1
|
Ghariani O, Elleuch J, Ferretti AM, Econdi S, Bisio C, Michaud P, Fendri I, Guidotti M, Abdelkafi S. Toxicological Effects of Silver-Modified Bentonite Nanocomposites on Microalgae: Impact on Cell Growth, Antioxidant Enzymes, and Gene Expression. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:629. [PMID: 40278494 PMCID: PMC12029818 DOI: 10.3390/nano15080629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/26/2025]
Abstract
The increasing use of nanostructured silver-containing inorganic materials raises concerns about their impact on aquatic organisms. This study assessed the toxicity of silver-modified bentonite composites on Chlamydomonas sp. Two materials were tested: silver-exchanged bentonite (Ben-Ag) and its reduced form (Ben-Ag (H2)).Microalgae were exposed to 0.5 IC50, 1.5 IC50, and 2 IC50. Ben-Ag showed higher toxicity than Ben-Ag (H2), which even promoted algal growth at low doses. Fluorescence microscopy revealed morphological shrinkage in treated cells. Increased phenol content, elevated malondialdehyde (MDA) levels, and altered antioxidant enzyme activities further confirmed Ben-Ag toxicity, along with reduced growth and photosynthetic pigments. Transcriptomic analysis revealed significant changes in gene expression under Ben-Ag exposure. Genes involved in photosynthesis (petB, psbL), caspase activity (casp), and carotenoid metabolism (Q2CHY) were down-regulated, indicating stress-induced damage. In contrast, genes encoding stress response enzymes (SOD, peroxidase), carbon metabolism enzymes (rbcL, PGQ1), and β-carotene biosynthesis (Q2BKT) were up-regulated, reflecting cellular defense mechanisms. Overall, the study highlights the high toxicity of Ben-Ag to Chlamydomonas sp., emphasizing the importance of evaluating environmental risks before using such materials in aquatic environments.
Collapse
Affiliation(s)
- Oumayma Ghariani
- Enzymatic Engineering and Microbiology Laboratory, Algae Biotechnology Unit, National Engineering School of Sfax, University of Sfax, Sfax 3038, Tunisia; (O.G.); (J.E.); (S.A.)
- CNR-SCITEC Istituto di Scienze e Tecnologie Chimiche “G. Natta”, Via C. Golgi 19, 20133 Milano, Italy; (S.E.); (M.G.)
| | - Jihen Elleuch
- Enzymatic Engineering and Microbiology Laboratory, Algae Biotechnology Unit, National Engineering School of Sfax, University of Sfax, Sfax 3038, Tunisia; (O.G.); (J.E.); (S.A.)
| | - Anna Maria Ferretti
- CNR-SCITEC Istituto di Scienze e Tecnologie Chimiche “G. Natta”, Via G. Fantoli 16/15, 20138 Milano, Italy;
| | - Stefano Econdi
- CNR-SCITEC Istituto di Scienze e Tecnologie Chimiche “G. Natta”, Via C. Golgi 19, 20133 Milano, Italy; (S.E.); (M.G.)
| | - Chiara Bisio
- Department of Science and Technological Innovation, DISIT, University of Eastern Piedmont, Via T. Michel 11, 15121 Alessandria, Italy;
| | - Philippe Michaud
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Imen Fendri
- Laboratory of Plant Biotechnology Applied to Crop Improvement, Faculty of Science of Sfax, University of Sfax, Sfax 3029, Tunisia;
| | - Matteo Guidotti
- CNR-SCITEC Istituto di Scienze e Tecnologie Chimiche “G. Natta”, Via C. Golgi 19, 20133 Milano, Italy; (S.E.); (M.G.)
| | - Slim Abdelkafi
- Enzymatic Engineering and Microbiology Laboratory, Algae Biotechnology Unit, National Engineering School of Sfax, University of Sfax, Sfax 3038, Tunisia; (O.G.); (J.E.); (S.A.)
| |
Collapse
|
2
|
Liu R, Zhao M, Zhang X, Zhang C, Ren B, Ma J. Advances and Challenges in Molecularly Imprinted Electrochemical Sensors for Application in Environmental, Biomedicine, and Food Safety. Crit Rev Anal Chem 2025:1-19. [PMID: 39912733 DOI: 10.1080/10408347.2025.2460751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Molecularly imprinted electrochemical sensors (MIECSs) are a specialized class of sensors based on molecularly imprinted derivative materials (MIDPs), which have been extensively applied in environmental monitoring, biomedicine, and food safety, allowing for high selectivity and sensitivity in detecting target molecules. This review provides an in-depth exploration of the most innovative and successful nanomaterials employed for modifying imprinted polymers, highlighting their crucial role in enhancing sensor performance, including carbon-based nanomaterials, meal derivatives, magnetic nanomaterials, polymeric and composite nanomaterials. In addition to reviewing advances in derivative materials design, this article delves into the current challenges facing molecularly imprinted sensors, such as issues related to template removal, nonspecific binding, and fabrication reproducibility. These challenges limit the practical application of MIECSs, particularly in complex real-world environments. The review also discusses representative applications of these sensors, including environmental monitoring, biomedicine and food safety, which demonstrate their versatility and potential. Finally, the review outlines future research directions aimed at overcoming these challenges. This includes strategies for improving the stability and reusability of MIECSs, enhancing their selectivity and sensitivity, and developing novel imprinting techniques. By addressing these issues, researchers can pave the way for the next generation of electrochemical sensors, which will be more robust, reliable, and suitable for a wide range of industrial and clinical applications.
Collapse
Affiliation(s)
- Rui Liu
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin, China
| | - Meiting Zhao
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin, China
| | - Xin Zhang
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin, China
| | - Chaojun Zhang
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin, China
| | - Binqiao Ren
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, China
| | - Jing Ma
- Department of Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| |
Collapse
|
3
|
Tunkaew K, Liewhiran C, Vaddhanaphuti CS. Functionalized metal oxide nanoparticles: A promising intervention against major health burden of diseases. Life Sci 2024; 358:123154. [PMID: 39433083 DOI: 10.1016/j.lfs.2024.123154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/04/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
Metal oxide nanoparticles (MONPs) is one of the most effective materials for medical applications with their substantial surface metallic ions and high surface area-volume ratio. Over decades, MONPs have been considered potential treatments due to their demonstrated ability and reactivity to target diverse cellular signaling pathways implicated in antimicrobial effects, as well as in the amelioration of oxidative stress, inflammation, cancer progression, and glucose together with lipid dysregulation. Based on their unique characteristics, MONPs have shown to be biodegradable and biocompatible vehicles for drugs, which have recently been applied in drug delivery as nanocarriers to enhance their delivery capacity for mechanistic membrane transport. However, little is known about the precise cellular responses, molecular mechanisms, and potential use of MONPs in the medical field. This review emphasizes on elaborating the biochemical reactivities of MONPs on molecular and cellular reactions, highlighting the physiological responses, mechanisms of action, certain drawbacks, and remediation of these functionalized materials. The significant goal of this literature is to shed light on the new perspectives of MONPs in pre-clinical application to pursue for clinical research as alternative-personalized medicines to prevent individuals from drastic diseases.
Collapse
Affiliation(s)
- Kornwalai Tunkaew
- Innovative Research Unit of Epithelial Transport and Regulation (iETR), Department of Physiology, Faculty of Medicine, Chiang Mai University, 50200, Thailand
| | - Chaikarn Liewhiran
- Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chutima S Vaddhanaphuti
- Innovative Research Unit of Epithelial Transport and Regulation (iETR), Department of Physiology, Faculty of Medicine, Chiang Mai University, 50200, Thailand.
| |
Collapse
|
4
|
Hashemi E, Norouzi MM, Sadeghi-Kiakhani M. Magnetic biochar as a revolutionizing approach for diverse dye pollutants elimination: A comprehensive review. ENVIRONMENTAL RESEARCH 2024; 261:119548. [PMID: 38977156 DOI: 10.1016/j.envres.2024.119548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
The term "biomass" encompasses all substances found in the natural world that were once alive or derived from living organisms or their byproducts. These substances consist of organic molecules containing hydrogen, typically oxygen, frequently nitrogen, and small amounts of heavy, alkaline earth and alkali metals. Magnetic biochar refers to a type of material derived from biomass that has been magnetized typically by adding magnetic components such as magnetic iron oxides to display magnetic properties. These materials are extensively applicable in widespread areas like environmental remediation and catalysis. The magnetic properties of these compounds made them ideal for practical applications through their easy separation from a reaction mixture or environmental sample by applying a magnetic field. With the evolving global strategy focused on protecting the planet and moving towards a circular, cost-effective economy, natural compounds, and biomass have become particularly important in the field of biochemistry. The current research explores a comparative analysis of the versatility and potential of biomass for eliminating dyes as a sustainable, economical, easy, compatible, and biodegradable method. The elimination study focused on the removal of various dyes as pollutants. Various operational parameters which influenced the dye removal process were also discussed. Furthermore, the research explained, in detail, adsorption kinetic models, types of isotherms, and desorption properties of magnetic biochar adsorbents. This comprehensive review offers an advanced framework for the effective use of magnetic biochar, removing dyes from textile wastewater.
Collapse
Affiliation(s)
- Elaheh Hashemi
- Department of Chemistry, Faculty of Sciences, Shahid Rajaee Teacher Training University, P.O. Box: 1678815811, Tehran, Iran.
| | - Mohammad-Mahdi Norouzi
- Department of Chemistry, Faculty of Sciences, Shahid Rajaee Teacher Training University, P.O. Box: 1678815811, Tehran, Iran
| | - Mousa Sadeghi-Kiakhani
- Institute for Color Science and Technology, Department of Organic Colorants, P.O. Box: 16765-654, Tehran, Iran
| |
Collapse
|
5
|
Silina EV, Manturova NE, Ivanova OS, Baranchikov AE, Artyushkova EB, Medvedeva OA, Kryukov AA, Dodonova SA, Gladchenko MP, Vorsina ES, Kruglova MP, Kalyuzhin OV, Suzdaltseva YG, Stupin VA. Cerium Dioxide-Dextran Nanocomposites in the Development of a Medical Product for Wound Healing: Physical, Chemical and Biomedical Characteristics. Molecules 2024; 29:2853. [PMID: 38930918 PMCID: PMC11207082 DOI: 10.3390/molecules29122853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
PURPOSE OF THE STUDY the creation of a dextran coating on cerium oxide crystals using different ratios of cerium and dextran to synthesize nanocomposites, and the selection of the best nanocomposite to develop a nanodrug that accelerates quality wound healing with a new type of antimicrobial effect. MATERIALS AND METHODS Nanocomposites were synthesized using cerium nitrate and dextran polysaccharide (6000 Da) at four different initial ratios of Ce(NO3)3x6H2O to dextran (by weight)-1:0.5 (Ce0.5D); 1:1 (Ce1D); 1:2 (Ce2D); and 1:3 (Ce3D). A series of physicochemical experiments were performed to characterize the created nanocomposites: UV-spectroscopy; X-ray phase analysis; transmission electron microscopy; dynamic light scattering and IR-spectroscopy. The biomedical effects of nanocomposites were studied on human fibroblast cell culture with an evaluation of their effect on the metabolic and proliferative activity of cells using an MTT test and direct cell counting. Antimicrobial activity was studied by mass spectrometry using gas chromatography-mass spectrometry against E. coli after 24 h and 48 h of co-incubation. RESULTS According to the physicochemical studies, nanocrystals less than 5 nm in size with diffraction peaks characteristic of cerium dioxide were identified in all synthesized nanocomposites. With increasing polysaccharide concentration, the particle size of cerium dioxide decreased, and the smallest nanoparticles (<2 nm) were in Ce2D and Ce3D composites. The results of cell experiments showed a high level of safety of dextran nanoceria, while the absence of cytotoxicity (100% cell survival rate) was established for Ce2D and C3D sols. At a nanoceria concentration of 10-2 M, the proliferative activity of fibroblasts was statistically significantly enhanced only when co-cultured with Ce2D, but decreased with Ce3D. The metabolic activity of fibroblasts after 72 h of co-cultivation with nano composites increased with increasing dextran concentration, and the highest level was registered in Ce3D; from the dextran group, differences were registered in Ce2D and Ce3D sols. As a result of the microbiological study, the best antimicrobial activity (bacteriostatic effect) was found for Ce0.5D and Ce2D, which significantly inhibited the multiplication of E. coli after 24 h by an average of 22-27%, and after 48 h, all nanocomposites suppressed the multiplication of E. coli by 58-77%, which was the most pronounced for Ce0.5D, Ce1D, and Ce2D. CONCLUSIONS The necessary physical characteristics of nanoceria-dextran nanocomposites that provide the best wound healing biological effects were determined. Ce2D at a concentration of 10-3 M, which stimulates cell proliferation and metabolism up to 2.5 times and allows a reduction in the rate of microorganism multiplication by three to four times, was selected for subsequent nanodrug creation.
Collapse
Affiliation(s)
- Ekaterina V. Silina
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; (M.P.K.); (O.V.K.)
| | - Natalia E. Manturova
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; (N.E.M.); (V.A.S.)
| | - Olga S. Ivanova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Science, Moscow 119071, Russia;
| | - Alexander E. Baranchikov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia;
| | - Elena B. Artyushkova
- Kursk State Medical University, Karl Marx Str., 3, Kursk 305041, Russia; (E.B.A.); (O.A.M.); (A.A.K.); (S.A.D.); (M.P.G.); (E.S.V.)
| | - Olga A. Medvedeva
- Kursk State Medical University, Karl Marx Str., 3, Kursk 305041, Russia; (E.B.A.); (O.A.M.); (A.A.K.); (S.A.D.); (M.P.G.); (E.S.V.)
| | - Alexey A. Kryukov
- Kursk State Medical University, Karl Marx Str., 3, Kursk 305041, Russia; (E.B.A.); (O.A.M.); (A.A.K.); (S.A.D.); (M.P.G.); (E.S.V.)
| | - Svetlana A. Dodonova
- Kursk State Medical University, Karl Marx Str., 3, Kursk 305041, Russia; (E.B.A.); (O.A.M.); (A.A.K.); (S.A.D.); (M.P.G.); (E.S.V.)
| | - Mikhail P. Gladchenko
- Kursk State Medical University, Karl Marx Str., 3, Kursk 305041, Russia; (E.B.A.); (O.A.M.); (A.A.K.); (S.A.D.); (M.P.G.); (E.S.V.)
| | - Ekaterina S. Vorsina
- Kursk State Medical University, Karl Marx Str., 3, Kursk 305041, Russia; (E.B.A.); (O.A.M.); (A.A.K.); (S.A.D.); (M.P.G.); (E.S.V.)
| | - Maria P. Kruglova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; (M.P.K.); (O.V.K.)
| | - Oleg V. Kalyuzhin
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; (M.P.K.); (O.V.K.)
| | - Yulia G. Suzdaltseva
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkin Str., 3, Moscow 119333, Russia;
| | - Victor A. Stupin
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; (N.E.M.); (V.A.S.)
| |
Collapse
|
6
|
Venzhik Y, Deryabin A, Zhukova K. Au-Based Nanoparticles Enhance Low Temperature Tolerance in Wheat by Regulating Some Physiological Parameters and Gene Expression. PLANTS (BASEL, SWITZERLAND) 2024; 13:1261. [PMID: 38732476 PMCID: PMC11085431 DOI: 10.3390/plants13091261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/16/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
One of the key problems of biology is how plants adapt to unfavorable conditions, such as low temperatures. A special focus is placed on finding ways to increase tolerance in important agricultural crops like wheat. Au-based nanoparticles (Au-NPs) have been employed extensively in this area in recent years. Au-NPs can be produced fast and easily using low-cost chemical reagents. When employed in microdoses, Au-NPs are often non-toxic to plants, animals, and people. In addition, Au-NPs mainly have favorable impacts on plants. In this study, we investigated the effect of Au-NP seed nanopriming (diameter 15.3 nm, Au concentration 5-50 µg mL-1) on cold tolerance, as well as some physiological, biochemical and molecular parameters, of cold-sustainable wheat (Triticum aestivum L.) genotype Zlata. The treatment with Au-NPs improved tolerance to low temperatures in control conditions and after cold hardening. Au-NPs treatment boosted the intensity of growth processes, the quantity of photosynthetic pigments, sucrose in leaves, and the expressions of encoded RuBisCo and Wcor15 genes. The potential mechanisms of Au-NPs' influence on the cold tolerance of wheat varieties were considered.
Collapse
Affiliation(s)
- Yuliya Venzhik
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (A.D.); (K.Z.)
| | | | | |
Collapse
|
7
|
Pescke IK, de Oliveira Rozino L, Zenato K, Cardozo T, Flores WH, Vargas VMF. Lowering the pH leads to the disaggregation of NiO and ZnO nanoparticles and modifies the mutagenic response. J Appl Toxicol 2024; 44:445-454. [PMID: 37828814 DOI: 10.1002/jat.4553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/31/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023]
Abstract
In a changing environmental scenario, acid rain can have a significant impact on aquatic ecosystems. Acidification is known to produce corrosion in metals, hence increasing their harmful effects on the environment, organisms and human health. The prevalent use of metallic nanoparticles (NPs) in everyday products raises concerns regarding exposure and nanotoxicity even in these acidified conditions. We thus report on the cytotoxic and genotoxic potential of nickel oxide (NiO-NP) and zinc oxide (ZnO-NP) NPs when suspended in aqueous media in light of pH variations (7.5 and 5). A modified microsuspension method of the Salmonella/microsome assay was adopted, and strains (TA97a, TA98, TA100, TA102) were exposed to NPs (10-1280 μg/plate) with and without a metabolization fraction. The acidic condition favored disaggregation and caused a decrease in NPs size. Mutagenicity was observed in all samples and different strains, with greater DNA base pair substitution damage (TA100 and TA102), but extrinsic conditions (pH) suggest different action mechanisms of NiO-NP and ZnO-NP on genetic content. Mutagenic activity was found to increase upon metabolic activation (TA98, TA100, and TA102) demonstrating the bioactivity of NiO-NP and ZnO-NP in relation to metabolites generated by the mammalian p450 system in vitro. Modifications in the Salmonella assay methodology increased cell exposure time. The observed responses recommend this modified assay as one of the methodologies of choice for nanoecotoxicological evaluation. These findings emphasize the significance of incorporating the environmental context when evaluating the toxicity of metal-based NPs.
Collapse
Affiliation(s)
- Ismael Krüger Pescke
- Programa de Pós-Graduação em Ecologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Laboratório de Mutagênese Ambiental, Centro de Ecologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Lívia de Oliveira Rozino
- Programa de Pós-Graduação em Ecologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Laboratório de Mutagênese Ambiental, Centro de Ecologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Karoline Zenato
- Laboratório de Mutagênese Ambiental, Centro de Ecologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Tatiane Cardozo
- Grupo de Materiais Nanoestruturados, Universidade Federal do Pampa (UNIPAMPA), Bagé, Brazil
| | | | - Vera Maria Ferrão Vargas
- Programa de Pós-Graduação em Ecologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Laboratório de Mutagênese Ambiental, Centro de Ecologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
8
|
Boyadzhiev A, Wu D, Avramescu ML, Williams A, Rasmussen P, Halappanavar S. Toxicity of Metal Oxide Nanoparticles: Looking through the Lens of Toxicogenomics. Int J Mol Sci 2023; 25:529. [PMID: 38203705 PMCID: PMC10779048 DOI: 10.3390/ijms25010529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
The impact of solubility on the toxicity of metal oxide nanoparticles (MONPs) requires further exploration to ascertain the impact of the dissolved and particulate species on response. In this study, FE1 mouse lung epithelial cells were exposed for 2-48 h to 4 MONPs of varying solubility: zinc oxide, nickel oxide, aluminum oxide, and titanium dioxide, in addition to microparticle analogues and metal chloride equivalents. Previously published data from FE1 cells exposed for 2-48 h to copper oxide and copper chloride were examined in the context of exposures in the present study. Viability was assessed using Trypan Blue staining and transcriptomic responses via microarray analysis. Results indicate material solubility is not the sole property governing MONP toxicity. Transcriptional signaling through the 'HIF-1α Signaling' pathway describes the response to hypoxia, which also includes genes associated with processes such as oxidative stress and unfolded protein responses and represents a conserved response across all MONPs tested. The number of differentially expressed genes (DEGs) in this pathway correlated with apical toxicity, and a panel of the top ten ranked DEGs was constructed (Hmox1, Hspa1a, Hspa1b, Mmp10, Adm, Serpine1, Slc2a1, Egln1, Rasd1, Hk2), highlighting mechanistic differences among tested MONPs. The HIF-1α pathway is proposed as a biomarker of MONP exposure and toxicity that can help prioritize MONPs for further evaluation and guide specific testing strategies.
Collapse
Affiliation(s)
- Andrey Boyadzhiev
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada; (A.B.); (D.W.); (M.-L.A.); (A.W.); (P.R.)
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Dongmei Wu
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada; (A.B.); (D.W.); (M.-L.A.); (A.W.); (P.R.)
| | - Mary-Luyza Avramescu
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada; (A.B.); (D.W.); (M.-L.A.); (A.W.); (P.R.)
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada; (A.B.); (D.W.); (M.-L.A.); (A.W.); (P.R.)
| | - Pat Rasmussen
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada; (A.B.); (D.W.); (M.-L.A.); (A.W.); (P.R.)
- Department of Earth and Environmental Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada; (A.B.); (D.W.); (M.-L.A.); (A.W.); (P.R.)
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
9
|
Deng R, Zhu Y, Wu X, Wang M. Toxicity and Mechanisms of Engineered Nanoparticles in Animals with Established Allergic Asthma. Int J Nanomedicine 2023; 18:3489-3508. [PMID: 37404851 PMCID: PMC10317527 DOI: 10.2147/ijn.s411804] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/19/2023] [Indexed: 07/06/2023] Open
Abstract
Asthma is a chronic respiratory disease that is highly sensitive to environmental pollutants, including engineered nanoparticles (NPs). Exposure to NPs has become a growing concern for human health, especially for susceptible populations. Toxicological studies have demonstrated strong associations between ubiquitous NPs and allergic asthma. In this review, we analyze articles that focus on adverse health effects induced by NPs in animal models of allergic asthma to highlight their critical role in asthma. We also integrate potential mechanisms that could stimulate and aggravate asthma by NPs. The toxic effects of NPs are influenced by their physicochemical properties, exposure dose, duration, route, as well as the exposure order between NPs and allergens. The toxic mechanisms involve oxidative stress, various inflammasomes, antigen presenting cells, immune cells, and signaling pathways. We suggest that future research should concentrate on establishing standardized models, exploring mechanistic insights at the molecular level, assessing the combined effects of binary exposures, and determining safe exposure levels of NPs. This work provides concrete evidence of the hazards posed by NPs in animals with compromised respiratory health and supports the modifying role of NPs exposure in allergic asthma.
Collapse
Affiliation(s)
- Rui Deng
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), School of Civil Engineering, Chongqing University, Chongqing, 400045, People’s Republic of China
| | - Ya Zhu
- The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, 325035, People’s Republic of China
| | - Xinyue Wu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, 310058, People’s Republic of China
| | - Mingpu Wang
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), School of Civil Engineering, Chongqing University, Chongqing, 400045, People’s Republic of China
| |
Collapse
|
10
|
Ciani M, Adessi A. Cyanoremediation and phyconanotechnology: cyanobacteria for metal biosorption toward a circular economy. Front Microbiol 2023; 14:1166612. [PMID: 37323915 PMCID: PMC10266413 DOI: 10.3389/fmicb.2023.1166612] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Cyanobacteria are widespread phototrophic microorganisms that represent a promising biotechnological tool to satisfy current sustainability and circularity requirements. They are potential bio-factories of a wide range of compounds that can be exploited in several fields including bioremediation and nanotechnology sectors. This article aims to illustrate the most recent trends in the use of cyanobacteria for the bioremoval (i.e., cyanoremediation) of heavy metals and metal recovery and reuse. Heavy metal biosorption by cyanobacteria can be combined with the consecutive valorization of the obtained metal-organic materials to get added-value compounds, including metal nanoparticles, opening the field of phyconanotechnology. It is thus possible that the use of combined approaches could increase the environmental and economic feasibility of cyanobacteria-based processes, promoting the transition toward a circular economy.
Collapse
|
11
|
López ADF, De-la-Torre GE, Fernández Severini MD, Prieto G, Brugnoni LI, Colombo CV, Dioses-Salinas DC, Rimondino GN, Spetter CV. Chemical-analytical characterization and leaching of heavy metals associated with nanoparticles and microplastics from commercial face masks and the abundance of personal protective equipment (PPE) waste in three metropolitan cities of South America. MARINE POLLUTION BULLETIN 2023; 191:114997. [PMID: 37148588 DOI: 10.1016/j.marpolbul.2023.114997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/27/2023] [Accepted: 04/25/2023] [Indexed: 05/08/2023]
Abstract
In this study, we surveyed the presence of personal protective equipment (PPE) waste on the streets of Bogotá-Colombia, Lima-Perú, and Mar del Plata-Argentina. Furthermore, this work is also focused on the release capacity of Ag, Cu, and Zn metals associated with nanoparticles, and microplastics (MPs) from textile face masks (TFMs) and disposable face masks. According to our results, an association between low-income areas and PPE waste was found, which may be related to the periodicity of waste collection and economic activity. Polymers, like polypropylene, cotton-polyester, and additives, such as CaCO3, MgO, and Ag/Cu as nanoparticles, were identified. TFMs released high levels of Cu (35,900-60,200 μg·L-1), Zn (2340-2380 μg·L-1), and MPs (4528-10,640 particles/piece). Metals associated with nanoparticles leached by face masks did not present any antimicrobial activity against P. aeruginosa. Our study suggests that TFMs may leach large amounts of polluting nano/micromaterials in aquatic environments with potential toxicological effects on organisms.
Collapse
Affiliation(s)
- A D Forero López
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, Bahía Blanca B8000FWB, Buenos Aires, Argentina.
| | - G E De-la-Torre
- Universidad San Ignacio de Loyola, Av. La Fontana 501, Lima 12, Lima, Peru
| | - M D Fernández Severini
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, Bahía Blanca B8000FWB, Buenos Aires, Argentina
| | - G Prieto
- Departamento de Ingeniería, Universidad Nacional del Sur, Av. Alem 1253, Bahía Blanca, Argentina; IFISUR, Universidad Nacional del Sur - CONICET, Av. Alem 1253, Bahía Blanca, Argentina
| | - L I Brugnoni
- Instituto de Ciencias Biológicas y Biomédicas del Sur, INBIOSUR (UNS-CONICET), San Juan 670, 8000 Bahía Blanca, Argentina
| | - C V Colombo
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, Bahía Blanca B8000FWB, Buenos Aires, Argentina
| | - D C Dioses-Salinas
- Universidad San Ignacio de Loyola, Av. La Fontana 501, Lima 12, Lima, Peru
| | - G N Rimondino
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria (X5000HUA), Córdoba, Argentina
| | - C V Spetter
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, Bahía Blanca B8000FWB, Buenos Aires, Argentina; Departamento de Química, Universidad Nacional del Sur (UNS), Avenida Alem 1253, B8000CPB Bahía Blanca, Buenos Aires, Argentina
| |
Collapse
|
12
|
Mathur P, Chakraborty R, Aftab T, Roy S. Engineered nanoparticles in plant growth: Phytotoxicity concerns and the strategies for their attenuation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 199:107721. [PMID: 37156069 DOI: 10.1016/j.plaphy.2023.107721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/11/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
In the agricultural sector, the use of engineered nanoparticles (ENPs) has been acclaimed as the next big thing for sustaining and increasing crop productivity. A vast amount of literature is available regarding the growth-promoting attributes of different ENPs. In this context, it has been emphasized that the ENPs can bolster vegetative growth, leaf development, and seed setting and also help in mitigating the effects of abiotic and biotic stresses. At the same time, there have been a lot of speculations and concerns regarding the phytotoxicity of ENPs off-late. In this connection, many research articles have presented the negative effects of ENPs on plant systems. These studies have highlighted that almost all the ENPs impart a certain degree of phytotoxicity in terms of reduction in growth, biomass, impairment of photosynthesis, oxidative status of plant cells, etc. Mostly, the ENPs based on metal or metal oxides (Cd, Cr, Pb, Ag, Ce, etc.) and nonmetals (C) that are introduced into the environment are known to incite inhibitory effects. However, the phytotoxicity of ENPs are known to be determined mostly by the chemical nature of the element, size, surface charge, coating molecules, and abiotic factors like pH and light. This review article, therefore, elucidates the phytotoxic properties of different ENPs and the plant responses induced at the molecular level subjected to nanoparticle exposure. Moreover, the article highlights the probable strategies that may be adopted for the suppression of the phytotoxicity of ENPs to ensure the safe and sustainable application of ENPs in crop fields.
Collapse
Affiliation(s)
- Piyush Mathur
- Microbiology Laboratory, Department of Botany, University of North Bengal, P.O. Raja Rammohumpur, Dist. Darjeeling, West Bengal, India
| | - Rakhi Chakraborty
- Department of Botany, Acharya Prafulla Chandra Roy Government College, P.O. Matigara, Dist. Darjeeling, West Bengal, India
| | - Tariq Aftab
- Department of Botany, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, P.O. Raja Rammohumpur, Dist. Darjeeling, West Bengal, India.
| |
Collapse
|
13
|
López M, López-Lilao A, Romero F, Pérez-Albaladejo E, Pinteño R, Porte C, Balasch A, Eljarrat E, Viana M, Monfort E. Size-resolved chemical composition and toxicity of particles released from refit operations in shipyards. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163072. [PMID: 36990238 DOI: 10.1016/j.scitotenv.2023.163072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/08/2023] [Accepted: 03/22/2023] [Indexed: 04/15/2023]
Abstract
Ship refit and repair operations in shipyards generate aerosol emissions with high potential for environmental impacts. Metal-bearing nano-, fine and coarse particles are incidentally formed and can be released to indoor and ambient air and the aquatic environment. This work aimed to further the understanding of these impacts by characterising particle size-resolved chemical composition (15 nm - 10 μm), organophosphate esters (OPEs) content (e.g., plasticisers) and cytotoxic and genotoxic potential. Results showed that nanoparticle emissions (20-110 nm) took place in bursts, coinciding with the use of mechanical abraders and spray-painting guns. Tracers of these activities were Sc, V, Cr, Co, Ni, Cu, Rb, Nb, and Cs. Key components were V and Cu, probably sourcing from nanoadditives in the coatings. Abrasion of coatings also emitted OPEs, especially from old paints. Toxicity assessments consistently evidenced hazardous potential for the different endpoints assessed, for a number of samples. Exposures to spray-painting aerosols were linked with reduced cell viability (cytotoxicity), significant generation of reactive oxygen species (ROS), and increases in micronuclei frequency (genotoxicity). Even though spray-painting did not contribute significantly to aerosol mass or number concentrations, it was a major driver of potential health effects. Results suggest that aerosol chemical composition (e.g., content in nano-sized Cu or V) may have a larger impact on toxicity than aerosol concentration. While direct human exposures may be prevented using personal and collective protective equipment and environmental release can be minimised by enclosures and filtration systems, impacts on ambient air and the aquatic environment cannot be fully prevented. The continued use of good practices (exhaust, dilution, general ventilation systems, PPE, already in place) is encouraged to reduce inhalation exposures inside the tents. Understanding the size-resolved chemical and toxicological properties of aerosols is key to reducing human health and environmental impacts of ship refit operations in shipyards.
Collapse
|
14
|
The Impact of Metal Nanoparticles on the Immunoregulatory and Therapeutic Properties of Mesenchymal Stem Cells. Stem Cell Rev Rep 2023:10.1007/s12015-022-10500-2. [PMID: 36810951 DOI: 10.1007/s12015-022-10500-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2022] [Indexed: 02/24/2023]
Abstract
Negative impacts of nanomaterials on stem cells and cells of the immune system are one of the main causes of an impaired or slowed tissue healing. Therefore, we tested effects of four selected types of metal nanoparticles (NPs): zinc oxide (ZnO), copper oxide (CuO), silver (Ag), and titanium dioxide (TiO2) on the metabolic activity and secretory potential of mouse mesenchymal stem cells (MSCs), and on the ability of MSCs to stimulate production of cytokines and growth factors by macrophages. Individual types of nanoparticles differed in the ability to inhibit metabolic activity, and significantly decreased the production of cytokines and growth factors (interleukin-6, vascular endothelial growth factor, hepatocyte growth factor, insulin-like growth factor-1) by MSCs, with the strongest inhibitory effect of CuO NPs and the least effect of TiO2 NPs. The recent studies indicate that immunomodulatory and therapeutic effects of transplanted MSCs are mediated by macrophages engulfing apoptotic MSCs. We co-cultivated macrophages with heat-inactivated MSCs which were untreated or were preincubated with the highest nontoxic concentrations of metal NPs, and the secretory activity of macrophages was determined. Macrophages cultivated in the presence of both untreated MSCs or MSCs preincubated with NPs produced significantly enhanced and comparable levels of various cytokines and growth factors. These results suggest that metal nanoparticles inhibit therapeutic properties of MSCs by a direct negative effect on their secretory activity, but MSCs cultivated in the presence of metal NPs have preserved the ability to stimulate cytokine and growth factor production by macrophages.
Collapse
|
15
|
Synthesis, biomedical applications, and toxicity of CuO nanoparticles. Appl Microbiol Biotechnol 2023; 107:1039-1061. [PMID: 36635395 PMCID: PMC9838533 DOI: 10.1007/s00253-023-12364-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/27/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023]
Abstract
Versatile nature of copper oxide nanoparticles (CuO NPs) has made them an imperative nanomaterial being employed in nanomedicine. Various physical, chemical, and biological methodologies are in use for the preparation of CuO NPs. The physicochemical and biological properties of CuO NPs are primarily affected by their method of fabrication; therefore, selectivity of a synthetic technique is immensely important that makes these NPs appropriate for a specific biomedical application. The deliberate use of CuO NPs in biomedicine questions their biocompatible nature. For this reason, the present review has been designed to focus on the approaches employed for the synthesis of CuO NPs; their biomedical applications highlighting antimicrobial, anticancer, and antioxidant studies; and most importantly, the in vitro and in vivo toxicity associated with these NPs. This comprehensive overview of CuO NPs is unique and novel as it emphasizes on biomedical applications of CuO NPs along with its toxicological assessments which would be useful in providing core knowledge to researchers working in these domains for planning and conducting futuristic studies. KEY POINTS: • The recent methods for fabrication of CuO nanoparticles have been discussed with emphasis on green synthesis methods for different biomedical approaches. • Antibacterial, antioxidant, anticancer, antiparasitic, antidiabetic, and antiviral properties of CuO nanoparticles have been explained. • In vitro and in vivo toxicological studies of CuO nanoparticles exploited along with their respective mechanisms.
Collapse
|
16
|
Alshameri AW, Owais M. Antibacterial and cytotoxic potency of the plant-mediated synthesis of metallic nanoparticles Ag NPs and ZnO NPs: A review. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
17
|
Li X, He F, Wang Z, Xing B. Roadmap of environmental health research on emerging contaminants: Inspiration from the studies on engineered nanomaterials. ECO-ENVIRONMENT & HEALTH (ONLINE) 2022; 1:181-197. [PMID: 38075596 PMCID: PMC10702922 DOI: 10.1016/j.eehl.2022.10.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 01/25/2024]
Abstract
Research on the environmental health of emerging contaminants is critical to understand their risks before causing severe harm. However, the low environmental concentrations, complex behaviors, and toxicology of emerging contaminants present enormous challenges for researchers. Here, we reviewed the research on the environmental health of engineered nanomaterials (ENMs), one of the typical emerging contaminants, to enlighten pathways for future research on emerging contaminants at their initial exploratory stage. To date, some developed pretreatment methods and detection technologies have been established for the determination of ENMs in natural environments. The mechanisms underlying the transfer and transformation of ENMs have been systematically explored in laboratory studies. The mechanisms of ENMs-induced toxicity have also been preliminarily clarified at genetic, cellular, individual, and short food chain levels, providing not only a theoretical basis for revealing the risk change and environmental health effects of ENMs in natural environments but also a methodological guidance for studying environmental health of other emerging contaminants. Nonetheless, due to the interaction of multiple environmental factors and the high diversity of organisms in natural environments, health effects observed in laboratory studies likely differ from those in natural environments. We propose a holistic approach and mesocosmic model ecosystems to systematically carry out environmental health research on emerging contaminants, obtaining data that determine the objectivity and accuracy of risk assessment.
Collapse
Affiliation(s)
- Xiaona Li
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Feng He
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
18
|
Dwijendra NKA, Patra I, Ahmed YM, Hasan YM, Najm ZM, Al Mashhadani ZI, Kumar A. Carbonyl sulfide gas detection by pure, Zn- and Cd-decorated AlP nano-sheet. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-02961-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
19
|
Venzhik Y, Deryabin A, Popov V, Dykman L, Moshkov I. Gold nanoparticles as adaptogens increazing the freezing tolerance of wheat seedlings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:55235-55249. [PMID: 35316488 DOI: 10.1007/s11356-022-19759-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
The intensive development of nanotechnology led to the widespread application of various nanoparticles and nanomaterials. As a result, nanoparticles enter the environment and accumulate in ecosystems and living organisms. The consequences of possible impact of nanoparticles on living organisms are not obvious. Experimental data indicate that nanoparticles have both toxic and stimulating effects on organisms. In this study, we demonstrated for the first time that gold nanoparticles can act as adaptogens increasing plant freezing tolerance. Priming winter wheat (Triticum aestivum L., var. Moskovskaya 39, Poaceae) seeds for 1 day in solutions of gold nanoparticles (15-nm diameter, concentrations of 5, 10, 20, and 50 µg/ml) led to an increase in freezing tolerance of 7-day-old wheat seedlings. A relationship between an increase in wheat freezing tolerance and changes in some important indicators for its formation-growth intensity, the activity of the photosynthetic apparatus and oxidative processes, and the accumulation of soluble sugars in seedlings-was established. Assumptions on possible mechanisms of gold nanoparticles effects on plant freezing tolerance are discussed.
Collapse
Affiliation(s)
- Yuliya Venzhik
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia.
| | - Alexander Deryabin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia
| | - Valery Popov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia
| | - Lev Dykman
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences, Saratov, 410049, Russia
| | - Igor Moshkov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia
| |
Collapse
|
20
|
Yalçın B, Güneş M, Kurşun AY, Kaya N, Marcos R, Kaya B. Genotoxic hazard assessment of cerium oxide and magnesium oxide nanoparticles in Drosophila. Nanotoxicology 2022; 16:393-407. [PMID: 35818303 DOI: 10.1080/17435390.2022.2098072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The use of metal oxide nanoparticles (NPs) is steadily spreading, leading to increased environmental exposures to many organisms, including humans. To improve our knowledge of this potential hazard, we have evaluated the genotoxic risk of cerium oxide (CeO2NPs) and magnesium oxide (MgONPs) nanoparticle exposures using Drosophila as an in vivo assay model. In this study, two well-known assays, such as the wing somatic mutation and recombination test (wing-spot assay) and the single-cell gel electrophoresis test (comet assay) were used. As a novelty, and for the first time, changes in the expression levels of a wide panel of DNA repair genes were also evaluated. Our results indicate that none of the concentrations of CeO2NPs increased the total spot frequency in the wing-spot assay, while induction was observed at the highest dose of MgONPs. Regarding the comet assay, both tested NPs were unable to induce single DNA strand breaks or oxidative damage in DNA bases. Nevertheless, exposure to CeO2NPs induced significant increases in the expression levels of the Mlh1 and Brca2 genes, which are involved in the double-strand break repair pathway, together with a decrease in the expression levels of the MCPH1 and Rad51D genes. Regarding the effects of MgONPs exposure, the expression levels of the Ercc1, Brca2, Rad1, mu2, and stg genes were significantly increased, while Mlh1 and MCPH1 genes were decreased. Our results show the usefulness of our approach in detecting mild genotoxic effects by evaluating changes in the expression of a panel of genes involved in DNA repair pathways.
Collapse
Affiliation(s)
- Burçin Yalçın
- Department of Biology, Akdeniz University, Antalya, Turkey
| | - Merve Güneş
- Department of Biology, Akdeniz University, Antalya, Turkey
| | | | - Nuray Kaya
- Department of Biology, Akdeniz University, Antalya, Turkey
| | - Ricard Marcos
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès (Barcelona), Antalya, Spain
| | - Bülent Kaya
- Department of Biology, Akdeniz University, Antalya, Turkey
| |
Collapse
|
21
|
Kong X, Bai R, Wang S, Wu B, Zhang R, Li H. Recovery of phosphorus from aqueous solution by magnetic TiO2*/Fe3O4 composites. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2021.139234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Bharti K, Sadhu KK. Syntheses of metal oxide-gold nanocomposites for biological applications. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|