1
|
Panda A, Fatnani D, Parida AK. Uptake, impact, adaptive mechanisms, and phytoremediation of heavy metals by plants: Role of transporters in heavy metal sequestration. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109578. [PMID: 39913980 DOI: 10.1016/j.plaphy.2025.109578] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 01/01/2025] [Accepted: 01/28/2025] [Indexed: 03/11/2025]
Abstract
Heavy metals (HMs) pose severe threats to both the environment and its inhabitants, leading to reduced crop productivity and hazardous impacts on human and animal health. Metallurgical activities in peri-urban areas are major contributors to the terrestrial deposition of various HMs. Upon entering plant the cells, HMs disrupt structural and physiological processes, inducing stress responses and triggering metabolic pathways for stress adaptations. The plants have evolved specialized transport systems to regulate the uptake, transport, and cellular concentrations of these metals. HMs often exploit transporters of essential nutrients, such as phosphate, hexose, and sulfate to gain entry into plant cells. Key players include zinc receptor transporter (ZRT1) and iron receptor transporter (IRT1), both part of the ZIP (Zinc Iron Permease) family, as well as heavy metal-associated ATPases (HMAs) and ATP binding cassette transporter C (ABCC-type transporters). Hyperaccumulating plants thrive in harsh environments with elevated concentrations of toxic ions, such as sodium, chloride, and heavy metals including arsenic (As), mercury (Hg), cadmium (Cd), lead (Pb), silicon (Si), boron (B), antimony (Sb), germanium (Ge), and tellurium (Te), by compartmentalizing these ions into vacuoles. The accumulation of heavy metals or metalloids like cadmium (Cd), lead (Pb), arsenic (As), chromium (Cr), nickel (Ni), manganese (Mn), zinc (Zn), thallium (Tl), cobalt (Co), cupper (Cu), and selenium (Se) has been extensively reported in various hyperaccumulating plant species. The halophytes, known for their inherent salinity tolerance, exhibit superior resilience to HM stress due to overlapping mechanisms of ion compartmentatlization and detoxification. This review provides an in-depth analysis on the effects of heavy metals on the metabolic processes, growth, and development of plants, emphasizing heavy tolerance mechanisms with a particular focus on halophytes. The role of HM transporters in metal sequestration and detoxification is discussed, along with the potential of hyperaccumulating halophytes for phytoremediation of HM-contaminated soils.
Collapse
Affiliation(s)
- Ashok Panda
- Plant Omics Division, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Dhara Fatnani
- Plant Omics Division, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Asish Kumar Parida
- Plant Omics Division, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Lu L, Ye H, Fang N, Jiang J, Luo Y, Wang X, He H, Yu J, Zhao X, Zhang C. 2,4-Epibrassinolide Regulates Polysaccharide Substance Biosynthesis after Field Application to Dendrobium officinale. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6270-6280. [PMID: 40014423 DOI: 10.1021/acs.jafc.4c12157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
This study investigated the effects of 2,4-epibrassinolide (EBR) residues on Dendrobium officinale quality. The residues decreased from 0.164 to 0.238 mg/kg (2 h) to 0.014-0.071 mg/kg (35 d) in the stems with 0.02-0.05 mg/L EBR applications. Polysaccharide, mannose, and glucose content were increased in the stems and leaves, reaching a maximum of 61% in dried stems on 35 d. The increase in content may result from the significant upregulation of enzyme activities, including UGP, SUS, and SPS. Further analysis by nontargeted metabolomics revealed 5 upregulated (UDP-l-rhamnose, mannose-6-phosphate, GDP-mannose, chitobiose, and N-acetyl-galactosamine-6-phosphate) and 13 downregulated metabolites associated with polysaccharide and monosaccharide growth in the 0.02-0.05 mg/L EBR treatments. These differential metabolites regulate the biosynthesis of polysaccharides mainly through key metabolic pathways, such as glucose and fructose metabolism. These results provide a reference for the regulatory mechanisms governing the quality indicators of Dendrobium officinale after EBR application.
Collapse
Affiliation(s)
- Lanfei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
| | - Hui Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
| | - Nan Fang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
| | - Jinhua Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
| | - Yuqin Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
| | - Xiangyun Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
| | - Hongmei He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
| | - Jianzhong Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
| | - Xueping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
| | - Changpeng Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
| |
Collapse
|
3
|
Mu L, Gao Z, Wang M, Tang X, Hu X. The Combined Toxic Effects of Polystyrene Microplastics and Arsenate on Lettuce Under Hydroponic Conditions. TOXICS 2025; 13:86. [PMID: 39997901 PMCID: PMC11860235 DOI: 10.3390/toxics13020086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/15/2025] [Accepted: 01/22/2025] [Indexed: 02/26/2025]
Abstract
The combined pollution of microplastics (MPs) and arsenic (As) has gradually been recognized as a global environmental problem, which calls for detailed investigation of the synergistic toxic effects of MPs and As on plants and their mechanisms. Therefore, the interaction between polystyrene microplastics (PS-MPs) and arsenate (AsO43-) (in the following text, it is abbreviated as As(V)) and its toxic effects on lettuce were investigated in this study. Firstly, chemisorption was identified as the main mechanism between PS-MPs and As(V) by the analysis of adsorption kinetics, adsorption thermodynamics, and Fourier transform infrared spectroscopy (FTIR). At the same time, the addition of As(V) promoted the penetration of PS-MPs through the continuous endodermal region of the Casparis strip. Furthermore, compared with the CK group, it was found that the co-addition of As(V) exacerbated the lowering effect of PS-MPs on the pH value of the rhizosphere environment and the inhibitory effect on root growth. In the P20V10 group, the pH decreased by 33.0%. Compared to the CK group, P20, P20V1, and P20V10 decreased the chlorophyll content by 68.45% (16 SPAD units), 71.37% (17.73 SPAD units), and 61.74% (15.36 SPAD units) and the root length by 19.31% (4.18 cm), 50.72% (10.98 cm), and 47.90% (10.37 cm) in lettuce. P5V10 and P20V10 increased CAT content by 153.54% (33.22 U·(mgprol)-1) and 182.68% ((38.2 U·(mgprol)-1)), Ca by 31.27% and 37.68%, and Zn by 41.85% and 41.85%, but the presence of As(V) reduced Na by 22.85% (P5V1) and 49.95% (P5V10). The co-exposure significantly affected the physiological and biochemical indicators as well as the nutritional quality of the lettuce. Finally, the metabolomic analysis of the lettuce leaves showed that combined pollution with PS-MPs and As(V) affected the metabolic pathways of the tricarboxylic acid cycle (TCA cycle), sulfur metabolism, and pyruvate metabolism. This study provides data for pollution management measures for co-exposure to PS-MPs and As(V).
Collapse
Affiliation(s)
- Li Mu
- Tianjin Key Laboratory of Agro-Environment and Safe-Product, Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (Z.G.); (M.W.)
| | - Ziwei Gao
- Tianjin Key Laboratory of Agro-Environment and Safe-Product, Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (Z.G.); (M.W.)
| | - Mengyuan Wang
- Tianjin Key Laboratory of Agro-Environment and Safe-Product, Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (Z.G.); (M.W.)
| | - Xin Tang
- Tianjin Key Laboratory of Agro-Environment and Safe-Product, Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (Z.G.); (M.W.)
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China;
| |
Collapse
|
4
|
Zhao Y, Liu W, Liu J, Shi R, Zeb A, Li X, Ge Y. Phytotoxicity of 6PPD and its uptake by Myriophyllum verticillatum: Oxidative stress and metabolic processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177248. [PMID: 39477116 DOI: 10.1016/j.scitotenv.2024.177248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/20/2024] [Accepted: 10/25/2024] [Indexed: 11/03/2024]
Abstract
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), a widely utilized antioxidant in automobile tires and rubber goods, is frequently detected in aquatic ecosystems and poses a potential threat to aquatic organisms. However, research on the impact of 6PPD on aquatic plants is still scarce. Here, we investigated the bioaccumulation of 6PPD in Myriophyllum verticillatum (M. verticillatum) (watermilfoil), and its impacts on biochemical characteristics and metabolomics. 6PPD (10,100 mg/L) significantly inhibited the growth and photosynthetic pigment content of M. verticillatum. After 14 days of exposure to 100 μg/L 6PPD, accumulation levels of 6PPD and its metabolite 6PPDQ in M. verticillatum reached 0.52 mg/kg and 0.09 mg/kg, respectively. Moreover, 6PPD significantly induced the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) enzymes and glutathione (GSH), reducing the levels of reactive oxygen species (ROS) and malondialdehyde (MDA), thereby mitigating oxidative damage in M. verticillatum. Furthermore, metabolic pathway analysis revealed that 6PPD has remarkable effects on amino acid and sugar metabolism. This study provides data support for understanding the toxic effects of 6PPD on aquatic plants and evaluating its potential risks.
Collapse
Affiliation(s)
- Yuexing Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| | - Jinzheng Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Xiang Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Yichen Ge
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| |
Collapse
|
5
|
Dong Q, Zuo S, Chu B, Li Y, Wang Z. Bio-pump cadmium phytoextraction efficiency promoted by phytohormones in Festuca arundinacea. CHEMOSPHERE 2024; 363:142794. [PMID: 38977248 DOI: 10.1016/j.chemosphere.2024.142794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
The leaves of Festuca arundinacea can excrete cadmium (Cd) out onto the leaf surface, leading to a bio-pump phytoremediation strategy based on "root uptake-root-to-leaf translocation-leaf excretion". However, the bio-bump efficiency of soil Cd is a limiting factor for the implementation of this novel technology. Bio-bump remediation involves the bioprocess of plant root uptake from soil, root-to-leaf translocation, and leaf hydathode excretion. Here we show the significant effects of phytohormones in regulating the bio-pump phytoextraction efficiency. The results showed that salicylic acid and ethylene enhanced the whole process of Cd root uptake, root-to-leaf translocation, and leaf excretion, promoting the bio-pump phytoextraction efficiency by 63.6% and 73.8%, respectively. Gibberellin also greatly promoted Cd translocation, leaf excretion, and phytoextraction, but did not significantly impact Cd root uptake. Our results indicate that salicylic acid and ethylene could be recommended to promote bio-pump phytoextraction efficiency in F. arundinacea. Gibberellin might be used for a short-term promotion of the leaf Cd excretion.
Collapse
Affiliation(s)
- Qin Dong
- School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China
| | - Shaofan Zuo
- School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Baohua Chu
- School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yanbang Li
- School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Zhaolong Wang
- School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
6
|
Yang Y, Cheng Y, Lu Z, Ye H, Du G, Li Z. Comparative proteomic and metabolomic analyses reveal stress responses of hemp to salinity. PLANT CELL REPORTS 2024; 43:154. [PMID: 38809335 DOI: 10.1007/s00299-024-03237-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024]
Abstract
KEY MESSAGE Integrated omics analyses outline the cellular and metabolic events of hemp plants in response to salt stress and highlight several photosynthesis and energy metabolism related pathways as key regulatory points. Soil salinity affects many physiological processes of plants and leads to crop yield losses worldwide. For hemp, a crop that is valued for multiple aspects, such as its medical compounds, fibre, and seed, a comprehensive understanding of its salt stress responses is a prerequisite for resistance breeding and tailoring its agronomic performance to suit certain industrial applications. Here, we first observed the phenotype of salt-stressed hemp plants and found that under NaCl treatment, hemp plants displayed pronounced growth defects, as indicated by the significantly reduced average height, number of leaves, and chlorophyll content. Next, we conducted comparative proteomics and metabolomics to dissect the complex salt-stress response mechanisms. A total of 314 proteins and 649 metabolites were identified to be differentially behaving upon NaCl treatment. Functional classification and enrichment analysis unravelled that many differential proteins were proteases associated with photosynthesis. Through metabolic pathway enrichment, several energy-related pathways were found to be altered, such as the biosynthesis and degradation of branched-chain amino acids, and our network analysis showed that many ribosomal proteins were involved in these metabolic adaptations. Taken together, for hemp plants, influences on chloroplast function probably represent a major toxic effect of salinity, and modulating several energy-producing pathways possibly through translational regulation is presumably a key protective mechanism against the negative impacts. Our data and analyses provide insights into our understanding of hemp's stress biology and may lay a foundation for future functional genomics studies.
Collapse
Affiliation(s)
- Yang Yang
- School of Agriculture, Yunnan University, Kunming, 650091, China
| | - Yu Cheng
- School of Agriculture, Yunnan University, Kunming, 650091, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, 650091, China
| | - Zhenhua Lu
- School of Agriculture, Yunnan University, Kunming, 650091, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, 650091, China
| | - Hailong Ye
- School of Agriculture, Yunnan University, Kunming, 650091, China
| | - Guanghui Du
- School of Agriculture, Yunnan University, Kunming, 650091, China
| | - Zheng Li
- School of Agriculture, Yunnan University, Kunming, 650091, China.
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, 650091, China.
| |
Collapse
|
7
|
Zhu Y, Zhang Y, Chen H, Zhang L, Shen C. Stress Responses and Ammonia Nitrogen Removal Efficiency of Oocystis lacustris in Saline Ammonium-Contaminated Wastewater Treatment. TOXICS 2024; 12:353. [PMID: 38787132 PMCID: PMC11125631 DOI: 10.3390/toxics12050353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/24/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
The increasing concern over climate change has spurred significant interest in exploring the potential of microalgae for wastewater treatment. Among the various types of industrial wastewaters, high-salinity NH4+-N wastewater stands out as a common challenge. Investigating microalgae's resilience to NH4+-N under high-salinity conditions and their efficacy in NH4+-N utilization is crucial for advancing industrial wastewater microalgae treatment technologies. This study evaluated the effectiveness of employing nitrogen-efficient microalgae, specifically Oocystis lacustris, for NH4+-N removal from saline wastewater. The results revealed Oocystis lacustris's tolerance to a Na2SO4 concentration of 5 g/L. When the Na2SO4 concentration reached 10 g/L, the growth inhibition experienced by Oocystis lacustris began to decrease on the 6th day of cultivation, with significant alleviation observed by the 7th day. Additionally, the toxic mechanism of saline NH4+-N wastewater on Oocystis lacustris was analyzed through various parameters, including chlorophyll-a, soluble protein, oxidative stress indicators, key nitrogen metabolism enzymes, and microscopic observations of algal cells. The results demonstrated that when the Oocystis lacustris was in the stationary growth phase with an initial density of 2 × 107 cells/L, NH4+-N concentrations of 1, 5, and 10 mg/L achieved almost 100% removal of the microalgae on the 1st, 2nd, and 4th days of treatment, respectively. On the other hand, saline NH4+-N wastewater minimally impacted photosynthesis, protein synthesis, and antioxidant systems within algal cells. Additionally, NH4+-N within the cells was assimilated into glutamic acid through glutamate dehydrogenase-mediated pathways besides the conventional pathway involving NH4+-N conversion into glutamine and assimilation amino acids.
Collapse
Affiliation(s)
- Yuqi Zhu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; (Y.Z.); (Y.Z.); (L.Z.)
| | - Yili Zhang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; (Y.Z.); (Y.Z.); (L.Z.)
| | - Hui Chen
- Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation of Ningbo City, College of Science and Technology, Ningbo University, Cixi 315302, China;
| | - Lisha Zhang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; (Y.Z.); (Y.Z.); (L.Z.)
| | - Chensi Shen
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; (Y.Z.); (Y.Z.); (L.Z.)
| |
Collapse
|
8
|
Attia H, Alamer KH. Supplementation of Jasmonic acid Mitigates the Damaging Effects of Arsenic Stress on Growth, Photosynthesis and Nitrogen Metabolism in Rice. RICE (NEW YORK, N.Y.) 2024; 17:31. [PMID: 38671283 PMCID: PMC11052983 DOI: 10.1186/s12284-024-00709-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
Experiments were conducted to evaluate the role of exogenously applied jasmonic acid (JA; 0.1 and 0.5 µM) in alleviating the toxic effects of arsenic (As; 5 and 10 µM) stress in rice. Plants treated with As showed considerable decline in growth attributes like height, fresh and dry weight of plant. Arsenic stress reduced the content of δ-amino livulenic acid (δ-ALA), glutamate 1-semialdehyde (GSA), total chlorophylls and carotenoids, with more reduction evident at higher (10 µM) As concentrations, however exogenously supplied JA alleviated the decline to considerable extent. Arsenic stress mediated decline in photosynthetic gas exchange parameters, Fv/Fm (PSII activity) and Rubisco activity was alleviated by the exogenous treatment of JA. Arsenic stress caused oxidative damage which was evident as increased lipid peroxidation, lipoxygenase activity and hydrogen peroxide concentrations however, JA treatment declined these parameters. Treatment of JA improved the activity of nitrate reductase and glutamate synthase under unstressed conditions and also alleviated the decline triggered by As stress. Activity of antioxidant enzymes assayed increased due to As stress, and the supplementation of JA caused further increase in their activities. Moreover, the content of proline, free amino acids and total phenols increased significantly due to JA application under stressed and unstressed conditions. Treatment of JA increased the content of nitrogen and potassium while as reduced As accumulation significantly.
Collapse
Affiliation(s)
- Houneida Attia
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| | - Khalid H Alamer
- Biological Sciences Department, Faculty of Science and Arts, King Abdulaziz University, Rabigh, 21911, Saudi Arabia
| |
Collapse
|
9
|
Khan R, Sarwar MJ, Shabaan M, Asghar HN, Zulfiqar U, Iftikhar I, Aijaz N, Haider FU, Chaudhary T, Soufan W. Exploring the synergistic effects of indole acetic acid (IAA) and compost in the phytostabilization of nickel (Ni) in cauliflower rhizosphere. BMC PLANT BIOLOGY 2024; 24:275. [PMID: 38605329 PMCID: PMC11007947 DOI: 10.1186/s12870-024-04920-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024]
Abstract
Heavy metals (HMs) contamination, owing to their potential links to various chronic diseases, poses a global threat to agriculture, environment, and human health. Nickel (Ni) is an essential element however, at higher concentration, it is highly phytotoxic, and affects major plant functions. Beneficial roles of plant growth regulators (PGRs) and organic amendments in mitigating the adverse impacts of HM on plant growth has gained the attention of scientific community worldwide. Here, we performed a greenhouse study to investigate the effect of indole-3-acetic acid (IAA @ 10- 5 M) and compost (1% w/w) individually and in combination in sustaining cauliflower growth and yield under Ni stress. In our results, combined application proved significantly better than individual applications in alleviating the adverse effects of Ni on cauliflower as it increased various plant attributes such as plant height (49%), root length (76%), curd height and diameter (68 and 134%), leaf area (75%), transpiration rate (36%), stomatal conductance (104%), water use efficiency (143%), flavonoid and phenolic contents (212 and 133%), soluble sugars and protein contents (202 and 199%), SPAD value (78%), chlorophyll 'a and b' (219 and 208%), carotenoid (335%), and NPK uptake (191, 79 and 92%) as compared to the control. Co-application of IAA and compost reduced Ni-induced electrolyte leakage (64%) and improved the antioxidant activities, including APX (55%), CAT (30%), SOD (43%), POD (55%), while reducing MDA and H2O2 contents (77 and 52%) compared to the control. The combined application also reduced Ni uptake in roots, shoots, and curd by 51, 78 and 72% respectively along with an increased relative production index (78%) as compared to the control. Hence, synergistic application of IAA and compost can mitigate Ni induced adverse impacts on cauliflower growth by immobilizing it in the soil.
Collapse
Affiliation(s)
- Raheel Khan
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Junaid Sarwar
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Shabaan
- Land Resources Research Institute (LRRI), National Agricultural Research Centre (NARC), Islamabad, Pakistan.
| | - Hafiz Naeem Asghar
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Irfan Iftikhar
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Nazish Aijaz
- School of Biomedical Science, Hunan University, Changsha, Hunan, China
- MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Talha Chaudhary
- Faculty of Agricultural and Environmental Sciences, Hungarian University of Agriculture and Life Sciences 2100, Godollo, Hungary.
| | - Walid Soufan
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
10
|
Bao Q, Bao Y, Shi J, Sun Y. Nano zero-valent iron and melatonin synergistically alters uptake and translocation of Cd and As in soil-rice system and mechanism in soil chemistry and microbiology. ENVIRONMENT INTERNATIONAL 2024; 185:108550. [PMID: 38452466 DOI: 10.1016/j.envint.2024.108550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/15/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
Nanoscale zero-valent iron (Fe) is a promising nanomaterial for remediating heavy metal-contaminated soils. Melatonin (MT) is essential to alleviate environmental stress in plants. However, the conjunction effects of Fe and MT (FeMT) on rice Cd, As accumulation and the mechanism of soil chemical and microbial factors interaction are unclear. Here, a pot experiment was conducted to evaluated the effects of the FeMT for rice Cd, As accumulation and underlying mechanisms. The findings showed that FeMT significantly reduced grains Cd by 92%-87% and As by over 90%, whereas improving grains Fe by over 213%. Soil available-Cd and iron plaques-Cd (extracted by dithionite-citrate-bicarbonate solution, DCB-Cd) significantly regulated roots Cd, thus affected Cd transport to grains. Soil pH significantly affected soil As and DCB-As, which further influenced roots As uptake and the transport to shoots and grains. The interactions between the soil bacterial community and soil Fe, available Fe, and DCB-Fe together affected root Fe absorption and transportation in rice. FeMT significantly influenced rhizosphere soil bacterial α- and β-diversity. Firmicutes as the dominant phylum exhibited a significant positive response to FeMT measure, and acted a key role in reducing soil Cd and As availability mainly by improving iron-manganese plaques. The increase of soil pH caused by FeMT was beneficial only for Actinobacteriota growth, which reduced Cd, As availability probably through complexation and adsorption. FeMT also showed greater potential in reducing human health and ecological risks by rice consumption and straw returning. These results showed the important role of both soil chemical and microbial factors in FeMT-mediated rice Cd, As reduction efficiency. This study opens a novel strategy for safe rice production and improvement of rice iron nutrition level in heavy-metals polluted soil, but also provides new insights into the intricate regulatory relationships among soil biochemistry, toxic elements, microorganism, and plants.
Collapse
Affiliation(s)
- Qiongli Bao
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjing, 300191, China.
| | - Yinrong Bao
- Agronomy College, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jiahao Shi
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjing, 300191, China
| | - Yuebing Sun
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjing, 300191, China
| |
Collapse
|
11
|
Wang N, Wang X, Chen L, Liu H, Wu Y, Huang M, Fang L. Biological roles of soil microbial consortium on promoting safe crop production in heavy metal(loid) contaminated soil: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168994. [PMID: 38043809 DOI: 10.1016/j.scitotenv.2023.168994] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/08/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Heavy metal(loid) (HM) pollution of agricultural soils is a growing global environmental concern that affects planetary health. Numerous studies have shown that soil microbial consortia can inhibit the accumulation of HMs in crops. However, our current understanding of the effects and mechanisms of inhibition is fragmented. In this review, we summarise extant studies and knowledge to provide a comprehensive view of HM toxicity on crop growth and development at the biological, cellular and the molecular levels. In a meta-analysis, we find that microbial consortia can improve crop resistance and reduce HM uptake, which in turn promotes healthy crop growth, demonstrating that microbial consortia are more effective than single microorganisms. We then review three main mechanisms by which microbial consortia reduce the toxicity of HMs to crops and inhibit HMs accumulation in crops: 1) reducing the bioavailability of HMs in soil (e.g. biosorption, bioaccumulation and biotransformation); 2) improving crop resistance to HMs (e.g. facilitating the absorption of nutrients); and 3) synergistic effects between microorganisms. Finally, we discuss the prospects of microbial consortium applications in simultaneous crop safety production and soil remediation, indicating that they play a key role in sustainable agricultural development, and conclude by identifying research challenges and future directions for the microbial consortium to promote safe crop production.
Collapse
Affiliation(s)
- Na Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, CAS and MOE, Yangling 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS and MWR, Yangling 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangxiang Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Hongjie Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yanfang Wu
- Palm Eco-Town Development Co., Ltd., Zhengzhou 450000, China
| | - Min Huang
- Key Laboratory of Green Utilization of Critical Nonmetallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Linchuan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, CAS and MOE, Yangling 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS and MWR, Yangling 712100, China; Key Laboratory of Green Utilization of Critical Nonmetallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
12
|
Yang D, Zuo M, Chen Y, Liu Y, He Y, Wang H, Liu X, Xu J, Zhao M, Shen Y, Liu Y, Tianpeng G. Effects of the promoting bacterium on growth of plant under cadmium stress. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:339-348. [PMID: 37553855 DOI: 10.1080/15226514.2023.2241925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Cadmium (Cd) pollution is a huge threat to ecosystem health. In the manuscript, pot experiments were conducted to investigate the changes in plant biomass and antioxidant indicators under different cadmium pollution levels (0, 25, 50, and 100 mg/kg) of inoculation of plant growth-promoting bacteria ZG7 on sugar beet. The results showed that the accumulation of excess Cd in sugar beet exhibited different symptoms, including reduced biomass (p < 0.05). Compared with the group treated with uninoculated strain ZG7, inoculation of strain ZG7 significantly reduced the toxicity of sugar beet to Cd and enhanced its antioxidant capacity, with no significant differences in root biomass and increases in leaf biomass of 15.71, 5.84, and 74.12 under different Cd concentration treatments (25, 50, and 100 mg/kg), respectively. The root enrichment of Cd was reduced by 49.13, 47.26, and 21.50%, respectively (p < 0.05). The leaf fraction was reduced by 59.35, 29.86, and 30.99%, respectively (p < 0.05). In addition, the enzymatic activities of sucrase, urease, catalase, and neutral phosphatase were significantly enhanced in the soil (p < 0.05). This study helps us to further investigate the mechanism of cadmium toxicity reduction by inoculated microorganisms and provides a theoretical reference for growing plants in cadmium-contaminated agricultural fields.
Collapse
Affiliation(s)
- Deng Yang
- School of Biology and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Mingbo Zuo
- School of Biology and Environmental Engineering, Xi'an University, Xi'an, China
| | - Yueli Chen
- School of Biology and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Yuan Liu
- School of Biology and Environmental Engineering, Xi'an University, Xi'an, China
| | - Yueqing He
- School of Biology and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Haoming Wang
- School of Biology and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Xiaoxiao Liu
- School of Biology and Environmental Engineering, Xi'an University, Xi'an, China
| | - Jing Xu
- School of Biology and Environmental Engineering, Xi'an University, Xi'an, China
| | - Minjuan Zhao
- School of Biology and Environmental Engineering, Xi'an University, Xi'an, China
| | - Yuanyuan Shen
- School of Biology and Environmental Engineering, Xi'an University, Xi'an, China
| | - Ying Liu
- Shaaxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Gao Tianpeng
- School of Biology and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, China
- School of Biology and Environmental Engineering, Xi'an University, Xi'an, China
- Engineering Center for Pollution Control and Ecological Restoration in Mining of Gansu Province, Lanzhou City University, Lanzhou, China
| |
Collapse
|
13
|
Yu Z, Wang R, Dai T, Guo Y, Tian Z, Zhu Y, Chen J, Yu Y. Identification of hub genes and key pathways in arsenic-treated rice (Oryza sativa L.) based on 9 topological analysis methods of CytoHubba. Environ Health Prev Med 2024; 29:41. [PMID: 39111872 PMCID: PMC11310560 DOI: 10.1265/ehpm.24-00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/06/2024] [Indexed: 08/11/2024] Open
Abstract
BACKGROUND Arsenic is a toxic metalloid that can cause acute and chronic adverse health problems. Unfortunately, rice, the primary staple food for more than half of the world's population, is generally regarded as a typical arsenic-accumulating crop plant. Evidence indicates that arsenic stress can influence the growth and development of the rice plant, and lead to high concentrations of arsenic in rice grain. But the underlying mechanisms remain unclear. METHODS In the present research, the possible molecules and pathways involved in rice roots in response to arsenic stress were explored using bioinformatics methods. Datasets that involving arsenic-treated rice root and the "study type" that was restricted to "Expression profiling by array" were selected and downloaded from Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) between the arsenic-treated group and the control group were obtained using the online web tool GEO2R. Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed to investigate the functions of DEGs. The protein-protein interactions (PPI) network and the molecular complex detection algorithm (MCODE) of DEGs were analyzed using STRING and Cystoscope, respectively. Important nodes and hub genes in the PPI network were predicted and explored using the Cytoscape-cytoHubba plug-in. RESULTS Two datasets, GSE25206 and GSE71492, were downloaded from Gene Expression Omnibus (GEO) database. Eighty common DEGs from the two datasets, including sixty-three up-regulated and seventeen down-regulated genes, were then selected. After functional enrichment analysis, these common DEGs were enriched mainly in 10 GO items, including glutathione transferase activity, glutathione metabolic process, toxin catabolic process, and 7 KEGG pathways related to metabolism. After PPI network and MCODE analysis, 49 nodes from the DEGs PPI network were identified, filtering two significant modules. Next, the Cytoscape-cytoHubba plug-in was used to predict important nodes and hub genes. Finally, five genes [Os01g0644000, PRDX6 (Os07g0638400), PRX112 (Os07g0677300), ENO1(Os06g0136600), LOGL9 (Os09g0547500)] were verified and could serve as the best candidates associated with rice root in response to arsenic stress. CONCLUSIONS In summary, we elucidated the potential pathways and genes in rice root in response to arsenic stress through a comprehensive bioinformatics analysis.
Collapse
Affiliation(s)
- Zhen Yu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang 212100, Jiangsu, China
| | - Rongxuan Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China
| | - Tian Dai
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China
| | - Yuan Guo
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China
| | - Zanxuan Tian
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China
| | - Yuanyuan Zhu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Juan Chen
- College of Food Science and Engineering, Moutai Institute, Renhuai 564501, Guizhou, China
| | - Yongjian Yu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang 212100, Jiangsu, China
| |
Collapse
|
14
|
Fan X, Tang H, Chen X, Zeng F, Chen G, Chen ZH, Qin Y, Deng F. Allene oxide synthase 1 contributes to limiting grain arsenic accumulation and seedling detoxification in rice. STRESS BIOLOGY 2023; 3:52. [PMID: 38032410 PMCID: PMC10689621 DOI: 10.1007/s44154-023-00136-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023]
Abstract
Arsenic (As) is a cancerogenic metalloid ubiquitously distributed in the environment, which can be easily accumulated in food crops like rice. Jasmonic acid (JA) and its derivatives play critical roles in plant growth and stress response. However, the role of endogenous JA in As accumulation and detoxification is still poorly understood. In this study, we found that JA biosynthesis enzymes Allene Oxide Synthases, OsAOS1 and OsAOS2, regulate As accumulation and As tolerance in rice. Evolutionary bioinformatic analysis indicated that AOS1 and AOS2 have evolved from streptophyte algae (e.g. the basal lineage Klebsormidium flaccidum) - sister clade of land plants. Compared to other two AOSs, OsAOS1 and OsAOS2 were highly expressed in all examined rice tissues and their transcripts were highly induced by As in root and shoot. Loss-of-function of OsAOS1 (osaos1-1) showed elevated As concentration in grains, which was likely attributed to the increased As translocation from root to shoot when the plants were subjected to arsenate [As(V)] but not arsenite [As (III)]. However, the mutation of OsAOS2 (osaos2-1) showed no such effect. Moreover, osaos1-1 and osaos2-1 increased the sensitivity of rice plants to both As(V) and As(III). Disrupted expression of genes involved in As accumulation and detoxification, such as OsPT4, OsNIP3;2, and OsOASTL-A1, was observed in both osaos1-1 and osaos2-1 mutant lines. In addition, a As(V)-induced significant decrease in Reactive Oxygen Species (ROS) production was observed in the root of osaos1-1 but not in osaos2-1. Taken together, our results indicate OsAOS1 modulates both As allocation and detoxification, which could be partially attributed to the altered gene expression profiling and ROS homeostasis in rice while OsAOS2 is important for As tolerance.
Collapse
Affiliation(s)
- Xin Fan
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Haiyang Tang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Xuan Chen
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Fanrong Zeng
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Guang Chen
- Central Laboratory, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Yuan Qin
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou, 434025, China.
| | - Fenglin Deng
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou, 434025, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
15
|
Wang Y, Xing M, Gao X, Wu M, Liu F, Sun L, Zhang P, Duan M, Fan W, Xu J. Physiological and transcriptomic analyses reveal that phytohormone pathways and glutathione metabolism are involved in the arsenite toxicity response in tomatoes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165676. [PMID: 37481082 DOI: 10.1016/j.scitotenv.2023.165676] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
The main forms of inorganic arsenic (As) in soil are arsenate [As(V)] and arsenite [As(III)]. Both forms inhibit plant growth. Here, we investigate the effects of As(III) toxicity on the growth of tomatoes by integrating physiological and transcriptomic analyses. As(III) toxicity induces oxidative damage, inhibits photosynthetic efficiency, and reduces soluble sugar levels. As(III) toxicity leads to reductions in auxin, cytokinin and jasmonic acid contents by 29 %, 39 % and 55 %, respectively, but leads to increases in the ethylene precursor 1-amino-cyclopropane carboxylic acid, abscisic acid and salicylic acid contents in roots, by 116 %, 79 % and 39 %, respectively, thereby altering phytohormone signalling pathways. The total glutathione, reduced glutathione (GSH) and oxidized glutathione (GSSG) contents are reduced by 59 %, 49 % and 94 % in roots; moreover, a high GSH/GSSG ratio is maintained through increased glutathione reductase activity (increased by 214 %) and decreased glutathione peroxidase activity (decreased by 40 %) in the roots of As(III)-treated tomato seedlings. In addition, As(III) toxicity affects the expression of genes related to the endoplasmic reticulum stress response. The altered expression of aquaporins and ABCC transporters changes the level of As(III) accumulation in plants. A set of hub genes involved in modulating As(III) toxicity responses in tomatoes was identified via a weighted gene coexpression network analysis. Taken together, these results elucidate the physiological and molecular regulatory mechanism underlying As(III) toxicity and provide a theoretical basis for selecting and breeding tomato varieties with low As(III) accumulation. Therefore, these findings are expected to be helpful in improving food safety and to developing sustainable agricultural.
Collapse
Affiliation(s)
- Yingzhi Wang
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Menglu Xing
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Xinru Gao
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Min Wu
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Fei Liu
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Liangliang Sun
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Ping Zhang
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Ming Duan
- Center of Experimental Education, Shanxi Agricultural University, Taigu 030801, China
| | - Weixin Fan
- Center of Experimental Education, Shanxi Agricultural University, Taigu 030801, China
| | - Jin Xu
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China.
| |
Collapse
|
16
|
Chu Y, Bao Q, Li Y, Sun H, Liu Z, Shi J, Huang Y. Melatonin Alleviates Antimony Toxicity by Regulating the Antioxidant Response and Reducing Antimony Accumulation in Oryza sativa L. Antioxidants (Basel) 2023; 12:1917. [PMID: 38001770 PMCID: PMC10669696 DOI: 10.3390/antiox12111917] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Antimony (Sb) is a hazardous metal element that is potentially toxic and carcinogenic. Melatonin (MT) is an indole compound with antioxidant properties that plays an essential role in plant growth and alleviates heavy metal stresses. Nevertheless, little is known about the effects and mechanisms of exogenous MT action on rice under Sb stress. The aim of this experiment was to explore the mechanism of MT reducing Sb toxicity in rice via hydroponics. The results showed that Sb stress significantly inhibited the growth of rice, including biomass, root parameters, and root viability. Exogenous MT obviously alleviated the inhibition of Sb stress on seedling growth and increased biomass, root parameters, and root viability by 15-55%. MT significantly reduced the total Sb content in rice and the subcellular Sb contents in roots by nearly 20-40% and 12.3-54.2% under Sb stress, respectively. MT significantly decreased the contents of malondialdehyde (MDA, by nearly 50%), ROS (H2O2 and O2·-, by nearly 20-30%), and RNS (NO and ONOO-) in roots under Sb stress, thus reducing oxidative stress and cell membrane damage. Furthermore, MT reversed Sb-induced phytotoxicity by increasing the activities of antioxidant enzymes (SOD, POD, CAT, and APX) by nearly 15% to 50% and by regulating the AsA-GSH cycle. In conclusion, this study demonstrates the potential of MT to maintain redox homeostasis and reduce Sb toxicity in rice cells, decreasing the content of Sb in rice and thereby alleviating the inhibition of Sb on rice growth. The results provided a feasible strategy for mitigating Sb toxicity in rice.
Collapse
Affiliation(s)
- Yutan Chu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjing 300191, China; (Y.C.); (Y.L.); (H.S.); (Z.L.); (J.S.)
- Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Qiongli Bao
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjing 300191, China; (Y.C.); (Y.L.); (H.S.); (Z.L.); (J.S.)
- Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yan Li
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjing 300191, China; (Y.C.); (Y.L.); (H.S.); (Z.L.); (J.S.)
- Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Hongyu Sun
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjing 300191, China; (Y.C.); (Y.L.); (H.S.); (Z.L.); (J.S.)
- Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Zewei Liu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjing 300191, China; (Y.C.); (Y.L.); (H.S.); (Z.L.); (J.S.)
- Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Jiahao Shi
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjing 300191, China; (Y.C.); (Y.L.); (H.S.); (Z.L.); (J.S.)
- Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yizong Huang
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, China
| |
Collapse
|
17
|
Nie M, Ning N, Chen J, Zhang Y, Li S, Zheng L, Zhang H. Melatonin enhances salt tolerance in sorghum by modulating photosynthetic performance, osmoregulation, antioxidant defense, and ion homeostasis. Open Life Sci 2023; 18:20220734. [PMID: 37872968 PMCID: PMC10590611 DOI: 10.1515/biol-2022-0734] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 10/25/2023] Open
Abstract
Melatonin is a potent antioxidant that can prevent plant damage caused by adverse stresses. It remains unclear whether exogenous melatonin can mitigate the effects of salt stress on seed germination and seedling growth of sorghum (Sorghum bicolor (L.) Moench). The aim of this study was to decipher the protective mechanisms of exogenous melatonin (100 μmol/L) on sorghum seedlings under NaCl-induced salt stress (120 mmol/L). Plant morphological, photosynthetic, and physiological characteristics were analyzed at different timepoints after sowing. Results showed that salt stress inhibited seed germination, seedling growth, and plant biomass accumulation by reducing photosynthetic pigment contents, photosynthetic efficiency, root vigor, and mineral uptake. In contrast, seed priming with melatonin enhanced photosynthetic pigment biosynthesis, photosynthetic efficiency, root vigor, and K+ content under salt stress. Melatonin application additionally enhanced the activities of antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase) and increased the levels of non-enzymatic antioxidants (reduced glutathione, ascorbic acid) in the leaves. These changes were accompanied by increase in the leaf contents of soluble sugars, soluble proteins, and proline, as well as decrease in hydrogen peroxide accumulation, malondialdehyde content, and electrolyte leakage. Our findings indicate that exogenous melatonin can alleviate salt stress-induced damage in sorghum seedlings through multifaceted mechanisms, such as improving photosynthetic performance and root vigor, facilitating ion homeostasis and osmoregulation, and promoting antioxidant defense and reactive oxygen species scavenging.
Collapse
Affiliation(s)
- Mengen Nie
- College of Agronomy, Shanxi Agricultural University, 81 Longcheng Street, Taiyuan, Shanxi, 030000, China
| | - Na Ning
- College of Resources Environment and Chemistry, Chuxiong Normal University, 546 Lucheng South Road, Chuxiong, Yunnan, 675000, China
| | - Jing Chen
- College of Agronomy, Shanxi Agricultural University, 81 Longcheng Street, Taiyuan, Shanxi, 030000, China
| | - Yizhong Zhang
- Shanxi Key Laboratory of Sorghum Genetic and Germplasm Innovation, Sorghum Research Institute, Shanxi Agricultural University,238 Yunhua West Street, Jinzhong, Shanxi, 030600, China
| | - Shuangshuang Li
- College of Resources Environment and Chemistry, Chuxiong Normal University, 546 Lucheng South Road, Chuxiong, Yunnan, 675000, China
| | - Lue Zheng
- College of Resources Environment and Chemistry, Chuxiong Normal University, 546 Lucheng South Road, Chuxiong, Yunnan, 675000, China
| | - Haiping Zhang
- Center for Agricultural Gene Resources Research, Shanxi Agricultural University, 81 Longcheng Street, Taiyuan, Shanxi, 030000, China
| |
Collapse
|
18
|
Bilal S, Saad Jan S, Shahid M, Asaf S, Khan AL, Lubna, Al-Rawahi A, Lee IJ, AL-Harrasi A. Novel Insights into Exogenous Phytohormones: Central Regulators in the Modulation of Physiological, Biochemical, and Molecular Responses in Rice under Metal(loid) Stress. Metabolites 2023; 13:1036. [PMID: 37887361 PMCID: PMC10608868 DOI: 10.3390/metabo13101036] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023] Open
Abstract
Rice (Oryza sativa) is a research model for monocotyledonous plants. Rice is also one of the major staple foods and the primary crop for more than half of the world's population. Increasing industrial activities and the use of different fertilizers and pesticides containing heavy metals (HMs) contribute to the contamination of agriculture fields. HM contamination is among the leading causes that affect the health of rice plants by limiting their growth and causing plant death. Phytohormones have a crucial role in stress-coping mechanisms and in determining a range of plant development and growth aspects during heavy metal stress. This review summarizes the role of different exogenous applications of phytohormones including auxin, cytokinin, gibberellins, ethylene, abscisic acid, strigolactones, jasmonates, brassinosteroids, and salicylic acids in rice plants for mitigating heavy metal stress via manipulation of their stress-related physiological and biochemical processes, and alterations of signaling and biosynthesis of genes. Exogenous administration of phytohormones and regulation of endogenous levels by targeting their biosynthesis/signaling machineries is a potential strategy for protecting rice from HM stress. The current review primarily emphasizes the key mechanistic phytohormonal-mediated strategies for reducing the adverse effects of HM toxicity in rice. Herein, we have provided comprehensive evidence for the effective role of exogenous phytohormones in employing defense responses and tolerance in rice to the phytotoxic effects of HM toxicity along with endogenous hormonal crosstalk for modulation of subcellular mechanisms and modification of stress-related signaling pathways, and uptake and translocation of metals. Altogether, this information offers a systematic understanding of how phytohormones modulate a plant's tolerance to heavy metals and may assist in directing the development of new approaches to strengthen rice plant resistance to HM toxicity.
Collapse
Affiliation(s)
- Saqib Bilal
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Syed Saad Jan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Muhammad Shahid
- Agriculture Research Institute, Khyber Pakhtunkhwa, Mingora 19130, Pakistan
| | - Sajjad Asaf
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Abdul Latif Khan
- Department of Engineering Technology, University of Houston, Sugar Land, TX 77479, USA
| | - Lubna
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Ahmed Al-Rawahi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - In-Jung Lee
- Department of Applied Bioscience, College of Agriculture and Life Science, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ahmed AL-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| |
Collapse
|
19
|
Ashraf MA, Hafeez A, Rasheed R, Hussain I, Farooq U, Rizwan M, Ali S. Effect of exogenous taurine on growth, oxidative defense, and nickel (Ni) uptake in canola ( Brassica napus L.) under Ni stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1135-1152. [PMID: 37829701 PMCID: PMC10564706 DOI: 10.1007/s12298-023-01359-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/22/2023] [Accepted: 09/08/2023] [Indexed: 10/14/2023]
Abstract
Nickel (Ni) contamination and its associated hazardous effects on human health and plant growth are ironclad. However, the potential remedial effects of taurine (TAU) on Ni-induced stress in plants remain obscure. Therefore, the present study was undertaken to examine the effect of TAU seed priming (100 and 150 mg L‒1) as an alleviative strategy to circumvent the phytotoxic effects of Ni (150 mg kg‒1) on two canola cultivars (Ni-tolerant cv. Shiralee and Ni-sensitive cv. Dunkeld). Our results manifested an apparent decline in growth, biomass, photosynthetic pigments, leaf relative water content, DPPH free radical scavenging activity, total soluble proteins, nitrate reductase activity, and nutrient acquisition (N, P, K, Ca) under Ni toxicity. Further, Ni toxicity led to a substantial increase in oxidative stress reflected as higher levels of superoxide radicals (O2•‒) and hydrogen peroxide (H2O2) alongside increased relative membrane permeability, lipoxygenase (LOX) activity, and Ni accumulation in leaves and roots. However, TAU protected canola plants from Ni-induced oxidative damage through the amplification of hydrogen sulfide (H2S) production that intensified the antioxidant system to avert O2•‒, H2O2, and malondialdehyde (MDA) production. Further, TAU-mediated increase in H2S levels maintained membrane integrity that might have improved ionomics and bettered plant growth under Ni toxicity. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01359-9.
Collapse
Affiliation(s)
- Muhammad Arslan Ashraf
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000 Pakistan
| | - Arslan Hafeez
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000 Pakistan
| | - Rizwan Rasheed
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000 Pakistan
| | - Iqbal Hussain
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000 Pakistan
| | - Umer Farooq
- Department of Botany, Government College University Faisalabad, Faisalabad, 38000 Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University, Faisalabad, 38000 Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad, 38000 Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402 Taiwan
| |
Collapse
|
20
|
Ou T, Zhang M, Gao H, Wang F, Xu W, Liu X, Wang L, Wang R, Xie J. Study on the Potential for Stimulating Mulberry Growth and Drought Tolerance of Plant Growth-Promoting Fungi. Int J Mol Sci 2023; 24:ijms24044090. [PMID: 36835498 PMCID: PMC9966926 DOI: 10.3390/ijms24044090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
Drought stress often leads to heavy losses in mulberry planting, especially for fruits and leaves. Application of plant growth-promoting fungi (PGPF) endows various plant beneficial traits to overcome adverse environmental conditions, but little is known about the effects on mulberry under drought stress. In the present study, we isolated 64 fungi from well-growing mulberry trees surviving periodical drought stress, and Talaromyces sp. GS1, Pseudeurotium sp. GRs12, Penicillium sp. GR19, and Trichoderma sp. GR21 were screened out due to their strong potential in plant growth promotion. Co-cultivation assay revealed that PGPF stimulated mulberry growth, exhibiting increased biomass and length of stems and roots. Exogenous application of PGPF could alter fungal community structures in the rhizosphere soils, wherein Talaromyces was obviously enhanced after inoculation of Talaromyces sp. GS1, and Peziza was increased in the other treatments. Moreover, PGPF could promote iron and phosphorus absorption of mulberry as well. Additionally, the mixed suspensions of PGPF induced the production of catalase, soluble sugar, and chlorophyll, which in turn enhanced the drought tolerance of mulberry and accelerated their growth recovery after drought. Collectively, these findings might provide new insights into improving mulberry drought tolerance and further boosting mulberry fruit yields by exploiting interactions between hosts and PGPF.
Collapse
|
21
|
Tian P, Feng YX, Li YH. Transcriptome reveals the crucial role of exogenous hydrogen sulfide in alleviation of thiocyanate (SCN -) toxicity in rice seedlings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:26901-26913. [PMID: 36374388 DOI: 10.1007/s11356-022-24060-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Application of exogenous hydrogen sulfide (H2S) is a novel strategy for alleviation of the adverse effects caused by abiotic stresses. However, little is known about H2S-mediated global molecular response of rice seedlings to thiocyanate (SCN-) exposure. Herein, a hydroponic experiment was carried out to investigate the crucial role of exogenous H2S in alleviation of SCN- toxicity generated at different effective concentrations (EC20: 24.0 mg SCN/L, EC50: 96.0 mg SCN/L, and EC75: 300.0 mg SCN/L) in rice seedlings through transcriptome analysis. The results showed that the total numbers of differentially expressed genes (DEGs, upregulated genes/downregulated genes) in rice roots were 755/313, 1114/3303, and 2184/7427, while they were 427/292, 2134/526, and 2378/890 in rice shoots at EC20, EC50, and EC75 of SCN-, respectively. When exogenous H2S was supplied to rice seedlings exposed to SCN-, the total number of DEGs (upregulated genes/downregulated genes) in rice roots was 1158/316, 1943/2959, and 1737/5392, while it was 2067/937, 2689/683, and 3492/1062 in rice shoots at EC20, EC50, and EC75 of SCN-, respectively. Upregulated DEGs in shoots were positively correlated with SCN- concentration in the presence of exogenous H2S, suggesting its crucial role in regulating the phytotoxicity of SCN-. Gene function and pathway enrichment analyses showed that exogenous H2S triggered "secondary metabolite synthesis," "metabolic pathways," and "signal transduction mechanisms" in rice seedlings corresponding to different effective concentrations of SCN- exposure.
Collapse
Affiliation(s)
- Peng Tian
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China
| | - Yu-Xi Feng
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China
| | - Yan-Hong Li
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China.
| |
Collapse
|