1
|
Wang J, Yin L, Liu W, Shi K, Zhang Y, He H, Yang S, Ni L, Li S. Effect of surfactant's charge properties on behavior, physiology, and biochemistry and the release of microcystins of Microcystis aeruginosa. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121232. [PMID: 38801804 DOI: 10.1016/j.jenvman.2024.121232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Surfactant pollution is escalatitheng in eutrophic waters, but the effect of surfactant charge properties on the physiological and biochemical properties of toxin-producing microalgae remains inadequately explored. To address this gap, this study explores the effects and mechanisms of three common surfactants-cetyltrimethylammonium bromide (CTAB, cationic), sodium dodecyl sulfate (SDS, anionic), and Triton X-100 (nonionic)-found in surface waters, on the agglomeration behavior, physiological indicators, and Microcystin-LR (MC-LR) release of Microcystis aeruginosa (M. aeruginosa) by using UV-visible spectroscope, Malvern Zetasizer, fluorescence spectrometer, etc. Results suggest that charge properties significantly affect cyanobacterial aggregation and cellular metabolism. The CTAB-treated group demonstrates a ∼5.74 and ∼9.74 times higher aggregation effect compared to Triton X-100 and SDS (300 mg/L for 180 min) due to strong electrostatic attraction. Triton X-100 outperforms CTAB and SDS in polysaccharide extraction, attributed to its higher water solubility and lower critical micelle concentration. CTAB stimulates cyanobacteria to secrete proteins, xanthohumic acid, and humic acids to maintain normal physiological cells. Additionally, the results of SEM and ion content showed that CTAB damages the cell membrane, resulting in a ∼90% increase in the release of intracellular MC-LR without cell disintegration. Ionic analyses confirm that all three surfactants alter cell membrane permeability and disrupt ionic metabolic pathways in microalgae. This study highlights the relationship between the surface charge properties of typical surfactants and the dispersion/agglomeration behavior of cyanobacteria. It provides insights into the impact mechanism of exogenous surfactants on toxic algae production in eutrophic water bodies, offering theoretical references for managing surfactant pollution and treating algae blooms.
Collapse
Affiliation(s)
- Juan Wang
- School of Environment, Nanjing Normal University, Nanjing, 210023, China.
| | - Li Yin
- School of Environment, Nanjing Normal University, Nanjing, 210023, China.
| | - Wenjie Liu
- Zhongshan Ecological Technology Jiangsu Co., Ltd., Nanjing, 210019, China.
| | - Kaipian Shi
- School of Environment, Nanjing Normal University, Nanjing, 210023, China.
| | - Yong Zhang
- Department of Geological Sciences, University of Alabama, Tuscaloosa, AL, 35487, USA.
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing, 210023, China.
| | - Shaogui Yang
- School of Environment, Nanjing Normal University, Nanjing, 210023, China.
| | - Lixiao Ni
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, MOE, School of Environment, Hohai University, Nanjing, 210098, China.
| | - Shiyin Li
- School of Environment, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China.
| |
Collapse
|
2
|
Liu S, Ni J, Guan Y, Tao J, Wu L, Hou M, Wu S, Xu W, Zhang C, Ye J. Changes in physiology, antioxidant system, and gene expression in Microcystis aeruginosa under fenoxaprop-p-ethyl stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:28754-28763. [PMID: 38558345 DOI: 10.1007/s11356-024-32927-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/11/2024] [Indexed: 04/04/2024]
Abstract
Fenoxaprop-p-ethyl (FE) is one of the typical aryloxyphenoxypropionate herbicides. FE has been widely applied in agriculture in recent years. Human health and aquatic ecosystems are threatened by the cyanobacteria blooms caused by Microcystis aeruginosa, which is one of the most common cyanobacteria responsible for freshwater blooming. Few studies have been reported on the physiological effects of FE on M. aeruginosa. This study analyzed the growth curves, the contents of chlorophyll a and protein, the oxidative stress, and the microcystin-LR (MC-LR) levels of M. aeruginosa exposed to various FE concentrations (i.e., 0, 0.5, 1, 2, and 5 mg/L). FE was observed to stimulate the cell density, chlorophyll a content, and protein content of M. aeruginosa at 0.5- and 1-mg/L FE concentrations but inhibit them at 2 and 5 mg/L FE concentrations. The superoxide dismutase and catalase activities were enhanced and the malondialdehyde concentration was increased by FE. The intracellular (intra-) and extracellular (extra-) MC-LR contents were also affected by FE. The expression levels of photosynthesis-related genes psbD1, psaB, and rbcL varied in response to FE exposure. Moreover, the expressions of microcystin synthase-related genes mcyA and mcyD and microcystin transportation-related gene mcyH were significantly inhibited by the treatment with 2 and 5 mg/L FE concentrations. These results might be helpful in evaluating the ecotoxicity of FE and guiding the rational application of herbicides in modern agriculture.
Collapse
Affiliation(s)
- Sijia Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Jiawei Ni
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Ying Guan
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Jianwei Tao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Liang Wu
- Los Angeles Regional Water Quality Control Board, Los Angeles, CA, 90013, USA
| | - Meifang Hou
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Shichao Wu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Wenwu Xu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Chu Zhang
- School of Computer Science and Information Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Jing Ye
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China.
| |
Collapse
|
3
|
Luo Y, Dao G, Zhou G, Wang Z, Xu Z, Lu X, Pan X. Effects of low concentration of gallic acid on the growth and microcystin production of Microcystis aeruginosa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:169765. [PMID: 38181948 DOI: 10.1016/j.scitotenv.2023.169765] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
Gallic acid (GA) is an allelochemical that has been utilized in high concentrations for the management of harmful algal blooms (HABs). However, there is limited knowledge regarding its impact on the growth of M. aeruginosa as the GA concentration transitions from high to low during the HABs control process. This study has revealed that as the GA concentration decreases (from 10 mg/L to 0.001 μg/L), a dose-response relationship becomes apparent in the growth of M. aeruginosa and microcystin production, characterized by high-dose inhibition and low-dose stimulation. Notably, at the concentration of 0.1 μg/L GA, the most significant growth-promoting effect on both growth and MCs synthesis was observed. The growth rate and maximum cell density were increased by 1.09 and 1.16 times, respectively, compared to those of the control group. Additionally, the contents of MCs synthesis saw a remarkable increase, up by 1.85 times. Furthermore, lower GA concentrations stimulated the viability of cyanobacterial cells, resulting in substantially higher levels of reactive oxygen species (ROS) and chlorophyll-a (Chl a) compared to other concentrations. Most importantly, the expression of genes governing MCs synthesis was significantly upregulated, which appears to be the primary driver behind the significantly higher MCs levels compared to other conditions. The ecological risk quotient (RQ) value of 0.1 μg/L GA was the highest of all experimental groups, which was approximately 30 times higher than that of the control, indicating moderate risk. Therefore, it is essential to pay attention to the effect of M. aeruginosa growth, metabolism and water ecological risk under the process of reducing GA concentration after dosing during the HABs control process.
Collapse
Affiliation(s)
- Yu Luo
- Faculty of Environmental Science and Engineering, Kunming University of Science and technology, Kunming 650500, Yunnan, China; Yunnan Key Laboratory of Pollution Process and Management of Plateau Lake-Watershed, Yunnan Research Academy of Eco-environmental Sciences, Kunming 650034, Yunnan, China
| | - Guohua Dao
- Faculty of Environmental Science and Engineering, Kunming University of Science and technology, Kunming 650500, Yunnan, China
| | - Guoquan Zhou
- Faculty of Environmental Science and Engineering, Kunming University of Science and technology, Kunming 650500, Yunnan, China
| | - Zhuoxuan Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and technology, Kunming 650500, Yunnan, China
| | - Zhixiang Xu
- Faculty of Environmental Science and Engineering, Kunming University of Science and technology, Kunming 650500, Yunnan, China
| | - Xinyue Lu
- Faculty of Environmental Science and Engineering, Kunming University of Science and technology, Kunming 650500, Yunnan, China
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and technology, Kunming 650500, Yunnan, China.
| |
Collapse
|
4
|
Bai Y, Shi C, Zhou Y, Zhou Y, Zhang H, Chang R, Hu X, Hu J, Yang C, Peng K, Xiang P, Zhang Z. Enhanced inactivation of Escherichia coli by ultrasound combined with peracetic acid during water disinfection. CHEMOSPHERE 2023; 322:138095. [PMID: 36758811 DOI: 10.1016/j.chemosphere.2023.138095] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Peracetic acid (PAA) is a desirable disinfectant for municipal wastewater because of its potent disinfection performance and limited toxic by-products. This study explored the efficiency and mechanism of Escherichia coli inactivation by PAA combined with ultrasound simultaneously (ultrasound + PAA) or (ultrasound → PAA) sequentially. The result showed that 60 kHz ultrasound combined with PAA sequentially (60 kHz → PAA) had excellent inactivation performance on E. coli, up to 4.69-log10. The result also showed that the increase of pH and humic acid concentration in solution significantly reduced the inactivation efficiency of 60 kHz → PAA treatment. We also observed that the increase of temperature was beneficial to the disinfection, while anions (Cl-; HCO3-) had little effect. With 60 kHz → PAA, the PAA and the synergism between PAA and ultrasound played major contribution to the inactivation, which we assumed might be due to both the diffusion of PAA into the cells and the damage to the cytomembrane by ultrasound, as evidenced through the laser confocal microscopy (LSCM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The inactivation mechanism involved the destruction of cell membrane and loss of intracellular material. Empirically, 60 kHz → PAA was found to be effective for the inactivation of E. coli in actual wastewater, and the regrowth potential of E. coli treated by 60 kHz → PAA was significantly lower than that treated only by PAA.
Collapse
Affiliation(s)
- Yun Bai
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Chunhai Shi
- Northwest China Municipal Engineering Design and Research Institute, Lanzhou, 730000, China
| | - Yuanhang Zhou
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Yingying Zhou
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Haocheng Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Ruiting Chang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Xueli Hu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Jiawei Hu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Chuanyao Yang
- Analysis and Testing Center, Chongqing University, Chongqing, 400045, China
| | - Kedi Peng
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Ping Xiang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| | - Zhi Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
5
|
Lu Y, Jiang X, Xu H, Liu C, Song Y, Pan K, Wang L, Du L, Liu H. Effects of 4-tert-butylpyrocatechol and tea polyphenol on growth, physiology and antioxidant responses in Microcystis aeruginosa. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 260:106541. [PMID: 37172458 DOI: 10.1016/j.aquatox.2023.106541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023]
Abstract
Global warming has increased the frequency of Microcystis aeruginosa blooms, leading to the deterioration of water quality and loss of biodiversity. Therefore, developing effective strategies for controlling M. aeruginosa blooms has become an important research topic. Plant extracts, 4‑tert-butylpyrocatechol (TBC) and tea polyphenol (TP) are commonly used for water purification and to increase fish immunity, which have great potential to inhibit cyanobacterial blooms. The inhibitory effects of TBC and TP on M. aeruginosa were investigated in terms of growth characteristics, cell membrane morphology, physiological, photosynthetic activities, and antioxidant enzymes activities. The results showed that TBC and TP inhibited the growth of M. aeruginosa by decreasing the chlorophyll fluorescence transients or increasing the antioxidant enzymes activities of M. aeruginosa. TBC damaged the cell morphology of M. aeruginosa, reduced extracellular polysaccharides and protein contents, and up-regulated the antioxidant activity-related gene (sod and gsh) expressions of M. aeruginosa. TP significantly decreased the photosynthetic pigment content, influenced the phycobiliprotein content, and strongly down-regulated the photosynthesis-related gene (psbA, psaB, and rbcL) relative expressions of M. aeruginosa. TBC caused significant oxidative stress, dysfunction of physiological metabolic processes, and damaged crucial biomacromolecules (e.g., lipids, proteins and polysaccharides), prompted the loss of cell integrity, ultimately leading to the death of M. aeruginosa. However, TP depressed photosynthetic activities and consequently inhibited the transfer of electrons, affected the electron transfer chain, decreased the photosynthetic efficiency, and eventually caused the death of M. aeruginosa cells. Our study showed the inhibitory effects and algicidal mechanisms of TBC and TP on M. aeruginosa, and provide a theoretical basis for restrain the overgrowth of M. aeruginosa.
Collapse
Affiliation(s)
- Yitong Lu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinxin Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hongzhou Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chengrong Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanzhen Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kuiquan Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lixin Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Liang Du
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haixia Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
6
|
Zhang Y, Li Z, Tian X, Xu P, Sun K, Ren N. Acute toxic effects of microcystin-LR on crayfish (Procambarus clarkii): Insights from antioxidant system, histopathology and intestinal flora. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:56608-56619. [PMID: 36918491 DOI: 10.1007/s11356-023-26171-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
To study the toxic effects of microcystin-LR (MC-LR) on crayfish, adult male Procambarus clarkii were exposed to different concentrations of MC-LR for 96 h. In the meantime, the accumulation characteristics of MC-LR and the alternations of antioxidant system, histopathology and intestinal flora of P. clarkii were investigated. The results demonstrated that the hepatopancreas, gills and intestines of P. clarkii could effectively accumulate MC-LR. Antioxidant-related genes such as Mn-sod, cat, gst, gpx, mt and hsp70 showed different expression trends in different organs to respond to MC-LR-induced oxidative stress. MC-LR led to histological changes in the hepatopancreas, gills and intestines, thus affecting their corresponding physiological functions. Additionally, the abundances of bacterial phyla including Firmicutes and Planctomycetes and genera including Dysgonomonas, Brevundimonas and Anaerorhabdus in the intestine were significantly changed after MC-LR exposure, and the disruption of intestinal flora might further cause abnormal intestinal microbial metabolism and genetics in P. clarkii. This study provides novel mechanistic insights into the toxic impacts of microcystins on aquatic crustaceans. HIGHLIGHTS: • MC-LR was significantly accumulated in the hepatopancreas, gills and intestines of P. clarkii. • MC-LR induced the differential expression of antioxidant-related genes of P. clarkii. • MC-LR caused histological alterations in the hepatopancreas, gills and intestines of P. clarkii. • MC-LR affected the intestinal microbial composition and function of P. clarkii.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of Soil Resource Sustainable Utilization for Jilin Province Commodity Grain Bases, College of Resources and Environment, Jilin Agricultural University, Changchun, 130118, China
| | - Zheyu Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xing Tian
- Department of Engineering Management, Suzhou Institute of Construction & Communications, Suzhou, 215000, China
| | - Pianpian Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Kai Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
7
|
Ni L, Li Y, Li X, Xu C, Du C, Wu H, Li S. Response of cytotoxin production ability to gene expression and cell molecular structure of Microcystis aeruginosa FACHB-905. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:47209-47220. [PMID: 36732453 DOI: 10.1007/s11356-023-25218-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 01/05/2023] [Indexed: 02/04/2023]
Abstract
To investigate the inhibitory mechanism of artemisinin sustained-release microspheres (ASMs) on Microcystis aeruginosa (M. aeruginosa) from the molecular level, prx, psbA, fabZ, and mcyD were studied, and the cell death mode were also explored. The results showed that expression of prx was slightly up-regulated, while the expression of psbA, fabZ, and mcyD was significantly reduced. It can infer that oxidant damage and photic damage are the main mechanisms for the algicidal effect of ASMs on M. aeruginosa. It can be seen from the changes in cell morphology and structure that microspheres stress triggers apoptosis-like cell death, and the cell membrane is intact effectively preventing the leakage of microcystin-LR (MC-LR). Moreover, the down-regulation of mcyD gene also played major role in less extracellular MC-LR than intracellular MC-LR. It was concluded that the ASMs will not cause secondary ecological hazards while killing algae cells and have good application prospects.
Collapse
Affiliation(s)
- Lixiao Ni
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, MOE, College of Environment, Hohai University, Nanjing, 210098, China
| | - Yan Li
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, MOE, College of Environment, Hohai University, Nanjing, 210098, China
| | - Xianglan Li
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, MOE, College of Environment, Hohai University, Nanjing, 210098, China
| | - Chu Xu
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, MOE, College of Environment, Hohai University, Nanjing, 210098, China
| | - Cunhao Du
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, MOE, College of Environment, Hohai University, Nanjing, 210098, China
| | - Hanqi Wu
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, MOE, College of Environment, Hohai University, Nanjing, 210098, China
| | - Shiyin Li
- School of Environment, Nanjing Normal University, Nanjing, 210097, China.
| |
Collapse
|
8
|
Xie L, Ma Z, Yang G, Huang Y, Wen T, Deng Y, Sun J, Zheng S, Wu F, Huang K, Shao J. Study on the inhibition mechanism of eucalyptus tannins against Microcystis aeruginosa. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114452. [PMID: 38321671 DOI: 10.1016/j.ecoenv.2022.114452] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/25/2022] [Accepted: 12/16/2022] [Indexed: 02/08/2024]
Abstract
Microcystis aeruginosa is the competitively dominant algal species in eutrophic waters and poses a serious threat to the aquatic ecological environment. To investigate the effects of eucalyptus tannins (TFL) and black water in eucalyptus plantations on M. aeruginosa, this study exposed M. aeruginosa to different concentrations (0 (control), 20, 50, 80, 110, and 140 mg L-1) of tannic acid (TA; hydrolyzed tannins, HT; reagent tannin), epigallocatechin gallate (EGCG; condensed tannins, CT; reagent tannin), eucalyptus tannins (TFL, complex tannin) and mixed TFL + Fe3+ solution (tannin: Fe3+ molar ratio = 1:10). The cell density, chlorophyll-a (Chl-a) content, superoxide dismutase (SOD) activity, malondialdehyde (MDA) and soluble protein (SP) contents of algae under tannin stress were determined, and the algal cell density treated with under the combination of TFL and Fe3+ was determined. The results showed a reduction in the Chl-a content of algal cells, which inhibited photosynthesis; leading to membrane lipid peroxidation; and the complexation of soluble proteins resulting in blocked protein synthesis were the main mechanisms by which tannins inhibited the growth of M. aeruginosa. TFL achieved the same inhibition of algal cells as the tannin reagent at the same concentration. At 4 d, TFL at 80 mg L-1 and above could achieve more than 54.87 % algal density inhibition. The inhibition rate of 80 mg L-1 and above TFL + Fe3+ on algal density was more than 75 %, indicating that TFL + Fe3+ had a stronger inhibitory effect on algal density. The results may facilitate the resource utilization of eucalyptus harvesting residues, explorations of the potential application of eucalyptus tannins in the control of M. aeruginosa, and provide new ideas for ecological algal inhibition in eucalyptus plantations.
Collapse
Affiliation(s)
- Liujun Xie
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Zhengxin Ma
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Gairen Yang
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China.
| | - Yuhan Huang
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Tianyi Wen
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Yusong Deng
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Jingchao Sun
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Siyu Zheng
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Fangfang Wu
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| | - Kai Huang
- China Guangxi Hydraulic Research Institute, Nanning 530023, China; Guangxi Key Laboratory of Water Engineering Materials and Structures Nanning, 530023, China
| | - Jinhua Shao
- China Guangxi Hydraulic Research Institute, Nanning 530023, China; Guangxi Key Laboratory of Water Engineering Materials and Structures Nanning, 530023, China
| |
Collapse
|
9
|
Ye J, Hua S, Liu S, Tian F, Ji X, Li Y, Hou M, Xu W, Meng L, Sun L. Enantioselective effects of chiral fragrance carvone (L- and D-carvone) on the physiology, oxidative damage, synthesis, and release of microcystin-LR in Microcystis aeruginosa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158631. [PMID: 36084777 DOI: 10.1016/j.scitotenv.2022.158631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Carvone is a widely used chiral fragrance with two isomers (L-carvone and D-carvone). D-carvone smells like a caraway, whereas L-carvone smells like mint. Carvone imposes a potential burden on the aquatic ecosystem. However, the enantioselective toxic effect of carvone enantiomers on cyanobacteria remains unknown. This study aims to investigate the effects of L- and D-carvone on the physiological processes and related gene transcription (phoU, rbcL, and mcyH) in M. aeruginosa. Results showed that in the presence of L- and D-carvone, the oxidative damage and inhibitory effects on growth occurred in a concentration-dependent manner. The contents of chlorophyll a and protein and the rbcL transcription level were inhibited in M. aeruginosa. In addition, intracellular adenosine triphosphate (ATP) was heavily depleted because of various biological processes, including growth, oxidation reactions, and gene regulation. Meanwhile, L- and D-carvone stimulated the production and release of MC-LR and upregulated the expression level of the MC-LR-related gene mcyH. Intracellular MC-LR likely leaked to the water body under L-carvone exposure, posing a potential threat to the water environment. This study indicated that L- and D-carvone can regulate the physiological and metabolic activity of M. aeruginosa and show enantioselective toxic effects. The findings will also provide important insights into the influence of chiral fragrance on cyanobacterial blooms. Furthermore, this study will guide the safe application of chiral fragrance as personal care products.
Collapse
Affiliation(s)
- Jing Ye
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Sijia Hua
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Sijia Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Fuxiang Tian
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xiyan Ji
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yuanting Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Meifang Hou
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Wenwu Xu
- School of Railway Transportation, Shanghai Institute of Technology, Shanghai 201418, China
| | - Liang Meng
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Lijuan Sun
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Science, Shanghai 201403, China
| |
Collapse
|
10
|
Zong P, Liu Y, Chen H, Miao S, Lian K, Li C, Zhang H, Zhang M. Inhibitory mechanism of nano-copper carbon composite on Microcystis aeruginosa. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Phytochemical Profiling, Antioxidant, Antimicrobial and Cholinesterase Inhibitory Effects of Essential Oils Isolated from the Leaves of Artemisia scoparia and Artemisia absinthium. Pharmaceuticals (Basel) 2022; 15:ph15101221. [PMID: 36297333 PMCID: PMC9607455 DOI: 10.3390/ph15101221] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
The current studies were focused on the phytochemical profiling of two local wild Artemisia species, Artemisia scoparia and Artemisia absinthium leaves’ essential oils, extracted via the hydro distillation method along with evaluation of their antioxidant as well as antimicrobial effects. The constituents of EOs were identified using a combined gas chromatography-mass spectrometric (GC-MS) technique. A total of 25 compounds in A. scoparia essential oil (EOAS) were identified, and 14 compounds with percentage abundance of >1% were tabulated, the major being tocopherol derivatives (47.55%). A total of nine compounds in Artemisia absinthium essential oil (EOAA) were enlisted (% age > 1%), the majority being oleic acid derivatives (41.45%). Strong antioxidant effects were pronounced by the EOAS in DPPH (IC50 = 285 ± 0.82 µg/mL) and in ABTS (IC50 = 295 ± 0.32 µg/mL) free radical scavenging assays. Both the EOs remained potent in inhibiting the growth of bacterial species; Escherichia coli (55−70%) and Shigella flexneri (60−75%) however remained moderately effective against Bacillus subtilis as well as Staphylococcus aureus. Both EOAS and EOAA strongly inhibited the growth of the tested fungal species, especially Aspergillus species (up to 70%). The oils showed anti-cholinesterase potential by inhibiting both Acetylcholinesterase (AChE; IC50 = 30 ± 0.04 µg/mL (EOAS), 32 ± 0.05 µg/mL (EOAA) and Butyrylcholinesterase (BChE; IC50 = 34 ± 0.07 µg/mL (EOAS), 36 ± 0.03 µg/mL (EOAA). In conclusion, the essential oils of A. scoparia and A. absinthium are promising antioxidant, antimicrobial and anticholinergic agents with a different phytochemical composition herein reported for the first time.
Collapse
|
12
|
Zhang W, Bao G, Tang W, Dai G, Xiao J, Liu J, Wang Z, Xi J. Physiological response of barley seedlings to salinity and artemisinin combined stresses under freeze-thaw environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:70552-70563. [PMID: 35588037 DOI: 10.1007/s11356-022-20800-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
In the Qinghai-Tibet Plateau, both the large daily temperature difference and soil salinization make plants susceptible to abiotic stresses such as freeze-thaw and salinity. Meanwhile, crops in this area can be affected by artemisinin, an antimalarial secondary metabolite produced in Artemisia. Under freeze-thaw and salinity stresses, artemisinin was induced as an allelopathy stress factor to explore the physiological response of highland barley, including the relative electrical conductivity (RC), soluble protein (SP) content, malondialdehyde (MDA) content, antioxidant enzyme activity, and water use efficiency (WUE). Compared with the control group, the contents of RC and MDA in seedling leaves under stress were significantly increased by 24.74-402.37% and 20.18-77.95%, indicating that cell membrane permeability was greatly damaged, and WUE was significantly decreased by 15.77-238.59%. The activity of enzymes increased under single stress and decreased under combined stress. Salinity, artemisinin, and freeze-thaw stress show a synergistic relationship; that is, compound stresses were more serious than single stress. In summary, the results of this study revealed the physiological and ecological responses of barley seedlings under different habitat stresses and the interactions among different stress factors.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education (Jilin University), Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Guozhang Bao
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education (Jilin University), Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China.
| | - Wenyi Tang
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education (Jilin University), Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Gejun Dai
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education (Jilin University), Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Jing Xiao
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education (Jilin University), Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Jiapeng Liu
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education (Jilin University), Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Zhao Wang
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education (Jilin University), Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China
| | - Jinghui Xi
- College of Plant Science, Jilin University, Changchun, 130062, China
| |
Collapse
|
13
|
Li HY, Ye YD, Zhang QJ, Du CH, Li HM, Yin L. Effects of Cinnamomum camphora Leaves Extracts-Flocculants Composite Algaecide on Microcystis aeruginosa Growth and Microcystins Release. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:409-416. [PMID: 35536319 DOI: 10.1007/s00128-022-03534-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
In this study, a composite algaecide containing flocculants and Cinnamomum. camphora leaves extracts (CCCLE) were synthesized. The inhibition and flocculation effects on Microcystis aeruginosa (M. aeruginosa) were investigated, and the release of microcystin-LR (MC-LR) was determined. Results showed that the CCLEC composite algaecide was effective for the inhibition and flocculation of M. aeruginosa, and the optimal dose of CCLEC composite algaecide was 1.8%, which resulted in an algae inhibition ratio of 98.00% and a flocculation efficiency of 99.44% within 5 days of M. aeruginosa culturing. Besides, the total amount of MC-LR decreased by 80.04% on day 20 compared with the control group, while the concentration of intracellular MC-LR on day 5 was 36.69 μg L-1, which was related to a portion of cells underwent apoptosis-like cell death under CCLEC composite algaecide stress. The results of this study may improve our understanding of the M. aeruginosa control by CCCLE composite algaecide.
Collapse
Affiliation(s)
- Han-Yun Li
- Jinling High School, Nanjing, 210005, China
| | | | | | - Cun-Hao Du
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, MOE, School of Environment, Hohai University, Nanjing, 210098, China
| | - Hui-Ming Li
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Li Yin
- School of Environment, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
14
|
Sang W, Du C, Liu X, Ni L, Li S, Xu J, Chen X, Xu J, Xu C. Effect of artemisinin sustained-release algaecide on the growth of Microcystis aeruginosa and the underlying physiological mechanisms. RSC Adv 2022; 12:16094-16104. [PMID: 35733687 PMCID: PMC9150219 DOI: 10.1039/d2ra00065b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/03/2022] [Indexed: 11/21/2022] Open
Abstract
The aim of the study was to determine the effect of phycobiliprotein and esterase activity of Microcystis aeruginosa cells on the effect of artemisinin slow-release algaecide. We analyzed the sustained stress of artemisinin slow-release algaecide and the associated changes in density, phycobiliprotein, and esterase activity in Microcystis aeruginosa (M. aeruginosa) and monitored changes in the physical and chemical properties of the algae during the process. The results showed that the cumulative release concentration of artemisinin sustained-release algaecide in different media was similar. When the total amount of artemisinin was kept at 5.00–5.30 mg L−1, the effect of artemisinin on algal cells and the release amount of slow-release algicides reached a dynamic balance, and the equilibrium concentration could inhibit the growth of M. aeruginosa. Artemisinin slow-release algaecide slowly released artemisinin and inhibited the content of phycobiliprotein in M. aeruginosa. The esterase activity recovered after 15 days and continued to increase. Artemisinin showed no harmful effect on M. aeruginosa and increased the metabolic activity of algal cells. M. aeruginosa may undergo programmed cell death, keeping the cell membrane structure intact. The use of micro-nano materials can increase the effect of allelochemicals on Microcystis aeruginosa. The slow release of allelopathic active substances from the algae inhibitor reduces the algal density of Microcystis aeruginosa cells. However, the enhanced metabolic activity of algal cells may be due to artemisinin causing PCD in Microcystis cells, keeping the cell membrane structure intact, thereby preventing algal cell rupture and release of a large amount of algal toxins. This study focuses on changes in algal density, phycobiliprotein and esterase activity of M. aeruginosa under the continuous stress of artemisinin sustained-release algaecide and the analysis of the physicochemical changes in the algae.![]()
Collapse
Affiliation(s)
- Wenlu Sang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, MOE, School of Environment, Hohai University Nanjing 210098 China
| | - Cunhao Du
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, MOE, School of Environment, Hohai University Nanjing 210098 China
| | - Xiaguo Liu
- Jiangsu Environmental Protection Group Suzhou Co., Ltd Suzhou 215000 China
| | - Lixiao Ni
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, MOE, School of Environment, Hohai University Nanjing 210098 China
| | - Shiyin Li
- School of Environment, Nanjing Normal University Nanjing 210097 China
| | - Jiawei Xu
- College of Water Conservancy and Hydropower Engineering, Hohai University 1 Xikang Road Nanjing 210098 China
| | - Xuqing Chen
- Cyanobacteria Management Office Wuxi 214071 China
| | - Jian Xu
- Cyanobacteria Management Office Wuxi 214071 China
| | - Chu Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, MOE, School of Environment, Hohai University Nanjing 210098 China
| |
Collapse
|
15
|
Rodrigues NB, Pitol DL, Tocchini de Figueiredo FA, Tenfen das Chagas Lima AC, Burdick Henry T, Mardegan Issa JP, de Aragão Umbuzeiro G, Pereira BF. Microcystin-LR at sublethal concentrations induce rapid morphology of liver and muscle tissues in the fish species Astyanax altiparanae (Lambari). Toxicon 2022; 211:70-78. [DOI: 10.1016/j.toxicon.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/13/2022] [Accepted: 03/13/2022] [Indexed: 11/25/2022]
|