1
|
Dahiya S, Sharma A, Chaudhary S. Eco-inspired synthesis of MgO-infused g-C 3N 4 nanocomposites from tulsi seeds for advanced photocatalytic environmental remediation. Phys Chem Chem Phys 2024; 26:28064-28081. [PMID: 39494556 DOI: 10.1039/d4cp03673e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
This study introduces a novel approach to synthesizing magnesium oxide (MgO) nanoparticles through the use of Ocimum sanctum (tulsi seed) extract combined with the thermal polymerization of MgO-doped graphitic carbon nitride (MgCN) nanocomposites. The nanocomposites were prepared at varying MgO concentrations (0.5 mM, 1.0 mM, 1.5 mM, and 2.0 mM) to optimize their properties. Comprehensive characterization of the synthesized MgO nanoparticles and MgCN nanocomposites was conducted using advanced analytical techniques, including UV-Vis spectroscopy, X-ray diffraction (XRD), scanning electron microscopy with energy dispersive X-ray mapping (SEM-EDX), Fourier-transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The MgCN nanocomposite with 1.5 mM MgO demonstrated a high surface area of 98.287 m2 g-1, as determined by Brunauer-Emmett-Teller (BET) analysis. X-ray photoelectron spectroscopy (XPS) confirmed the presence of carbon and nitrogen elements, validating the integration of MgO into the nanocomposite matrix. High-resolution transmission electron microscopy (HRTEM) images depicted planar, stacked, and wrinkled structures characteristic of a graphitic-like material. Consistent with a Z-scheme heterojunction, the MgCN (1.5 mM) sample exhibited an enhanced morphology, increased surface area, improved visible light absorption, and reduced band gap. This particular nanocomposite displayed remarkable adsorption and photocatalytic degradation capabilities, achieving up to 98% removal of methylene blue and 54% removal of tetracycline antibiotics. Furthermore, it showed significant antibacterial activity against Escherichia coli. Notably, the MgCN (1.5 mM) nanocomposite maintained its performance over four cycles, underscoring its potential for sustained application in wastewater treatment and the elimination of organic contaminants. The scavenging activity of the nanocomposites was also explored, revealing additional environmental benefits. This research highlights a promising pathway for developing eco-friendly nanocomposites with robust capabilities in water purification and pollution control.
Collapse
Affiliation(s)
- Sweety Dahiya
- Centre of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonipat 131039, Haryana, India.
| | - Anshu Sharma
- Department of Physics under School of Engineering and Technology, Central University of Haryana, Mahendergarh 123031, Haryana, India
| | - Sudesh Chaudhary
- Centre of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonipat 131039, Haryana, India.
| |
Collapse
|
2
|
Zhou XD, Tian YH. Solar-light-driven photocatalytic selective oxidation of biomass-derived 5-hydroxymethylfurfural to 2,5-diformylfuran over 2D g-C3N4/BiOCl heterostructures photocatalyst. J Photochem Photobiol A Chem 2024; 454:115728. [DOI: 10.1016/j.jphotochem.2024.115728] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Dahiya S, Shoran S, Sharma DN, Rao VS, Chaudhary S, Nehra SP, Sharma A. Bioengineered sustainable phytofabrication of anatase TiO 2 -adorned g-C 3N 4 nanocomposites and unveiling their photocatalytic potential towards advanced environmental remediation. CHEMOSPHERE 2024; 362:142456. [PMID: 38878982 DOI: 10.1016/j.chemosphere.2024.142456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/27/2024] [Accepted: 05/25/2024] [Indexed: 06/24/2024]
Abstract
The ecologically friendly properties, low-cost, and readily available titanium dioxide (TiO2) materials have made them a subject of considerable interest for numerous promising applications. Anatase TiO2 nanoparticles were synthesized in the current study through the utilization of a hibiscus leaf extract and the advent of TiO2-doped g-C3N4(TiCN) nanocomposites (varying 0.5 mM, 1.0 mM, 1.5 mM, and 2.0 mM) by thermal polymerization. Here, the proposed study utilized multiple analytical techniques, including UV-Vis spectroscopy, a diffraction pattern (XRD), SEM coupled with EDX analysis, TGA, and EPR, to characterize the as-prepared TiO2 nanoparticles and TiCN nanocomposites. BET analysis the adsorption-desorption isotherms of the TiCN(1.5 mM) nanocomposite, the surface area of the prepared nanocomposite is 112.287 m2/g, and the pore size is 7.056 nm. The XPS spectra support the development of the TiCN(1.5 mM) nanocomposite by demonstrating the presence of C and N elements in the nanocomposite in addition to TiO2. HRTEM images where the formation of stacked that indicates a planar, wrinkled graphitic-like structure is clearly visible. The TiCN (1.5 mM) specimen exhibited enhanced morphology, enhanced surface area, greater capacity to take in visible light, and lowered band gap when compared to g-C3N4 following z-scheme heterojunction. The sample denoted as TiCN (1.5 mM) exhibited superior performance in terms of adsorption and photocatalytic activity using rhodamine B and Bisphenol A. Furthermore, the TiCN (1.5 mM) composite exhibited satisfactory stability over four cyclic runs, indicating its potential application in minimizing the impact of organic wastewater contaminants when compared to g-C3N4.
Collapse
Affiliation(s)
- Sweety Dahiya
- Centre of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India
| | - Sachin Shoran
- Centre of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India
| | - D N Sharma
- Department of Chemical Engineering, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India
| | - V S Rao
- Centre of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India
| | - Sudesh Chaudhary
- Centre of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India.
| | - S P Nehra
- Centre of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India.
| | - Anshu Sharma
- Department of Physics, School of Engineering & Technology, Central University of Haryana, Mahendergarh, 123031, India.
| |
Collapse
|
4
|
Razali NAM, Salleh WNW, Mohamed MA, Aziz F, Jye LW, Yusof N, Ismail AF. Visible light- and dark-driven degradation of palm oil mill effluent (POME) over g-C 3N 4 and photo-rechargeable WO 3. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34081-4. [PMID: 38958863 DOI: 10.1007/s11356-024-34081-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
The investigations of real industrial wastewater, such as palm oil mill effluent (POME), as a recalcitrant pollutant remain a subject of global water pollution concern. Thus, this work introduced the preparation and modification of g-C3N4 and WO3 at optimum calcination temperature, where they were used as potent visible light-driven photocatalysts in the degradation of POME under visible light irradiation. Herein, g-C3N4-derived melamine and WO3 photocatalyst were obtained at different calcination temperatures in order to tune their light absorption ability and optoelectronics properties. Both photocatalysts were proven to have their distinct phases, crystallinity levels, and elements with increasing temperature, as demonstrated by the ultraviolet-visible spectroscopy (UV-Vis), X-ray diffraction analysis (XRD), thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) results. Significantly, g-C3N4 (580 °C) and WO3 (450 °C) unitary photocatalysts exhibited the highest removal efficiency of POME without dilution due to good crystallinity, extended light absorption, high separation, and less recombination efficiency of electron-hole pairs. Furthermore, surprisingly, the superior energy storage photocatalytic performance with outstanding stability by WO3 achieved an approximately 10% increment during darkness, compared with g-C3N4 under visible light irradiation. Moreover, it has been proven that the WO3 and g-C3N4 photocatalysts are desirable photocatalysts for various pollutant degradations, with excellent visible-light utilization and favorable energy storage application.
Collapse
Affiliation(s)
- Nur Aqilah Mohd Razali
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Wan Norharyati Wan Salleh
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| | | | - Farhana Aziz
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Lau Woei Jye
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Norhaniza Yusof
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| |
Collapse
|
5
|
Amjad M, Bibi I, Majid F, Jilani K, Sultan M, Raza Q, Ghafoor A, Alwadai N, Nazir A, Iqbal M. NiO/MnFe 2O 4 Nanocomposite Photoluminescence, Structural, Morphological, Magnetic, and Optical Properties: Photocatalytic Removal of Cresol Red under Visible Light Irradiation. ACS OMEGA 2024; 9:20876-20890. [PMID: 38764693 PMCID: PMC11097188 DOI: 10.1021/acsomega.3c09637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/04/2024] [Accepted: 03/07/2024] [Indexed: 05/21/2024]
Abstract
In this study, pure nickel oxide (NiO), manganese ferrite (MnFe2O4 or MFO), and binary nickel oxide/manganese ferrite (NiO/MFO1-4) nanocomposites (NCs) were synthesized using the Sol-Gel method. A comprehensive investigation into their photoluminescence, structural, morphological, magnetic, optical, and photocatalytic properties was conducted. Raman analysis, UV-Vis spectroscopy, Fourier-transform infrared spectroscopy, scanning electron microscopy, and X-ray diffraction techniques were used to characterize the materials. The synthesized samples exhibited superparamagnetic behavior, as revealed by our analysis of their magnetic properties. A lower recombination rate was shown by the photoluminescence analysis, which is helpful for raising photocatalytic activity. The photocatalytic activity was evaluated for the degradation of Cresol Red (CR) dye. 91.6% of CR dye was degraded by NiO/MFO-4 nanocomposite, and the NC dosage as well as solution pH affected the photocatalytic performance significantly. In four sequential photocatalytic cycles, the magnetically separable NCs were stable and recyclable. The enhanced photocatalytic activity and magnetic separability revealed the potential application of NiO/MFO-4 as an efficient photocatalyst for the removal of dyes from industrial wastewater under solar light irradiation.
Collapse
Affiliation(s)
- Muhammad Amjad
- Institute
of Chemistry, The Islamia University of
Bahawalpur, Bahawalpur 63100, Pakistan
| | - Ismat Bibi
- Institute
of Chemistry, The Islamia University of
Bahawalpur, Bahawalpur 63100, Pakistan
| | - Farzana Majid
- Department
of Physics, University of the Punjab, Lahore 54590, Pakistan
| | - Kashif Jilani
- Department
of Biochemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Misbah Sultan
- School
of Chemistry, University of the Punjab, Lahore 54590, Pakistan
| | - Qasim Raza
- Institute
of Chemistry, The Islamia University of
Bahawalpur, Bahawalpur 63100, Pakistan
| | - Aamir Ghafoor
- Institute
of Chemistry, The Islamia University of
Bahawalpur, Bahawalpur 63100, Pakistan
| | - Norah Alwadai
- Department
of Physics, College of Sciences, Princess
Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Arif Nazir
- Department
of Chemistry, University of Lahore, Lahore 54000, Pakistan
| | - Munawar Iqbal
- Department
of Chemistry, Division of Science and Technology, University of Education, Lahore 54770, Pakistan
| |
Collapse
|
6
|
Shoran S, Dahiya S, Singh S, Chaudhary S, Nehra SP, Sharma A. Unleashing the visible light-exposed photocatalytic potential of V 2O 5/g-C 3N 4 nanocomposites for dye industries wastewater cleaner production. CHEMOSPHERE 2023; 345:140452. [PMID: 37852386 DOI: 10.1016/j.chemosphere.2023.140452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/03/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
Dealing harmful dye-containing effluent from the textile sector significantly contributes to water contamination. The persistence of these dyes in wastewater complicates traditional treatment approaches, emphasizing the necessity for efficient photocatalytic materials for dye pollution degradation. Due to its unique features, V2O5/g-C3N4 nanocomposites are discovered as promising photocatalysts in this area. The V205 nanoparticles act as electron acceptors, while g-C3N4 acts as electron donors, thus encouraging charge separation and increasing photocatalytic activity. The V2O5/g-C3N4 nanocomposites are characterized using XRD, FTIR spectroscopy, SEM, TEM, XPS, and UV-DRS. Cationic dyes, anionic dyes and mix dyes (1:1 mixture of cationic and anionic dyes) are used to test the photocatalytic activity of the nanocomposites. Photocatalytic activity shows that V2O5/g-C3N4 nanocomposites are more active than their precursors. The V5G-2 nanocomposite degrades anionic (Rose Bengal (85.1%) and Xylenol Orange (77.6%), cationic (Auramine O (75% and Crystal Violet (79.5%), and mixed dyes (81%), after 120 min of irradiation. This study introduces a novel technique for synthesizing V2O5/g-C3N4 nanocomposites using solvothermal and ultrasonic processes. The findings of this research provide significant knowledge for the development of photocatalysts with enhanced efficiency in the degradation of dye pollutants.
Collapse
Affiliation(s)
- Sachin Shoran
- Centre of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India
| | - Sweety Dahiya
- Centre of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India
| | - Saravjeet Singh
- Department of Biomedical Engineering, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India
| | - Sudesh Chaudhary
- Centre of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India.
| | - S P Nehra
- Centre of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India.
| | - Anshu Sharma
- Department of Physics, School of Engineering & Technology, Central University of Haryana, Mahendergarh, 123031, India.
| |
Collapse
|
7
|
Kuzkova N, Kiyan IY, Wilkinson I, Merschjann C. Ultrafast dynamics in polymeric carbon nitride thin films probed by time-resolved EUV photoemission and UV-Vis transient absorption spectroscopy. Phys Chem Chem Phys 2023; 25:27094-27113. [PMID: 37807824 DOI: 10.1039/d3cp03191h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The ground- and excited-state electronic structures of four polymeric carbon nitride (PCN) materials have been investigated using a combination of photoemission and optical absorption spectroscopy. To establish the driving forces for photocatalytic water-splitting reactions, the ground-state data was used to produce a band diagram of the PCN materials and the triethanolamine electron scavenger, commonly implemented in water-splitting devices. The ultrafast charge-carrier dynamics of the same PCN materials were also investigated using two femtosecond-time-resolved pump-probe techniques: extreme-ultraviolet (EUV) photoemission and ultraviolet-visible (UV-Vis) transient absorption spectroscopy. The complementary combination of these surface- and bulk-sensitive methods facilitated photoinduced kinetic measurements spanning the sub-picosecond to few nanosecond time range. The results show that 400 nm (3.1 eV) excitation sequentially populates a pair of short-lived transient species, which subsequently produce two different long-lived excited states on a sub-picosecond time scale. Based on the spectro-temporal characteristics of the long-lived signals, they are assigned to singlet-exciton and charge-transfer states. The associated charge-separation efficiency was inferred to be between 65% and 78% for the different studied materials. A comparison of results from differently synthesized PCNs revealed that the early-time processes do not differ qualitatively between sample batches, but that materials of more voluminous character tend to have higher charge separation efficiencies, compared to exfoliated colloidal materials. This finding was corroborated via a series of experiments that revealed an absence of any pump-fluence dependence of the initial excited-state decay kinetics and characteristic carrier-concentration effects that emerge beyond few-picosecond timescales. The initial dynamics of the photoinduced charge carriers in the PCNs are correspondingly determined to be spatially localised in the immediate vicinity of the lattice-constituting motif, while the long-time behaviour is dominated by charge-transport and recombination processes. Suppressing the latter by confining excited species within nanoscale volumes should therefore affect the usability of PCN materials in photocatalytic devices.
Collapse
Affiliation(s)
- Nataliia Kuzkova
- Institute of Electronic Structure Dynamics, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Igor Yu Kiyan
- Institute of Electronic Structure Dynamics, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Iain Wilkinson
- Institute of Electronic Structure Dynamics, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Christoph Merschjann
- Department Atomic-Scale Dynamics in Light-Energy Conversion, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany.
| |
Collapse
|
8
|
Dahiya S, Sharma R, Gautam P, Panchal P, Chaudhary S, Sharma A, Almáši M, Nehra SP. Eco-friendly phytofabrication of Ficus Benjamina L. based ZnO-doped g-C 3N 4 nanocomposites for remarkable photocatalysis and antibacterial applications. CHEMOSPHERE 2023; 339:139707. [PMID: 37536534 DOI: 10.1016/j.chemosphere.2023.139707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 06/25/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023]
Abstract
The research reported here emphasizes the phytoextract route synthesized ZnO-doped g-C3N4 (GCN) for its photocatalytic activity, which helps to ensure a sustained & healthy environment. The leaf extract solution of Ficus Benjamina L. was used for the synthesis of ZnO nanoparticles, and GCN was prepared via urea using a thermal polymerization process. The flower extract functions as both stabilizers and capping agents during the process of synthesis of ZnO nanoparticles. The synthesized nanocomposites were then calcined at 400 °C and were further characterized with spectroscopy (UV-Vis), diffracted pattern (XRD), and infrared spectroscopy (FTIR). Further, the photocatalytic activity of auramine orange (AO) and methylene blue (MB) dye from phytoextract route synthesized pure ZnO NPs, GCN-Pure, and composites with varied millimolar concentrations of ZnO nanoparticles with GCN of the constant amount was checked. After the complete analysis, it was observed that the series that was prepared of ZnO-GCN nanocomposites showed notable enhancement in the degradation pattern of the methylene blue dye. Apparently, 1.5 mmol (mM) ZnO-GCN presented greater degradation patterns for Auramine orange and Methylene blue dye as compared to other nanocomposites that were synthesized. The observed increased photocatalytic activity has a conceivable explanation. The antibacterial activity studies of the prepared nanocomposites were also performed against the E. coli strain showing an enhanced zone of inhibition towards it.
Collapse
Affiliation(s)
- Sweety Dahiya
- Centre of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India
| | - Rishabh Sharma
- Centre of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India; Interdisciplinary Program in Climate Studies (IDPCS), Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Priyanka Gautam
- Centre of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India
| | - Priyanka Panchal
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India
| | - Sudesh Chaudhary
- Centre of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India
| | - Anshu Sharma
- Department of Physics, School of Engineering & Technology, Central University of Haryana, Mahendergarh, 123031, India.
| | - Miroslav Almáši
- Department of Inorganic Chemistry, Faculty of Science, P. J. Safarik University, Moyzesova 11, Kosice, 041 54 Slovak Republic
| | - S P Nehra
- Centre of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India.
| |
Collapse
|
9
|
Rao VS, Sharma R, Paul DR, Almáši M, Sharma A, Kumar S, Nehra SP. Architecting the Z-scheme heterojunction of Gd 2O 3/g-C 3N 4 nanocomposites for enhanced visible-light-induced photoactivity towards organic pollutants degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:98773-98786. [PMID: 36702986 DOI: 10.1007/s11356-023-25360-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
A basic calcination process in one step was employed to create g-C3N4 photocatalytic composites modified by Gd2O3 nanoparticles. SEM (scanning electron microscopy), FTIR (Fourier-transform infrared spectroscopy), XRD (X-ray diffraction), EIS (electrochemical impedance spectroscopy), PL (photoluminescence studies) as well as TEM (transmission electron microscopy), XPS (X-ray photoelectron spectroscopy), and CV (cyclic voltammetry) were employed to explain the structural traits, optical properties, and morphological features of the processed photocatalyst. The findings show that Gd2O3 (Gd) does not affect the sample's crystalline structure but rather increases g-C3N4 surface area by spreading it superficially. Furthermore, Gd can redshift the light absorption peak, reduce the energy gap, and improve the efficiency with which photogenerated holes and electrons are removed in g-C3N4. The surface morphology of g-C3N4, in particular, could be significantly enhanced. We similarly employed three distinct photocatalytic complexes of Gd2O3 and g-C3N4 in 1:1, 2:1, and 3:1 proportions to degrade methylene blue (MB). After 100 min in visible light (400-800 nm), the photodegradation rate of composites is 58.8% for 1:1 (GG1), 94.5% for 2:1 (GG2), and 92% for 3:1 (GG3). In addition to the MB dye, the photocatalytic activity of synthesized materials was also studied for methyl orange. The result shows phenomenal degradation values, i.e.; for GG1 86%, GG2 96%, and for GG3 84.6%. The narrow band gap that separates the photogenerated electron and hole enhances g-C3N4 ability to degrade photo-catalytically. From the result, we concluded that the photocurrent and cyclic photocatalytic degradation of methylene blue shows that a composition of 2:1 Gd2O3/g-C3N4 has high photocatalytic stability.
Collapse
Affiliation(s)
- Vikrant Singh Rao
- Center of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, Sonipat, India
| | - Rishabh Sharma
- Center of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, Sonipat, India
- Interdisciplinary Program in Climate Studies (IDPCS), Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Devina Rattan Paul
- Center of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, Sonipat, India
| | - Miroslav Almáši
- Department of Inorganic Chemistry, Faculty of Science, P. J. Safarik University, Moyzesova 11, 041 54, Kosice, Slovak Republic
| | - Anshu Sharma
- Department of Physics, School of Engineering & Technology (SoET), Central University of Haryana, Mahendragarh, 123031, India
| | - Suresh Kumar
- Department of Electronic Science, Kurukshetra University, Kurukshetra, 1336119, India
| | - Satya Pal Nehra
- Center of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, Sonipat, India.
| |
Collapse
|
10
|
Shoran S, Sharma A, Chaudhary S. Visible light enhanced photocatalytic degradation of organic pollutants with SiO 2/g-C 3N 4 nanocomposite for environmental applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:98732-98746. [PMID: 36622589 DOI: 10.1007/s11356-022-24837-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
The development of eco-friendly photocatalysts is gaining attention as an effective approach for degrading organic pollutants. In the present study, the composite materials are composed of various components with varying structures that combine to enhance their characteristics and widen their applications. This work uses the hydrothermal method for the fabrication of a novel and steady SiO2/g-C3N4 photocatalyst. The amount of SiO2 was fixed, and graphitic carbon nitride (g-C3N4) was varied in the ratio (1:x, where x = 1, 2, 3) and abbreviated as SCN1, SCN2, and SCN3. The optical properties, surface morphology, and structural analysis of the prepared nanocomposites were studied using various techniques such as FTIR, TGA, X-ray diffraction, and ultraviolet-visible spectroscopy. The results show that SCN2 nanocomposites significantly improved the photocatalytic activity, with a degradation efficiency of 70% for auramine O and 84.6% for xylenol orange dye under visible light irradiation, which is a result of their large surface area and efficient electron-hole separation rate.
Collapse
Affiliation(s)
- Sachin Shoran
- Center of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, Haryana, India
| | - Anshu Sharma
- Department of Physics Under School of Engineering and Technology, Central University of Haryana, Mahendragarh, 123031, Haryana, India
| | - Sudesh Chaudhary
- Center of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, Haryana, India.
| |
Collapse
|
11
|
Nabhan F, Fayyad EM, Sliem MH, Shurrab FM, Eid K, Nasrallah G, Abdullah AM. ZnO-Doped gC 3N 4 Nanocapsules for Enhancing the Performance of Electroless NiP Coating-Mechanical, Corrosion Protection, and Antibacterial Properties. ACS OMEGA 2023; 8:22361-22381. [PMID: 37396246 PMCID: PMC10308405 DOI: 10.1021/acsomega.2c07288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/06/2023] [Indexed: 07/04/2023]
Abstract
A carbon nitride (C3N4) nanomaterial has superior mechanical, thermal, and tribological properties, which make them attractive for various applications, including corrosion-resistant coatings. In this research, newly synthesized C3N4 nanocapsules with different concentrations (0.5, 1.0, and 2.0 wt %) of ZnO as a dopant were incorporated into the NiP coating using an electroless deposition technique. The nanocomposite coatings either ZnO-doped (NiP-C3N4/ZnO) or undoped (NiP-C3N4) were heat-treated at 400 °C for 1 h. The as-plated and heat-treated (HT) nanocomposite coatings were characterized by their morphology, phases, roughness, wettability, hardness, corrosion protection, and antibacterial properties. The results indicated that the microhardness of as-plated and heat-treated nanocomposite coatings was significantly improved after the incorporation of 0.5 wt % ZnO-doped C3N4 nanocapsules. The outcomes of electrochemical studies revealed that the corrosion resistance of the HT coatings is higher than the corresponding as-plated ones. The highest corrosion resistance is achieved on the heat-treated NiP-C3N4/1.0 wt % ZnO coatings. Although the presence of ZnO in the C3N4 nanocapsules increased its surface area and porosity, the C3N4/ZnO nanocapsules prevented localized corrosion by filling the microdefects and pores of the NiP matrix. Furthermore, the colony-counting method used to evaluate the antibacterial behavior of the different coatings demonstrated superior antibacterial properties, namely, after heat treatment. Therefore, the novel perspective C3N4/ZnO nanocapsules can be utilized as a reinforcement nanomaterial in improving the mechanical and anticorrosion performance of NiP coatings in chloride media, together with providing superior antibacterial properties.
Collapse
Affiliation(s)
- Fatma Nabhan
- Center
for Advanced Materials, Qatar University, Doha, Qatar 2713
| | - Eman M. Fayyad
- Center
for Advanced Materials, Qatar University, Doha, Qatar 2713
| | - Mostafa H. Sliem
- Center
for Advanced Materials, Qatar University, Doha, Qatar 2713
| | | | - Kamel Eid
- Gas
Processing Center, Qatar University, Doha, Qatar 2713
| | | | | |
Collapse
|
12
|
Singh S, Sharma N, Sehrawat P, Kansal SK. Solar-light-driven photocatalytic degradation of pharmaceutical pollutants utilizing 2D g-C 3N 4/BiOCl composite. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 99:104110. [PMID: 36921698 DOI: 10.1016/j.etap.2023.104110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/02/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Pharmaceuticals, which have been praised for protecting countless lives, have become a new category of environmental pollutants in recent decades as most of these pharmaceutical compounds are discovered in water bodies in concentrations ranging from ng/L to mg/L. Recently, metal-free g-C3N4 (GCN)-based composites have received considerable attention for the degradation of pharmaceutical compounds. In this study, GCN/BiOCl composite was prepared using a simple ultrasonication-assisted stirring method and characterized using various analytical and spectroscopic techniques including XRD, FTIR, PL, Elemental mapping, UV-DRS, FESEM, HRTEM, and TGA. The as-prepared composite was utilized to degrade levofloxacin (LVX) under solar light irradiation and showed excellent stability for the degradation of LVX. Furthermore, the universality of the GCN/BiOCl composite was investigated by degrading diverse pharmaceuticals such as ofloxacin (OFX), norfloxacin (NOX), ciprofloxacin (COX), and ketorolac tromethamine (KTC) in an aqueous phase. Therefore, this work provides an effective method to degrade pharmaceutical contaminants simultaneously in water using GCN/BiOCl composite.
Collapse
Affiliation(s)
- Shafali Singh
- Dr. S. S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh 160014, India
| | - Navita Sharma
- Dr. S. S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh 160014, India
| | - Pinki Sehrawat
- Energy Research Centre, Panjab University, Chandigarh 160014, India
| | - Sushil Kumar Kansal
- Dr. S. S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
13
|
Sewnet A, Alemayehu E, Abebe M, Mani D, Thomas S, Kalarikkal N, Lennartz B. Single-Step Synthesis of Graphitic Carbon Nitride Nanomaterials by Directly Calcining the Mixture of Urea and Thiourea: Application for Rhodamine B (RhB) Dye Degradation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:762. [PMID: 36839130 PMCID: PMC9961699 DOI: 10.3390/nano13040762] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Recently, polymeric graphitic carbon nitride (g-C3N4) has been explored as a potential catalytic material for the removal of organic pollutants in wastewater. In this work, graphitic carbon nitride (g-C3N4) photocatalysts were synthesized using mixtures of low-cost, environment-friendly urea and thiourea as precursors by varying calcination temperatures ranging from 500 to 650 °C for 3 h in an air medium. Different analytical methods were used to characterize prepared g-C3N4 samples. The effects of different calcination temperatures on the structural, morphological, optical, and physiochemical properties of g-C3N4 photocatalysts were investigated. The results showed that rhodamine B (RhB) dye removal efficiency of g-C3N4 prepared at a calcination temperature of 600 °C exhibited 94.83% within 180 min visible LED light irradiation. Photocatalytic activity of g-C3N4 was enhanced by calcination at higher temperatures, possibly by increasing crystallinity that ameliorated the separation of photoinduced charge carriers. Thus, controlling the type of precursors and calcination temperatures has a great impact on the photocatalytic performance of g-C3N4 towards the photodegradation of RhB dye. This investigation provides useful information about the synthesis of novel polymeric g-C3N4 photocatalysts using a mixture of two different environmentally benign precursors at high calcination temperatures for the photodegradation of organic pollutants.
Collapse
Affiliation(s)
- Agidew Sewnet
- Faculty of Materials Science and Engineering, Jimma University, Jimma P.O. Box 378, Ethiopia
- Department of Physics, College of Natural and Computational Science, Bonga University, Bonga P.O. Box 334, Ethiopia
| | - Esayas Alemayehu
- Faculty of Civil and Environmental Engineering, Jimma University, Jimma P.O. Box 378, Ethiopia
| | - Mulualem Abebe
- Faculty of Materials Science and Engineering, Jimma University, Jimma P.O. Box 378, Ethiopia
| | - Dhakshnamoorthy Mani
- Faculty of Materials Science and Engineering, Jimma University, Jimma P.O. Box 378, Ethiopia
| | - Sabu Thomas
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686560, India
| | - Nandakumar Kalarikkal
- School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam 686560, India
| | - Bernd Lennartz
- Faculty of Agricultural and Environmental Sciences, University of Rostock, Justus-Von-Liebig-Weg 6, 18059 Rostock, Germany
| |
Collapse
|
14
|
Dahiya S, Sharma A, Chaudhary S. Synthesis of phytoextract-mediated Ag-doped graphitic carbon nitride (Ag@GCN) for photocatalytic degradation of dyes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:25650-25662. [PMID: 36696062 DOI: 10.1007/s11356-023-25359-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
The present work focuses on the green synthesis of Ag-doped graphitic carbon nitride (Ag@GCN) for photocatalytic activities, which can contribute to a more sustainable environment. The leaf extract of the Ocimum tenuiflorum (Tulsi) plant was used to prepare the silver nanoparticles, as the plant extract serves as a stabilizing and capping agent in producing silver nanoparticles. Both Ag nanoparticles and urea-derived GCN were synthesized by thermal polymerization. The Ag-doped GCN nanocomposites were synthesized using various millimolar concentrations of Ag nanoparticles (NPs) with a fixed amount of GCN. The green nanocomposites (NCs) were synthesized by calcinating leaf extract at about 550 °C. They were then characterized for surface morphology by SEM coupled with energy-dispersive X-ray spectroscopy (EDX), and elemental composition by XRD, Fourier-dispersive infrared spectroscopy (FTIR), and transmission electron microscope (TEM). Thermal stability and estimation of the Ag content in GCN were done through thermogravimetric analysis. The prepared series of nanocomposites (Ag-doped GCN 0.5 mM, 1.0 mM, 1.5 mM, 2.0 mM) were used to study the photocatalytic degradation efficiency of rose bengal (RB) and xylenol orange (XO) dyes. The degradation efficiency of dyes gets enhanced due to the doping of Ag nanoparticles into GCN. The efficiency increased from 54 to 76% and 15 to 36% in the case of RB and XO dyes, respectively. The apparent rate constant value increased up to 2.5 times in the case of the Ag-doped GCN (1.5 mM) nanocomposite in comparison to GCN. The result obtained from the study confirmed that Ag-doped GCN (1.5 mM) could act as a potential photocatalyst for wastewater remediation applications.
Collapse
Affiliation(s)
- Sweety Dahiya
- Centre of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonipat, 131039, Haryana, India
| | - Anshu Sharma
- Department of Physics Under School of Engineering and Technology, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - Sudesh Chaudhary
- Centre of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonipat, 131039, Haryana, India.
| |
Collapse
|
15
|
Pattanayak DS, Pal D, Mishra J, Thakur C, Wasewar KL. Doped graphitic carbon nitride (g-C 3N 4) catalysts for efficient photodegradation of tetracycline antibiotics in aquatic environments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:24919-24926. [PMID: 35306654 DOI: 10.1007/s11356-022-19766-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
Tetracyclines (TCs) antibiotics are very common and often used in both human and veterinary medicines. More than 75% of TCs are excreted in an active condition and released into the environment, posing a risk to the ecosystem and human health. Residual antibiotics are in global water bodies, causing antibiotic resistance and genotoxicity in humans and aquatic organisms. The ever-increasing number of multi-resistant bacteria caused by the widespread use of antibiotics in the environment has sparked a renewed interest in developing more sustainable antibiotic degradation processes. In this regard, photodegradation technique provides a promising solution to resolve this growing issue, paving the way for complete antibiotic degradation with the generation of non-toxic by-products. As a fascinating activity towards visible light range shown by semiconductor, graphitic carbon nitride (g-C3N4) has a medium bandgap, non-toxicity, chemically stable complex, and thermally great strength. Recent studies have concentrated on the performance of g-C3N4 as a photocatalyst for treating wastewater. Pure g-C3N4 exhibits limited photocatalytic activity due to insufficient sunlight usage, small surface area, and a high rate of recombination of electron and hole ([Formula: see text] & [Formula: see text]) pairs created in photocatalytic activity. Doping of g-C3N4 is a very effective method for improving the activity as element doped g-C3N4 shows excellent bandgap and electronic structure. Doping significantly broadens the light-responsive range and reduces recombination of e- & h+ pairs. Under above context, this review provides a systematic and comprehensive outlook of designing doped g-C3N4 as well as efficiency for TCs degradation in aquatic environment.
Collapse
Affiliation(s)
- Dhruti Sundar Pattanayak
- Department of Chemical Engineering, National Institute of Technology Raipur, Raipur, 492 010, CG, India
| | - Dharm Pal
- Department of Chemical Engineering, National Institute of Technology Raipur, Raipur, 492 010, CG, India.
| | - Jyoti Mishra
- Department of Chemistry (Environmental Science and Technology Program), ITER, Siksha'O'Anusandhan (Deemed To Be) University, Bhubaneswar, 751 030, Odisha, India
| | - Chandrakant Thakur
- Department of Chemical Engineering, National Institute of Technology Raipur, Raipur, 492 010, CG, India
| | - Kailas L Wasewar
- Department of Chemical Engineering, VNIT, Nagpur, 440010, MH, India
| |
Collapse
|
16
|
A study on Gamma radiation shielding performance and characterization of Graphitic Carbon Nitride. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
M A, M A, Ahmed N, Michel Mary M S, P V, Subitha T K, Noreen R, Ali S. The influence of activated carbon annealing temperature on sunlight-driven photocatalytic dye degradation and biological activity. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Patil YN, Megalamani MB, Nandibewoor ST. Highly sensitive electro-oxidative voltammetric determination of anthelmintic drug albendazole using porous graphitic carbon nitride sensor infused with cationic micellar solution. J Pharm Biomed Anal 2022; 221:115072. [PMID: 36166932 DOI: 10.1016/j.jpba.2022.115072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 10/31/2022]
Abstract
A sensitive and novel electrochemical senser, acetyl trimethylammonium bromide (CTAB)-immobilized nitrogen rich g-C3N4 nanosheet modified carbon paste electrode was developed, for the electrochemical investigation of the anthelmintic drug Albendazole (ABZ) using voltammetric tools like cyclic and square wave voltammetry. The results showed that the modified carbon paste electrode exhibited remarkable electro-catalytic action towards the electrochemical oxidation of ABZ in a phosphate buffer solution at pH 3 compared to bare carbon paste electrode. The electrode material was characterized by CV, scanning electron microscopy (SEM), atomic force microscope (AFM), and electrochemical impedance spectroscopy (EIS). A highly sensitive square wave voltammetric technique was developed for the determination of ABZ, at a trace level with great precision and accuracy, good limit of detection (LOD) 0.01 µM and limit of quantification (LOQ) of 0.036 µM, in the concentration range of 0.2-10 µM. This approach can be used in pharmaceutical formulations for clinical diagnosis, quality assurance, and drug screening. In addition, this technique is also implemented for the assessment of ABZ in water samples and biological samples like urine and blood plasma.
Collapse
Affiliation(s)
- Yuvarajgouda N Patil
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Hubballi 580031. Karnataka, India
| | - Manjunath B Megalamani
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Hubballi 580031. Karnataka, India
| | - Sharanappa T Nandibewoor
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Hubballi 580031. Karnataka, India.
| |
Collapse
|
19
|
Liu W, Kang Q, Wang L, Wen L, Li Z. Improved performance of Zn-doped SnO 2 modified g-C 3N 4 for visible light-driven photocatalysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:51989-52002. [PMID: 35257335 DOI: 10.1007/s11356-022-19581-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
The low-cost composite of g-C3N4 modified by Zn-doped SnO2 nanoparticles was prepared for the first time in this work. The characterization results of XRD and SEM demonstrated that Zn was successfully doped into SnO2. The formed Sn-O-Zn bonds and interaction between the Zn-doped SnO2 sample and g-C3N4 in the composite were explored by FT-IR and XPS technologies. Photocatalytic degradation experiments showed that the as-prepared optimal composite photocatalyst displayed enhanced photocatalytic reactivity towards both dyes and antibiotics, which could degrade 85.6% of RhB and 86.8% of tetracycline within 30 and 90 min, respectively. The oxygen vacancies formed in SnO2 after Zn doping could capture the photogenerated electrons of g-C3N4, thereby promoting the separation of photogenerated electron-hole pairs, then more ·O2- and holes can be generated during the visible light-driven photocatalytic reaction, so that the composite of Zn-doped SnO2/g-C3N4 acquired higher photocatalytic activity and accelerated the degradation of target organics. Active species capturing experiments and ESR detection results also confirmed that ·O2- and holes were the main active species in the reaction process. This work developed a novel g-C3N4-based photocatalyst with no noble metal, low price, and high photocatalytic activity, which could provide a cost-effective and high-efficiency strategy for wastewater treatment.
Collapse
Affiliation(s)
- Wei Liu
- Faculty of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
- Hubei Engineering Research Center for Rural Drinking Water Safety, Wuhan, 430062, China
| | - Qun Kang
- Faculty of Resources and Environmental Science, Hubei University, Wuhan, 430062, China.
- Hubei Engineering Research Center for Rural Drinking Water Safety, Wuhan, 430062, China.
| | - Ling Wang
- Faculty of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
- Hubei Engineering Research Center for Rural Drinking Water Safety, Wuhan, 430062, China
| | - Lilian Wen
- Faculty of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
- Hubei Engineering Research Center for Rural Drinking Water Safety, Wuhan, 430062, China
| | - Zhaohua Li
- Faculty of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
- Hubei Engineering Research Center for Rural Drinking Water Safety, Wuhan, 430062, China
| |
Collapse
|
20
|
Panchal P, Paul DR, Gautam S, Meena P, Nehra SP, Maken S, Sharma A. Photocatalytic and antibacterial activities of green synthesized Ag doped MgO nanocomposites towards environmental sustainability. CHEMOSPHERE 2022; 297:134182. [PMID: 35248599 DOI: 10.1016/j.chemosphere.2022.134182] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
The utilization of MgO nanoparticles (NPs) for Photocatalytic and antimicrobial activities has gained lots of attention in recent years. Since silver is an expensive material, it's of interest to check that doping of very small concentration of silver will increase the pollutant degradation efficiency of composites. Here Aloe Vera plant extract was used for synthesis of MgO, Ag NPs and Ag/MgO-nanocomposites (NCs). Green synthesized NPs and NCs were confirmed by using different techniques like UV-Vis, BET, TGA, FTIR, PL, XRD (optical, functional, Thermal, Structural) EDX, TEM, SEM, XPS, EIS and EPR (morphological, elemental, photoelectrical and ROS) studies respectively. Then NPs and NCs were applied for the photocatalytic activity of methylene blue (MB), phenol and antimicrobial studies of E. coli bacteria. Ag/MgO-NCs showed 90.18% dye and 80.67% phenol degradation in 120 min which killed E. Coli pathogenic bacteria in 25 min under solar light irradiations. In disk diffusion methods, it inactivates 24 mm area of bacterial cell growth. Thus, among these green synthesized NPs and NCs, Ag/MgO-NCs exhibited enhanced photocatalytic and antimicrobial activities.
Collapse
Affiliation(s)
- Priyanka Panchal
- Center of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India
| | - Devina Rattan Paul
- Center of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India
| | - Shubham Gautam
- Materials Research Center, Malaviya National Institute of Technology, Jaipur, 302017, India
| | - Poonam Meena
- Department of Botany, University of Rajasthan, Jaipur, 302004, India
| | - S P Nehra
- Center of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India.
| | - Sanjeev Maken
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India
| | - Anshu Sharma
- Department of Physics, School of Engineering & Technology, Central University of Haryana, Mahendragarh, 123031, India.
| |
Collapse
|
21
|
Sharma M, Kumar A, Krishnan V. Influence of oxygen vacancy defects on Aurivillius phase layered perovskite oxides of bismuth towards photocatalytic environmental remediation. NANOTECHNOLOGY 2022; 33:275702. [PMID: 35412470 DOI: 10.1088/1361-6528/ac6088] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
The low light absorption and rapid recombination of photogenerated charge carriers are primary contributors to the low activity of various photocatalysts. Fabrication of oxygen vacancy defect-rich materials for improved photocatalytic activities has been attracting tremendous attention from researchers all over the world. In this work, we have compared the photocatalytic activities of oxygen vacancy-rich Bi2MoO6(BMO-OV) and Bi2WO6(BWO-OV) for the degradation of a model pharmaceutical pollutant, ciprofloxacin under visible light irradiation. The photocatalytic activity was increased from 47% to 77% and 40% to-67% for BMO-OVand BWO-OV, respectively in comparison to pristine oxides. This enhancement can be ascribed to suppressed charge carrier recombination and increased surface active sites. In addition, scavenger studies have been done to explain the role of photoinduced charge carriers in the degradation mechanism. Moreover, oxygen vacancy-rich photocatalysts have remained stable even after three consecutive cycles, making them promising materials for practical applications. Overall, this work provides deeper insight into the design and development of oxygen vacancy-rich materials.
Collapse
Affiliation(s)
- Manisha Sharma
- School of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Mandi 175075, Himachal Pradesh, India
| | - Ashish Kumar
- School of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Mandi 175075, Himachal Pradesh, India
| | - Venkata Krishnan
- School of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Mandi 175075, Himachal Pradesh, India
| |
Collapse
|
22
|
Enhanced photocatalytic degradation of rhodamine B and malachite green employing BiFeO3/g-C3N4 nanocomposites: An efficient visible-light photocatalyst. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
23
|
Das S, Chowdhury A. Recent advancements of g-C 3N 4-based magnetic photocatalysts towards the degradation of organic pollutants: a review. NANOTECHNOLOGY 2021; 33:072004. [PMID: 34731840 DOI: 10.1088/1361-6528/ac3614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Heterogeneous photocatalysis premised on advanced oxidation processes has witnessed a broad application perspective, including water purification and environmental remediation. In particular, the graphitic carbon nitride (g-C3N4), an earth-abundant metal-free conjugated polymer, has acquired extensive application scope and interdisciplinary consideration owing to its outstanding structural and physicochemical properties. However, several issues such as the high recombination rate of the photo-generated electron-hole pairs, smaller specific surface area, and lower electrical conductivity curtail the catalytic efficacy of bulk g-C3N4. Another challenging task is separating the catalyst from the reaction medium, limiting their reusability and practical applications. Therefore, several methodologies are adopted strategically to tackle these issues. Attention is being paid, especially to the magnetic nanocomposites (NCs) based catalysts to enhance efficiency and proficient reusability property. This review summarizes the latest progress related to the design and development of magnetic g-C3N4-based NCs and their utilization in photocatalytic systems. The usefulness of the semiconductor heterojunctions on the catalytic activity, working mechanism, and degradation of pollutants are discussed in detail. The major challenges and prospects of using magnetic g-C3N4-based NCs for photocatalytic applications are highlighted in this report.
Collapse
Affiliation(s)
- Suma Das
- Organic Electronics & Sensor Laboratory, Department of Physics, National Institute of Technology Silchar, Assam 788010, India
| | - Avijit Chowdhury
- Organic Electronics & Sensor Laboratory, Department of Physics, National Institute of Technology Silchar, Assam 788010, India
- Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India
| |
Collapse
|
24
|
A (solvent-free) approach to metal-free photo-catalysts for methylene blue degradation. IRANIAN POLYMER JOURNAL 2021. [DOI: 10.1007/s13726-021-00957-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
25
|
Munawar T, Mukhtar F, Yasmeen S, Naveed-Ur-Rehman M, Nadeem MS, Riaz M, Mansoor M, Iqbal F. Sunlight-induced photocatalytic degradation of various dyes and bacterial inactivation using CuO-MgO-ZnO nanocomposite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:42243-42260. [PMID: 33797716 DOI: 10.1007/s11356-021-13572-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Novel tri-phase CuO-MgO-ZnO nanocomposite was prepared using the co-precipitation technique and investigated its physical properties using characterization techniques including XRD, FTIR, Raman, IV, UV-vis, PL, and SEM. The application of grown CuO-MgO-ZnO nanocomposite for the degradation of various dyes under sunlight and antibacterial activity against different bacteria were studied. The XRD confirmed the existence of diffraction peaks related to CuO (monoclinic), MgO (cubic), and ZnO (hexagonal) with CuO phase 40%, MgO 24%, and ZnO 36%. The optical energy gap of nanocomposite was 2.9 eV, which made it an efficient catalyst under sunlight. Raman and FTIR spectra have further confirmed the formation of the nanocomposite. SEM images revealed agglomerated rod-shaped morphology. EDX results showed the atomic percentage of a constituent element in this order Cu>Zn>Mg. PL results demonstrate the presence of intrinsic defects. The photocatalytic activity against methylene blue (MB), methyl orange (MO), rhodamine-B (RhB), cresol red (CR), and P-nitroaniline (P-Nitro) dyes has shown the excellent degradation efficiencies 88.5%, 93.5%, 75.9%, 98.8%, and 98.6% at 5 ppm dye concentration and 82.6%, 83.6%, 64.3%, 93.1%, and 94.3% at 10 ppm dye concentration in 100 min, respectively, under sunlight illumination. The higher degradation is due to the generation of superoxide and hydroxyl radicals. The recyclability test showed the reusability of catalyst up to the 5th cycle. The antibacterial activity against Escherichia coli, Klebsiella pneumoniae, Proteus Vulgaris, Staphylococcus aureus, and Pseudomonas aeruginosa bacteria with the zone of inhibition 30, 31, 30, 30, and 30 mm, respectively, was achieved.
Collapse
Affiliation(s)
- Tauseef Munawar
- Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Faisal Mukhtar
- Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Sadaf Yasmeen
- Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | | | | | - Muhammad Riaz
- Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Mansoor
- School of Chemical & Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad, 24090, Pakistan
| | - Faisal Iqbal
- Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| |
Collapse
|
26
|
Olatunde OC, Onwudiwe DC. Graphene-Based Composites as Catalysts for the Degradation of Pharmaceuticals. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1529. [PMID: 33562739 PMCID: PMC7914572 DOI: 10.3390/ijerph18041529] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 11/20/2022]
Abstract
The incessant release of pharmaceuticals into the aquatic environment continues to be a subject of increasing concern. This is because of the growing demand for potable water sources and the potential health hazards which these pollutants pose to aquatic animals and humans. The inability of conventional water treatment systems to remove these compounds creates the need for new treatment systems in order to deal with these class of compounds. This review focuses on advanced oxidation processes that employ graphene-based composites as catalysts for the degradation of pharmaceuticals. These composites have been identified to possess enhanced catalytic activity due to increased surface area and reduced charge carrier recombination. The techniques employed in synthesizing these composites have been explored and five different advanced oxidation processes-direct degradation process, chemical oxidation process, photocatalysis, electrocatalyis processes and sonocatalytic/sono-photocatalytic processes-have been studied in terms of their enhanced catalytic activity. Finally, a comparative analysis of the processes that employ graphene-based composites was done in terms of process efficiency, reaction rate, mineralization efficiency and time required to achieve 90% degradation.
Collapse
Affiliation(s)
- Olalekan C. Olatunde
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, Mafikeng Campus, North-West University, Private Bag X2046, Mmabatho 2735, South Africa;
- Department of Chemistry, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Sciences, Mafikeng Campus, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Damian C. Onwudiwe
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, Mafikeng Campus, North-West University, Private Bag X2046, Mmabatho 2735, South Africa;
- Department of Chemistry, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Sciences, Mafikeng Campus, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| |
Collapse
|
27
|
Panchal P, Meena P, Nehra SP. A rapid green synthesis of Ag/AgCl-NC photocatalyst for environmental applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:3972-3982. [PMID: 33398749 PMCID: PMC7781416 DOI: 10.1007/s11356-020-11834-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 11/23/2020] [Indexed: 05/25/2023]
Abstract
The present study focuses on extract-mediated Ag nanoparticles (NPs), AgCl-NPs, and Ag/AgCl nanocomposites (NCs) as photocatalysts along with its antimicrobial and dye degradation activities. The synthesis of these NPs and NCs was performed by using Azadirachta indica plant fruit extract and analyzed using UV-Vis spectroscopy to confirm the synthesis and band gap of these NPs and NCs, X-ray diffraction (XRD) to determine its size and crystalline nature. Fourier transform infrared spectroscopy (FTIR) to discern phytochemicals, responsible for the reduction and capping of the synthesized NCs. Scanning electron microscopy analysis (SEM), transmission electron microscopy analysis (TEM), and energy dispersive X-ray (EDX) spectroscopy analysis were performed to validate the morphology and presence of silver and chloride percentage in the composites. Later, these NPs and NCs were used for their potential role in photocatalytic degradation of methylene blue dye and antibacterial activity against Escherichia coli and Staphylococcus aureus of human pathogen. The prepared Ag/AgCl-NCs exhibited an enhanced photocatalytic and antibacterial activities in comparison with pure Ag and AgCl nanomaterials. However, green-synthesized NPs and NCs played dual roles as a photocatalyst and antibacterial agent in various biomedical and industrial sectors. Moreover, we found that it might be a hot research in many other environmental applications in upcoming days.
Collapse
Affiliation(s)
- Priyanka Panchal
- Center of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India
| | - Poonam Meena
- Department of Botany, University of Rajasthan, Jaipur, 302004, India
| | - Satya Pal Nehra
- Center of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India.
| |
Collapse
|