1
|
Nevill AM, Reuter CP, Brand C, Sehn AP, Pollo Renner JD, Batista Lemes V, Duncan MJ. Exploring cardiovascular health in children: the influence of Hemoglobin-to-Platelet ratio in contrasting rural and urban communities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2025; 35:1227-1236. [PMID: 39078499 DOI: 10.1080/09603123.2024.2385673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 07/23/2024] [Indexed: 07/31/2024]
Abstract
Understanding the associations and possible mechanisms between Cardiorespiratory Fitness (CRF) and residential location is an important focus of public health research. This is a cross-sectional study carried out with 2250 students (6-17 years), from southern Brazil. In addition to age, sex, and body size measurements, we also recorded hemoglobin and platelet count measurements using venous blood samples (10 ml). The CRF was measured using the 6-minute run/walk test, with predictors explored via allometry. Results identified a novel and independent association between the hemoglobin-to-platelet count ratio and children's CRF, after controlling for confounders. We also provide evidence of a possible mechanism for this association, having identified reduced measures of hemoglobin and increased platelet counts observed in children living in urban (vs rural) areas. These results suggest the need for more effective public health practices and policies addressing the built enviroment´s health effects in Brazil and potentially other congested ciries.
Collapse
Affiliation(s)
- Alan M Nevill
- Faculty of Education, Health and Wellbeing, University of Wolverhampton, Walsall, UK
| | - Cézane Priscila Reuter
- Graduate Program in Health Promotion, University of Santa Cruz do Sul, Santa Cruz do Sul/RS, Brazil
| | - Caroline Brand
- IRyS Group, Physical Education School, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Ana Paula Sehn
- Graduate Program in Health Promotion, University of Santa Cruz do Sul, Santa Cruz do Sul/RS, Brazil
| | - Jane Dagmar Pollo Renner
- Graduate Program in Health Promotion, University of Santa Cruz do Sul, Santa Cruz do Sul/RS, Brazil
| | - Vanilson Batista Lemes
- School of Physical Education, Physiotherapy and Dance. Federal University of Rio Grande do Sul, Porto Alegre/RS,Brazil
| | - Michael J Duncan
- Sport, Exercise and Life Sciences Research Centre, Coventry University, Coventry, UK
| |
Collapse
|
2
|
Hu M, Hao X, Zhang Y, Sun X, Zhang M, Zhao J, Wang Q. Long-term exposure to particulate air pollution associated with the progression of type 2 diabetes mellitus in China: effect size and urban-rural disparities. BMC Public Health 2025; 25:1565. [PMID: 40287677 PMCID: PMC12034171 DOI: 10.1186/s12889-025-22394-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/19/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Recent Western studies link long-term particulate matter (PM) exposure to type 2 diabetes mellitus (T2DM) progression, but little is known for low- and middle-income countries. This study aimed to estimate the relationship between PM exposure and T2DM progression in China, and also assess urban-rural disparities. METHODS Using 7-year cohort data of 1.3 million Chinese over 40, a multistate model estimated the associations of PM exposure with T2DM progression. Covariates included demographics, socioeconomic status, health behaviors, medication, and meteorological factors. Sub-sample analyses were done for rural and urban areas. RESULTS For participants exposed to high levels of PM 2.5 , the 5-year absolute risks of developing T2DM and its complications were 4.31% (95% CI: 4.22-4.40) and 31.04% (95% CI: 29.97-32.08), respectively. In the low- PM 2.5 -exposure group, these risks were 3.82% (95% CI: 3.74-3.91) and 30.55% (95% CI: 29.43-31.65). For each 10 µg/m3 increase in PM 2.5 exposure, the HRs (95% CI) for the progression from no T2DM diagnosis to a T2DM diagnosis were 1.13 (1.13-1.14), and for the progression from T2DM to the development of T2DM complications were 1.04 (1.03-1.06). Moreover, the HRs (95% CI) for mortality risk were 1.09 (1.08-1.09) for participants without T2DM, 1.06 (1.00-1.14) for those with T2DM, and 1.10 (1.05-1.16) for those with T2DM complications. Similar associations were observed for other PM-related metrics. In rural areas, PM exposure was more strongly associated with the progression from T2DM and its complications to death. Conversely, in urban areas, PM exposure had a stronger association with the progression from a non-T2DM state to a formal T2DM diagnosis. Urban residents are exposed to higher levels of toxic components like heavy metals, potentially increasing T2DM risk, yet urban healthcare infrastructure offers protection against T2DM-related mortality. CONCLUSIONS PM exposure is significantly associated with T2DM progression. Urban areas should focus on primary prevention, while rural areas need to improve secondary and tertiary prevention like healthcare services.
Collapse
Affiliation(s)
- Mengxiao Hu
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
- National Institute of Health Data Science of China, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaowei Hao
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
- National Institute of Health Data Science of China, Shandong University, Jinan, Shandong, 250012, China
| | - Yunquan Zhang
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Xiaofeng Sun
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
- National Institute of Health Data Science of China, Shandong University, Jinan, Shandong, 250012, China
| | - Meng Zhang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
- National Institute of Health Data Science of China, Shandong University, Jinan, Shandong, 250012, China
| | - Jingyi Zhao
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
- National Institute of Health Data Science of China, Shandong University, Jinan, Shandong, 250012, China
| | - Qing Wang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
- National Institute of Health Data Science of China, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
3
|
Zhong X, Chen Y, Sun L, Chen H, Qu X, Hao L. The burden of ambient air pollution on years of life lost from ischaemic heart disease in Pudong new area, Shanghai. Sci Rep 2025; 15:12715. [PMID: 40223129 PMCID: PMC11994778 DOI: 10.1038/s41598-025-96745-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 03/31/2025] [Indexed: 04/15/2025] Open
Abstract
Ischaemic heart disease (IHD) remains a major public health threat globally. The aim of this study was to evaluate the short-term burden of air pollution exposure on years of life lost (YLLs) from IHD in Pudong New Area, Shanghai. Data on air pollutants, meteorological factors, and daily IHD deaths were collected from 2013 to 2021. A distributed lag nonlinear model (DLNM) combined with linear (for YLLs) and quasi-Poisson (for mortality) regression models was applied to analyse the association between air pollution exposure and the IHD burden. A stratified analysis was conducted according to sex, age, education level, and residence registration. Each 10 µg/m³ increase in PM10, SO2, and NO2 exposure was associated with YLL increases of 0.40 (95% CI: -0.32, 1.11), 4.38 (95% CI: 0.83, 7.92), and 0.67 (95% CI: -0.71, 2.04) years, respectively, at lag0-3. The corresponding YLL increase due to PM2.5 exposure was 0.28 (95% CI: -0.24, 0.80) years at lag0-1. The impacts of air pollution exposure on YLLs and daily IHD deaths were greater for male and urban groups than for female and rural groups. Furthermore, the difference in SO2 exposure was statistically significant among sex-stratified groups. Air pollution exposure was positively associated with IHD-related YLL increases in Pudong New Area, Shanghai.
Collapse
Affiliation(s)
- Xing Zhong
- School of Public Health, Fudan University, Shanghai, 200032, China
| | - Yichen Chen
- School of Public Health, Fudan University, Shanghai, 200032, China
- Shanghai Pudong New Area Center for Disease Control and Prevention (Shanghai Pudong New Area Health Supervision Institute), Shanghai, 200136, China
| | - Lianghong Sun
- Shanghai Pudong New Area Center for Disease Control and Prevention (Shanghai Pudong New Area Health Supervision Institute), Shanghai, 200136, China
| | - Hua Chen
- Shanghai Pudong New Area Center for Disease Control and Prevention (Shanghai Pudong New Area Health Supervision Institute), Shanghai, 200136, China
| | - Xiaobing Qu
- Shanghai Pudong New Area Center for Disease Control and Prevention (Shanghai Pudong New Area Health Supervision Institute), Shanghai, 200136, China
| | - Lipeng Hao
- Shanghai Pudong New Area Center for Disease Control and Prevention (Shanghai Pudong New Area Health Supervision Institute), Shanghai, 200136, China.
| |
Collapse
|
4
|
Święczkowski M, Lip GYH, Kurasz A, Dąbrowski EJ, Tomaszuk-Kazberuk A, Kamiński JW, Strużewska J, Dobrzycki S, Kuźma Ł. Association between exposure to air pollution and increased ischaemic stroke incidence: a retrospective population-based cohort study (EP-PARTICLES study). Eur J Prev Cardiol 2025; 32:276-287. [PMID: 39301834 DOI: 10.1093/eurjpc/zwae301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/23/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
AIMS Short-term effects of Polish smog, particularly benzo(alpha)pyrene [B(a)P], are unclear. We aimed to examine the association between short-term exposure to air pollution and ischaemic stroke (IS) incidence. METHODS AND RESULTS We conducted a retrospective population-based cohort study including an EP-PARTICLES cohort of 8 million inhabitants in the years 2011-20 (80 million person-years of observation). Individual clinical data on emergency hospitalizations due to IS (ICD-10: I63.X) was analysed. We used quasi-Poisson models to examine municipality-specific associations between air pollutants and IS, considering various covariates. We recorded 146 262 cases of IS with a dominance of females (51.8%) and people over 65 years old (77.6%). In the overall population, exposure to PM2.5, NO2, B(a)P, and SO2 increased the risk of IS onset on the day of exposure by 2.4, 1, 0.8, and 0.6%, respectively. Age and sex were modifying variables for PM2.5, NO2, and B(a)P exposure with more pronounced effects in non-elderly individuals and women (all Pinteraction < 0.001). Residents of regions with high tobacco and alcohol consumption were more sensitive to the effects of PM2.5 and SO2. The slopes of response-effect curves were non-linear and steeper at lower concentrations. CONCLUSION Exposure to air pollution may be associated with higher IS incidence, particularly posing a higher risk to non-elderly women. Harmful lifestyle habits might exacerbate its impact. Exposure to even low levels of air pollutants had negative effects. REGISTRATION The study was registered at ClinicalTrials.gov (NCT05198492).
Collapse
Affiliation(s)
- Michał Święczkowski
- Department of Invasive Cardiology, Medical University of Białystok, Skłodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, UK
- Danish Center for Health Services Research, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Cardiology, Lipidology and Internal Medicine with Intensive Coronary Care Unit, Medical University of Bialystok, Bialystok, Poland
| | - Anna Kurasz
- Department of Invasive Cardiology, Medical University of Białystok, Skłodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Emil J Dąbrowski
- Department of Invasive Cardiology, Medical University of Białystok, Skłodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Anna Tomaszuk-Kazberuk
- Department of Cardiology, Lipidology and Internal Medicine with Intensive Coronary Care Unit, Medical University of Bialystok, Bialystok, Poland
| | - Jacek W Kamiński
- Department of Atmosphere and Climate Modelling, Institute of Environmental Protection-National Research Institute, Warsaw, Poland
| | - Joanna Strużewska
- Department of Atmosphere and Climate Modelling, Institute of Environmental Protection-National Research Institute, Warsaw, Poland
| | - Sławomir Dobrzycki
- Department of Invasive Cardiology, Medical University of Białystok, Skłodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - Łukasz Kuźma
- Department of Invasive Cardiology, Medical University of Białystok, Skłodowskiej-Curie 24a, 15-276 Bialystok, Poland
| |
Collapse
|
5
|
Zhang F, Wang Z, Li L, Su X, Hu Y, Du Y, Zhan Q, Zhang T, An Q, Liu T, Wu Y. Long-term exposure to low-level ozone and the risk of hypertension: A prospective cohort study conducted in a low-pollution region of southwestern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175900. [PMID: 39216766 DOI: 10.1016/j.scitotenv.2024.175900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND The current evidence regarding the association between long-term exposure to ozone (O3) and hypertension incidence is limited and inconclusive, particularly at low O3 concentrations. Therefore, our research aims to investigate the potential link between long-term O3 exposure and hypertension in a region with low pollution levels. METHODS From 2010 to 2012, we conducted a cohort prospective study by recruiting nearly 10,000 attendees through multistage cluster random sampling in Guizhou Province, China. These individuals were followed up from 2016 to 2020, and 5563 cases were finally included in the analysis. We employed a high-resolution model with both temporal and spatial accuracy to estimate the maximum daily 8-h average O3 and utilized annual average O3 concentrations for three exposure periods (2009_10, 2007_10, 2005_10) as the exposure indicator. Time-dependent covariates Cox regression model was exerted to estimate the hazard ratios (HRs) of hypertension incidence. Generalized linear model was employed to assess the association between O3 and systolic, diastolic, pulse, and mean arterial pressure. The dose-response curve was explored using a restricted cubic spline function. RESULTS 1213 hypertension incidents occurred during 39,001.80 person-years, with an incidence density of 31.10/1000 Person Years (PYs). The average O3 concentrations during the three exposure periods were 66.76 μg/m3, 67.85 μg/m3, and 67.21 μg/m3, respectively. Per 1 μg/m3 increase in O3 exposure was associated with 11 % increase in the incidence of hypertension in the single-pollution model, and the association was more pronounced in Han, urban, and higher altitude areas. SBP, PP, and MAP were increased by 0.619 (95 % CI, 0.361-0.877) mm Hg, 0.477 (95 % CI, 0.275-0.679) mm Hg, 0.301 (95 % CI, 0.127-0.475) mm Hg, respectively. Furthermore, we observed a nonlinear exposure-response relationship between O3 and hypertension incidence. CONCLUSIONS Long-term exposure to low-level O3 exposure is associated with an increased risk of hypertension.
Collapse
Affiliation(s)
- Fuyan Zhang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No. 6 Ankang Road, Guian New Area, Guizhou 561113, China
| | - Ziyun Wang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No. 6 Ankang Road, Guian New Area, Guizhou 561113, China
| | - Ling Li
- Chronic Disease Prevention and Cure Research Institute, Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou 555004, China
| | - Xu Su
- Chronic Disease Prevention and Cure Research Institute, Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou 555004, China
| | - Yuandong Hu
- Chronic Disease Prevention and Cure Research Institute, Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou 555004, China
| | - Yu Du
- Chronic Disease Prevention and Cure Research Institute, Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou 555004, China
| | - Qingqing Zhan
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No. 6 Ankang Road, Guian New Area, Guizhou 561113, China
| | - Tianlin Zhang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No. 6 Ankang Road, Guian New Area, Guizhou 561113, China
| | - Qinyu An
- Guizhou University Medical College, Guiyang, Guizhou 550025, China
| | - Tao Liu
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No. 6 Ankang Road, Guian New Area, Guizhou 561113, China; Chronic Disease Prevention and Cure Research Institute, Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou 555004, China; Guizhou University Medical College, Guiyang, Guizhou 550025, China.
| | - Yanli Wu
- Chronic Disease Prevention and Cure Research Institute, Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou 555004, China.
| |
Collapse
|
6
|
Liu D, Gui S, Wang X, Wang Q, Qiao J, Tao F, Tao L, Jiang Z, Yi X. Long-term effects of air pollution on daily outpatient visits for allergic conjunctivitis from 2013 to 2020: a time-series study in Urumqi, China. Front Public Health 2024; 12:1325956. [PMID: 39525469 PMCID: PMC11543485 DOI: 10.3389/fpubh.2024.1325956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 07/19/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction This study aimed to elucidate the effects of outdoor air pollution and allergic conjunctivitis and population-based lagged effects of air pollution. Methods We included data on six major air pollutants, PM10, PM2.5, carbon monoxide (CO), sulfur dioxide (SO2), nitrogen dioxide (NO2), and ozone (O3), and 3325 allergic conjunctivitis outpatient visits in Urumqi, northwest China, from 1 January 2013 to 31 December 2020. We developed quasi-Poisson generalized linear regression models with distributed lagged nonlinear models (DLNM), and single and multi-pollutant models were constructed to investigate single-day and cumulative lagged effects in detail. Results Our results confirmed that elevated PM10 and NO2 levels are significantly associated with increased allergic conjunctivitis outpatient visits with lags of 2 and 3 days respectively, and subgroup analyses further suggest that the effects of PM10 and NO2 on allergic conjunctivitis are more pronounced during the warm season. Women are more sensitive to PM10 exposure and the effect of air pollution on allergic conjunctivitis is influenced by age (e.g., infancy and older people). Discussion Our work provides the first time-series study in Urumqi, the world's furthest inland city from the ocean. Further implementation of specific outdoor air pollution controls such as the burning of fossil fuels like coal, as well as special population protection policies remain necessary. Multicenter studies with larger sample sizes are needed.
Collapse
Affiliation(s)
- Dongwei Liu
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Siyu Gui
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xinchen Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qianqian Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jianchao Qiao
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Liming Tao
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhengxuan Jiang
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xianglong Yi
- Department of Ophthalmology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| |
Collapse
|
7
|
Zhao K, He F, Zhang B, Liu C, Hu Y, Dong Y, Zhang P, Liu C, Wei J, Lu Z, Guo X, Huang Q, Jia X, Mi J. Short-term ozone exposure on stroke mortality and mitigation by greenness in rural and urban areas of Shandong Province, China. BMC Public Health 2024; 24:2955. [PMID: 39449115 PMCID: PMC11515287 DOI: 10.1186/s12889-024-20454-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Short-term exposure to ozone (O3) has been associated with higher stroke mortality, but it is unclear whether this association differs between urban and rural areas. The study aimed to compare the association between short-term exposure to O3 and ischaemic and haemorrhagic stroke mortality across rural and urban areas and further investigate the potential impacts of modifiers, such as greenness, on this association. METHODS A multi-county time-series analysis was carried out in 19 counties of Shandong Province from 2013 to 2019. First, we employed generalized additive models (GAMs) to assess the effects of O3 on stroke mortality in each county. We performed random-effects meta-analyses to pool estimates to counties and compare differences in rural and urban areas. Furthermore, a meta-regression model was utilized to assess the moderating effects of county-level features. RESULTS Short-term O3 exposure was found to be associated with increased mortality for both stroke subtypes. For each 10-µg/m3 (lag0-3) rise in O3, ischaemic stroke mortality rose by 1.472% in rural areas and 1.279% in urban areas. For each 0.1-unit increase in the Enhanced Vegetation Index (EVI) per county, the ischaemic stroke mortality caused by a 10-µg/m3 rise in O3 decreased by 0.60% overall and 1.50% in urban areas. CONCLUSIONS Our findings add to the evidence that short-term O3 exposure increases ischaemic and haemorrhagic stroke mortality and has adverse effects in urban and rural areas. However, improving greenness levels may contribute to mitigating the detrimental effects of O3 on ischaemic stroke mortality.
Collapse
Affiliation(s)
- Ke Zhao
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical College, No. 2600 Donghai Avenue, Longzihu District, Bengbu, 233000, China
| | - Fenfen He
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xian, China
| | - Bingyin Zhang
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Chengrong Liu
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical College, No. 2600 Donghai Avenue, Longzihu District, Bengbu, 233000, China
| | - Yang Hu
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical College, No. 2600 Donghai Avenue, Longzihu District, Bengbu, 233000, China
| | - Yilin Dong
- Liaocheng Centre for Disease Control and Prevention, Liaocheng, China
| | - Peiyao Zhang
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical College, No. 2600 Donghai Avenue, Longzihu District, Bengbu, 233000, China
| | - Chao Liu
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical College, No. 2600 Donghai Avenue, Longzihu District, Bengbu, 233000, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD, 20740, USA
| | - Zilong Lu
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Xiaolei Guo
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Qing Huang
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical College, No. 2600 Donghai Avenue, Longzihu District, Bengbu, 233000, China
| | - Xianjie Jia
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical College, No. 2600 Donghai Avenue, Longzihu District, Bengbu, 233000, China.
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Jing Mi
- Department of Epidemiology and Statistics, School of Public Health, Bengbu Medical College, No. 2600 Donghai Avenue, Longzihu District, Bengbu, 233000, China.
| |
Collapse
|
8
|
Liang S, Chen Y, Sun X, Dong X, He G, Pu Y, Fan J, Zhong X, Chen Z, Lin Z, Ma W, Liu T. Long-term exposure to ambient ozone and cardiovascular diseases: Evidence from two national cohort studies in China. J Adv Res 2024; 62:165-173. [PMID: 37625570 PMCID: PMC11331174 DOI: 10.1016/j.jare.2023.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
INTRODUCTION The health effects of ambient ozone have been investigated in many previous studies. However, the effects of long-term exposure to ambient ozone on the incidence of cardiovascular disease (CVD) remain inconclusive. OBJECTIVES To estimate the associations of long-term exposure to maximum daily 8-hours average ozone (MDA8 O3) with the incidence of total CVD, heart disease, hypertension, and stroke. METHODS This was a prospective cohort study, and the data was obtained from the China Health and Retirement Longitudinal Survey (CHARLS) implemented during 2011-2018 and the China Family Panel Studies (CFPS) implemented during 2010-2018. We applied a Cox proportional hazards regression model to evaluate the associations of MDA8 O3 with total CVD, heart disease, hypertension, and stroke risks, and the corresponding population-attributable fractions (PAF) attributable to MDA8 O3 were also calculated. All analyses were conducted by R software. RESULTS The mean MDA8 O3 concertation of all included participants in the CHARLS and CFPS were 51.03 part per billion (ppb) and 51.15 ppb, respectively. In the CHARLS including 18,177 participants, each 10 ppb increment in MDA8 O3 concentration was associated with a 31% increase [hazard ratio (HR) = 1.31, 95% confidence interval (CI): 1.22-1.42] in the risk of incident heart disease, and the corresponding population-attributable fractions (PAF) was 13.79% [10.12%-17.32%]. In the CFPS including 30,226 participants, each 10 ppb increment in MDA8 O3 concentration was associated with an increase in the risk of incident total CVD (1.07 [1.02-1.13]), and hypertension (1.10 [1.03-1.18]). The PAFs of total CVD, and hypertension attributable to MDA8 O3 were 3.53% [0.82%-6.16%], and 5.11% [1.73%-8.38%], respectively. Stratified analyses showed greater associations in males, urban areas, and Southern China. CONCLUSIONS Long-term exposure to MDA8 O3 may increase the incidence of CVD. Therefore, the policies that control O3 and related precursors are persistently needed.
Collapse
Affiliation(s)
- Shuru Liang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Yumeng Chen
- Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan 528000, China
| | - Xiaoli Sun
- Gynecology Department, Guangdong Women and Children Hospital, Guangzhou 511442, China
| | - Xiaomei Dong
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Guanhao He
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Yudong Pu
- Songshan Lake Central Hospital of Dongguan City, Dongguan 523808, China
| | - Jingjie Fan
- Department of Prevention and Health Care, Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen 518028, China
| | - Xinqi Zhong
- Department of Neonatology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Zhiqing Chen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Ziqiang Lin
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Wenjun Ma
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Tao Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
9
|
Zhang Y, Hu M, Xiang B, Yu H, Wang Q. Urban-rural disparities in the association of nitrogen dioxide exposure with cardiovascular disease risk in China: effect size and economic burden. Int J Equity Health 2024; 23:22. [PMID: 38321458 PMCID: PMC10845777 DOI: 10.1186/s12939-024-02117-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/23/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Together with rapid urbanization, ambient nitrogen dioxide (NO2) exposure has become a growing health threat. However, little is known about the urban-rural disparities in the health implications of short-term NO2 exposure. This study aimed to compare the association between short-term NO2 exposure and hospitalization for cardiovascular disease (CVD) among urban and rural residents in Shandong Province, China. Then, this study further explored the urban-rural disparities in the economic burden attributed to NO2 and the explanation for the disparities. METHODS Daily hospitalization data were obtained from an electronic medical records dataset covering a population of 5 million. In total, 303,217 hospital admissions for CVD were analyzed. A three-stage time-series analytic approach was used to estimate the county-level association and the attributed economic burden. RESULTS For every 10-μg/m3 increase in NO2 concentrations, this study observed a significant percentage increase in hospital admissions on the day of exposure of 1.42% (95% CI 0.92 to 1.92%) for CVD. The effect size was slightly higher in urban areas, while the urban-rural difference was not significant. However, a more pronounced displacement phenomenon was found in rural areas, and the economic burden attributed to NO2 was significantly higher in urban areas. At an annual average NO2 concentration of 10 μg/m3, total hospital days and expenses in urban areas were reduced by 81,801 (44,831 to 118,191) days and 60,121 (33,002 to 86,729) thousand CNY, respectively, almost twice as much as in rural areas. Due to disadvantages in socioeconomic status and medical resources, despite similar air pollution levels in the urban and rural areas of our sample sites, the rural population tended to spend less on hospitalization services. CONCLUSIONS Short-term exposure to ambient NO2 could lead to considerable health impacts in either urban or rural areas of Shandong Province, China. Moreover, urban-rural differences in socioeconomic status and medical resources contributed to the urban-rural disparities in the economic burden attributed to NO2 exposure. The health implications of NO2 exposure are a social problem in addition to an environmental problem. Thus, this study suggests a coordinated intervention system that targets environmental and social inequality factors simultaneously.
Collapse
Affiliation(s)
- Yike Zhang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
- National Institute of Health Data Science of China, Shandong University, Jinan, China
| | - Mengxiao Hu
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
- National Institute of Health Data Science of China, Shandong University, Jinan, China
| | - Bowen Xiang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
- National Institute of Health Data Science of China, Shandong University, Jinan, China
| | - Haiyang Yu
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
- National Institute of Health Data Science of China, Shandong University, Jinan, China
| | - Qing Wang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
- National Institute of Health Data Science of China, Shandong University, Jinan, China.
| |
Collapse
|
10
|
Han X, Guo B, Wang L, Chen K, Zhou H, Huang S, Xu H, Pan X, Chen J, Gao X, Wang Z, Yang L, Laba C, Meng Q, Guo Y, Chen G, Hong F, Zhao X. The mediation role of blood lipids on the path from air pollution exposure to MAFLD: A longitudinal cohort study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166347. [PMID: 37591384 DOI: 10.1016/j.scitotenv.2023.166347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND & AIMS Recent cross-sectional studies found that exposure to ambient air pollution (AP) was associated with an increased risk of metabolic dysfunction-associated fatty liver disease (MAFLD). The alternation of blood lipids may explain the association, but epidemiological evidence is lacking. We aimed to examine whether and to what extent the association between long-term exposure to AP and incident MAFLD is mediated by blood lipids and dyslipidemia in a prospective cohort. METHODS We included 6350 participants from the China Multi-Ethnic Cohort (CMEC, baseline 2018-2019, follow-up 2020-2021). Three-year average (2016-2018) of AP (PM1, PM2.5, PM10, NO2), blood lipids (TC, LDL-C, HDL-C, TG with their combinations) and incident MAFLD for each individual were assessed chronologically. Linear and logistic regression was used to assess the associations among AP, blood lipids, and MAFLD, and the potential mediation effects of blood lipids were evaluated using causal mediation analysis. RESULTS A total of 744 participants were newly diagnosed with MAFLD at follow-up. The odds ratios of MAFLD associated with a 10 μm increase in PM1, PM2.5, and NO2 were 1.35 (95 % CI: 1.14, 1.58), 1.34 (1.10, 1.65) and 1.28 (1.14, 1.44), respectively. Blood lipids are important mediators between AP and incident MAFLD. LDL-C (Proportion Mediated: 6.9 %), non-HDL (13.4 %), HDL-C (20.7 %), LDL/HDL (30.1 %), and dyslipidemia (6.5 %) significantly mediated the association between PM2.5 and MAFLD. For PM1, the indirect effects were similar to those for PM2.5, with a larger value for the direct effect, and the mediation proportion by blood lipids was less for NO2. CONCLUSION Blood lipids are important mediators between AP and MAFLD, and can explain 5 %-30 % of the association between AP and incident MAFLD, particularly cholesterol-related variables, indicating that AP could lead to MAFLD through the alternation of blood lipids. These findings provided mechanical evidence of AP leading to MAFLD in epidemiological studies.
Collapse
Affiliation(s)
- Xinyu Han
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bing Guo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lele Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kejun Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hanwen Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shourui Huang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huan Xu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Institute for Disaster Management and Reconstruction, Sichuan University-The Hongkong Polytechnic University, Chengdu, Sichuan, China
| | - Xianmou Pan
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jinyao Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xufang Gao
- Chengdu Center for Disease Control and Prevention, Chengdu, Sichuan, China
| | - Zhenghong Wang
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
| | - La Yang
- Tibet University, Lhasa, Tibet, China
| | - Ciren Laba
- Tibet Center for Disease Control and Prevention CN, Lhasa, Tibet, China
| | - Qiong Meng
- Department of Epidemiology and Health Statistics, School of public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Gongbo Chen
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.
| | - Feng Hong
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China.
| | - Xing Zhao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
11
|
Vranken A, Bijnens E, Horemans C, Leclercq A, Kestens W, Karakaya G, Vandenthoren L, Trimpeneers E, Vanpoucke C, Fierens F, Nawrot T, Cox B, Bruyneel L. Association of air pollution and green space with all-cause general practitioner and emergency room visits: A cross-sectional study of young people and adults living in Belgium. ENVIRONMENTAL RESEARCH 2023; 236:116713. [PMID: 37481061 DOI: 10.1016/j.envres.2023.116713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND Residing in areas with lower levels of air pollution and higher green space is beneficial to physical and mental health. We investigated associations of PM2.5, tree cover and grass cover with in-hours and out-of-hours GP visits and ER visits, for young people and adults. We estimated potential cost savings of GP visits attributable to high PM2.5. METHODS We linked individual-level health insurance claims data of 315,123 young people (10-24 years) and 885,988 adults (25-64 years) with census tract-level PM2.5, tree cover and grass cover. Deploying negative binomial generalized linear mixed models, we estimated associations between quartile exposures and the three outcome measures. RESULTS For in-hours and out-of-hours GP visits, among young people as well as adults, statistically significant pairwise differences between quartiles suggested increasing beneficial effects with lower PM2.5. The same outcomes were statistically significantly less frequent in quartiles with highest tree cover (>30.00%) compared to quartiles with lower tree cover, but otherwise pairwise differences were not statistically significant. These associations largely persisted in rural and urban areas. Among adults living in urban areas lower grass cover was associated with increased in-hours GP visits and ER visits. Assuming causality, reducing PM2.5 levels to the lowest quartile (4.91-7.49 μg/m³), among adults, 195,964 in-hours and 74,042 out-of-hours GP visits could be avoided annually. Among young people, 27,457 in-hours and 22,423 out-of-hours GP visits could be avoided annually. Nationally, this amounts to an annual potential cost saving of €43 million (€5.7 million in out-of-pocket payments and €37.2 million in compulsory health insurance). CONCLUSION Higher ambient PM2.5 and lower tree cover show associations with higher non-urgent and urgent medical care utilization. These findings confirm the importance of reducing air pollution and fostering green zones, and that such policies may contribute positively to economic growth.
Collapse
Affiliation(s)
- Arthur Vranken
- Independent Health Insurance Funds, Lenniksebaan 788a, 1070, Anderlecht, Belgium; Institute for Healthcare Policy, KU Leuven, Kapucijnenvoer 35, Leuven, Belgium
| | - Esmée Bijnens
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium; Department of Environmental Sciences, Open University Heerlen, Valkenburgerweg 177, 6419, AT Heerlen, the Netherlands
| | - Christian Horemans
- Independent Health Insurance Funds, Lenniksebaan 788a, 1070, Anderlecht, Belgium
| | - Agnès Leclercq
- Independent Health Insurance Funds, Lenniksebaan 788a, 1070, Anderlecht, Belgium
| | - Wies Kestens
- Independent Health Insurance Funds, Lenniksebaan 788a, 1070, Anderlecht, Belgium
| | - Güngör Karakaya
- Independent Health Insurance Funds, Lenniksebaan 788a, 1070, Anderlecht, Belgium
| | - Ludo Vandenthoren
- Independent Health Insurance Funds, Lenniksebaan 788a, 1070, Anderlecht, Belgium
| | | | | | - Frans Fierens
- Belgian Interregional Environment Agency, Brussels, Belgium
| | - Tim Nawrot
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium; Centre for Environment and Health, KU Leuven, Leuven, Belgium
| | - Bianca Cox
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Luk Bruyneel
- Independent Health Insurance Funds, Lenniksebaan 788a, 1070, Anderlecht, Belgium; Institute for Healthcare Policy, KU Leuven, Kapucijnenvoer 35, Leuven, Belgium.
| |
Collapse
|
12
|
Gui SY, Wang XC, Qiao JC, Xiao DC, Hu CY, Tao FB, Liu DW, Yi XL, Jiang ZX. Short-term exposure to air pollution and outpatient visits for conjunctivitis: a time-series analysis in Urumqi, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:66400-66416. [PMID: 37095216 DOI: 10.1007/s11356-023-26995-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
Conjunctivitis is an inflammatory disease of the conjunctival tissue caused by a variety of causes; despite the conjunctiva being directly exposed to the external atmospheric environment, the important role of air pollution is not fully evaluated, especially in areas with poor air quality undergoing rapid economic and industrial development. Information on 59,731 outpatient conjunctivitis visits from 1 January 2013 to 31 December 2020 was obtained from the Ophthalmology Department of the First Affiliated Hospital of Xinjiang Medical University (Urumqi, Xinjiang, China), and data on six air pollutants including particulate matter with a median aerometric diameter of less than 10 and 2.5 mm (PM10 and PM2.5, respectively), carbon monoxide (CO), sulfur dioxide (SO2), nitrogen dioxide (NO2), and ozone (O3) from eleven standard urban background fixed air quality monitors were also recorded. A time-series analysis design and a quasi-Poisson generalized linear regression model combined with a distributed lagged nonlinear model (DLNM) were used to fit the effect of exposure to air pollutants on the risk of conjunctivitis outpatient visits. Further subgroup analyses were conducted for gender, age, and season, as well as the type of conjunctivitis. Single and multi-pollutant models showed that exposure to PM2.5, PM10, NO2, CO, and O3 was associated with increased risk of outpatient conjunctivitis visits on the lag 0 day and various other lag days. Variations in the effect estimates on direction and magnitude were found in different subgroup analyses. We conducted the first time-series analysis with the longest duration as well as the largest sample size in Northwest China, which provides evidence that outpatient conjunctivitis visits is significantly associated with air pollution in Urumqi, China. Meanwhile, our results demonstrate the effectiveness of SO2 reduction in reducing the risk of outpatient conjunctivitis visits in the Urumqi region and reaffirm the need to implement special air pollution control measures.
Collapse
Affiliation(s)
- Si-Yu Gui
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, China
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Xin-Chen Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, China
| | - Jian-Chao Qiao
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Dun-Cheng Xiao
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Cheng-Yang Hu
- Department of Humanistic Medicine, School of Humanistic Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Fang-Biao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Dong-Wei Liu
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, China
| | - Xiang-Long Yi
- Department of Ophthalmology, The First Affiliated Hospital of Xinjiang Medical University, 137 Liyu Shan Road, Ürümqi, 830011, China
| | - Zheng-Xuan Jiang
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, China.
| |
Collapse
|
13
|
Dong TF, Zha ZQ, Sun L, Liu LL, Li XY, Wang Y, Meng XL, Li HB, Wang HL, Nie HH, Yang LS. Ambient nitrogen dioxide and cardiovascular diseases in rural regions: a time-series analyses using data from the new rural cooperative medical scheme in Fuyang, East China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:51412-51421. [PMID: 36809617 DOI: 10.1007/s11356-023-25922-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Most of studies relating ambient nitrogen dioxide (NO2) exposure to hospital admissions for cardiovascular diseases (CVDs) were conducted among urban population. Whether and to what extent these results could be generalizable to rural population remains unknown. We addressed this question using data from the New Rural Cooperative Medical Scheme (NRCMS) in Fuyang, Anhui, China. Daily hospital admissions for total CVDs, ischaemic heart disease, heart failure, heart rhythm disturbances, ischaemic stroke, and haemorrhagic stroke in rural regions of Fuyang, China, were extracted from NRCMS between January 2015 and June 2017. A two-stage time-series analysis method was used to assess the associations between NO2 and CVD hospital admissions and the disease burden fractions attributable to NO2. In our study period, the average number (standard deviation) of hospital admissions per day were 488.2 (117.1) for total CVDs, 179.8 (45.6) for ischaemic heart disease, 7.0 (3.3) for heart rhythm disturbances, 13.2 (7.2) for heart failure, 267.9 (67.7) for ischaemic stroke, and 20.2 (6.4) for haemorrhagic stroke. The 10-μg/m3 increase of NO2 was related to an elevated risk of 1.9% (RR: 1.019, 95% CI: 1.005 to 1.032) for hospital admissions of total CVDs at lag0-2 days, 2.1% (1.021, 1.006 to 1.036) for ischaemic heart disease, and 2.1% (1.021, 1.006 to 1.035) for ischaemic stroke, respectively, while no significant association was observed between NO2 and hospital admissions for heart rhythm disturbances, heart failure, and haemorrhagic stroke. The attributable fractions of total CVDs, ischaemic heart disease, and ischaemic stroke to NO2 were 6.52% (1.87 to 10.94%), 7.31% (2.19 to 12.17%), and 7.12% (2.14 to 11.85%), respectively. Our findings suggest that CVD burdens in rural population are also partly attributed to short-term exposure to NO2. More studies across rural regions are required to replicate our findings.
Collapse
Affiliation(s)
- Teng-Fei Dong
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Meishan Road 81, Hefei, 230032, Anhui, China
| | - Zhen-Qiu Zha
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Meishan Road 81, Hefei, 230032, Anhui, China
- Anhui Provincial Center for Disease Control and Prevention, Hefei, 230601, Anhui, China
| | - Liang Sun
- Fuyang Center for Disease Control and Prevention, Fuyang, 236069, Anhui, China
| | - Ling-Li Liu
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Meishan Road 81, Hefei, 230032, Anhui, China
| | - Xing-Yang Li
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Meishan Road 81, Hefei, 230032, Anhui, China
| | - Yuan Wang
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Meishan Road 81, Hefei, 230032, Anhui, China
| | - Xiang-Long Meng
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Meishan Road 81, Hefei, 230032, Anhui, China
| | - Huai-Biao Li
- Fuyang Center for Disease Control and Prevention, Fuyang, 236069, Anhui, China
| | - Hong-Li Wang
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Meishan Road 81, Hefei, 230032, Anhui, China
| | - Huan-Huan Nie
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Meishan Road 81, Hefei, 230032, Anhui, China
| | - Lin-Sheng Yang
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Meishan Road 81, Hefei, 230032, Anhui, China.
| |
Collapse
|
14
|
Huang HJ, Yu QY, Zheng T, Wang SS, Yang XJ. Associations between seasonal ambient air pollution and adverse perinatal outcomes: a retrospective cohort study in Wenzhou, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:59903-59914. [PMID: 35397724 DOI: 10.1007/s11356-022-20084-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Prenatal exposure to ambient air pollution has been associated with adverse perinatal outcomes in previous studies. However, few studies have examined the interaction between air pollution and the season of conception on term low birth weight (TLBW) or macrosomia. Birth registry data of singleton live births in Wenzhou, China, between January 2015 and December 2016 were accessed from the Wenzhou Maternal and Child Health Information Management platform, and data on the ambient air pollutants in Wenzhou were obtained from the Chinese Air Quality Online Monitoring and Analysis Platform. Single-/two-pollutant binary logistic regression models were used to assess the associations between ambient air pollutants (PM2.5, PM10, NO2, SO2, and O3) and TLBW/macrosomia, further exploring whether the season of conception interacts with air pollution to impact birth weight. Finally, 213,959 term newborns were selected, including 2452 (1.1%) infants with TLBW and 13,173 (6.1%) infants with macrosomia. In the single-/two-pollutant models, we observed an increased risk of TLBW associated with maternal exposure to PM2.5, PM10, SO2, and NO2 during the entire pregnancy, especially in the 2nd trimester. Maternal exposure to O3 during the 1st trimester was associated with increased macrosomia risk, and O3 exposure during the 3rd trimester was associated with increased TLBW risk. Pregnant women who conceive in the warm season may experience a more adverse ambient air environment that is related to the risks of TLBW. These findings add to the evidence suggesting that air pollution and the season of conception may have synergistic effects on adverse perinatal outcomes, especially TLBW. Further prospective cohort studies are needed to validate our results.
Collapse
Affiliation(s)
- Hui-Jun Huang
- Department of Epidemiology and Health Statistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Qiu-Yan Yu
- Department of Epidemiology and Health Statistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Tian Zheng
- Department of Epidemiology and Health Statistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Shan-Shan Wang
- Department of Epidemiology and Health Statistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Xin-Jun Yang
- Department of Epidemiology and Health Statistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
15
|
Full-Coverage PM2.5 Mapping and Variation Assessment during the Three-Year Blue-Sky Action Plan Based on a Daily Adaptive Modeling Approach. REMOTE SENSING 2022. [DOI: 10.3390/rs14153571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Owing to a series of air pollution prevention and control policies, China’s PM2.5 pollution has greatly improved; however, the long-term spatial contiguous products that facilitate the analysis of the distribution and variation of PM2.5 pollution are insufficient. Due to the limitations of missing values in aerosol optical depth (AOD) products, the reconstruction of full-coverage PM2.5 concentration remains challenging. In this study, we present a two-stage daily adaptive modeling framework, based on machine learning, to solve this problem. We built the annual models in the first stage, then daily models were constructed in the second stage based on the output of the annual models, which incorporated the parameter and feature adaptive tuning strategy. Within this study, PM2.5 concentrations were adaptively modeled and reconstructed daily based on the multi-angle implementation of atmospheric correction (MAIAC) AOD products and other ancillary data, such as meteorological factors, population, and elevation. Our model validation showed excellent performance with an overall R2 = 0.91 and RMSE = 9.91 μg/m3 for the daily models, along with the site-based cross-validation R2s and RMSEs of 0.86–0.87 and 12–12.33 μg/m3; these results indicated the reliability and feasibility of the proposed approach. The daily full-coverage PM2.5 concentrations at 1 km resolution across China during the Three-Year Blue-Sky Action Plan were reconstructed in this study. We analyzed the distribution and variations of reconstructed PM2.5 at three different time scales. Overall, national PM2.5 pollution has significantly improved with the annual average concentration dropping from 33.67–28.03 μg/m3, which demonstrated that air pollution control policies are effective and beneficial. However, some areas still have severe PM2.5 pollution problems that cannot be ignored. In conclusion, the approach proposed in this study can accurately present daily full-coverage PM2.5 concentrations and the research outcomes could provide a reference for subsequent air pollution prevention and control decision-making.
Collapse
|