1
|
Kováčová M, Bodnár Yankovych H, Augustyniak A, Casas-Luna M, Remešová M, Findoráková L, Stahorský M, Čelko L, Baláž M. Triggering antibacterial activity of a common plant by biosorption of selected heavy metals. J Biol Inorg Chem 2024; 29:201-216. [PMID: 38587623 PMCID: PMC11098919 DOI: 10.1007/s00775-024-02045-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 01/22/2024] [Indexed: 04/09/2024]
Abstract
The presented study proposes an efficient utilization of a common Thymus serpyllum L. (wild thyme) plant as a highly potent biosorbent of Cu(II) and Pb(II) ions and the efficient interaction of the copper-laden plant with two opportunistic bacteria. Apart from biochars that are commonly used for adsorption, here we report the direct use of native plant, which is potentially interesting also for soil remediation. The highest adsorption capacity for Cu(II) and Pb(II) ions (qe = 12.66 and 53.13 mg g-1, respectively) was achieved after 10 and 30 min of adsorption, respectively. Moreover, the Cu-laden plant was shown to be an efficient antibacterial agent against the bacteria Escherichia coli and Staphylococcus aureus, the results being slightly better in the former case. Such an activity is enabled only via the interaction of the adsorbed ions effectively distributed within the biological matrix of the plant with bacterial cells. Thus, the sustainable resource can be used both for the treatment of wastewater and, after an effective embedment of metal ions, for the fight against microbes.
Collapse
Affiliation(s)
- Mária Kováčová
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 040 01, Košice, Slovakia
| | - Halyna Bodnár Yankovych
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 040 01, Košice, Slovakia
| | - Adrian Augustyniak
- Chair of Building Materials and Construction Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
- Faculty of Chemical Technology and Engineering, The West Pomeranian University of Technology in Szczecin, Piastów Avenue 42, 71 065, Szczecin, Poland
- Institute of Biology, University of Szczecin, ul. Wąska 13, 71-415, Szczecin, Poland
| | - Mariano Casas-Luna
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16, Prague 2, Czech Republic
| | - Michaela Remešová
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
| | - Lenka Findoráková
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 040 01, Košice, Slovakia
| | - Martin Stahorský
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 040 01, Košice, Slovakia
| | - Ladislav Čelko
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
| | - Matej Baláž
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 040 01, Košice, Slovakia.
| |
Collapse
|
2
|
Bayuo J, Rwiza MJ, Sillanpää M, Mtei KM. Removal of heavy metals from binary and multicomponent adsorption systems using various adsorbents - a systematic review. RSC Adv 2023; 13:13052-13093. [PMID: 37124024 PMCID: PMC10140672 DOI: 10.1039/d3ra01660a] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/19/2023] [Indexed: 05/02/2023] Open
Abstract
The ecosystem and human health are both significantly affected by the occurrence of potentially harmful heavy metals in the aquatic environment. In general, wastewater comprises an array of heavy metals, and the existence of other competing heavy metal ions might affect the adsorptive elimination of one heavy metal ion. Therefore, to fully comprehend the adsorbent's efficiency and practical applications, the abatement of heavy metals in multicomponent systems is important. In the current study, the multicomponent adsorption of heavy metals from different complex mixtures, such as binary, ternary, quaternary, and quinary solutions, utilizing various adsorbents are reviewed in detail. According to the systematic review, the adsorbents made from locally and naturally occurring materials, such as biomass, feedstocks, and industrial and agricultural waste, are effective and promising in removing heavy metals from complex water systems. The systematic study further discovered that numerous studies evaluate the adsorption characteristics of an adsorbent in a multicomponent system using various important independent adsorption parameters. These independent adsorption parameters include reaction time, solution pH, agitation speed, adsorbent dosage, initial metal ion concentration, ionic strength as well as reaction temperature, which were found to significantly affect the multicomponent sorption of heavy metals. Furthermore, through the application of the multicomponent adsorption isotherms, the competitive heavy metals sorption mechanisms were identified and characterized by three primary kinds of interactive effects including synergism, antagonism, and non-interaction. Despite the enormous amount of research and extensive data on the capability of different adsorbents, several significant drawbacks hinder adsorbents from being used practically and economically to remove heavy metal ions from multicomponent systems. As a result, the current systematic review provides insights and perspectives for further studies through the thorough and reliable analysis of the relevant literature on heavy metals removal from multicomponent systems.
Collapse
Affiliation(s)
- Jonas Bayuo
- School of Materials, Energy, Water, and Environmental Sciences (MEWES), The Nelson Mandela African Institution of Science and Technology (NM-AIST) P.O. Box 447 Arusha Tanzania
- Department of Science Education, School of Science, Mathematics, and Technology Education (SoSMTE), C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS) Postal Box 24 Navrongo Upper East Region Ghana
| | - Mwemezi J Rwiza
- School of Materials, Energy, Water, and Environmental Sciences (MEWES), The Nelson Mandela African Institution of Science and Technology (NM-AIST) P.O. Box 447 Arusha Tanzania
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg P. O. Box 17011 Doornfontein 2028 South Africa
| | - Kelvin Mark Mtei
- School of Materials, Energy, Water, and Environmental Sciences (MEWES), The Nelson Mandela African Institution of Science and Technology (NM-AIST) P.O. Box 447 Arusha Tanzania
| |
Collapse
|
3
|
Truong QM, Ho PNT, Nguyen TB, Chen WH, Bui XT, Kumar Patel A, Rani Singhania R, Chen CW, Dong CD. Magnetic biochar derived from macroalgal Sargassum hemiphyllum for highly efficient adsorption of Cu(II): Influencing factors and reusability. BIORESOURCE TECHNOLOGY 2022; 361:127732. [PMID: 35934247 DOI: 10.1016/j.biortech.2022.127732] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
In this study, the brown algae Sargassum Hemiphyllum was used as a carbon source for synthesis of magnetic porous biochar via pyrolyzing at high temperature and and doping iron oxide particles (Fe-BAB). Cu (II) species were removed from aqueous solutions using Fe-BAB under various conditions. Fe-BAB demonstrated superior Cu (II) adsorption (105.3 mg g-1) compared to other biochars. On the surface of Fe-BAB, there are several oxygen-containing functional groups, such as -COOH and -OH, which are likely responsible for the excellent heavy metal removal performance. By utilizing magnet, the Fe-BAB can be conveniently separated from the solution and ready for further usage. Multi-adsorption mechanisms were responsible for Cu adsorption on Fe-BAB. Using the magnetic algal biochar for heavy metal removal is feasible due to its high adsorption efficiency and simplicity of separation.
Collapse
Affiliation(s)
- Quoc-Minh Truong
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Faculty of Management Science, Thu Dau Mot University, Binh Duong 75000, Viet Nam
| | - Phung-Ngoc-Thao Ho
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Thanh-Binh Nguyen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Thu Duc City, Ho Chi Minh City 700000, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Viet Nam
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| |
Collapse
|
4
|
Application of Orange Peel Waste as Adsorbent for Methylene Blue and Cd2+ Simultaneous Remediation. Molecules 2022; 27:molecules27165105. [PMID: 36014346 PMCID: PMC9416566 DOI: 10.3390/molecules27165105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/30/2022] [Accepted: 08/05/2022] [Indexed: 11/25/2022] Open
Abstract
Pollution by dyes and heavy metals is one of the main concerns at the environmental level due to their toxicity and inefficient elimination by traditional water treatment. Orange peel (OP) without any treatment was applied to effectively eliminate methylene blue (MB) and cadmium ions (Cd2+) in mono- and multicomponent systems. Although the single adsorption processes for MB and Cd2+ have been investigated, the effects and mechanisms of interactions among multicomponent systems are still unclear. Batch experiments showed that in monocomponent systems, the maximum adsorption capacities were 0.7824 mmol g−1 for MB and 0.2884 mmol g−1 for Cd2+, while in multicomponent systems (Cd2+ and MB), both contaminants competed for the adsorption sites on OP. Particularly, a synergic effect was observed since the adsorption capacity of Cd2+ increased compared to the monocomponent system. Results of desorption and adsorbent reuse confirmed that the adsorbent presents good regeneration performance. The low cost of this material and its capacity for the individual or simultaneous removal of Cd2+ and MB in aqueous solutions makes it a potential adsorbent for polluted water treatment processes.
Collapse
|
5
|
Priyan V V, Kumar N, Narayanasamy S. Toxicological assessment and adsorptive removal of lead (Pb) and Congo red (CR) from water by synthesized iron oxide/activated carbon (Fe 3O 4/AC) nanocomposite. CHEMOSPHERE 2022; 294:133758. [PMID: 35101427 DOI: 10.1016/j.chemosphere.2022.133758] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 01/05/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Heavy metals and dyes are the persistent pollutants causing harmful effects on living organisms in different ecosystems. In current study, removal of Lead (Pb) and Congo Red (CR) from water was performed using Iron oxide/Activated Carbon (Fe3O4/AC) nanocomposite. Ferromagnetic behavior of the nanocomposite is the crucial advantage in separation of nanocomposite after biosorption process. The biosorbent was thermally stable till 800 °C of temperature. The synthesized biosorbent was polycrystalline in nature comprising of elements like C, O, Fe. The influence of various experimental conditions was optimized through batch study with the biosorption capacity of 144.92 mg/g (Pb) and 122.22 mg/g (CR) at pH 5-6, Fe3O4/AC dosage (0.04 g) for 40 mg/L of Pb and CR. Toxicological assessment was performed using Danio rerio and seeds to evaluate the harmful effects of pollutants on these organisms. The phytotoxicity results revealed that growth inhibition of seeds lies between 85.64% and 55.92% (Pb) and 77.94%-51.85% (CR). The LC50 value of Pb on the Danio rerio was found to be 20.98 mg/L. In contrast, we observed significant increase in LC50 value about 86.82 mg/L after biosorption of Pb onto biosorbent.
Collapse
Affiliation(s)
- Vishnu Priyan V
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Nitesh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Selvaraju Narayanasamy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|