1
|
Kurosawa N, Takeda Y, Ichimaru Y, Jamsransuren D, Matsuda S, Ishikawa Y, Yamaguchi M, Ogawa H, Sasaki K, Murata T. Chemical constituents of five Saxifraga species and their virucidal activities. Fitoterapia 2024; 179:106215. [PMID: 39278420 DOI: 10.1016/j.fitote.2024.106215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/12/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024]
Abstract
The chemical constituents of Saxifraga stolonifera, S. fortunei, S. nipponica, S. cortusifolia, and S. rebunshirensis were investigated for structure and virucidal activity. In addition to the Saxifraga species-derived tannins, 30 compounds (1-30) were isolated from the five species. 5-Hydroxy-4-methoxy-3-O-(6-O-caffeoyl)-β-D-glucopyranosyl benzoic acid (1) and kaempferol 3-O-β-d-xylopyranosyl-(1 → 2)-β-D-xylopyranoside (2) were identified as undescribed compounds. Although 1 was isolated as the (E)-isomer of its caffeoyl moiety, under light it became over time a mixture of the (Z)-isomer (1a) and (E)-isomer (1). Kaempferol 3-O-β-d-xylopyranosyl-(1 → 2)-β-D-glucopyranoside (3) was an analog of 2 and a known compound, whose NMR assignment was reconsidered and described. 6-Isopropyl-5,5-dimethyldihydropyrimidine-2,4(1H,3H)-dione (30) was expected to be a racemic mixture based on its optical rotation and X-ray crystallography data. The virucidal activities of the isolated compounds (1-30) against influenza A virus, severe acute respiratory syndrome coronavirus 2, feline calicivirus, and murine norovirus were evaluated to identify the presence of compounds other than the Saxifraga species-derived tannins, which exhibited virucidal activities. Although the isolated compound activities were relatively weak compared to those of Saxifraga species-derived tannins, the potential virucidal activity of the compounds with galloyl groups was confirmed.
Collapse
Affiliation(s)
- Nanami Kurosawa
- Division of Pharmacognosy, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Yohei Takeda
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan; Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan.
| | - Yoshimi Ichimaru
- Faculty of Pharmaceutical Sciences, Shonan University of Medical Sciences, 16-10 Kamishinano, Totsuka-ku, Yoko-hama 244-0806, Japan
| | - Dulamjav Jamsransuren
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Sachiko Matsuda
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Yoshinobu Ishikawa
- Faculty of Pharmaceutical Sciences, Shonan University of Medical Sciences, 16-10 Kamishinano, Totsuka-ku, Yoko-hama 244-0806, Japan
| | - Minori Yamaguchi
- Division of Pharmacognosy, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Haruko Ogawa
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Kenroh Sasaki
- Division of Pharmacognosy, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Toshihiro Murata
- Division of Pharmacognosy, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan.
| |
Collapse
|
2
|
Chen Y, Hour MJ, Lin CS, Chang YS, Chen ZY, Koval'skaya AV, Su WC, Tsypysheva IP, Lin CW. Assessing the inhibitory effects of some secondary amines, thioureas and 1,3-dimethyluracil conjugates of (-)-cytisine and thermopsine on the RNA-dependent RNA polymerase of SARS-CoV-1 and SARS-CoV-2. Bioorg Med Chem Lett 2024; 113:129950. [PMID: 39251111 DOI: 10.1016/j.bmcl.2024.129950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Abstract
SARS-CoV-2 causes COVID-19, with symptoms ranging from mild to severe, including pneumonia and death. This beta coronavirus has a 30-kilobase RNA genome and shares about 80 % of its nucleotide sequence with SARS-CoV-1. The replication/transcription complex, essential for viral RNA synthesis, includes RNA-dependent RNA polymerase (RdRp, nsp12) enhanced by nsp7 and nsp8. Antivirals like molnupiravir and remdesivir, which are RdRp inhibitors, treat severe COVID-19 but have limitations, highlighting the need for new therapies. This study assessed (-)-cytisine, methylcytisine, and thermopsine derivatives against SARS-CoV-1 and SARS-CoV-2 in vitro, focusing on their RdRp inhibition. Selected compounds from a previous study were evaluated using a SARS-CoV-2 RNA polymerase assay kit to investigate their structure-activity relationships. Compound 17 (1,3-dimethyluracil conjugate with (-)-cytisine and thermopsine) emerged as a potent inhibitor of SARS-CoV-1 and SARS-CoV-2 RdRp, with an IC50 value of 7.8 μM against SARS-CoV-2 RdRp. It showed a dose-dependent reduction in cytopathic effects in cells infected with SARS-CoV-1 and SARS-CoV-2 replicon-based single-round infectious particles (SRIPs) and significantly inhibited SARS-CoV N protein expression, with EC50 values of 0.12 µM for SARS-CoV-1 and 1.47 µM for SARS-CoV-2 SRIPs. Additionally, compound 17 reduced viral subgenomic RNA levels in a concentration-dependent manner in SRIP-infected cells. The structure-activity relationships of compound 17 with SARS-CoV-1 and SARS-CoV-2 RdRp were also investigated, highlighting it as a promising lead for developing antiviral agents against SARS and COVID-19.
Collapse
Affiliation(s)
- Yeh Chen
- Department of Food Science and Biotechnology of National Chung Hsing University, Taichung, Taiwan
| | - Mann-Jen Hour
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan
| | - Chen-Sheng Lin
- Division of Gastroenterology, Kuang Tien General Hospital, No. 117, Shatian Rd, Shalu District, Taichung City 433, Taiwan
| | - Young-Sheng Chang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404394, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404394, Taiwan
| | - Zan-Yu Chen
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404394, Taiwan
| | - Alena V Koval'skaya
- Ufa Institute of Chemistry, Ufa Federal Research Centre of the Russian Academy of Sciences, 71 prosp. Oktyabrya, 450054 Ufa, Russian Federation
| | - Wen-Chi Su
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404394, Taiwan; International Master's Program of Biomedical Sciences, China Medical University, Taichung 404394, Taiwan
| | - Inna P Tsypysheva
- Ufa Institute of Chemistry, Ufa Federal Research Centre of the Russian Academy of Sciences, 71 prosp. Oktyabrya, 450054 Ufa, Russian Federation.
| | - Cheng-Wen Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404394, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404394, Taiwan; Department of Medical Laboratory Science and Biotechnology, Asia University, Wufeng, Taichung 413305, Taiwan.
| |
Collapse
|
3
|
Emam MH, Mahmoud MI, El-Guendy N, Loutfy SA. Establishment of in-house assay for screening of anti-SARS-CoV-2 protein inhibitors. AMB Express 2024; 14:104. [PMID: 39285019 PMCID: PMC11405717 DOI: 10.1186/s13568-024-01739-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/04/2024] [Indexed: 09/22/2024] Open
Abstract
Developing a potent antiviral agent to combat Coronavirus Disease-19 (COVID-19) is of critical importance as we may be at risk of the emergence of new virus strains or another pandemic recurrence. The interaction between the SARS-CoV-2 spike protein and Angiotensin Converting Enzyme 2 (ACE2) is the main protein-protein interaction (PPI) implicated in the virus entry into the host cells. Spike-ACE2 PPI represents a major target for drug intervention. We have repurposed a previously described protein-protein interaction detection method to be utilized as a drug screening assay. The assay was standardized using Chitosan nanoparticles (CNPs) as the drug and SARS-CoV-2 spike-ACE2 interaction as the PPI model. The assay was then used to screen four natural bioactive compounds: Curcumin (Cur), Gallic acid (GA), Quercetin (Q), and Silymarin (Sil), and their cytotoxicity was evaluated in vitro. Production of the spike protein and the evaluation of its activity in comparison to a standard commercial protein was part of our work as well. Here we describe a novel simple immunofluorescent screening assay to identify potential SARS-CoV-2 inhibitors that could assess the inhibitory effect of any ligand against any PPI.
Collapse
Affiliation(s)
- Merna H Emam
- Nanotechnology Research Center (NTRC), the British University in Egypt, Suez Desert Road, El-Shorouk City, P.O. Box 43, Cairo, 11837, Egypt
| | - Mohamed I Mahmoud
- Nanotechnology Research Center (NTRC), the British University in Egypt, Suez Desert Road, El-Shorouk City, P.O. Box 43, Cairo, 11837, Egypt
- School of Biotechnology, Badr University in Cairo, Badr City, 11829, Cairo, Egypt
| | - Nadia El-Guendy
- Medical biochemistry and Molecular biology unit, Cancer Biology Department, National Cancer Institute (NCI), Cairo University, Fom El-Khalig 11796, Cairo, Egypt
| | - Samah A Loutfy
- Nanotechnology Research Center (NTRC), the British University in Egypt, Suez Desert Road, El-Shorouk City, P.O. Box 43, Cairo, 11837, Egypt.
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute (NCI), Cairo University, Fom El-Khalig 11796, Cairo, Egypt.
| |
Collapse
|
4
|
Petit B, Marguerite E, Van Elslande E, Nedev H, Iorga BI, Pham VC, Doan TMH, Séron K, Litaudon M, El Kalamouni C, Apel C. Antiviral miliusanes and isolation of an unprecedented miliusane dimer from Miliusa balansae. Fitoterapia 2024; 177:106083. [PMID: 38897253 DOI: 10.1016/j.fitote.2024.106083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/03/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
In an extensive screening endeavor for anti-coronaviral compounds, we examined 824 tropical plant extracts from the Annonaceae and Rutaceae families. The screening identified an ethyl acetate extract from the aerial parts of Miliusa balansae for its potent inhibitory activity against Human coronavirus HCoV-229E. Subsequent bioassay-guided fractionation of this extract revealed two unreported miliusanes including a complex dimeric structure and seven known compounds, comprising miliusane XXXVI, (+)-miliusol, bistyryls, styryl-pyranones, and the flavonoid rhamnetin. The absolute configuration of the new dimeric miliusane was determined by X-ray crystallography and a putative biogenetic origin was proposed. Investigation of the antiviral effect of these nine phytochemicals within HCoV-229E-infected Huh-7 cells showed that (+)-miliusol and miliusane XXXVI exert antiviral activity at non-cytotoxic concentrations, with IC50 values of 1.15 μM and 19.20 μM, respectively. Furthermore, these compounds significantly inhibited SARS-CoV-2 infection in Vero cells, presenting IC50 values of 11.31 μM for (+)-miliusol and 17.92 μM for miliusane XXXVI. Additionally, both compounds exhibited a potent antiviral effect against the emergent mosquito-borne Zika virus, with IC50 values of 1.34 μM and 23.45 μM, respectively. Time-of-addition assays suggest that their mechanism of action might target later stages of the viral cycle, indicating potential modulation of specific cellular pathways. These findings reinforce the invaluable contribution of medicinal flora as reservoirs of natural antiviral agents and emphasize their prospective role in combatting viruses of medical interest.
Collapse
Affiliation(s)
- Bastien Petit
- Institut de Chimie des Substances Naturelles, CNRS, UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Elodie Marguerite
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France
| | - Elsa Van Elslande
- Institut de Chimie des Substances Naturelles, CNRS, UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Hristo Nedev
- Institut de Chimie des Substances Naturelles, CNRS, UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Bogdan I Iorga
- Institut de Chimie des Substances Naturelles, CNRS, UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Van Cuong Pham
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, CauGiay, Hanoi, Viet Nam
| | - Thi Mai Huong Doan
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, CauGiay, Hanoi, Viet Nam
| | - Karin Séron
- Université de Lille, INSERM U1019, CNRS UMR 8204, CHU Lille, Institut Pasteur de Lille, Center for Infection and Immunity of Lille (CIIL), F-59000 Lille, France
| | - Marc Litaudon
- Institut de Chimie des Substances Naturelles, CNRS, UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France.
| | - Chaker El Kalamouni
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Plateforme Technologique CYROI, 94791 Sainte Clotilde, La Réunion, France.
| | - Cécile Apel
- Institut de Chimie des Substances Naturelles, CNRS, UPR 2301, Université Paris-Saclay, 91198 Gif-sur-Yvette, France.
| |
Collapse
|
5
|
Valipour M. Therapeutic prospects of naturally occurring p38 MAPK inhibitors tanshinone IIA and pinocembrin for the treatment of SARS-CoV-2-induced CNS complications. Phytother Res 2023; 37:3724-3743. [PMID: 37282807 DOI: 10.1002/ptr.7902] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/20/2023] [Accepted: 05/15/2023] [Indexed: 06/08/2023]
Abstract
P38 mitogen-activated protein kinase (p38 MAPK) signaling pathway is closely related to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) replication and hyperinflammatory responses in coronavirus disease 2019 (COVID-19). Therefore, blood-brain barrier-penetrating p38 MAPK inhibitors have good potential for the treatment of central nervous system (CNS) complications of COVID-19. The aim of the present study is the characterization of the therapeutic potential of tanshinone IIA and pinocembrin for the treatment of CNS complications of COVID-19. Studies published in high-quality journals indexed in databases Scopus, Web of Science, PubMed, and so forth were used to review the therapeutic capabilities of selected compounds. In continuation of our previous efforts to identify agents with favorable activity/toxicity profiles for the treatment of COVID-19, tanshinone IIA and pinocembrin were identified with a high ability to penetrate the CNS. Considering the nature of the study, no specific time frame was determined for the selection of studies, but the focus was strongly on studies published after the emergence of COVID-19. By describing the association of COVID-19-induced CNS disorders with p38 MAPK pathway disruption, this study concludes that tanshinone IIA and pinocembrin have great potential for better treatment of these complications. The inclusion of these compounds in the drug regimen of COVID-19 patients requires confirmation of their effectiveness through the conduction of high-quality clinical trials.
Collapse
Affiliation(s)
- Mehdi Valipour
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Alkafaas SS, Abdallah AM, Hussien AM, Bedair H, Abdo M, Ghosh S, Elkafas SS, Apollon W, Saki M, Loutfy SA, Onyeaka H, Hessien M. A study on the effect of natural products against the transmission of B.1.1.529 Omicron. Virol J 2023; 20:191. [PMID: 37626376 PMCID: PMC10464336 DOI: 10.1186/s12985-023-02160-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND The recent outbreak of the Coronavirus pandemic resulted in a successful vaccination program launched by the World Health Organization. However, a large population is still unvaccinated, leading to the emergence of mutated strains like alpha, beta, delta, and B.1.1.529 (Omicron). Recent reports from the World Health Organization raised concerns about the Omicron variant, which emerged in South Africa during a surge in COVID-19 cases in November 2021. Vaccines are not proven completely effective or safe against Omicron, leading to clinical trials for combating infection by the mutated virus. The absence of suitable pharmaceuticals has led scientists and clinicians to search for alternative and supplementary therapies, including dietary patterns, to reduce the effect of mutated strains. MAIN BODY This review analyzed Coronavirus aetiology, epidemiology, and natural products for combating Omicron. Although the literature search did not include keywords related to in silico or computational research, in silico investigations were emphasized in this study. Molecular docking was implemented to compare the interaction between natural products and Chloroquine with the ACE2 receptor protein amino acid residues of Omicron. The global Omicron infection proceeding SARS-CoV-2 vaccination was also elucidated. The docking results suggest that DGCG may bind to the ACE2 receptor three times more effectively than standard chloroquine. CONCLUSION The emergence of the Omicron variant has highlighted the need for alternative therapies to reduce the impact of mutated strains. The current review suggests that natural products such as DGCG may be effective in binding to the ACE2 receptor and combating the Omicron variant, however, further research is required to validate the results of this study and explore the potential of natural products to mitigate COVID-19.
Collapse
Affiliation(s)
- Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Abanoub Mosaad Abdallah
- Narcotic Research Department, National Center for Social and Criminological Research (NCSCR), Giza, 11561, Egypt
| | - Aya Misbah Hussien
- Biotechnology Department at Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Heba Bedair
- Botany Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mahmoud Abdo
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa.
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Menofia, Egypt
| | - Wilgince Apollon
- Department of Agricultural and Food Engineering, Faculty of Agronomy, Universidad Autónoma de Nuevo León, Francisco Villa S/N, Ex-Hacienda El Canadá, 66050, General Escobedo, Nuevo León, Mexico
| | - Morteza Saki
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Samah A Loutfy
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
- Nanotechnology Research Center, British University, Cairo, Egypt
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Mohamed Hessien
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
7
|
Xi YF, Bai M, Zhang X, Hou ZL, Lin B, Yao GD, Lou LL, Wang XB, Song SJ, Huang XX. Insight into tetrahydrofuran lignans from Isatis indigotica fortune with neuroprotective and acetylcholinesterase inhibitor activity. PHYTOCHEMISTRY 2023; 208:113609. [PMID: 36758886 DOI: 10.1016/j.phytochem.2023.113609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/04/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Nine tetrahydrofuran lignans, including three undescribed spiro-lignans, were isolated from Isatis indigotica Fortune (Brassicaceae). Extensive spectroscopic analyses achieved the structure elucidation of these tetrahydrofuran lignans, and quantum chemical calculation combined with the MAEΔΔδ parameter. Notably, isatispironeols A-B have a unique spiro[dienone-tetrahydrofuran] molecular core. These spiro[dienone-tetrahydrofuran] lignans showed comparable neuroprotective effects as the positive control in the H2O2-induced SH-SY5Y cells model. In addition, (-)-(7R,8S,1'R,7'R,8'R)-isatispironeol A possessed more significant AChE inhibitory activity, further interact sites were also predicted by the in silico assay.
Collapse
Affiliation(s)
- Yu-Fei Xi
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Ming Bai
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xin Zhang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Zi-Lin Hou
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Bin Lin
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Li-Li Lou
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| | - Xiao-Bo Wang
- Chinese People's Liberation Army Logistics Support Force No. 967 Hospital, Dalian, 116021, China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| |
Collapse
|
8
|
England C, TrejoMartinez J, PerezSanchez P, Karki U, Xu J. Plants as Biofactories for Therapeutic Proteins and Antiviral Compounds to Combat COVID-19. Life (Basel) 2023; 13:617. [PMID: 36983772 PMCID: PMC10054913 DOI: 10.3390/life13030617] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) had a profound impact on the world's health and economy. Although the end of the pandemic may come in 2023, it is generally believed that the virus will not be completely eradicated. Most likely, the disease will become an endemicity. The rapid development of vaccines of different types (mRNA, subunit protein, inactivated virus, etc.) and some other antiviral drugs (Remdesivir, Olumiant, Paxlovid, etc.) has provided effectiveness in reducing COVID-19's impact worldwide. However, the circulating SARS-CoV-2 virus has been constantly mutating with the emergence of multiple variants, which makes control of COVID-19 difficult. There is still a pressing need for developing more effective antiviral drugs to fight against the disease. Plants have provided a promising production platform for both bioactive chemical compounds (small molecules) and recombinant therapeutics (big molecules). Plants naturally produce a diverse range of bioactive compounds as secondary metabolites, such as alkaloids, terpenoids/terpenes and polyphenols, which are a rich source of countless antiviral compounds. Plants can also be genetically engineered to produce valuable recombinant therapeutics. This molecular farming in plants has an unprecedented opportunity for developing vaccines, antibodies, and other biologics for pandemic diseases because of its potential advantages, such as low cost, safety, and high production volume. This review summarizes the latest advancements in plant-derived drugs used to combat COVID-19 and discusses the prospects and challenges of the plant-based production platform for antiviral agents.
Collapse
Affiliation(s)
- Corbin England
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72401, USA
- Molecular Biosciences Program, Arkansas State University, Jonesboro, AR 72401, USA
| | | | - Paula PerezSanchez
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, USA
| | - Uddhab Karki
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72401, USA
- Molecular Biosciences Program, Arkansas State University, Jonesboro, AR 72401, USA
| | - Jianfeng Xu
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72401, USA
- College of Agriculture, Arkansas State University, Jonesboro, AR 72401, USA
| |
Collapse
|
9
|
Krüger N, Kronenberger T, Xie H, Rocha C, Pöhlmann S, Su H, Xu Y, Laufer SA, Pillaiyar T. Discovery of Polyphenolic Natural Products as SARS-CoV-2 M pro Inhibitors for COVID-19. Pharmaceuticals (Basel) 2023; 16:190. [PMID: 37259339 PMCID: PMC9959258 DOI: 10.3390/ph16020190] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 09/27/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has forced the development of direct-acting antiviral drugs due to the coronavirus disease 2019 (COVID-19) pandemic. The main protease of SARS-CoV-2 is a crucial enzyme that breaks down polyproteins synthesized from the viral RNA, making it a validated target for the development of SARS-CoV-2 therapeutics. New chemical phenotypes are frequently discovered in natural goods. In the current study, we used a fluorogenic assay to test a variety of natural products for their ability to inhibit SARS-CoV-2 Mpro. Several compounds were discovered to inhibit Mpro at low micromolar concentrations. It was possible to crystallize robinetin together with SARS-CoV-2 Mpro, and the X-ray structure revealed covalent interaction with the protease's catalytic Cys145 site. Selected potent molecules also exhibited antiviral properties without cytotoxicity. Some of these powerful inhibitors might be utilized as lead compounds for future COVID-19 research.
Collapse
Affiliation(s)
- Nadine Krüger
- Infection Biology Unit, German Primate Center, Leibniz Institute for Primate Research Göttingen, Kellnerweg 4, 37077 Göttingen, Germany
| | - Thales Kronenberger
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided & Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Germany
| | - Hang Xie
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Cheila Rocha
- Infection Biology Unit, German Primate Center, Leibniz Institute for Primate Research Göttingen, Kellnerweg 4, 37077 Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, 37073 Göttingen, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, Leibniz Institute for Primate Research Göttingen, Kellnerweg 4, 37077 Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, 37073 Göttingen, Germany
| | - Haixia Su
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yechun Xu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Stefan A. Laufer
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided & Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Germany
| | - Thanigaimalai Pillaiyar
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| |
Collapse
|
10
|
Islam MR, Rahman MM, Ahasan MT, Sarkar N, Akash S, Islam M, Islam F, Aktar MN, Saeed M, Harun-Or-Rashid M, Hosain MK, Rahaman MS, Afroz S, Bibi S, Rahman MH, Sweilam SH. The impact of mucormycosis (black fungus) on SARS-CoV-2-infected patients: at a glance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:69341-69366. [PMID: 35986111 PMCID: PMC9391068 DOI: 10.1007/s11356-022-22204-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/20/2022] [Indexed: 05/28/2023]
Abstract
The emergence of various diseases during the COVID-19 pandemic made health workers more attentive, and one of the new pathogens is the black fungus (mucormycosis). As a result, millions of lives have already been lost. As a result of the mutation, the virus is constantly changing its traits, including the rate of disease transmission, virulence, pathogenesis, and clinical signs. A recent analysis revealed that some COVID-19 patients were also coinfected with a fungal disease called mucormycosis (black fungus). India has already categorized the COVID-19 patient black fungus outbreak as an epidemic. Only a few reports are observed in other countries. The immune system is weakened by COVID-19 medication, rendering it more prone to illnesses like black fungus (mucormycosis). COVID-19, which is caused by a B.1.617 strain of the SARS-CoV-2 virus, has been circulating in India since April 2021. Mucormycosis is a rare fungal infection induced by exposure to a fungus called mucormycete. The most typically implicated genera are Mucor rhyzuprhizopusdia and Cunninghamella. Mucormycosis is also known as zygomycosis. The main causes of infection are soil, dumping sites, ancient building walls, and other sources of infection (reservoir words "mucormycosis" and "zygomycosis" are occasionally interchanged). Zygomycota, on the other hand, has been identified as polyphyletic and is not currently included in fungal classification systems; also, zygomycosis includes Entomophthorales, but mucormycosis does not. This current review will be focused on the etiology and virulence factors of COVID-19/mucormycosis coinfections in COVID-19-associated mucormycosis patients, as well as their prevalence, diagnosis, and treatment.
Collapse
Affiliation(s)
- Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Md. Tanjimul Ahasan
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Nadia Sarkar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Mahfuzul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Most. Nazmin Aktar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
| | - Md. Harun-Or-Rashid
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Md. Kawsar Hosain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Md. Saidur Rahaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Sadia Afroz
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-E-Millat University, Islamabad, Pakistan
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650091 China
| | - Md. Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213 Bangladesh
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, 26426 Korea
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942 Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, 11829 Egypt
| |
Collapse
|
11
|
Le TTV, Do PC. Molecular docking study of various Enterovirus—A71 3C protease proteins and their potential inhibitors. Front Microbiol 2022; 13:987801. [PMID: 36246267 PMCID: PMC9563145 DOI: 10.3389/fmicb.2022.987801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/23/2022] [Indexed: 12/04/2022] Open
Abstract
Hand, foot, and mouth disease (HFMD) is a common infection that primarily affects children in preschool and kindergarten; however, there is yet no vaccination or therapy available. Despite the fact that current research is only focused on numerous strains of Enterovirus—A71 (EV-A71) 3C protease (3Cpro), these investigations are entirely separate and unrelated. Antiviral agents must therefore be tested on several EV strains or mutations. In total, 21 previously reported inhibitors were evaluated for inhibitory effects on eight EV-A71 3Cpro, including wild-type and mutant proteins in this study, and another 29 powerful candidates with inhibitory effects on EV-A71 were investigated using the molecular docking approach. This method is to determine the broad-spectrum of the antiviral agents on a range of strains or mutants because the virus frequently has mutations. Even though Rupintrivir is reported to pass phase I clinical trial, 4-iminooxazolidin-2-one moiety (FIOMC) was shown to have a broader anti-3Cpro spectrum than Rupintrivir. Meanwhile, Hesperidin possessed a better 3Cpro inhibitory capability than FIOMC. Thus, it could be considered the most promising candidate for inhibiting various strains of EV-A71 3Cpro proteins in the newly anti-EV compounds group. Furthermore, the mutation at E71A has the most significant impact on the docking results of all ligands evaluated. Future in vitro experiments on Hesperidin’s ability to inhibit 3Cpro activity should be conducted to compare with FIOMC’s in vitro results and validate the current in silico work.
Collapse
Affiliation(s)
- Tran Thao Vy Le
- School of Biotechnology, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Phuc-Chau Do
- School of Biotechnology, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
- *Correspondence: Phuc-Chau Do,
| |
Collapse
|
12
|
A Review on Herbal Secondary Metabolites Against COVID-19 Focusing on the Genetic Variants of SARS-CoV-2. Jundishapur J Nat Pharm Prod 2022. [DOI: 10.5812/jjnpp-129618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Context: An outbreak of the new coronavirus disease 2019 (COVID-19) was reported in Wuhan, China, in December 2019, subsequently affecting countries worldwide and causing a pandemic. Although several vaccines, such as mRNA vaccines, inactivated vaccines, and adenovirus vaccines, have been licensed in several countries, the danger of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants persists. To date, Alpha (B.1.1.7), Beta (B.1.351, B.1.351.2, B.1.351.3), Delta (B.1.617.2, AY.1, AY.2, AY. 3), Gamma (P.1, P.1.1, P.1.2), and Iota (B.1 .526) circulating in the United States, Kappa (B.1.617.1) in India, Lambda (C.37) in Peru and Mu (B.1.621) in Colombia are considered the variants of concern and interest. Evidence Acquisition: Data were collected through the end of August 2021 by searching PubMed, Scopus, and Google Scholar databases. There were findings from in silico, in vitro cell-based, and non-cell-based investigations. Results: The potential and safety profile of herbal medicines need clarification to scientifically support future recommendations regarding the benefits and risks of their use. Conclusions: Current research results on natural products against SARS-CoV-2 and variants are discussed, and their specific molecular targets and possible mechanisms of action are summarized.
Collapse
|