1
|
Shimelis G, Kim DG, Yimer F, Tadesse M. Exploring compost production potential and its economic benefits and greenhouse gas mitigation in Addis Ababa, Ethiopia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176617. [PMID: 39378937 DOI: 10.1016/j.scitotenv.2024.176617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/07/2024] [Accepted: 09/28/2024] [Indexed: 10/10/2024]
Abstract
The increasing amount of municipal organic waste (MOW) and human excreta (HE) has led to socio-economic and environmental challenges in the cities of developing countries. This study estimated MOW and HE, compost production potential from MOW and HE, and compost application potential for urban agriculture fertilization, economic benefits, soil carbon sequestration, and greenhouse gas (GHG) mitigation in Addis Ababa, Ethiopia, for the period 2025-2050. MOW was forecasted using the Holt-Winters forecasting model. HE was estimated using the daily average rate of HE generation. The compost production potential was estimated using the forecasted MOW and HE. Compost fertilization was determined by considering compost nitrogen (N), phosphorus (P), and potassium (K) and the fertilizer requirements of cereals and vegetables. The economic benefits of compost were determined by considering the price of compost-equivalent urea, NPS, and potassium chloride fertilizers. The mitigation of GHG emissions from compost application was estimated using the IPCC Tier 1 method. The forecasted quantities of MOW, HE, and compost for 2050 are 301, 462, and 343 Gg, respectively. The compost could supply 5 Gg of N and 2.2 Gg of P in 2050, sufficient to fertilize 14,129 ha of vegetable fields. The economic benefits of using compost as a substitute for synthetic fertilizers could reach 10 million USD in 2050. Compost production and application could offset the total GHG emissions of Addis Ababa by 13.1 % (10,241Gg CO2-eq year-1) in 2050. The application of compost generated from MOW and HE in Addis Ababa can substitute synthetic fertilizers, provide economic benefits, and mitigate GHG emissions.
Collapse
Affiliation(s)
- Gezu Shimelis
- Department of Land Administration and Surveying, Institute of Land Administration, Oda Bultum University, P.O. Box 225, Chiro, Ethiopia; Wondo Genet College of Forestry and Natural Resources, Hawassa University, P.O. Box 128, Shashemene, Ethiopia.
| | - Dong-Gill Kim
- Wondo Genet College of Forestry and Natural Resources, Hawassa University, P.O. Box 128, Shashemene, Ethiopia.
| | - Fantaw Yimer
- Wondo Genet College of Forestry and Natural Resources, Hawassa University, P.O. Box 128, Shashemene, Ethiopia
| | - Menfese Tadesse
- Wondo Genet College of Forestry and Natural Resources, Hawassa University, P.O. Box 128, Shashemene, Ethiopia
| |
Collapse
|
2
|
Wang N, He Y, Zhao K, Lin X, He X, Chen A, Wu G, Zhang J, Yan B, Luo L, Xu D. Greenhouse gas emission characteristics and influencing factors of agricultural waste composting process: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120337. [PMID: 38417357 DOI: 10.1016/j.jenvman.2024.120337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/04/2024] [Accepted: 02/08/2024] [Indexed: 03/01/2024]
Abstract
China, being a major agricultural nation, employs aerobic composting as an efficient approach to handle agricultural solid waste. Nevertheless, the composting process is often accompanied by greenhouse gas emissions, which are known contributors to global warming. Therefore, it is urgent to control the formation and emission of greenhouse gases from composting. This study provides a comprehensive analysis of the mechanisms underlying the production of nitrous oxide, methane, and carbon dioxide during the composting process of agricultural wastes. Additionally, it proposes an overview of the variables that affect greenhouse gas emissions, including the types of agricultural wastes (straw, livestock manure), the specifications for compost (pile size, aeration). The key factors of greenhouse gas emissions during composting process like physicochemical parameters, additives, and specific composting techniques (reuse of mature compost products, ultra-high-temperature composting, and electric-field-assisted composting) are summarized. Finally, it suggests directions and perspectives for future research. This study establishes a theoretical foundation for achieving carbon neutrality and promoting environmentally-friendly composting practices.
Collapse
Affiliation(s)
- Nanyi Wang
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China
| | - Yong He
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China
| | - Keqi Zhao
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China
| | - Xu Lin
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China
| | - Xi He
- Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China; College of Animal Science and Technology, Hunan Agricultural University, 410128, China
| | - Anwei Chen
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China
| | - Genyi Wu
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China
| | - Jiachao Zhang
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China.
| | - Binghua Yan
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China
| | - Lin Luo
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China
| | - Daojun Xu
- Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China; College of Veterinary Medicine, Hunan Agricultural University, 410128, China.
| |
Collapse
|
3
|
Wang F, Kang Y, Fu D, Singh RP. Effect evaluation of different green wastes on food waste digestate composting and improvement of operational conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-32386-y. [PMID: 38361099 DOI: 10.1007/s11356-024-32386-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/04/2024] [Indexed: 02/17/2024]
Abstract
This study attempted to determine the influence of diverse green wastes on food waste digestate composting and the improvement of operational conditions. Various effects of the green wastes (GW), with different types and sizes, initial substrate mixture C/N ratios, compost pile heights, and turning frequencies on the food waste digestate (FWD) composting were examined in the current work. The findings showed that the use of street sweeping green waste (SSGW) as an additive can maintain the thermophilic stage of the FWD composting for 28 days, while the end-product contained the greatest amounts of total phosphorus (TP, 2.29%) and total potassium (TK, 4.61%) and the lowest moisture content (14.8%). Crushed SSGW (20 mm) enabled the FWD composting to maintain the longest thermophilic period (28 days), achieving the highest temperature (70.2 °C) and seed germination index (GI, 100%). Adjusting the initial substrate mixture C/N ratio to 25, compost pile height to 30 cm, and turning frequency to three times a day could enhance the efficiency and improve the fertilizer quality of the co-composting of the FWD and SSGW. This study suggested that co-composting of FWD and SSGW (FWD/SSGW = 2.3, wet weight) is a promising technique for the treatment of municipal solid waste and provided significant theoretical data for the application of composting.
Collapse
Affiliation(s)
- Fei Wang
- School of Civil Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Yangtianrui Kang
- School of Civil Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Dafang Fu
- School of Civil Engineering, Southeast University, Nanjing, 211189, People's Republic of China
| | - Rajendra Prasad Singh
- School of Civil Engineering, Southeast University, Nanjing, 211189, People's Republic of China.
| |
Collapse
|
4
|
Stegenta-Dąbrowska S, Syguła E, Bednik M, Rosik J. Effective Carbon Dioxide Mitigation and Improvement of Compost Nutrients with the Use of Composts' Biochar. MATERIALS (BASEL, SWITZERLAND) 2024; 17:563. [PMID: 38591413 PMCID: PMC10856095 DOI: 10.3390/ma17030563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 04/10/2024]
Abstract
Composting is a process that emits environmentally harmful gases: CO2, CO, H2S, and NH3, negatively affecting the quality of mature compost. The addition of biochar to the compost can significantly reduce emissions. For effective CO2 removal, high doses of biochar (up to 20%) are often recommended. Nevertheless, as the production efficiency of biochar is low-up to 90% mass loss-there is a need for research into the effectiveness of lower doses. In this study, laboratory experiments were conducted to observe the gaseous emissions during the first 10 days of composting with biochars obtained from mature composts. Biochars were produced at 550, 600, and 650 °C, and tested with different doses of 0, 3, 6, 9, 12, and 15% per dry matter (d.m.) in composting mixtures, at three incubation temperatures (50, 60, and 70 °C). CO2, CO, H2S, and NH3 emissions were measured daily. The results showed that the biochars effectively mitigate CO2 emissions during the intensive phase of composting. Even 3-6% d.m. of compost biochars can reduce up to 50% of the total measured gas emissions (the best treatment was B650 at 60 °C) and significantly increase the content of macronutrients. This study confirmed that even low doses of compost biochars have the potential for enhancing the composting process and improving the quality of the material quality.
Collapse
Affiliation(s)
- Sylwia Stegenta-Dąbrowska
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, Chełmońskiego Street 37a, 51-630 Wrocław, Poland; (S.S.-D.); (E.S.)
| | - Ewa Syguła
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, Chełmońskiego Street 37a, 51-630 Wrocław, Poland; (S.S.-D.); (E.S.)
| | - Magdalena Bednik
- Institute of Soil Science, Plant Nutrition and Environmental Protection, Wrocław University of Environmental and Life Sciences, Grunwaldzka Street 53, 50-375 Wrocław, Poland;
| | - Joanna Rosik
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, Chełmońskiego Street 37a, 51-630 Wrocław, Poland; (S.S.-D.); (E.S.)
| |
Collapse
|
5
|
Zhao Q, Chen T, Wang S, Sha Y, Zhang F, Sun Y, Chi D. Effects of five-year field aged zeolite on grain yield and reactive gaseous N losses in alternate wetting and drying paddy system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166279. [PMID: 37586506 DOI: 10.1016/j.scitotenv.2023.166279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/27/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
Clinoptilolite zeolite has been widely used in agricultural production systems for enhancing water and fertilizer savings, mitigating greenhouse gas emissions, and increasing yield. However, there is little information on field-aged effects of zeolite on reactive gaseous N losses under alternate wetting and drying irrigation (AWD). We conducted a five-year field experiment to investigate field-aged effect of natural zeolite addition at 0 (Z0), 5 (Z5), and 10 (Z10) t ha-1 on reactive gaseous N losses (NH3, N2O), N-related global warming potential (GWPN), soil properties and grain yield under two irrigation regimes (CF: continuous flooding irrigation; AWD) in the 4th (2020) and 5th (2021) years since its initial application in 2017. As compared with CF, AWD did not significantly affect grain yield and NH3 volatilization but increased seasonal N2O emissions by 46 %-71 % over two years. Zeolite increased rice yield for five consecutive years. Z10 reduced averaged cumulative NH3 volatilization and GWPN by 23 % and 26 %, compared to zeolite-free treatment, respectively, in the 4th and 5th years. Soil NH4+-N was increased with the increased rate of Z application under both CF and AWD. Z10 increased soil NH4+-N by 27 %-38 % and NO3--N by 14 %-22 % in five years, compared to Z0, respectively. Compared to AWD without zeolite, the addition of 10 t ha-1 zeolite under AWD lowered NH3 volatilization, cumulative N2O emissions, and GWPN by an average of 28 %, 29 %, and 30 % in two years, respectively. IAWDZ10 did not differ from ICFZ0 on reactive gaseous N losses but significantly lowered reactive gaseous losses relative to IAWDZ0. Therefore, zeolite addition could mitigate the reactive gaseous N losses and GWPN for at least five years after initial application, which is beneficial to promoting zeolite application and ensuring sustainable agriculture.
Collapse
Affiliation(s)
- Qing Zhao
- College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866, China
| | - Taotao Chen
- College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866, China; National Biochar Institute, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang 110866, China.
| | - Shu Wang
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Yan Sha
- College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866, China
| | - Feng Zhang
- College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866, China
| | - Yidi Sun
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Daocai Chi
- College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
6
|
Wang H, Sheng L, Zang S. Study on H 2SO 4-modified corn straw biochar as substrate material of constructed wetland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:115556-115570. [PMID: 37884719 DOI: 10.1007/s11356-023-30569-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023]
Abstract
The high value resource utilization of corn straw is a long-term problem at present and in the future. Biochar preparation is an important utilization way of corn straw. The research on city tail water treated by constructed wetland (CW) with biochar was carried out to further increase the wastewater treatment capacity of the CW. Surface characterization, structural characteristics, and adsorption of straw biochar modified by different acids were measured. The study found that the ability of H2SO4 to remove ash from biochar was stronger than other acids and H2SO4-biochar was easy to be cleaned without H2SO4 residue. The performance of biochar modified by H2SO4 was obviously better than other acids, and the biochar adsorption was enhanced. The modification of biochar substrate modified by H2SO4 in CW reduced the change of electrical conductivity (EC) and promoted denitrification. H2SO4-modified biochar promoted the absorption of N and P by Iris pseudacorus L. The compound modification effect of straw biochar was obvious. The results revealed the acid modification characteristics of straw biochar, which were beneficial for increasing the wastewater treatment rate by CW. This study will promote the sustainable development of CW.
Collapse
Affiliation(s)
- Hanxi Wang
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, School of Geographical Sciences, Harbin Normal University, Harbin, 150025, China.
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China.
| | - Lianxi Sheng
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China
| | - Shuying Zang
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, School of Geographical Sciences, Harbin Normal University, Harbin, 150025, China
| |
Collapse
|
7
|
Liu Z, Yan Z, Liu G, Wang X, Fang J. Impacts of adding FeSO 4 and biochar on nitrogen loss, bacterial community and related functional genes during cattle manure composting. BIORESOURCE TECHNOLOGY 2023; 379:129029. [PMID: 37030418 DOI: 10.1016/j.biortech.2023.129029] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
This study investigated the impacts of adding FeSO4 and biochar to cattle manure and rice straw composts on functional genes controlling nitrogen loss, bacterial community, nitrification, and denitrification. Four treatments were established, including a control group (CP), and CP mixtures that included 4% biochar (TG1), 4% FeSO4 (TG2), or 2% FeSO4 and 2% biochar (TG3). Compared to CP, TG1-3 had a lower total nitrogen loss rate, and TG3 resulted in reduced NH3 (52.4%) and N2O (35.6%) emissions to mitigate nitrogen loss. The abundance of amoA and narG gene in TG3 was higher than in the other groups, and TG3 was beneficial to the growth of Proteobacteria and Actinobacteria. According to redundancy and Pearson analysis, TG3 had a positive effect on the nitrification process by increasing the abundance of amoA and narG. Thus, biochar and FeSO4 addition mitigate nitrogen loss by regulating the nitrification processes.
Collapse
Affiliation(s)
- Zhuangzhuang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, PR China
| | - Zhiwei Yan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, PR China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, PR China
| | - Xinyu Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, PR China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, PR China.
| |
Collapse
|
8
|
Piao M, Li A, Du H, Sun Y, Du H, Teng H. A review of additives use in straw composting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:57253-57270. [PMID: 37012566 DOI: 10.1007/s11356-023-26245-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/27/2023] [Indexed: 05/10/2023]
Abstract
Straw composting is not only a process of decomposition and re-synthesis of organic matter, but also a process of harmless treatment, avoiding air pollution caused by straw burning. Many factors, including raw materials, humidity, C/N, and microbial structure, may determine the composting process and the quality of final product. In recent years, many researches have focused on composting quality improvement by adding one or more exogenous substances, including inorganic additives, organic additives, and microbial agents. Although a few review publications have compiled the research on the use of additives in composting, none of them has specifically addressed the composting of crop straw. Additives used in straw composting can increase degradation of recalcitrant substances and provide ideal living surroundings for microorganism, and thus reduce nitrogen loss and promote humus formation, etc. This review's objective is to critically evaluate the impact of various additives on straw composting process, and analyze how these additives enhance final quality of composting. Furthermore, a vision for future perspectives is provided. This paper can serve as a reference for straw composting process optimization and composting end-product improvement.
Collapse
Affiliation(s)
- Mingyue Piao
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Jilin Normal University, Siping, China
- College of Engineering, Jilin Normal University, Siping, China
| | - Ang Li
- College of Engineering, Jilin Normal University, Siping, China
| | - Huishi Du
- College of Tourism and Geographical Science, Jilin Normal University, Siping, China
| | - Yuwei Sun
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Jilin Normal University, Siping, China
- College of Engineering, Jilin Normal University, Siping, China
| | - Hongxue Du
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Jilin Normal University, Siping, China
| | - Honghui Teng
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Jilin Normal University, Siping, China.
- College of Engineering, Jilin Normal University, Siping, China.
| |
Collapse
|
9
|
Zhao P, Yu J, Zhang X, Ren Z, Li M, Han S. Trifolium repens and biochar addition affecting soil nutrients and bacteria community. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:33927-33941. [PMID: 36502483 DOI: 10.1007/s11356-022-24651-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Biochar has wide application prospects as a good soil conditioner, leguminous plants can fix nitrogen and improve soil available nutrients. However, it is not clear how adding biochar when planting leguminous plants affects soil bacterial community and soil available nutrients. This study investigates the effects of biochar addition on the content of ammonia nitrogen, Olsen-P, and available potassium in northeastern farmland soils under the plantation of Trifolium repens and then compared with the application of organic fertilizer. A 90-day incubation experiment was conducted to compare the changes in the structure and relative abundance of soil microflora under varied biochar additions. It was found that the addition of biochar could affect the structure of the microflora and the available nutrients in the soil. When compared with soil planted with T. repens without the addition of biochar, with the application of 3% biochar increased the content of ammonia nitrogen, Olsen-P, and available potassium in the soil by 31.71%, 21.40%, and 11.51%, respectively. High throughput sequencing revealed that the relative abundance of functional bacteria such as azotobacter, rhizobacteria, and phosphorus solubilizing bacteria in the soil increased with the addition of biochar. Furthermore, the effect was more obvious with the addition of organic fertilizers. The addition of biochar improved the microbial community structure and increased the relative abundance of functional bacteria and the content of available nutrients in the soil. This is expected to reduce the application of chemical fertilizers, thereby protecting the environment and conserving natural resources.
Collapse
Affiliation(s)
- Pingnan Zhao
- College of Forestry, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Jie Yu
- College of Forestry, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Xiaoyuan Zhang
- College of Forestry, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Zhixing Ren
- College of Forestry, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Ming Li
- College of Forestry, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
| | - Song Han
- College of Forestry, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
| |
Collapse
|
10
|
Maturi KC, Haq I, Kalamdhad AS. Biodegradation of an intrusive weed Parthenium hysterophorus through in-vessel composting technique: toxicity assessment and spectroscopic study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:84600-84615. [PMID: 35788476 DOI: 10.1007/s11356-022-21816-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Parthenium hysterophorus is a toxic terrestrial weed with its erratic behavior brought on by the presence of toxic compounds. A numerous works have been conducted on the complete eradication of this weed, but due to the residuals exists in soil, the weed re-grows. Current study therefore aims at examining the transformation of this weed by an in-vessel composting approach (rotary drum composter) and the evaluation of toxicity characteristics using Vigna radiata and Allium cepa as bioindicators. The nutritional content such as total Kjeldahl nitrogen (TKN), total phosphorus (TP), and total potassium were increased by 38.8, 39.1, and 49.5%, respectively, and the reactor was effective in reducing the biochemical content such as lignin, hemicellulose, and cellulose by 43.5, 50.7, and 57.3%, respectively, in the final compost. The thermophilic degradation phase in the reactor existed up to the 8th day of the composting process, which exhibits the highest degradation phase. Meanwhile, the degradation of phenolic, aliphatic, and lignocellulose was investigated and validated using Fourier transform infrared spectroscopy (FTIR) and powdered X-ray diffraction (PXRD) analysis. Although P. hysterophorus exhibited phytotoxic and cyto-genotoxic effects in plant models at the beginning of the composting process, the toxicity potential appeared to be reduced after 20 days of composting. Therefore, the study's findings proved that the in-vessel composting of P. hysterophorus can produce a nontoxic, nutrient-rich compost product that could be used as a soil conditioner in agricultural farmlands. The insights of the study are not limited to the nutritional, stability, and quality characteristics but also the toxicity characteristics during the composting process.
Collapse
Affiliation(s)
- Krishna Chaitanya Maturi
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India.
| | - Izharul Haq
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Ajay S Kalamdhad
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| |
Collapse
|
11
|
Sha Y, Chi D, Chen T, Wang S, Zhao Q, Li Y, Sun Y, Chen J, Lærke PE. Zeolite application increases grain yield and mitigates greenhouse gas emissions under alternate wetting and drying rice system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156067. [PMID: 35605853 DOI: 10.1016/j.scitotenv.2022.156067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Clinoptilolite zeolite (Z) has been widely used for reducing nutrient loss and improving crop productivity. However, the impacts of zeolite addition on CH4 and N2O emissions in rice fields under various irrigation regimes are still unclear. Therefore, a three-year field experiment using a split-plot design evaluated the effects of zeolite addition and irrigation regimes on greenhouse gas (GHG) emissions, grain yield, water productivity and net ecosystem economic profit (NEEP) in a paddy field. The field experiment included two irrigation regimes (CF: continuous flooding irrigation; AWD: alternate wetting and drying irrigation) as the main plots, and three zeolite additions (0, 5 and 10 t ha-1) as the subplots. The results indicated that AWD regime decreased seasonal cumulative CH4 emissions by 54%-71% while increasing seasonal cumulative N2O emissions by 14%-353% across the three years, compared with CF regime. Consequently, the yield-scaled global warming potential under AWD regime decreased by 10%-60% while grain yield, water productivity and NEEP improving by 4.9%-7.9%, 19%-27% and 12%-14%, respectively, related to CF regime. Furthermore, 5 t ha-1 zeolite addition mitigated seasonal cumulative CH4 emissions by an average of 36%, but did not significantly affect N2O emissions compared with non-zeolite treatment. In addition, zeolite addition at 5 and 10 t ha-1 significantly increased grain yield, water productivity and NEEP by 11%-21%, 13%-20% and 13%-24%, respectively, related to non-zeolite treatment across the three years. Therefore, zeolite addition at 5 t ha-1 coupled with AWD regime could be an eco-economic strategy to mitigate GHG emissions and water use while producing optimal grain yield with high NEEP in rice fields.
Collapse
Affiliation(s)
- Yan Sha
- College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866, China; Department of Agroecology, Aarhus University, Tjele 8830, Denmark
| | - Daocai Chi
- College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866, China.
| | - Taotao Chen
- College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866, China
| | - Shu Wang
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Qing Zhao
- College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866, China
| | - Yinghao Li
- College of Water Conservancy, Shenyang Agricultural University, Shenyang 110866, China
| | - Yidi Sun
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Ji Chen
- Department of Agroecology, Aarhus University, Tjele 8830, Denmark
| | - Poul Erik Lærke
- Department of Agroecology, Aarhus University, Tjele 8830, Denmark
| |
Collapse
|
12
|
Gong X, Zhang Z, Wang H. Effects of Gleditsia sinensis pod powder, coconut shell biochar and rice husk biochar as additives on bacterial communities and compost quality during vermicomposting of pig manure and wheat straw. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 295:113136. [PMID: 34214797 DOI: 10.1016/j.jenvman.2021.113136] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/06/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
This study investigated the effectiveness of Gleditsia sinensis pod powder (GSPP), coconut shell biochar (CSB), rice husk biochar (RHB) and their mixtures on vermicomposting of pig manure and wheat straw using Eisenia fetida. The results indicated that the addition of GSPP or/and CSB and RHB could greatly enhance the relative abundance of Bacteroidetes, Actinobacteria, and Firmicutes, as well as the activities of celluloses, protease, and alkaline phosphatase. However, the earthworm biomass was increased in the GSPP and/or CSB addition treatments but decreased in RHB addition treatments compared with the control. Compared with the control, addition of 4%GSPP+8%CSB significantly (P < 0.05) accelerated the degradation of organic matter and increased the concentration of nutrients (total N, P, K), NO3--N in final vermicompost. Germination and growth of tomato seedings were also higher (P < 0.05) in vermicompost produced with the addition of 4%GSPP+8%CSB than in control. Consequently, 4%GSPP+8%CSB addition was suggested as an efficient method to improve the vermicomposting of pig manure and wheat straw.
Collapse
Affiliation(s)
- Xiaoqiang Gong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Zuotao Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Hui Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
13
|
Wang H, Yao D, Xu J, Liu X, Sheng L. Investigation of technology for composting mixed deer manure and straw. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:45805-45825. [PMID: 33884547 DOI: 10.1007/s11356-021-13886-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Composting is an effective method for utilizing agricultural straw waste and livestock manure resources. Using deer manure and corn straw as raw materials, the changes in various indexes were studied during composting under different initial C/N ratios, initial moisture contents, and particle sizes of corn straw, and compost maturity was evaluated. Moisture content, total organic carbon content, and C/N ratio all declined during composting, while total nitrogen, total phosphorus, total potassium, pH, germination index, and electrical conductivity increased. The grey relational analysis method was used to evaluate maturity. The results showed that a mixture of stalk and deer manure with initial moisture content of 55%, initial C/N ratio of 30:1, and a straw particle size of 1.5-3.5 cm constituted the optimal experimental conditions. Taguchi analysis indicated that initial moisture content exerted the greatest influence on compost maturity, followed by initial C/N ratio and crushed straw particle size. This study provides an important reference for the utilization of compost derived from a mixture of livestock manure and straw.
Collapse
Affiliation(s)
- Hanxi Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration/School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China
| | - Difu Yao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration/School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China
| | - Jianling Xu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration/School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China.
| | - Xuejun Liu
- Development Planning Division, The Education Department of Jilin Province, Changchun, 130022, China
| | - Lianxi Sheng
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration/School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun, 130017, China
| |
Collapse
|
14
|
Wang H, Xu J, Liu Y, Sheng L. Preparation of ceramsite from municipal sludge and its application in water treatment: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 287:112374. [PMID: 33765522 DOI: 10.1016/j.jenvman.2021.112374] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/03/2021] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
Municipal sludge is a solid waste material, and resource utilization is the optimal way to dispose of this material. The amount of municipal sludge produced in China is large, and it can be used in the preparation of ceramsite. The content of Al2O3 in drinking water treatment sludge is significantly higher than that in wastewater treatment sludge, while the content of K2O, Na2O and MgO in the two kinds of sludge is similar. When sludge is used to prepare ceramsite, the amount of sludge in most raw materials for ceramsite is less than 50%. The bulk density of the prepared sludge ceramsite is less than 1000 kg m-3, and the highest water absorption rate is close to 40%. The leaching content of heavy metals in municipal sludge-based ceramsite is within the standard health safety limit, and heavy metals are better stabilized. The fitting effect of the pseudo-second-order kinetic equation of the dynamic adsorption of sludge ceramsite is obviously better than that of the pseudo-first-order kinetic equation. Sludge ceramsite used in bio-filter media and constructed wetland (CW) substrates is good able to purify wastewater. In the future, the preparation method of municipal sludge ceramsite and purification research of CW substrates based on sludge ceramsite need to be further improved.
Collapse
Affiliation(s)
- Hanxi Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration / School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun, 130117, Jilin, China.
| | - Jianling Xu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration / School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun, 130117, Jilin, China.
| | - Yunqing Liu
- Key Laboratory of Pollutant Chemistry and Environmental Treatment, College of Chemistry &; Environmental Sciences, Yili Normal University, Jiefang West Road 448, Yining, 835000, Xinjiang, China.
| | - Lianxi Sheng
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration / School of Environment, Northeast Normal University, Jingyue Street 2555, Changchun, 130117, Jilin, China.
| |
Collapse
|