1
|
Kazemi A, Esmaeilbeigi M, Nahvinia MJ, Sahebi P, Sahebi Z, Ahadi M, Asl AG. Mineral pollutants and coliform contamination in groundwater pose health risks to consumers: a spatiotemporal study in a mining-impacted area. Sci Rep 2024; 14:26293. [PMID: 39487254 PMCID: PMC11530444 DOI: 10.1038/s41598-024-77721-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024] Open
Abstract
The presence of mineral pollutants, combined with bacterial contamination, has significantly impacted groundwater quality and led to various health-related issues in mining-impacted areas. Therefore, we measured the concentration of fluoride (F-), phosphate (PO43-), sulphate (SO42-), ammonium (NH4+), nitrate (NO3-), the total coliforms (TCs), and physiochemical characteristics in groundwater samples of South Khorasan, Eastern Iran. For this, we collected water samples from 100 wells in spring and autumn across this mining-impacted area. We then measured the concentrations of mineral pollutants and assessed their associated health risks to children and adults using the Environmental Protection Agency (EPA) models and spatiotemporal zoning maps in ArcGIS. The concentrations of PO43-, NH4+, SO42-, NO3-, and F- were 0.70 ± 0.34, 0.82 ± 0.9, 175.45 ± 123, 15.26 ± 9.41, and 0.53 ± 0.68 mg/L in spring, and 0.71 ± 3.18, 4.68 ± 31, 306.72 ± 615.80, 19.30 ± 15.61, and 0.72 ± 0.65 mg/L in autumn, respectively. PO43-, NH4+, and SO42- exceeded both the World Health Organization (WHO) and EPA, but NO3- exceeded only EPA standards. TCs in both seasons exceeded the standards set by the EPA and WHO. The hazard quotient (HQ) values indicated non-carcinogenic risks for F⁻ and NO3⁻, while posing no risks NH4⁺ and PO43⁻ in both adults and children during autumn and spring.Hazard index (HI) was greater than 1 for all minerals in both children and adults in autumn and spring. No correlation was observed between mineral compounds and TCs in the study area, yet the water samples were highly contaminated by coliform with a significant risk to adults and children. In essence, both mineral pollutants and TCs potentially pose serious risks to human, and more efforts are required to improve the quality of water in this area.
Collapse
Affiliation(s)
- Ali Kazemi
- Department of Environmental Science and Engineering, Arak University, Arak, Iran.
| | - Milad Esmaeilbeigi
- Centre for Applied Water Science, Institute for Applied Ecology, University of Canberra, Canberra, ACT, Australia
| | - Mohammad Javad Nahvinia
- Department of Water Science and Engineering, Faculty of Agriculture and Environment, Arak University, Arak, Iran
| | - Parisa Sahebi
- Department of Marine Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Sahebi
- Researcher in Environmental Science and Engineering, Research and Development Department, Arvin Zist Pooya Lab, Tehran, Iran
| | - Maral Ahadi
- Researcher in Environmental Science and Engineering, Research and Development Department, Arvin Zist Pooya Lab, Tehran, Iran
| | - Ali Ghanavati Asl
- Researcher in Environmental Science and Engineering, Morvarid Petrochemical Company, Tehran, Iran
| |
Collapse
|
2
|
Brown CW, Goldfine CE, Allan-Blitz LT, Erickson TB. Occupational, environmental, and toxicological health risks of mining metals for lithium-ion batteries: a narrative review of the Pubmed database. J Occup Med Toxicol 2024; 19:35. [PMID: 39192280 DOI: 10.1186/s12995-024-00433-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND The global market for lithium-ion batteries (LIBs) is growing exponentially, resulting in an increase in mining activities for the metals needed for manufacturing LIBs. Cobalt, lithium, manganese, and nickel are four of the metals most used in the construction of LIBs, and each has known toxicological risks associated with exposure. Mining for these metals poses potential human health risks via occupational and environmental exposures; however, there is a paucity of data surrounding the risks of increasing mining activity. The objective of this review was to characterize these risks. METHODS We conducted a review of the literature via a systematic search of the PubMed database on the health effects of mining for cobalt, lithium, manganese, and nickel. We included articles that (1) reported original research, (2) reported outcomes directly related to human health, (3) assessed exposure to mining for cobalt, lithium, manganese, or nickel, and (4) had an available English translation. We excluded all other articles. Our search identified 183 relevant articles. RESULTS Toxicological hazards were reported in 110 studies. Exposure to cobalt and nickel mining were most associated with respiratory toxicity, while exposure to manganese mining was most associated with neurologic toxicity. Notably, no articles were identified that assessed lithium toxicity associated with mining exposure. Traumatic hazards were reported in six studies. Three articles reported infectious disease hazards, while six studies reported effects on mental health. Several studies reported increased health risks in children compared to adults. CONCLUSIONS The results of this review suggest that occupational and environmental exposure to mining metals used in LIBs presents significant risks to human health that result in both acute and chronic toxicities. Further research is needed to better characterize these risks, particularly regarding lithium mining.
Collapse
Affiliation(s)
- Connor W Brown
- Department of Emergency Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Division of Medical Toxicology, Mass General Brigham, Boston, MA, USA.
| | - Charlotte E Goldfine
- Department of Emergency Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Medical Toxicology, Mass General Brigham, Boston, MA, USA
| | - Lao-Tzu Allan-Blitz
- Division of Global Health Equity, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Timothy B Erickson
- Department of Emergency Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Medical Toxicology, Mass General Brigham, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Harvard Humanitarian Initiative, Boston, MA, USA
| |
Collapse
|
3
|
Torabi S, Gholizadeh M, Yazarlo M, Riahi Z. Health Risk Assessment of Heavy Metals in Marine Fish Caught from the Northwest Persian Gulf. Biol Trace Elem Res 2024; 202:3789-3799. [PMID: 37936015 DOI: 10.1007/s12011-023-03946-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023]
Abstract
Marine fish may become contaminated as a result of environmental pollution including hazardous metals. Due to the presence of metalloids and toxic metals such as cadmium, lead, copper, and zinc in fish tissue, it may endanger health, considering the countless benefits of consuming fish, which can harm the human body if consumed in toxic amounts. Therefore, it is vital to monitor the concentration of metals in fish meat to ensure compliance with food safety regulations and protect the consumer. We considered the levels of Ni, Zn, Cu, Pb, and Cd in 60 marine fish samples (3 species) collected from coastal areas of the northwestern coast of the Persian Gulf and estimated their health risk. Mean concentrations of Ni, Zn, Cu, Pb, and Cd were 1.88 ± 0.07 µg/g, 27.16 ± 8.11 µg/g, 11.55 ± 4.12 µg/g, 14 ± 0.06 µg/g, and 0.19 ± 0.03 µg/g wet weight. Estimated average daily intakes (EDIs) for adults and children of Ni, Zn, Cu, Pb, and Cd were 0.89-4.15 μg/kg bw/day, 12.89-60.02 μg/kg bw/day, 5.47-25.53 μg/kg bw/day, 0.54-2.51 μg/kg bw/day, and 0.09-0.42 μg/kg bw/day. Our analysis revealed elevated levels of Ni and Pb in the fish samples, raising concerns about potential health hazards associated with their consumption. This study provides critical insights into heavy metal contamination in marine fish, highlighting the need for ongoing monitoring and proactive measures to ensure safe seafood consumption in the northwest Persian Gulf.
Collapse
Affiliation(s)
- Solaleh Torabi
- Department of Fisheries, Faculty of Agriculture and Natural Resources, Gonbad Kavous University, Gonbad Kavous, Iran
| | - Mohammad Gholizadeh
- Department of Fisheries, Faculty of Agriculture and Natural Resources, Gonbad Kavous University, Gonbad Kavous, Iran.
| | - Mahsa Yazarlo
- Department of Fisheries and Aquatic Sciences, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Zahra Riahi
- Department of Biological Sciences, Faculty of Basic Sciences and Technical Engineering, Gonbad Kavous University, Gonbad Kavous, Iran
| |
Collapse
|
4
|
Liu Z, Wang X, Wan X, Jia S, Mao B. Evolution origin analysis and health risk assessment of groundwater environment in a typical mining area: Insights from water-rock interaction and anthropogenic activities. ENVIRONMENTAL RESEARCH 2024; 252:118792. [PMID: 38583662 DOI: 10.1016/j.envres.2024.118792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/02/2024] [Accepted: 03/24/2024] [Indexed: 04/09/2024]
Abstract
Coal mining changes groundwater environment, results in deterioration of water quality and endangering human health in the mining area. However, the comprehensive study of groundwater evolution and its potential impact in mining area is still insufficient. In this study, 95 groundwater samples were collected from 2019 to 2020 in a typical mining area of China. Ion ratio coefficients, isotopic tracing technology, Entropy-weighted water quality index (EWQI) and human health risk assessment model (HHRA) were applicated to investigate the hydrochemical variation reasons, groundwater quality and its potential health risk in the study area. Results showed that the groundwater hydrochemical types changed from HCO3∙SO4-Ca∙Mg type to SO4-Ca∙Mg and SO4∙Cl-Ca∙Mg type. Water-rock interaction, agricultural activities, manure and sewage input, precipitation and evaporation controlled the groundwater hydrochemical composition. Groundwater quality showed a trend of fluctuation with an average EWQI of 59.23, 68.92, 63.75, 58.02 and 64.92, respectively. 91.6% of the water samples was fair and acceptable for drinking. The groundwater health risk of nitrate in the study area ranged from 0.03 to 17.80. Infants had the highest health risk and nitrate concentration was the most sensitive parameter. The results will present a comprehensive research of groundwater evolution and potential impacts through a typical mining area example. Thereby offering valuable insights into the influencing factors identification, hydrochemical processes evolution, protection and utilization of groundwater in global mining areas.
Collapse
Affiliation(s)
- Zejun Liu
- College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xihua Wang
- College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Department of Earth and Environmental Sciences, University of Waterloo, ON, N2L 3G1, Canada.
| | - Xi Wan
- College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Shunqing Jia
- College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Boyang Mao
- College of Civil Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| |
Collapse
|
5
|
Salehi F, Esmaeilbeigi M, Kazemi A, Sharafi S, Sahebi Z, Asl AG. Spatial health risk assessments of nickel in the groundwater sources of a mining-impacted area. Sci Rep 2024; 14:11017. [PMID: 38745041 PMCID: PMC11094187 DOI: 10.1038/s41598-024-61914-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/10/2024] [Indexed: 05/16/2024] Open
Abstract
Mining activities have increased the potential risks of metal pollution to the groundwater resources in arid areas across the globe. Therefore, this study aimed to examine the health risk associated with nickel (Ni) in the groundwater sources of a mining-impacted area, South Khorasan, Eastern Iran. A total of 110 stations were included in the study, comprising 62 wells, 40 qanats, and 8 springs in summer, 2020. Initially, the collected samples were tested for temperature, pH, and electrical conductivity (EC). Subsequently, the samples were filtered and treated with nitric acid (HNO3) to measure the concentration of Ni using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Hazard quotient (HQ) and non-carcinogenic risk assessments were employed to evaluate the potential risks of Ni to the inhabitants. The findings revealed that the concentration of Ni ranged from 0.02 to 132.39 μg l-1, and only two stations exhibited Ni concentrations above the WHO standards (20 μg l-1). The results demonstrated that 98.21% of the sampled locations had HQ values below one, indicating negligible risk, while 1.78% of the stations exhibited HQ values of one or higher, representing a high non-carcinogenic risk for water consumers. Overall, the concentration of nickel in the groundwater of South Khorasan exceeded the World Health Organization (WHO) limit solely in the Halvan station, posing a non-carcinogenic risk for the residents in that area, and therefore, additional efforts should be made to provide healthier groundwater to consumers in this region.
Collapse
Affiliation(s)
- Fatemeh Salehi
- Department of Environmental Science and Engineering, Faculty of Agriculture and Environment, Arak University, Arak, Iran
| | - Milad Esmaeilbeigi
- Centre for Applied Water Science, Institute for Applied Ecology, University of Canberra, Canberra, ACT, Australia
| | - Ali Kazemi
- Department of Environmental Science and Engineering, Faculty of Agriculture and Environment, Arak University, Arak, Iran.
| | - Saeed Sharafi
- Department of Environmental Science and Engineering, Faculty of Agriculture and Environment, Arak University, Arak, Iran
| | | | - Ali Ghanavati Asl
- Researcher in Environmental Science and Engineering, Islamic Azad University, Ahvaz, Khuzestan, Iran
| |
Collapse
|
6
|
Mohammadpour A, Samaei MR, Ali Baghapour M, Sartaj M, Isazadeh S, Azhdarpoor A, Alipour H, Mousavi Khaneghah A. Modeling, quality assessment, and Sobol sensitivity of water resources and distribution system in Shiraz: A probabilistic human health risk assessment. CHEMOSPHERE 2023; 341:139987. [PMID: 37659511 DOI: 10.1016/j.chemosphere.2023.139987] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/11/2023] [Accepted: 08/25/2023] [Indexed: 09/04/2023]
Abstract
Given water's vital role in supporting life and ecosystems, global climate change and human activities have significantly diminished its availability and quality. This study explores the health risks of drinking water consumption in the shiraz county water resources and distribution system. The result showed that the water was slightly alkaline. However, the average pH values during the study were within the permissible range. The area's abundance of total hardness and calcium was due to the high concentration of minerals in rocks and soils. The nitrate and fluoride concentrations in drinking groundwater varied from 0.02 to 116.70 mg/L and 0.10-1.85 mg/L, respectively. Although the water quality index indicated that 52.63, 45.03, and 20.3 percent of samples were of excellent, good, and poor quality in 2020, those percentages obtained 46.05, 52.09, and 14.0 percent in 2021. The regression values of training, testing, validation, and the proposed artificial neural network model were 0.93, 0.92, 0.85, and 0.92. The maximum levels of hazard quotient of nitrate and fluoride (except for adults) were higher than 1 in all age groups, indicating a high non-carcinogenic risk by exposure to nitrate. Furthermore, according to the Monte Carlo simulation, the 95th percentile hazard index in all groups was more than 1. Children and infants were more inclined towards risk than teens and adults based on the intake of nitrate and fluoride from drinking water. The Sobol sensitivity reflected that the nitrate concentration and ingestion rate are vital parameters that influence the outcome of the oral exposure model for all age groups. The interaction of ingestion rate with a concentration of nitrate and fluoride is an important parameter affecting the health risk assessment. In conclusion, these findings suggest that precise measures can reduce health risks and guarantee safe drinking water for residents of Shiraz County.
Collapse
Affiliation(s)
- Amin Mohammadpour
- Department of Environmental Health Engineering, School of Health, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Samaei
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad Ali Baghapour
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Sartaj
- Department of Civil Engineering, Faculty of Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | | | - Abooalfazl Azhdarpoor
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamzeh Alipour
- Department of Vector Biology and Control of Diseases, Research Center for Health Sciences, Institute of Health, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland.
| |
Collapse
|
7
|
Sarath KV, Shaji E, Nandakumar V. Characterization of trace and heavy metal concentration in groundwater: A case study from a tropical river basin of southern India. CHEMOSPHERE 2023; 338:139498. [PMID: 37451633 DOI: 10.1016/j.chemosphere.2023.139498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
This study investigates the hydrogeochemistry of groundwater samples collected from the Shiriya River Basin (SRB), a tropical watershed located in Kasaragod, Kerala, southern India, with a special focus on trace elements. Fifty-four groundwater samples were collected from deep aquifers, which constitute weathered and fractured granitoids and mafic rocks, and the groundwater is tapped by bore wells from a fractured zone at a depth range of 60-100 m. Concentrations of Sr, Li, Ba, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Cd, Ag, Au, Te, Pb, Re, and PGEs in groundwater were determined by using Q-ICPMS. Out of the 25 analysed trace elements in groundwater, only Sr (489.6 μg/L), Ba (226 μg/L), Li (11.76 μg/L) Mn (396.8 μg/L), Ni (68 μg/L) and Fe (2438.5 μg/L) show anomalous values. The PGEs and the majority of trace elements show values within the permissible limit. Raman spectral studies reveal the presence of celsian in aquifer rocks and are the source of Ba in groundwater. Further, XRF data of the rocks show a high enrichment of Fe and Mn in mafic dyke, basalt, and syenite, and Ba and Sr in granite, pegmatite, and granitic gneiss. Therefore, this study proved that the source of these elements is geogenic, i.e., they are released from the crystalline aquifer through rock-water interaction under alkaline conditions. The results of this study show that the groundwater of the basin has enough metals such as Na, K, Mg, Ca, Mn, Fe, Co, Cu, and Zn, which are good for health. Nevertheless, a few metals (Fe, Mn, Ba, Sr, Li, Ni) that may exert toxic effects on humans are also present in the groundwater of the SRB. As groundwater is found to be a dependable source of drinking water in such watersheds, a comprehensive study on the hydrogeochemistry of all watersheds in tropical regions is recommended.
Collapse
Affiliation(s)
- K V Sarath
- Department of Geology, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695581, India
| | - E Shaji
- Department of Geology, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695581, India.
| | - V Nandakumar
- National Centre for Earth Science Studies, Ministry of Earth Sciences, Government of India, Akkulam, Thiruvananthapuram, Kerala, 695011, India
| |
Collapse
|
8
|
Asl AG, Nabavi SMB, Rouzbahani MM, Alipour SS, Monavari SM. Persistent organic pollutants influence the marine benthic macroinvertebrate assemblages in surface sediments of Nayband National Park and Bay, Northern Persian Gulf, Iran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:30254-30270. [PMID: 36422775 DOI: 10.1007/s11356-022-24232-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Macroinvertebrate communities have been influenced by chemical substances, originated from petrochemical developments, that caused many problems in the marine biota. This study investigated the surface sediments of Nayband National Park and Bay (northern Persian Gulf) for polycyclic aromatic hydrocarbons (PAHs) and total petroleum hydrocarbons (TPHs) in terms of their distribution, source, and impacts on benthic macroinvertebrate assemblages. To this end, a total of 180 surface sediment samples from 20 stations were collected using Van-Veen grab sampler during winter 2018. The concentration of PAHs, TPHs, total organic carbon (TOC). and total organic matter (TOM) were evaluated, and grain size measurements were conducted on sediment samples in this study. Benthic macroinvertebrates were then identified in terms of presence and distribution. The results indicated that coarse granulometric fractions of sands were prevalence in all samples stations. The total concentration of PAHs ranged from 47.57 to 657.68 ng/g and TPHs 5.72 to 42.16 µg/g dw. The risk of ΣPAHs and TPHs in the sediments was relatively low to moderate according to the sediment quality guidelines. Analysis of the results revealed a significant negative correlation between ΣPAHs (R-value = - 0.917; P < 0.01), TPHs (R-value = - 0.849; P < 0.01) and macrofaunal abundance. Findings demonstrated that the species richness and abundance were at the lowest levels in stations where concentrations of PAHs, TPHs, TOC, and TOM were in the highest values, suggesting that these contaminants could negatively influence the benthic organisms in Nayband National Park and Bay. The results of correspondence analysis (CA) and principal component analysis (PCA) analysis showed that sedimentary habitats in Nayband National Park and Bay are being negatively affected by PAHs and TPHs, released from Pars Special Economic Energy Zone (PSEEZ). Moreover, the marine biotic index (AMBI) and Shannon-Weiner Diversity (H') results suggest that Nayband National Park and Bay can be classified as slightly to moderate polluted area. In conclusion, Northern Persian Gulf is significantly affected by oil industry developments and petrochemical activities. The unique ecosystem like Nayband National Park and Bay has been in a cautious status in terms of the PSEEZ pollutants and the levels of PAHs and TPHs concentration, warning that urgent environmental programs should be considered to protect the diversity and ecology of this valuable marine systems.
Collapse
Affiliation(s)
- Ali Ghanavati Asl
- Department of Environment, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | | | | | - Sima Sabz Alipour
- Department of Environment, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | | |
Collapse
|
9
|
Yazdanabdad TE, Forghaniha A, Emtyazjoo M, Ramezani M. Toxicity Effects of Engineered Iron Nanoparticles (Fe 3O 4) on the Growth, Cell Density, and Pigment Content of Chlorella vulgaris. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 83:155-167. [PMID: 35947144 DOI: 10.1007/s00244-022-00949-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
This study investigated the effects of Fe3O4 nanoparticles released from synthesized thiourea catalyst on the biological aspects of Chlorella vulgaris. Fe3O4 concentrations (0, 10, 100, 250, 500, 750, and 1000 mg L-1) were used for the exposure tests. Biological parameters of C. vulgaris, including cell density, cell viability, and pigment content, were assessed. Bioconcentration and bioaccumulation factors were evaluated for contaminated microalgae. Non-carcinogenic risks were then assessed using target hazard quotient (THQ) for potential risks in human consumptions. Findings showed that C. vulgaris cell number increased from 0 to 500 mg L-1 of Fe3O4 concentration. Chlorophyll a represented a time-dependent response, and greatest values were detected in 250 and 500 mg L-1 Fe3O4 at 4.2 and 4 mg/g, respectively. Chlorophyll b content showed a time-related manner in exposure to Fe3O4 with the highest values recorded at 250 mg L-1 after 96 h. Moreover, bioaccumulation displayed a dose-dependent response at 15,000 µg/g dw in 1000 mg L-1, whereas the lowest concentration was in the control group at 1700 µg/g dw. The bioconcentration factor showed a concentration-relevant decrease in all iron treatments and 10 mg L-1 of Fe3O4 represented the greatest BCF at 327.3611. Non-carcinogenic risks illustrated negligible hazard (THQ < 1) and the largest EDI and THQ were calculated in 1000 mg L-1 at 7.4332E-07 (mg kg-1 day-1) and 1.06189E-09, respectively. Together, iron is an essential trace element for biological purposes in aquatic systems, but in exceeding concentrations could impose toxicity effects to C. vulgaris populations.
Collapse
Affiliation(s)
| | - Ali Forghaniha
- Department of Chemistry, Faculty of Sciences, Arak Branch, Islamic Azad University, Arak, Iran
| | - Mozhgan Emtyazjoo
- Department of Marine Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Majid Ramezani
- Department of Chemistry, Faculty of Sciences, Arak Branch, Islamic Azad University, Arak, Iran
| |
Collapse
|