1
|
Zhou Y, Gao Y, Chen X, Zhang H, Jiang Q, Qiu JW, Ip JCH, Sun J. Juvenile apple snails as new biomonitors of freshwater pollution: Insight into copper and lead toxicity and underlying molecular mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 967:178844. [PMID: 39954471 DOI: 10.1016/j.scitotenv.2025.178844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/21/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Environmental pollutants, such as heavy metals, pose significant threats to organisms across different trophic levels in the aquatic environment. Although the effects of heavy metals have been extensively studied in a limited number of model organisms, their toxicity and underlying mechanisms remain poorly understood in numerous aquatic invertebrates. Here, we underscore the potential of the apple snail Pomacea canaliculata as an environmental bioindicator for freshwater heavy metal pollution, advancing biomonitoring methodologies. By integrating physiological, enzymatic, transcriptomic, and proteomic analyses, we conducted a thorough evaluation of the toxic effects and mechanisms of copper (Cu) and lead (Pb) on juvenile snails. Our results demonstrated that juvenile P. canaliculata was more sensitive to Cu and Pb compared with other aquatic invertebrates with heart rate drop serving as a reliable indicator of metal exposure. Antioxidant enzyme activity exhibited a distinct response, increasing at low Pb concentrations but decreasing at high concentrations, while Cu suppressed the activity even at a low concentration. At the molecular level, a total of 467 and 267 differentially expressed genes and 629 and 204 differentially expressed proteins were identified in the juveniles exposed to sublethal concentrations of Cu (40 μg/L) and Pb (1500 μg/L) for 72 h, respectively. Functional analysis further revealed distinct molecular toxicity in P. canaliculata. Under Pb exposure, key pathways related to cellular oxidant detoxification, transmembrane transporter activity, and ATP hydrolysis activity were enriched, while Cu significantly activated chitin binding, oxidoreductase activity and extracellular region. Overall, our findings highlight the exceptional capacity of P. canaliculata juveniles to differentiate the toxicity and molecular toxic mechanisms of heavy metals, establishing this species as an important and sensitive biomonitor for accurately assessing freshwater heavy metal pollution. This advancement enhances our understanding of ecological health and offers valuable tools for policymakers and conservationists to address the impacts of environmental contaminants.
Collapse
Affiliation(s)
- Yufei Zhou
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Laoshan Laboratory, Qingdao 266237, China
| | - Yue Gao
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Laoshan Laboratory, Qingdao 266237, China
| | - Xi Chen
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Laoshan Laboratory, Qingdao 266237, China
| | - Hongyin Zhang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Laoshan Laboratory, Qingdao 266237, China
| | - Qingqiu Jiang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Laoshan Laboratory, Qingdao 266237, China
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong
| | | | - Jin Sun
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Laoshan Laboratory, Qingdao 266237, China.
| |
Collapse
|
2
|
Leão GR, Silva LPS, Damacena-Silva L, Rocha TL. Toxicity of environmental chemicals in gastropods' hemocytes: Trends and insights based on investigations using Biomphalaria spp. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177522. [PMID: 39561895 DOI: 10.1016/j.scitotenv.2024.177522] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/28/2024] [Accepted: 11/10/2024] [Indexed: 11/21/2024]
Affiliation(s)
- Gabrielly Rodrigues Leão
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Luiz Phelipe Souza Silva
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Luciana Damacena-Silva
- Research Laboratory on Parasite-Host Interaction, State University of Goiás, Anápolis, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
3
|
Imiuwa ME, Baynes A, Kanda R, Routledge EJ. Environmentally relevant concentrations of the tricyclic antidepressant, amitriptyline, affect feeding and reproduction in a freshwater mollusc. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116656. [PMID: 38945099 DOI: 10.1016/j.ecoenv.2024.116656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
Antidepressant drugs (ADDs) are one of the most extensively used pharmaceuticals globally. They act at particularly low therapeutic concentrations to modulate monoamine neurotransmission, which is one of the most evolutionary conserved pathways in both humans and animal species including invertebrates. As ADDs are widely detected in the aquatic environment at low concentrations (ng/L to low µg/L), their potential to exert drug-target mediated effects in aquatic species has raised serious concerns. Amitriptyline (AMI) is the most widely used tricyclic ADD, while monoamines, the target of ADDs, are major bioregulators of multiple key physiological processes including feeding, reproduction and behaviour in molluscs. However, the effects of AMI on feeding, reproduction and mating behaviour are unknown in molluscs despite their ecological importance, diversity and reported sensitivity to ADDs. To address this knowledge gap, we investigated the effects of environmentally relevant concentrations of AMI (0, 10, 100, 500 and 1000 ng/L) on feeding, reproduction and key locomotor behaviours, including mating, in the freshwater gastropod, Biomphalaria glabrata over a period of 28 days. To further provide insight into the sensitivity of molluscs to ADDs, AMI concentrations (exposure water and hemolymph) were determined using a novel extraction method. The Fish Plasma Model (FPM), a critical tool for prioritization assessment of pharmaceuticals with potential to cause drug target-mediated effects in fish, was then evaluated for its applicability to molluscs for the first time. Disruption of food intake (1000 ng/L) and reproductive output (500 and 1000 ng/L) were observed at particularly low hemolymph levels of AMI, whereas locomotor behaviours were unaffected. Importantly, the predicted hemolymph levels of AMI using the FPM agreed closely with the measured levels. The findings suggest that hemolymph levels of AMI may be a useful indicator of feeding and reproductive disruptions in wild population of freshwater gastropods, and confirm the applicability of the FPM to molluscs for comparative pharmaceutical hazard identification.
Collapse
Affiliation(s)
- Maurice E Imiuwa
- Environmental Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, Middlesex UB8 3PH, UK; Department of Animal and Environmental Biology, Faculty of Life Sciences, University of Benin, PMB 1154, Benin City, Nigeria.
| | - Alice Baynes
- Environmental Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, Middlesex UB8 3PH, UK
| | - Rakesh Kanda
- Environmental Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, Middlesex UB8 3PH, UK
| | - Edwin J Routledge
- Environmental Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, Middlesex UB8 3PH, UK.
| |
Collapse
|
4
|
Emmanouil C, Giannakis I, Kyzas GZ. Terrestrial bioassays for assessing the biochemical and toxicological impact of biosolids application derived from wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172718. [PMID: 38677438 DOI: 10.1016/j.scitotenv.2024.172718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/02/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Wastewater treatment plants (WWTP) are facilities where municipal wastewater undergoes treatment so that its organic load and its pathogenic potential are minimized. Sewage sludge is a by-product of this process and when properly treated is preferentially called "biosolids". These treatments may include some or most of the following: thickening, dewatering, drying, digestion, composting, liming. Nowadays it is almost impossible to landfill biosolids, which however can well be used as crop fertilizers. Continuous or superfluous biosolids fertilization may negatively affect non-target organisms such as soil macro-organisms or even plants. These effects can be depicted through bioassays on terrestrial animals and plants. It has been shown that earthworms have been affected to various degrees on the following endpoints: pollutants' bioaccumulation, viability, reproduction, avoidance behavior, burrowing behavior. Collembola have been affected on viability, reproduction, avoidance behavior. Other terrestrial organisms such as nematodes and diplopods have also shown adverse health effects. Phytotoxicity have been caused by some biosolids regimes as measured through the following endpoints: seed germination, root length, shoot length, shoot biomass, root biomass, chlorophyll content, antioxidant enzyme activity. Very limited statistical correlations between pollutant concentrations and toxicity endpoints have been established such as between juvenile mortality (earthworms) and As or Ba concentration in the biosolids, between juvenile mortality (collembola) and Cd or S concentration in the biosolids, or between phytotoxicity and some extractable metals in leachates or aquatic extracts from the biosolids; more correlations between physicochemical characteristics and toxicity endpoints have been found such as between phytotoxicity and ammonium N in biosolids or their liquid extracts, or between phytotoxicity and salinity. An inverse correlation between earthworm/collembola mortality and stable organic matter has also been found. Basing the appropriateness of biosolids only on chemical analyses for pollutants is not cost-effective. To enable risk characterization and subsequent risk mitigation it is important to apply a battery of bioassays on soil macro-organisms and on plants, utilizing a combination of endpoints and established protocols. Through combined analytical quantification and toxicity testing, safe use of biosolids in agriculture can be achieved.
Collapse
Affiliation(s)
- Christina Emmanouil
- School of Spatial Planning and Development, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Ioannis Giannakis
- School of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - George Z Kyzas
- Hephaestus Laboratory, Department of Chemistry, School of Science, Democritus University of Thrace, Kavala, Greece.
| |
Collapse
|
5
|
Souza-Silva G, de Souza CR, Pereira CADJ, Dos Santos Lima W, Mol MPG, Silveira MR. Using freshwater snail Biomphalaria glabrata (Say, 1818) as a biological model for ecotoxicology studies: a systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28506-28524. [PMID: 36701061 DOI: 10.1007/s11356-023-25455-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Over time, a growing increase in human pollutants in the aquatic environment has been observed. The global presence of residues in water bodies reinforces the need to develop improved methods to detect them and evaluate their ecotoxicological effects in aquatic environments. Thus, this study aimed to present the main assays using Biomphalaria glabrata as a biological model for ecotoxicological studies. We performed a systematic literature review with data published up to June 2022 on the Web of Science, SCOPUS, Science Direct, PubMed, and SciELO databases. Thirty studies were selected for this review after screening. Biomphalaria glabrata has been studied as an ecotoxicological model for different substances through toxicity, embryotoxicity, cytotoxicity, genotoxicity, and bioaccumulation assays. Studies evaluating the impact of B. glabrata exposure to several substances have reported effects on their offspring, as well as toxicity and behavioral and reproductive effects. This review presents various assays using B. glabrata as a biological model for ecotoxicological studies. The use of a representative species of ecosystems from tropical regions is a necessary tool for tropical environmental monitoring. It was observed that the freshwater snail B. glabrata was effective for the evaluation of the ecotoxicity of several types of chemical substances, but further studies are needed to standardize the model.
Collapse
Affiliation(s)
- Gabriel Souza-Silva
- Postgraduate Program in Medicines and Pharmaceutical Assistance, Faculty of Pharmacy, Federal University of Minas Gerais-Belo Horizonte/MG, Belo Horizonte, Brazil.
| | - Clessius Ribeiro de Souza
- Postgraduate Program in Medicines and Pharmaceutical Assistance, Faculty of Pharmacy, Federal University of Minas Gerais-Belo Horizonte/MG, Belo Horizonte, Brazil
| | - Cíntia Aparecida de Jesus Pereira
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais-Belo Horizonte/MG, Belo Horizonte, Brazil
| | - Walter Dos Santos Lima
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais-Belo Horizonte/MG, Belo Horizonte, Brazil
| | - Marcos Paulo Gomes Mol
- Department of Research and Development, Ezequiel Dias Foundation-Belo Horizonte/MG, Belo Horizonte, Brazil
| | - Micheline Rosa Silveira
- Postgraduate Program in Medicines and Pharmaceutical Assistance, Faculty of Pharmacy, Federal University of Minas Gerais-Belo Horizonte/MG, Belo Horizonte, Brazil
| |
Collapse
|
6
|
França WWM, da Silva AM, Diniz EGM, Silva HAMF, Pereira DR, De Melo AMMA, Coelho LCBB, de Azevedo Albuquerque MCP, de Araújo HDA, de Lima Aires A. Toxic, cytotoxic and genotoxic effect of plumbagin in the developmental stages of Biomphalaria glabrata (Say, 1818-intermediate host) and cercaricidal activity against the infectious agent of schistosomiasis mansoni. PEST MANAGEMENT SCIENCE 2022; 78:5172-5183. [PMID: 36053991 DOI: 10.1002/ps.7136] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/07/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Snails of the genus Biomphalaria are intermediate hosts of Schistosoma mansoni, the main etiological agent of schistosomiasis mansoni, which affects about 236.6 million people in tropical and subtropical regions of the world. The World Health Organization recommends the population control of vector snails as one of the strategies to reduce the prevalence and incidence of schistosomiasis. In this study, molluscicidal and antiparasitic activities of plumbagin, a naturally sourced naphthoquinone with a range of biological effects, were evaluated against B. glabrata and cercariae of S. mansoni. RESULTS After 24 h of exposure, plumbagin demonstrated molluscicidal activity at low concentrations against embryos (LC50 of 0.56, 0.93, 0.68, 0.51 and 0.74 μg mL-1 for the blastula, gastrula, trochophore, veliger and hippo stage, respectively) and adult snails (LC50 of 3.56 μg mL-1 ). There were no changes in exposed snails' fecundity or fertility; however, plumbagin was able to increase the frequency of DNA damage and the number of hemocytes, with apoptosis and binucleation being the main hemocyte alterations. In addition, plumbagin showed death of S. mansoni cercariae in the concentration of 1.5 μg mL-1 in 60 min, while showing moderate toxicity to Artemia salina. CONCLUSION Plumbagin proved to be a promising substance for the control of B. glabrata population, intermediate host of S. mansoni, as well as the cercariae, infective stage for humans (definitive host), while being moderately toxic to A. salina, a crustacean widely used in ecotoxicity tests. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wilza Wanessa Melo França
- Centro de Biociências, Programa de Pós-graduação em Morfotecnologia, Universidade Federal de Pernambuco, Recife, Brazil
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, Recife, Brazil
| | - Adriana Maria da Silva
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, Recife, Brazil
| | | | | | - Dewson Rocha Pereira
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Brazil
| | | | | | - Mônica Camelo Pessoa de Azevedo Albuquerque
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, Recife, Brazil
- Departamento de Medicina Tropical, Centro de Ciências Médicas, Universidade Federal de Pernambuco, Recife, Brazil
| | - Hallysson Douglas Andrade de Araújo
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Brazil
- Departamento de Bioquímica, Universidade Federal de Pernambuco (UFPE), Recife, Brazil
| | - André de Lima Aires
- Centro de Biociências, Programa de Pós-graduação em Morfotecnologia, Universidade Federal de Pernambuco, Recife, Brazil
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, Recife, Brazil
- Departamento de Medicina Tropical, Centro de Ciências Médicas, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
7
|
Caixeta MB, Araújo PS, Pereira AC, Tallarico LDF, Rocha TL. Biomphalaria embryotoxicity test (BET): 60 years of research crossing boundaries for developing standard protocols. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155211. [PMID: 35421466 DOI: 10.1016/j.scitotenv.2022.155211] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Snail's embryotoxicity test is a suitable approach for toxicity assay of traditional and emerging pollutants, environmental risk assessment, as well as screening and development of new molluscicides. Among the snail species, Biomphalaria spp. has been indicated as a promising model system for developing standardized test protocols for assessing the chemical toxicity using early developmental stages. Thus, the current study aimed to review the data available in the scientific literature concerning the experimental approach, type of chemicals and the response of multiple biomarkers (survival, hatching rate, development delays, morphological and behavior changes) in snail embryos applied in toxicity tests. Revised data showed that the use of Biomphalaria embryos to assess chemical toxicity began in 1962. Snail's embryotoxicity test was applied mainly for analyzing the toxicity and development of new molluscicides, while its use in ecotoxicological studies is emerging. Biomphalaria glabrata was the main species analyzed. Embryos exposed to chemicals showed bioaccumulation, mortality, hatching inhibition, development delays, and morphological malformations, which were classified into four categories (hydropic, shell, cephalic and unspecified malformations). Besides, research gaps and recommendations for future research are indicated. Overall, the results showed that the Biomphalaria embryotoxicity test (BET) is a suitable tool for toxicity and health risk assessment.
Collapse
Affiliation(s)
- Maxwell Batista Caixeta
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Paula Sampaio Araújo
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Aryelle Canedo Pereira
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | | | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
8
|
Aguiar TWDA, Batista JJ, Ferreira SADO, Sampaio MDVL, Pereira DR, Ferreira MRA, Soares LAL, Melo AMMDA, Albuquerque MCPDA, Aires ADL, de Araújo HDA, Coelho LCBB. Effect of Bauhinia monandra Kurz Leaf Preparations on Embryonic Stages and Adult Snails of Biomphalaria glabrata (Say, 1818), Schistosoma mansoni Cercariae and Toxicity in Artemia salina. Molecules 2022; 27:4993. [PMID: 35956946 PMCID: PMC9370106 DOI: 10.3390/molecules27154993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Biomphalaria glabrata snails constitute the main vector of schistosomiasis in Brazil, and Bauhinia monandra Kurz, the leaves of which contain BmoLL lectin with biocidal action, is a plant widely found on continents in which the disease is endemic. This work describes the composition of B. monandra preparations and the effect on embryos and adult snails, their reproduction parameters and hemocytes. We also describe the results of a comet assay after B. glabrata exposure to sublethal concentrations of the preparations. Additionally, the effects of the preparations on S. mansoni cercariae and environmental monitoring with Artemia salina are described. In the chemical evaluation, cinnamic, flavonoid and saponin derivatives were detected in the two preparations assessed, namely the saline extract and the fraction. Both preparations were toxic to embryos in the blastula, gastrula, trochophore, veliger and hippo stages (LC50 of 0.042 and 0.0478; 0.0417 and 0.0419; 0.0897 and 0.1582; 0.3734 and 0.0974; 0.397 and 0.0970 mg/mL, respectively) and to adult snails (LC50 of 6.6 and 0.87 mg/mL, respectively), which were reproductively affected with decreased egg deposition. In blood cell analysis, characteristic cells for apoptosis, micronucleus and binucleation were detected, while for comet analysis, different degrees of nuclear damage were detected. The fraction was able to cause total mortality of the cercariae and did not present environmental toxicity. Therefore, B. monandra preparations are promising in combating schistosomiasis since they can control both the intermediate host and eliminate the infectious agent, besides being safe to the environment.
Collapse
Affiliation(s)
- Thierry Wesley de Albuquerque Aguiar
- Centro de Biociências, Departamento de Bioquímica, Universidade Federal de Pernambuco (UFPE), Avenida Prof. Moraes Rego, Cidade Universitária, n 1235, Recife 50670-420, PE, Brazil
| | - José Josenildo Batista
- Centro de Biociências, Departamento de Bioquímica, Universidade Federal de Pernambuco (UFPE), Avenida Prof. Moraes Rego, Cidade Universitária, n 1235, Recife 50670-420, PE, Brazil
| | - Silvio Assis de Oliveira Ferreira
- Centro de Biociências, Departamento de Bioquímica, Universidade Federal de Pernambuco (UFPE), Avenida Prof. Moraes Rego, Cidade Universitária, n 1235, Recife 50670-420, PE, Brazil
| | - Maíra de Vasconcelos Lima Sampaio
- Centro de Biociências, Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco (UFPE), Avenida Prof. Moraes Rego, Cidade Universitária, n 1235, Recife 50670-420, PE, Brazil
| | - Dewson Rocha Pereira
- Centro de Biociências, Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco (UFPE), Avenida Prof. Moraes Rego, Cidade Universitária, n 1235, Recife 50670-420, PE, Brazil
| | - Magda Rhayanny Assunção Ferreira
- Centro de Ciências da Saúde, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco (UFPE), Avenida Prof. Arthur de Sá, Cidade Universitária, s/n, Recife 50740-521, PE, Brazil
| | - Luiz Alberto Lira Soares
- Centro de Ciências da Saúde, Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco (UFPE), Avenida Prof. Arthur de Sá, Cidade Universitária, s/n, Recife 50740-521, PE, Brazil
| | - Ana Maria Mendonça de Albuquerque Melo
- Centro de Biociências, Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco (UFPE), Avenida Prof. Moraes Rego, Cidade Universitária, n 1235, Recife 50670-420, PE, Brazil
| | - Mônica Camelo Pessoa de Azevedo Albuquerque
- Centro de Ciências Médicas—Área Acadêmica de Medicina Tropical, Universidade Federal de Pernambuco (UFPE), Avenida Prof. Moraes Rego, Cidade Universitária, n 531-611, Recife 50670-901, PE, Brazil
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco (UFPE), Avenida Prof. Moraes Rego, Cidade Universitária, n 1235, Recife 50670-901, PE, Brazil
| | - André de Lima Aires
- Centro de Ciências Médicas—Área Acadêmica de Medicina Tropical, Universidade Federal de Pernambuco (UFPE), Avenida Prof. Moraes Rego, Cidade Universitária, n 531-611, Recife 50670-901, PE, Brazil
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco (UFPE), Avenida Prof. Moraes Rego, Cidade Universitária, n 1235, Recife 50670-901, PE, Brazil
| | - Hallysson Douglas Andrade de Araújo
- Centro de Biociências, Departamento de Bioquímica, Universidade Federal de Pernambuco (UFPE), Avenida Prof. Moraes Rego, Cidade Universitária, n 1235, Recife 50670-420, PE, Brazil
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco (UFPE), Avenida Prof. Moraes Rego, Cidade Universitária, n 1235, Recife 50670-901, PE, Brazil
| | - Luana Cassandra Breitenbach Barroso Coelho
- Centro de Biociências, Departamento de Bioquímica, Universidade Federal de Pernambuco (UFPE), Avenida Prof. Moraes Rego, Cidade Universitária, n 1235, Recife 50670-420, PE, Brazil
| |
Collapse
|
9
|
Paredes MG, Bianco KA, Menéndez-Helman RJ, Kristoff G. Aquatic Contamination in Lugano Lake (Lugano Lake Ecological Reserve, Buenos Aires, Argentina) Cause Negative Effects on the Reproduction and Juvenile Survival of the Native Gastropod Biomphalaria straminea. Front Physiol 2022; 13:954868. [PMID: 35910565 PMCID: PMC9329693 DOI: 10.3389/fphys.2022.954868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/21/2022] [Indexed: 12/04/2022] Open
Abstract
Lugano Lake is located in an Ecological Reserve of Buenos Aires City. Biomonitoring of its water quality is essential due to its importance as a place for recreation and protection of native species. Biomphalaria straminea is a native hermaphrodite aquatic gastropod that inhabits different freshwater bodies of Argentina and was recently selected as a potential bioindicator. We propose this study as a first approach to assessing specific organisms’ use in biomonitoring of urban wild reserves, and the usefulness of reproduction assays. B. straminea survival, behavior, reproduction success and offspring survival after the exposure to water samples from Lugano Lake (L1, L2, and L3) were evaluated. Temperature, pH, conductivity and dissolved oxygen were registered in situ. Samples were transported to the laboratory and chemical analysis and bioassays were performed using 20 snails per site. A control group with tap water was added. Egg masses were separated, exposed individually and observed daily using a stereoscopic microscope. After hatching, juveniles were placed in tap water and offspring survival was registered at the first, second, third and fourth months after the beginning of the assay. High levels of conductivity, turbidity and nutrients were obtained. Ammonium and nitrite were higher than the guideline level for the protection of aquatic life. During the bioassay 20% of the snails (L2 and L3) showed abnormally protruding of the head-food region. The number of eggs and embryonated eggs per mass did not differ between treatments. Egg masses exposed to water samples from the lake presented overlapping and abnormal eggs and arrested embryos. Besides, low % of hatching (L1: 33%, L2: 42%, and L3: 16%) and juvenile survival after the first (L1:14%; L2:78%) and second month (L1: 60%) were noted. In the control group, 85% of hatching and 100%–90% of survival were observed. Our results suggests the presence of pollutant in the lake. B. straminea seems to be a sensitive local species. Biomphalaria spp. reproduction assays can provide a valuable endpoint for toxicity and risk assessments and a usefulness tool for biomonitoring water quality.
Collapse
Affiliation(s)
- María Gimena Paredes
- Laboratorio de Evaluación Ecotoxicológica del Agua: Invertebrados Nativos y Otros Modelos, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN)-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Karina Alesia Bianco
- Laboratorio de Evaluación Ecotoxicológica del Agua: Invertebrados Nativos y Otros Modelos, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN)-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Renata J. Menéndez-Helman
- Laboratorio de Enzimología, Estrés Oxidativo y Metabolismo, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN)-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gisela Kristoff
- Laboratorio de Evaluación Ecotoxicológica del Agua: Invertebrados Nativos y Otros Modelos, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN)-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
- *Correspondence: Gisela Kristoff,
| |
Collapse
|
10
|
Li YQ, Chen CM, Liu N, Wang L. Cadmium-induced ultrastructural changes and apoptosis in the gill of freshwater mussel Anodonta woodiana. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:23338-23351. [PMID: 34811609 DOI: 10.1007/s11356-021-16877-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
This study investigated the acute toxicity of cadmium (Cd) to the freshwater mussel Anodonta woodiana. The freshwater mussels were exposed to five concentrations of Cd (0 mg/L, 8.43 mg/L, 16.86 mg/L, 33.72 mg/L, and 67.45 mg/L) for up to 96 h. The 24-h, 48-h, 72-h, and 96-h LC50 values for Cd were estimated as 562.3 mg/L, 331.1 mg/L, 182.0 mg/L, and 134.9 mg/L, respectively. Caspase-3, caspase-8, caspase-9, and Ca-ATPase activities; protein and H2O2 levels; DNA fragmentation; and ultrastructure of the gill were also investigated. The activities of caspase-3 and caspase-9 in mussels were increased by Cd in a dose-dependent manner, where higher doses of Cd (33.72 mg/L and 67.45 mg/L) significantly increased the enzyme activities compared to the controls (P < 0.05). The caspase-8 activity was significantly depressed by a low dose of Cd (8.43 mg/L) but was clearly induced by higher doses of Cd (16.86 mg/L, 33.72 mg/L, and 67.45 mg/L) (P < 0.05). The Ca-ATPase activity and H2O2 levels were elevated and reached maximum values under the medium dose of Cd (16.86 mg/L). However, protein levels were decreased by Cd in an inverse dose-dependent manner. In the gills of the mussels, Cd treatment induced DNA fragmentation as demonstrated by DNA ladders observed via agarose gel electrophoresis. Moreover, ultrastructural alterations in gill cells of mussels treated with Cd (16.86 mg/L and 67.45 mg/L) for 96 h were observed by electronic microscopy. The ultrastructure abnormalities were characterized by the following features: (1) a disordered arrangement and breaking off of microvilli of epithelial cells; (2) chromatin condensed near the nuclear membrane and the appearances of extremely irregular nuclei, some with a fingerlike shape and an unclear, swollen, invaginated, or ruptured nuclear membrane and apoptotic bodies; (3) swollen and vacuolating mitochondria, some with disintegrated or missing cristae; (4) a disintegrated rough endoplasmic reticulum containing different sizes of vesicles; and (5) shrinking and deformation of Golgi bodies with decreased vesicle numbers. Our results demonstrated that Cd could activate caspase-3, caspase-8, caspase-9, and Ca-ATPase; cause ultrastructural changes; and produce DNA fragmentation in the mussels investigated. Based on the information obtained through this study, it is reasonable to conclude that Cd can induce apoptosis in the gills of the mussels, eventually leading to tissue damage.
Collapse
Affiliation(s)
- Yong Quan Li
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi Province, China
| | - Chien M Chen
- Department of Environmental Resources Management, Chia Nan University of Pharmacy & Science, Tainan, Taiwan
| | - Na Liu
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi Province, China
| | - Lan Wang
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi Province, China.
| |
Collapse
|
11
|
Zhang X, Chen S, Ai F, Jin L, Zhu N, Meng XZ. Identification of industrial sewage sludge based on heavy metal profiles: a case study of printing and dyeing industry. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:12377-12386. [PMID: 34564814 DOI: 10.1007/s11356-021-16569-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/12/2021] [Indexed: 05/14/2023]
Abstract
The illegal disposal of industrial sewage sludge has caused serious environmental pollution. To develop identification technology of industrial sewage sludge based on the characteristic fingerprints is a promising method that is helpful to clarify the responsibility of illegal enterprises. In this study, heavy metal profiles of sewage sludge from industries (including printing and dyeing industry and other industries) and municipal sewage treatment plant located in eastern China were determined, and their performance of classification was evaluated by principal component analysis (PCA) and linear discrimination analysis (LDA). Results showed that heavy metal composition can be an effective tool for distinguishing sewage sludge between printing and dyeing industry and other industries, with an accuracy rate of 82.9%. Meanwhile, heavy metal speciation may be a promising method for identification of printing and dyeing sludge from municipal sewage sludge, the accuracy rate of which reached 100%. Moreover, antimony (Sb) and zinc (Zn) are two indicators, which can be used to identify sewage sludge between printing and dyeing sub-industries, and the accuracy rate was 90%. We concluded that heavy metal profiles may be a precise and promising tool for identification of printing and dyeing sludge. This study developed a potential method for tracing the source of industrial sewage sludge and establishing the identification database of industrial sewage sludge and provided technical support for the government to supervise the illegal dumping and disposal of industrial sewage sludge.
Collapse
Affiliation(s)
- Xufeng Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, China
| | - Shuyu Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Fangting Ai
- Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, China
| | - Limin Jin
- Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, China
| | - Ningzheng Zhu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, China
| | - Xiang-Zhou Meng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
- Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing, 314051, Zhejiang Province, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|