Division, NIST, Gaithersburg, MD 20899, United States.
| | - Ana C Barrios
- Biosystems and Biomaterials Division, NIST, Gaithersburg, MD 20899, United States
| | | | - David G Goodwin
- Engineering Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, United States
| | - Jennifer Li
- Biosystems and Biomaterials Division, NIST, Gaithersburg, MD 20899, United States
| | - Greta Waissi
- University of Eastern Finland, School of Pharmacy, POB 1627 70211, Kuopio, Finland
| | - Theodore Henry
- Institute of Life and Earth Sciences, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| |
Collapse
|
12
|
Qiao R, Mortimer M, Richter J, Rani-Borges B, Yu Z, Heinlaan M, Lin S, Ivask A. Hazard of polystyrene micro-and nanospheres to selected aquatic and terrestrial organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158560. [PMID: 36087672 DOI: 10.1016/j.scitotenv.2022.158560] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Plastics contamination in the environment is a major concern. Risk assessment of micro- and nanoplastics (MPL and NPL) poses significant challenges due to MPL and NPL heterogeneity regarding compositional polymers, particle sizes and morphologies in the environment. Yet, there exists considerable toxicological literature on commercial polystyrene (PS) micro- and nanospheres. Although such particles do not directly represent the environmental MPL and NPL, their toxicity data should be used to advance the hazard assessment of plastics. Here, toxicity data of PS micro- and nanospheres for microorganisms, aquatic and terrestrial invertebrates, fish, and higher plants was collected and analyzed. The evaluation of 294 papers revealed that aquatic invertebrates were the most studied organisms, nanosized PS was studied more often than microsized PS, acute exposures prevailed over chronic exposures, the toxicity of PS suspension additives was rarely addressed, and ∼40 % of data indicated no organismal effects of PS. Toxicity mechanisms were mainly studied in fish and nematode Caenorhabditis elegans, providing guidance for relevant studies in higher organisms. Future studies should focus on environmentally relevant plastics concentrations, wide range of organisms, co-exposures with other pollutants, and method development for plastics identification and quantification to fill the gap of bioaccumulation assessment of plastics.
Collapse
Affiliation(s)
- Ruxia Qiao
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Monika Mortimer
- Institute of Environmental and Health Sciences, College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Jelizaveta Richter
- National Institute of Chemical Physics and Biophysics, Laboratory of Environmental Toxicology, Tallinn 12618, Estonia
| | - Bárbara Rani-Borges
- Institute of Science and Technology, São Paulo State University, UNESP, Alto da Boa Vista, Sorocaba, São Paulo 18087-180, Brazil; Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia
| | - Zhenyang Yu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Margit Heinlaan
- National Institute of Chemical Physics and Biophysics, Laboratory of Environmental Toxicology, Tallinn 12618, Estonia.
| | - Sijie Lin
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Angela Ivask
- Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia.
| |
Collapse
|
13
|
Ali M, Seraj M. Nexus between energy consumption and carbon dioxide emission: evidence from 10 highest fossil fuel and 10 highest renewable energy-using economies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:87901-87922. [PMID: 35821330 DOI: 10.1007/s11356-022-21900-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
The world, addressing to achieve rapid and drastic economic growth by relying on fossil fuel energy consumption, could increase already increasing level of carbon dioxide (CO2). Therefore, there is a growing consensus that environmental sustainability by using renewable energy is the only option to avoid environmental calamity. Therefore, according to the authors' best knowledge, this is the first work to look into the short and long-run nexus between economic growth, trade openness, renewable and fossil fuel energy consumption, along with gross capital formation, population growth, and life expectancy as additional variables in top 10 highest renewable energy-using (TRU) economies and top 10 highest fossil fuel-using (TFU) economies from 1991 to 2020, by employing advanced panel data econometric approach. After demonstrating cross-sectional dependency in panel data, the Westerlund cointegration test verifies the long-term link between the variables. A cross-sectional autoregressive distributed lag (CS-ARDL) econometric technique is used to show short- and long-run coefficient values. CS-ARDL estimates confirm that the economic growth, fossil fuel energy, trade openness, and gross capital formation increase carbon dioxide (CO2) emissions levels in the short run for TRU and FEU economies, except for gross capital formation for FEU economies. However, economic growth adds to CO2 emissions for only TRU economies, while fossil fuel energy consumption enhances CO2 emissions for both groups of economies in the long run. On the contrary, renewable energy reduces CO2 emissions in the short and long run, while human capital in only the short run. The inferences of this study present new intuitions and urge governments and policymakers to develop a reliable mechanism for investing capital to diversify the energy portfolio through the energy transition process to attain sustainable economic growth and promote awareness campaigns to draw the attention of human capital to environmentally friendly, clean, and green energy sources. Overall, the results recommended energy efficiency usage and ecological friendly innovative technologies to enhance and protect environmental quality.
Collapse
Affiliation(s)
- Mumtaz Ali
- Department of Banking and Finance, Near East University, Nicosia, North Cyprus, Turkey
| | - Mehdi Seraj
- Department of Economics, Near East University, Nicosia, North Cyprus, Turkey.
| |
Collapse
|
14
|
Sun T, Ji C, Li F, Shan X, Wu H. The legacy effect of microplastics on aquatic animals in the depuration phase: Kinetic characteristics and recovery potential. ENVIRONMENT INTERNATIONAL 2022; 168:107467. [PMID: 35985106 DOI: 10.1016/j.envint.2022.107467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/25/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
The prevalence of microplastics (MPs) in global aquatic environments has received considerable attention. Currently, concerns have been raised regarding reports that the adverse effect of MPs on aquatic animals in the exposure phase may not be (completely) reversed in the depuration phase. In order to provide insights into the legacy effect of MPs from the depuration phase, this study evaluated the kinetic characteristics and recovery potential of aquatic animals after the exposure to MPs. More specifically, a total of 68 depuration kinetic curves were highly fitted to estimate the retention time of MPs. It was shown that the retention time ranged from 1.26 to 3.01 days, corresponding to the egestion of 90 % to 99 % of ingested MPs. The retention time decreased with the increased retention rate. Furthermore, variables potentially affecting the retention time were ranked by the decision tree-based eXtreme Gradient Boosting (XGBoost) algorithm, suggesting that the particle size and tested species were of great importance for explaining the difference in retention time of MPs. Moreover, a biomarker profile was recompiled to determine the toxic changes. Results indicated that the MPs-induced toxicity significantly reduced in the depuration phase, evidenced by the recovery of energy reserves and metabolism, hepatotoxicity, immunotoxicity, hematological parameters, neurotoxicity and oxidative stress. However, the continuous detoxification and remarkable genotoxicity implied that the toxicity was not completely alleviated. In addition, the current knowledge gaps are also highlighted, with recommendations proposed for future research.
Collapse
Affiliation(s)
- Tao Sun
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China
| | - Xiujuan Shan
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao 266071, PR China.
| |
Collapse
|
15
|
Isolation and Quantification of Polystyrene Nanoplastics in Tissues by Low Pressure Size Exclusion Chromatography. J Xenobiot 2022; 12:109-121. [PMID: 35645291 PMCID: PMC9149998 DOI: 10.3390/jox12020010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/31/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
Ecotoxicity investigations of plastic nanoparticles (NPs) should pay more attention to their ability to pass barriers, accumulate, and initiate toxicity in cells. The purpose of this study was to develop a simple size exclusion chromatography (SEC) methodology to measure plastic NPs in biological tissues. A SEC column was prepared using a high-resolution gel for large macromolecules to separate plastic NPs from the protein/lipid pools in tissues. It was necessary to prepare the samples in high salt and non-ionic detergent (0.5 M NaCl and 0.2% Tween-20) and apply 0.2% Tween-20 containing 14 mM NaCl for the elution buffer to limit proteins adsorption to NPs. This methodology was able to resolve 50 and 100 nm polystyrene NPs from the protein/lipid pools in tissue homogenates. The fluorescent dye neutral red (NR) was also used for transparent NPs. Moreover, a sample fractionation step was also proposed for plastic NPs concentration using a salting-out methodology with saturated NaCl (5 M) and acetonitrile. Polystyrene NPs partition in acetonitrile, which were further analyzed by SEC. This methodology was tested in two case studies with clams collected in a high boat traffic (harbor) area and with caged freshwater mussels downstream of a large urban area. Although the present methodology was developed with polystyrene NPs it should be amenable to other plastic polymers that react with the NR fluorescent probe.
Collapse
|
16
|
Han Y, Lian F, Xiao Z, Gu S, Cao X, Wang Z, Xing B. Potential toxicity of nanoplastics to fish and aquatic invertebrates: Current understanding, mechanistic interpretation, and meta-analysis. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:127870. [PMID: 34848066 DOI: 10.1016/j.jhazmat.2021.127870] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 05/25/2023]
Abstract
Nanoplastics (NPs) are widely detected in aquatic ecosystems and attracting considerable attention. Although ecotoxicological impacts of NPs on aquatic biota are increasingly identified, the extent and magnitude of these detrimental effects on fish and aquatic invertebrates still lack systematic quantification and mechanistic interpretation. Here, the toxicity, influencing factors, and related mechanisms of NPs to fish and aquatic invertebrates are critically reviewed and summarized based on a total of 634 biological endpoints through a meta-analysis, where five vital response categories including growth, consumption, reproduction, survival, and behavior were emphasized to elucidate the negative impacts of NPs to fish and aquatic invertebrates from physiological to molecular levels. Our results revealed that NPs significantly decreased the survival, behavior, and reproduction of fish and/or aquatic invertebrates by 56.1%, 24.2%, and 36.0%, respectively. NPs exposure increased the oxidative stress and oxidative damage by 72.0% and 9.6%, respectively; while significantly decreased antioxidant prevention system and neurotransmission by 24.4% and 15.9%, respectively. Also, the effects of particle size, functional group, and concentration range of NPs on the physiological and biochemical reactions in the living organisms were discussed. This information is helpful to more accurately understanding the underlying toxic mechanisms of NPs to aquatic biota and guiding future studies.
Collapse
Affiliation(s)
- Yaru Han
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Fei Lian
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Zhenggao Xiao
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Shiguo Gu
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
17
|
Eom HJ, Lee N, Yum S, Rhee JS. Effects of extremely high concentrations of polystyrene microplastics on asexual reproduction and nematocyst discharge in the jellyfish Sanderia malayensis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150988. [PMID: 34656572 DOI: 10.1016/j.scitotenv.2021.150988] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/04/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Numerous studies have assessed the detrimental effects of microplastics (MPs) on aquatic invertebrates due to their ubiquitous and persistent nature. In this study, the toxic effects of MPs were examined on the polyp and ephyrae of the marine hydrozoan Sanderia malayensis. The jellyfish were exposed to different sizes (1-6 μm) of non-functionalized polystyrene microbeads at a concentration of 1 × 104 particles mL-1. The MPs randomly attached to the external and internal parts of the jellyfish body, and the longest MP attachment was 52 days during the depuration after initial exposure (for 24 h). Consistent seventeen-day exposure to MPs significantly reduced the asexual reproduction of the S. malayensis polyps. To assess if the MPs can stimulate nematocyst discharge in polyp and ephyrae stages via direct contact, they were exposed to particle sizes up to 430 μm. None of the MPs or their aggregates, including the 430 μm particles, induced nematocyst discharge. These results suggest that prolonged exposure to relatively high MP concentrations affects the early stages of jellies and provides evidence for the no effect on nematocyst discharge.
Collapse
Affiliation(s)
- Hye-Jin Eom
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea
| | - Nayoung Lee
- Ecological Risk Research Department, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Seungshic Yum
- Ecological Risk Research Department, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Jae-Sung Rhee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea; Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Republic of Korea; Yellow Sea Research Institute, Incheon 21999, Republic of Korea.
| |
Collapse
|
18
|
Martin LMA, Gan N, Wang E, Merrill M, Xu W. Materials, surfaces, and interfacial phenomena in nanoplastics toxicology research. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118442. [PMID: 34748888 PMCID: PMC8823333 DOI: 10.1016/j.envpol.2021.118442] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/08/2021] [Accepted: 10/28/2021] [Indexed: 05/22/2023]
Abstract
In response to the growing worldwide plastic pollution problem, the field of nanoplastics research is attempting to determine the risk of exposure to nanoparticles amidst their ever-increasing presence in the environment. Since little is known about the attributes of environmental nanoplastics (concentration, composition, morphology, and size) due to fundamental limitations in detection and quantification of smaller plastic particles, researchers often improvise by engineering nanoplastic particles with various surface modifications as models for laboratory toxicological testing. Polystyrene and other commercially available or easily synthesized polymer materials functionalized with surfactants or fluorophores are typically used for these studies. How surfactants, additives, fluorophores, the addition of surface functional groups for conjugation, or other changes to surface attributes alter toxicological profiles remains unclear. Additionally, the limited polymers used in laboratory models do not mimic the vast range of polymer types comprising environmental pollutants. Nanomaterials are tricky materials to investigate due to their high surface area, high surface energies, and their propensity to interact with molecules, proteins, and biological probes. These unique properties can often invalidate common laboratory assays. Extreme care must be taken to ensure that results are not artefactual. We have gathered zeta potential values for various polystyrene nanoparticles with different functionalization, in different solvents, from the reported literature. We also discuss the effects of surface engineering and solvent properties on interparticle interactions, agglomeration, particle-protein interactions, corona formation, nano-bio interfaces, and contemplate how these parameters might confound results. Various toxicological exemplars are critically reviewed, and the relevance and shortfalls of the most popular models used in nanoplastics toxicity studies published in the current literature are considered.
Collapse
Affiliation(s)
- Leisha M A Martin
- Department of Life Sciences, Texas A&M University, Corpus Christi, TX, United States
| | - Nin Gan
- Department of Life Sciences, Texas A&M University, Corpus Christi, TX, United States
| | - Erica Wang
- Department of Mechanical Engineering, Texas A&M University, Corpus Christi, TX, United States
| | - Mackenzie Merrill
- Department of Life Sciences, Texas A&M University, Corpus Christi, TX, United States
| | - Wei Xu
- Department of Life Sciences, Texas A&M University, Corpus Christi, TX, United States.
| |
Collapse
|
19
|
Capanni F, Greco S, Tomasi N, Giulianini PG, Manfrin C. Orally administered nano-polystyrene caused vitellogenin alteration and oxidative stress in the red swamp crayfish (Procambarus clarkii). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:147984. [PMID: 34118657 DOI: 10.1016/j.scitotenv.2021.147984] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/09/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
Nanoplastics (≤100 nm) represent the smallest fraction of plastic litter and may result in the aquatic environment as degradation products of larger plastic material. To date, few studies focused on the interactions of micro- and nanoplastics with freshwater Decapoda. The red swamp crayfish (Procambarus clarkii, Girard, 1852) is an invasive species able to tolerate highly perturbed environments. As a benthic opportunistic feeder, this species may be susceptible to plastic ingestion. In this study, adult P. clarkii, at intermolt stage, were exposed to 100 μg of 100 nm carboxylated polystyrene nanoparticles (PS NPs) through diet in a 72 h acute toxicity test. An integrated approach was conceived to assess the biological effects of PS NPs, by analyzing both transcriptomic and physiological responses. Total hemocyte counts, basal and total phenoloxidase activities, glycemia and total protein concentration were investigated in crayfish hemolymph at 0 h, 24 h, 48 h and 72 h from PS NPs administration to evaluate general stress response over time. Differentially expressed genes (DEGs) in the hemocytes and hepatopancreas were analyzed to ascertain the response of crayfish to PS NP challenge after 72 h. At a physiological level, crayfish were able to compensate for the induced stress, not exceeding generic stress thresholds. The RNA-Sequencing analysis revealed the altered expression of few genes involved in immune response, oxidative stress, gene transcription and translation, protein degradation, lipid metabolism, oxygen demand, and reproduction after PS NPs exposure. This study suggests that a low concentration of PS NPs may induce mild stress in crayfish, and sheds light on molecular pathways possibly involved in nanoplastic toxicity.
Collapse
Affiliation(s)
- Francesca Capanni
- Dept. Life Sciences, University of Trieste, via L. Giorgieri 5, 34127 Trieste, Italy.
| | - Samuele Greco
- Dept. Life Sciences, University of Trieste, via L. Giorgieri 5, 34127 Trieste, Italy.
| | - Noemi Tomasi
- Dept. Life Sciences, University of Trieste, via L. Giorgieri 5, 34127 Trieste, Italy.
| | - Piero G Giulianini
- Dept. Life Sciences, University of Trieste, via L. Giorgieri 5, 34127 Trieste, Italy.
| | - Chiara Manfrin
- Dept. Life Sciences, University of Trieste, via L. Giorgieri 5, 34127 Trieste, Italy.
| |
Collapse
|
20
|
Thomas PJ, Perono G, Tommasi F, Pagano G, Oral R, Burić P, Kovačić I, Toscanesi M, Trifuoggi M, Lyons DM. Resolving the effects of environmental micro- and nanoplastics exposure in biota: A knowledge gap analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146534. [PMID: 34030291 DOI: 10.1016/j.scitotenv.2021.146534] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 05/25/2023]
Abstract
The pervasive spread of microplastics (MPs) and nanoplastics (NPs) has raised significant concerns on their toxicity in both aquatic and terrestrial environments. These polymer-based materials have implications for plants, wildlife and human health, threatening food chain integrity and ultimate ecosystem resilience. An extensive - and growing - body of literature is available on MP- and NP-associated effects, including in a number of aquatic biota, with as yet limited reports in terrestrial environments. Effects range from no detectable, or very low level, biological effects to more severe outcomes such as (but not limited to) increased mortality rates, altered immune and inflammatory responses, oxidative stress, genetic damage and dysmetabolic changes. A well-established exposure route to MPs and NPs involves ingestion with subsequent incorporation into tissues. MP and NP exposures have also been found to lead to genetic damage, including effects related to mitotic anomalies, or to transmissible damage from sperm cells to their offspring, especially in echinoderms. Effects on the proteome, transcriptome and metabolome warrant ad hoc investigations as these integrated "omics" workflows could provide greater insight into molecular pathways of effect. Given their different physical structures, chemical identity and presumably different modes of action, exposure to different types of MPs and NPs may result in different biological effects in biota, thus comparative investigations of different MPs and NPs are required to ascertain the respective effects. Furthermore, research on MP and NP should also consider their ability to act as vectors for other toxicants, and possible outcomes of exposure may even include effects at the community level, thus requiring investigations in mesocosm models.
Collapse
Affiliation(s)
- Philippe J Thomas
- Environment and Climate Change Canada, Science & Technology Branch, National Wildlife Research Center - Carleton University, Ottawa, Ontario K1A 0H3, Canada
| | - Genevieve Perono
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Franca Tommasi
- "Aldo Moro" Bari University, Department of Biology, I-70125 Bari, Italy
| | | | - Rahime Oral
- Ege University, Faculty of Fisheries, TR-35100 Bornova, İzmir, Turkey
| | - Petra Burić
- Juraj Dobrila University of Pula, HR-52100 Pula, Croatia
| | - Ines Kovačić
- Juraj Dobrila University of Pula, HR-52100 Pula, Croatia
| | | | | | - Daniel M Lyons
- Center for Marine Research, Ruđer Bošković Institute, HR-52210 Rovinj, Croatia.
| |
Collapse
|
21
|
Auclair J, Gagné F. Crowding Effects of Polystyrene Nanoparticles on Lactate Dehydrogenase Activity in Hydra Attenuata. J Xenobiot 2020; 10:2-10. [PMID: 33133471 PMCID: PMC7584143 DOI: 10.3390/jox10010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/11/2020] [Indexed: 12/03/2022] Open
Abstract
Plastics pervade our environment and potentially release important quantities of plastic nanoparticles (NPs) from degradation in the environment. The purpose of this study was to examine the crowding effects of polystyrene NPs on lactate dehydrogenase (LDH) in vitro and following exposure to Hydra attenuata. First, LDH activity was measured in vitro in the presence of filamentous (F-)actin and NPs (50 and 100 nm diameter) to determine changes in viscosity and the fractal kinetics of LDH. The fractal dimension (fD) was also determined using the rescaled range analysis procedure. Secondly, these changes were examined in hydra exposed to NPs for 96h to concentrations of NPs. The data revealed that the addition of F-actin increased the rate of LDH at low substrate (pyruvate) concentrations compared to LDH alone with a gradual decrease in the rate with the addition of pyruvate, which is characteristic of the fractal behavior of enzymes in crowded environments. The addition of 50 and 100 nm NPs also produced these changes, which suggest that NPs could change the space properties of the LDH reaction. The fD was reduced to 0.85 and 0.91 with 50 and 100 nm NPs compared to 1.093 with LDH alone. Decrease in the fD was related with increased amplitudes and frequency in viscosity waves in the reaction media. Exposure of hydra to NPs confirmed the increase in LDH activity and the fD was significantly correlated with LDH activity (r = -0.5). Correction of LDH activity (residuals) still revealed an increase in LDH activity in hydra suggesting increased anaerobic metabolism by NPs. In conclusion, the presence of NPs in the intracellular space decreased the fD, which could influence LDH activity in organisms exposed to NPs.
Collapse
Affiliation(s)
| | - François Gagné
- Aquatic Contaminant Research Division, Environment and Climate Change Canada, 105 McGill, Montreal, QC H2Y 2E7, Canada
| |
Collapse
|
22
|
Auclair J, Gagné F. The influence of polystyrene nanoparticles on the fractal kinetics of lactate dehydrogenase. Biochem Biophys Rep 2020; 23:100793. [PMID: 32775704 PMCID: PMC7396907 DOI: 10.1016/j.bbrep.2020.100793] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/11/2020] [Accepted: 07/27/2020] [Indexed: 11/18/2022] Open
Abstract
Plastics are ubiquitous in the aquatic environment and their degradation of fragments down to the nanoscale level have raised concerns given their ability to pervade cells. The accumulation of nanoparticles could lead to molecular crowding which can alter the normal functioning of enzymes. The purpose of this study was to examine the influence of polystyrene nanoparticles (NPs) on the fractal kinetics of the lactate dehydrogenase reaction: pyruvate + NADH ↔ lactate + NAD+. The influence of NPs on LDH activity was examined first in vitro to highlight specific effects and secondly in mussels exposed to NPs in vivo for 24h at 15 °C. The reaction rates of LDH were determined with increasing concentrations of pyruvate to reach saturation at circa 1 mM pyruvate. The addition of F-actin, a known binding template for LDH, revealed a characteristic change in reaction rates associated with fractal organization. The addition of 50 and 100 nm transparent NPs also produced these changes. The fractal dimension was determined and revealed that both F-actin and NPs reduced the fractal dimension of the LDH reaction. The addition of viscosity sensor probe in the reaction media revealed viscosity waves during the reaction at low substrate concentrations thought to be associated to synchronized switching between the relaxed and tensed states of LDH. The amplitude and the frequency of viscosity waves were increased by both NPs and F-actin which were associated with increased reaction rates. In mussels exposed to NPs, the isolation of digestive gland subcellular fraction revealed that LDH activity was significantly influenced by the fractal dimension of the LDH reaction where a loss of affinity (high fractal KM) was detected in mussels exposed to the high concentrations of NPs. It is concluded that polystyrene NPs could change the biophysical properties of the cytoplasm such as the fractal organization of the intracellular environment during the LDH reaction. Polystyrene nanoparticles introduce crowding effects. The fractal kinetic of Lactate dehydrogenase in influenced by the plastics nanoparticles. These changes were also observed in mussels exposed to plastic nanoparticles.
Collapse
|
23
|
Auclair J, Peyrot C, Wilkinson KJ, Gagné F. Biophysical effects of polystyrene nanoparticles on Elliptio complanata mussels. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:25093-25102. [PMID: 32342426 DOI: 10.1007/s11356-020-08920-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
The presence of nanoplastics (NPs) in various products and from the weathering of released plastic materials are of concern for the environment's safety. The purpose of this study was to examine the biophysical effects of polystyrene NPs on freshwater mussels. Mussels were exposed to a range of concentrations of NPs (0.1, 0.5, 1, and 5 mg/L) for 24 h and allowed to depurate for 12 h in clean aquarium water. The digestive gland was isolated and analyzed for NPs, lipids, viscosity, protein aggregation, anisotropic changes (liquid crystals: LCs), and the oscillatory modulation in viscosity during the formation of self-organizing enzyme complex of fumarase, malate dehydrogenase, and citrate synthase. The results revealed that mussels accumulated NPs in the digestive gland and their levels were significantly correlated with lipids levels, LCs, the increase in the malate dehydrogenase/citrate synthase activity ratio, and oscillations in viscosity. Protein aggregation was also found to be correlated with lipid levels. The data suggests that the presence of NPs in the digestive gland involves changes in lipid content and LC formation and perturbs the normal oscillations in viscosity during sequential enzyme reactions of the above enzymes. It is concluded that the uptake of NPs in cells could disrupt the internal organization of cells which can interfere with the normal association of enzymes involved in energy metabolism.
Collapse
Affiliation(s)
- Joëlle Auclair
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill, Montreal, Quebec, Canada
| | - Caroline Peyrot
- Chemistry Department, Montréal University, Montreal, QC, H3C3J7, Canada
| | | | - François Gagné
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill, Montreal, Quebec, Canada.
| |
Collapse
|