1
|
Tukhovskaya EA, Ismailova AM, Perepechenova NA, Slashcheva GA, Palikov VA, Palikova YA, Rzhevsky DI, Rykov VA, Novikova NI, Dyachenko IA, Murashev AN. Development and Worsening of Hypertension with Age in Male Wistar Rats as a Physiological Model of Age-Related Hypertension: Correction of Hypertension with Taxifolin. Int J Mol Sci 2024; 25:11216. [PMID: 39456996 PMCID: PMC11509042 DOI: 10.3390/ijms252011216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
To preclinically study the effectiveness of new antihypertensive drugs, various animal hypertension models are used. However, most of them do not correspond to primary hypertension, which develops in people with age. We used male Wistar rats of 4, 10, 12 and 18 months old. The animals were divided according to systolic blood pressure (SBP) into normotensive (SBP ≤ 114 mmHg) or hypertensive (SBP ≥ 115 mmHg). Within hypertensive animals, two cohorts were distinguished-with SBP below and above 125 mmHg. The animals received 100 µg/kg of taxifolin intraperitoneally for 7 days. A significant difference was shown between animals with SBP above and below 115 mmHg, as well as between cohorts of hypertensive animals with SBP above and below 125 mmHg within each age. The number of animals with elevated SBP increased with age both for clusters with an SBP above 115 mmHg and for cohorts with an SBP above 125 mmHg. Administration of taxifolin led to a significant decrease in the SBP only in hypertensive animals. A physiological model of age-related hypertension was obtained in male Wistar rats. It has been shown that hypertension develops and worsens with age. In preclinical studies, it should be taken into account that drugs may have different effects depending on the initial SBP of the animals.
Collapse
Affiliation(s)
- Elena A. Tukhovskaya
- Biological Testing Laboratory, Shemyakin-Ovchinnicov Institute of Bioorganic Chemistry (Branch), Russian Academy of Sciences, Prospekt Nauki, 6, Pushchino 142290, Russia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Liskova S, Cacanyiova S, Cebova M, Berenyiova A, Kluknavsky M, Micurova A, Valachova K, Soltes L, Bernatova I. Taxifolin Reduces Blood Pressure via Improvement of Vascular Function and Mitigating the Vascular Inflammatory Response in Spontaneously Hypertensive Rats. Int J Mol Sci 2023; 24:12616. [PMID: 37628795 PMCID: PMC10454553 DOI: 10.3390/ijms241612616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/24/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
The effect of a 10-day-long treatment with taxifolin (TAX, 20 mg/kg/day p.o.) was investigated on spontaneously hypertensive rats (SHRs) with a focus on the vascular functions of isolated femoral arteries and thoracic aortas. TAX reduced blood pressure in SHRs. In femoral arteries, TAX increased acetylcholine-induced relaxation, reduced the maximal NA-induced contraction, and reduced acetylcholine-induced endothelium-dependent contraction (EDC); however, TAX had no effect on the vascular reactivity of isolated thoracic aortas. In addition, TAX elevated the total nitric oxide synthase (NOS) activity and iNOS protein expression but reduced cyclooxygenase-2 (COX2) protein expression in the tissue of the abdominal aorta without changes in Nos2 and Ptgs2 gene expressions. TAX also increased the gene expression of the anti-inflammatory interleukin-10 (Il10). In addition, in vitro studies showed that TAX has both electron donor and H atom donor properties. However, TAX failed to reduce superoxide production in the tissue of the abdominal aorta after oral administration. In conclusion, our results show that a decrease in the blood pressure in TAX-treated SHRs might be attributed to improved endothelium-dependent relaxation and reduced endothelium-dependent contraction. In addition, the results suggest that the effect of TAX on blood pressure regulation also involves the attenuation of COX2-mediated pro-inflammation and elevation of anti-inflammatory pathways.
Collapse
Affiliation(s)
- Silvia Liskova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute of Normal and Pathological Physiology, Sienkiewiczova 1, 813 71 Bratislava, Slovakia; (S.L.); (S.C.); (M.C.); (A.B.); (M.K.); (A.M.)
- Faculty of Medicine, Institute of Pharmacology and Clinical Pharmacology, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Sona Cacanyiova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute of Normal and Pathological Physiology, Sienkiewiczova 1, 813 71 Bratislava, Slovakia; (S.L.); (S.C.); (M.C.); (A.B.); (M.K.); (A.M.)
| | - Martina Cebova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute of Normal and Pathological Physiology, Sienkiewiczova 1, 813 71 Bratislava, Slovakia; (S.L.); (S.C.); (M.C.); (A.B.); (M.K.); (A.M.)
| | - Andrea Berenyiova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute of Normal and Pathological Physiology, Sienkiewiczova 1, 813 71 Bratislava, Slovakia; (S.L.); (S.C.); (M.C.); (A.B.); (M.K.); (A.M.)
| | - Michal Kluknavsky
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute of Normal and Pathological Physiology, Sienkiewiczova 1, 813 71 Bratislava, Slovakia; (S.L.); (S.C.); (M.C.); (A.B.); (M.K.); (A.M.)
| | - Andrea Micurova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute of Normal and Pathological Physiology, Sienkiewiczova 1, 813 71 Bratislava, Slovakia; (S.L.); (S.C.); (M.C.); (A.B.); (M.K.); (A.M.)
| | - Katarina Valachova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute of Experimental Pharmacology and Toxicology, Dubravska cesta 9, 841 04 Bratislava, Slovakia; (K.V.); (L.S.)
| | - Ladislav Soltes
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute of Experimental Pharmacology and Toxicology, Dubravska cesta 9, 841 04 Bratislava, Slovakia; (K.V.); (L.S.)
| | - Iveta Bernatova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute of Normal and Pathological Physiology, Sienkiewiczova 1, 813 71 Bratislava, Slovakia; (S.L.); (S.C.); (M.C.); (A.B.); (M.K.); (A.M.)
| |
Collapse
|
3
|
Jasenovec T, Radosinska D, Kollarova M, Balis P, Zorad S, Vrbjar N, Bernatova I, Cacanyiova S, Tothova L, Radosinska J. Effects of Taxifolin in Spontaneously Hypertensive Rats with a Focus on Erythrocyte Quality. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122045. [PMID: 36556410 PMCID: PMC9788412 DOI: 10.3390/life12122045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Oxidative stress and multiple erythrocyte abnormalities have been observed in hypertension. We focused on the effects of angiotensin-converting enzyme 2 (ACE2) inhibition by MLN-4760 inhibitor on angiotensin peptides, oxidative stress parameters, and selected erythrocyte quality markers in spontaneously hypertensive rats (SHR). We also investigated the potential effects of polyphenolic antioxidant taxifolin when applied in vivo and in vitro following its incubation with erythrocytes. SHRs were divided into four groups: control, taxifolin-treated, MLN-4760-treated, and MLN-4760 with taxifolin. MLN-4760 administration increased the blood pressure rise independent of taxifolin treatment, whereas taxifolin decreased it in control SHRs. Body weight gain was also higher in ACE2-inhibited animals and normalized after taxifolin treatment. However, taxifolin did not induce any change in angiotensin peptide concentrations nor a clear antioxidant effect. We documented an increase in Na,K-ATPase enzyme activity in erythrocyte membranes of ACE2-inhibited SHRs after taxifolin treatment. In conclusion, ACE2 inhibition deteriorated some selected RBC properties in SHRs. Although taxifolin treatment did not improve oxidative stress markers, our data confirmed the blood pressure-lowering potential, anti-obesogenic effect, and some "erythroprotective" effects of this compound in both control and ACE2-inhibited SHRs. In vitro investigations documenting different effects of taxifolin on erythrocyte properties from control and ACE2-inhibited SHRs accentuated the irreplaceability of in vivo studies.
Collapse
Affiliation(s)
- Tomas Jasenovec
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovakia
| | - Dominika Radosinska
- Institute of Immunology, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia
| | - Marta Kollarova
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovakia
| | - Peter Balis
- Centre of Experimental Medicine, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Stefan Zorad
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Norbert Vrbjar
- Centre of Experimental Medicine, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Iveta Bernatova
- Centre of Experimental Medicine, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Sona Cacanyiova
- Centre of Experimental Medicine, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Lubomira Tothova
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, 811 08 Bratislava, Slovakia
| | - Jana Radosinska
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovakia
- Centre of Experimental Medicine, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
- Correspondence: ; Tel.: +42-12-9011-9526
| |
Collapse
|
4
|
Taxifolin Reduces Blood Pressure in Elderly Hypertensive Male Wistar Rats. Bull Exp Biol Med 2022; 174:29-32. [PMID: 36437314 DOI: 10.1007/s10517-022-05642-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Indexed: 11/29/2022]
Abstract
Male Wistar rats aged 10 months were assigned to groups according to the initial level of systolic BP: hypertensive (systolic BP >115 mm Hg) and normotensive (systolic BP <115 mm Hg). The animals were injected intraperitoneally with 100 μg/kg taxifolin daily for 7 days. Systolic BP and HR were measured on the next day after single taxifolin administration and on the next day after 7-day injection course. In the group of hypertensive animals, systolic BP markedly decreased on the next day after the first injection; this decrease became even more pronounced (to the level of normotensive animals) at the end of the taxifolin course. In the group of normotensive animals, systolic BP remained unchanged. Hence, we demonstrate the possibility of course administration of taxifolin for BP normalization in hypertensive patients.
Collapse
|
5
|
Bernatova I, Liskova S. Mechanisms Modified by (-)-Epicatechin and Taxifolin Relevant for the Treatment of Hypertension and Viral Infection: Knowledge from Preclinical Studies. Antioxidants (Basel) 2021; 10:467. [PMID: 33809620 PMCID: PMC8002320 DOI: 10.3390/antiox10030467] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
Various studies have shown that certain flavonoids, flavonoid-containing plant extracts, and foods can improve human health. Experimental studies showed that flavonoids have the capacity to alter physiological processes as well as cellular and molecular mechanisms associated with their antioxidant properties. An important function of flavonoids was determined in the cardiovascular system, namely their capacity to lower blood pressure and to improve endothelial function. (-)-Epicatechin and taxifolin are two flavonoids with notable antihypertensive effects and multiple beneficial actions in the cardiovascular system, but they also possess antiviral effects, which may be of particular importance in the ongoing pandemic situation. Thus, this review is focused on the current knowledge of (-)-epicatechin as well as (+)-taxifolin and/or (-)-taxifolin-modified biological action and underlining molecular mechanisms determined in preclinical studies, which are relevant not only to the treatment of hypertension per se but may provide additional antiviral benefits that could be relevant to the treatment of hypertensive subjects with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Iveta Bernatova
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71 Bratislava, Slovakia;
| | - Silvia Liskova
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71 Bratislava, Slovakia;
- Faculty of Medicine, Institute of Pharmacology and Clinical Pharmacology, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| |
Collapse
|
6
|
Antihypertensive Effects of Polyphenolic Extract from Korean Red Pine ( Pinus densiflora Sieb. et Zucc.) Bark in Spontaneously Hypertensive Rats. Antioxidants (Basel) 2020; 9:antiox9040333. [PMID: 32325920 PMCID: PMC7222369 DOI: 10.3390/antiox9040333] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 12/18/2022] Open
Abstract
Korean red pine (Pinus densiflora Sieb. et Zucc.) bark is a by-product of the wood industry and contains a high level of antioxidative phenolics including flavonoids, which have a variety of beneficial health effects. This study aimed to investigate the antihypertensive effects of P. densiflora bark extract (Korean red pine bark extract; KRPBE) in spontaneously hypertensive rats (SHRs). A group of Wistar-Kyoto rats (WKRs) as a normotensive group was orally fed tap water. Four groups of SHRs were orally fed tap water, captopril (a positive control), 50 mg/kg/day of KRPBE, and 150 mg/kg/day of KRPBE, respectively. Blood pressure of rats was measured once every week for seven weeks of oral administration. After seven weeks, the lungs, kidneys, and serum were collected from rats, then angiotensin-converting enzyme (ACE) activity, angiotensin II content, and malondialdehyde (MDA) content were determined. Blood pressure of the captopril- and KRPBE-treated groups was significantly lower than that of the SHR control group. The ACE activity, angiotensin II content, and MDA content significantly decreased in the captopril- and KRPBE-treated groups than those in the SHR control group. High-performance liquid chromatography analysis revealed six phenolics in KRPBE: protocatechuic acid, procyanidin B1, catechin, caffeic acid, vanillin, and taxifolin. KRPBE, which contains plenty of antioxidative phenolics, has antihypertensive effects partly due to reduction of ACE activity and angiotensin II content, and its antioxidative effect.
Collapse
|
7
|
Chen JX, Xue KY, Xin JJ, Yan X, Li RL, Wang XX, Wang XL, Tong MM, Gan L, Li H, Lan J, Li X, Zhuo CL, Li LY, Deng ZJ, Zhang HY, Jiang W. 5-Lipoxagenase deficiency attenuates L-NAME-induced hypertension and vascular remodeling. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2379-2392. [PMID: 31167124 DOI: 10.1016/j.bbadis.2019.05.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/22/2019] [Accepted: 05/31/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Abnormalities of the L-arginine-nitric oxide pathway induce hypertension. 5-Lipoxygenase (5-LO) is the key enzyme involved in synthesis of leukotrienes (LTs). However, whether nitricoxide synthase dysfunction induces hypertensive vascular remodeling by regulating 5-LO activity and its downstream inflammatory metabolites remains unknown. METHODS AND RESULTS Six-week L-NAME treatment significantly induced hypertension and vascular remodeling in both wild-type (WT) and 5-LO-knockout (5-LO-KO) mice, and blood pressure in caudal and carotid arteries was lower in 5-LO-KO than WT mice with L-NAME exposure. On histology, L-NAME induced less media thickness, media-to-lumen ratio, and collagen deposition and fewer Ki-67-positive vascular smooth muscle cells (VSMCs) but more elastin expression in thoracic and mesenteric aortas of 5-LO-KO than L-NAME-treated WT mice. L-NAME significantly increased LT content, including LTB4 and cysteinyl LT (CysLTs), in plasma and neutrophil culture supernatants from WT mice. On immunohistochemistry, L-NAME promoted the colocalization of 5-LO and 5-LO-activating protein on the nuclear envelope of cultured neutrophils, which was accompanied by elevated LT content in culture supernatants. In addition, LTs significantly promoted BrdU incorporation, migration and phenotypic modulation in VSMCs. CONCLUSION L-NAME may activate the 5-LO/LT pathway in immune cells, such as neutrophils, and promote the products of 5-LO metabolites, including LTB4 and CysLTs, which aggravate vascular remodeling in hypertension. 5-LO deficiency may protect against hypertension and vascular remodeling by reducing levels of 5-LO downstream inflammatory metabolites.
Collapse
Affiliation(s)
- Jia-Xiang Chen
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Kun-Yue Xue
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Juan-Juan Xin
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xin Yan
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Ru-Li Li
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xiao-Xiao Wang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xu-Lei Wang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; School of Life Sciences and Bioengineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
| | - Ming-Ming Tong
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Lu Gan
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - He Li
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jie Lan
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xue Li
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Cai-Li Zhuo
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Ling-Yu Li
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Zi-Jie Deng
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Heng-Yu Zhang
- Department of Cardiology, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Wei Jiang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
8
|
Shu Z, Yang Y, Yang L, Jiang H, Yu X, Wang Y. Cardioprotective effects of dihydroquercetin against ischemia reperfusion injury by inhibiting oxidative stress and endoplasmic reticulum stress-induced apoptosis via the PI3K/Akt pathway. Food Funct 2019; 10:203-215. [PMID: 30525169 DOI: 10.1039/c8fo01256c] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Dihydroquercetin (DHQ), a dihydroxyflavone, possesses potent antioxidant properties and is proposed to be useful in the prevention and treatment of cardiovascular disease. In this study, we aimed to investigate whether DHQ has protective effects against MIRI and to elucidate the mechanism of attenuation of oxidative stress-and ERS-induced apoptosis via the PI3K/Akt pathway. Isolated rat hearts and H9c2 cardiomyocytes were treated with or without DHQ, and then subjected to I/R and H/R, respectively. Our results showed that DHQ pretreatment markedly alleviated cardiac dysfunction, scavenged free radicals, reduced lipid peroxidation, and increased the activity of antioxidant enzymes ex vivo and in vitro. The result of western blot analysis showed that DHQ inhibited the apoptotic pathway and the expression of pro-apoptotic proteins CHOP, Caspase-12, and p-JNK. In addition, DHQ delayed the onset of ERs by reducing GRP78, p-PERK, and p-eif2α expression levels and by increasing HO-1 expression and Nrf2 binding to antioxidant response elements. These cardioprotective effects of DHQ were partially counteracted by the PI3K/Akt inhibitor LY294002. The protective effects of DHQ on the inhibition of MIRI may be mediated by activating the PI3K/Akt pathway to reduce oxidative stress-and ERS-induced apoptosis.
Collapse
Affiliation(s)
- Zunpeng Shu
- Guangdong Pharmaceutical University, Guangzhou 510006, P.R. China.
| | | | | | | | | | | |
Collapse
|
9
|
Akinmoladun AC, Oladejo CO, Josiah SS, Famusiwa CD, Ojo OB, Olaleye MT. Catechin, quercetin and taxifolin improve redox and biochemical imbalances in rotenone-induced hepatocellular dysfunction: Relevance for therapy in pesticide-induced liver toxicity? PATHOPHYSIOLOGY 2018; 25:365-371. [DOI: 10.1016/j.pathophys.2018.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/03/2018] [Accepted: 07/07/2018] [Indexed: 12/22/2022] Open
|
10
|
Blood Pressure Changes After Exposures Increasing Angiotensin-Converting Enzyme Activity and After Its Normalization with Dihydroquercetin in Male Wistar Rats. Bull Exp Biol Med 2018; 166:31-34. [PMID: 30417296 DOI: 10.1007/s10517-018-4282-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Indexed: 10/27/2022]
Abstract
Changes in BP and HR were assessed after exposures increasing activity of angiotensin-converting enzyme: ionizing radiation, NO synthase inhibitor (L-NAME), and dexamethasone. Effects of dihydroquercetin and angiotensin-converting enzyme inhibitor enalapril on activity of this enzyme, BP, and HR were also evaluated under these exposures. Wistar male rats were subjected to X-ray irradiation in a dose of 2.5 Gy. Angiotensin-converting enzyme activity in the aorta sections was determined by Hip-His-Leu hydrolysis. BP and HR were recorded using a non-invasive tail-cuff method and PowerLab 8/35 software. BP and HR were not altered with the increase in activity of angiotensin-converting enzyme after irradiation. In case of prolonged (7 days) treatment with NO synthase inhibitor and dexamethasone, the increase in enzyme activity was accompanied by elevation of BP and, in the case of NO synthase inhibitor, HR reduction. Dihydroquercetin normalized the enzyme activity and lowered BP, but not to the normal level. Enalapril normalized BP, increased by NO synthase inhibitor solution intake; at the same time, the angiotensinconverting enzyme activity decreased more than 2-fold in comparison with the normal.
Collapse
|
11
|
Kim YA, Korystova AF, Kublik LN, Levitman MK, Shaposhnikova V, Korystov YN. Flavonoids decrease the radiation-induced increase in the activity of the angiotensin-converting enzyme in rat aorta. Eur J Pharmacol 2018; 837:33-37. [DOI: 10.1016/j.ejphar.2018.08.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 02/07/2023]
|
12
|
Rzepecka-Stojko A, Kabała-Dzik A, Kubina R, Jasik K, Kajor M, Wrześniok D, Stojko J. Protective Effect of Polyphenol-Rich Extract from Bee Pollen in a High-Fat Diet. Molecules 2018; 23:molecules23040805. [PMID: 29614743 PMCID: PMC6017657 DOI: 10.3390/molecules23040805] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 03/30/2018] [Accepted: 03/31/2018] [Indexed: 01/26/2023] Open
Abstract
We have studied a preventive effect of polyphenol-rich bee pollen ethanol extract (EEP) against histological changes in the liver and cardiac blood vessels, abnormalities of lipid profile, and the levels of oxidized low density lipoproteins (ox-LDL), asymmetric dimethylarginine (ADMA), angiotensin-converting enzyme (ACE), and angiotensin II (ANG II) caused by a high-fat diet in C57BL6 mice. Supplementing the diet with EEP in the doses of 0.1 g/kg body mass (BM) and 1 g/kg BM resulted in a decrease of total cholesterol by 31% and 35%, respectively. It also decreased the level of low density lipoproteins by 67% and 90%, respectively. No differences in the levels of high density lipoprotein and triacylglycerols were observed. EEP reduced the level of ox-LDL by 33% and 47%, ADMA by 13% and 51%, ACE by 17% and 30%, as well as ANG II by 11% and 15% in a dose-dependent manner, which proves a protective effect of EEP in a high-fat diet. EEP reduces and/or prevents hepatic steatosis and degenerative changes caused by a high-fat diet in C57BL6 mice, which indicates its hepatoprotective effect. EEP used with standard feed does not disturb a normal concentration of the assayed parameters.
Collapse
Affiliation(s)
- Anna Rzepecka-Stojko
- Department of Pharmaceutical Chemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Jagiellonska 4, 41-200 Sosnowiec, Poland.
| | - Agata Kabała-Dzik
- Department of Pathology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Ostrogórska 30, 41-200 Sosnowiec, Poland.
| | - Robert Kubina
- Department of Pathology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Ostrogórska 30, 41-200 Sosnowiec, Poland.
| | - Krzysztof Jasik
- Department of Skin Structural Studies, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Kasztanowa 3, 41-200 Sosnowiec, Poland.
| | - Maciej Kajor
- Department of Histopathology, School of Medicine in Katowice, Medical University of Silesia in Katowice, Medyków 18, 40-752 Katowice, Poland.
| | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Jagiellonska 4, 41-200 Sosnowiec, Poland.
| | - Jerzy Stojko
- Department of Toxicology and Bioanalysis, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Jagiellonska 4, 41-200 Sosnowiec, Poland.
| |
Collapse
|
13
|
Anti-Atherogenic Activity of Polyphenol-Rich Extract from Bee Pollen. Nutrients 2017; 9:nu9121369. [PMID: 29258230 PMCID: PMC5748819 DOI: 10.3390/nu9121369] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/05/2017] [Accepted: 12/12/2017] [Indexed: 12/25/2022] Open
Abstract
The aim of this study was to determine the effect of polyphenol-rich ethanol extract of bee pollen (EEP) on atherosclerosis induced by a high-fat diet in ApoE-knockout mice. EEP was given with feed in two doses of 0.1 and 1 g/kg body mass (BM). The studies have been conducted in a period of 16 weeks. The following factors were estimated: total cholesterol (TC), oxidized low density lipoproteins (ox-LDL), asymmetric dimethylarginine (ADMA), angiotensin-converting enzyme (ACE) and angiotensin II (ANG II) in the 5th, 10th, 12th, 14th, and 16th week of the experiment. In the last, i.e., 16th week of the studies the development of coronary artery disease (CAD) was also estimated histopathologically. Supplementing diet with EEP resulted in decreasing TC level. EEP reduced oxidative stress by lowering the levels of ox-LDL, ADMA, ANG II and ACE. EEP protected coronary arteries by significantly limiting the development of atherosclerosis (the dose of 0.1 g/kg BM) or completely preventing its occurrence (the dose of 1 g/kg BM). The obtained results demonstrate that EEP may be useful as a potential anti-atherogenic agent.
Collapse
|
14
|
Kamisah Y, Zuhair JSF, Juliana AH, Jaarin K. Parkia speciosa empty pod prevents hypertension and cardiac damage in rats given N(G)-nitro-l-arginine methyl ester. Biomed Pharmacother 2017; 96:291-298. [PMID: 28992471 DOI: 10.1016/j.biopha.2017.09.095] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/25/2017] [Accepted: 09/18/2017] [Indexed: 12/22/2022] Open
Abstract
Parkia speciosa Hassk is a plant found abundantly in Southeast Asia region. Its seeds with or without pods and roots have been used in traditional medicine in this region to treat hypertension. Therefore, we aimed to investigate the potential effect of the plant empty pod extract on hypertension development and changes in heart induced by N(G)-nitro-l-arginine methyl ester (l-NAME) administration in rats. Twenty-four male Sprague Dawley rats were divided into four groups. Groups 1 to 3 were given l-NAME (25mg/kg, intraperitoneally) for 8 weeks. Groups 2 and 3 were also given Parkia speciosa empty pods methanolic extract (800mg/kg, orally) and nicardipine (3mg/kg, orally), concurrently with l-NAME. The last group served as the control. l-NAME reduced plasma nitric oxide level and therefore, increased systolic blood pressure, angiotensin-converting enzyme and NADPH oxidase activities as well as lipid peroxidation in the heart. Parkia speciosa extract and nicardipine treatments had significantly prevented the elevations of blood pressure, angiotensin-converting enzyme, NADPH oxidase activities and lipid peroxidation in the heart induced by the l-NAME. Parkia speciosa extract but not nicardipine prevented the reduction in plasma nitric oxide level caused by l-NAME. In conclusion, Parkia speciosa empty pods methanolic extract has a potential to prevent the development of hypertension possibly by preventing the loss of plasma nitric oxide, as well as has cardioprotective effects by reducing angiotensin-converting enzyme activity and oxidative stress in the heart in rats administered l-NAME.
Collapse
Affiliation(s)
- Yusof Kamisah
- Department of Pharmacology, Faculty of Medicine, UKMMC, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000, Cheras, Kuala Lumpur, Malaysia.
| | - Japar Sidik Fadhlullah Zuhair
- Department of Pharmacology, Faculty of Medicine, UKMMC, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Abdul Hamid Juliana
- Department of Pharmacology, Faculty of Medicine, UKMMC, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Kamsiah Jaarin
- Department of Pharmacology, Faculty of Medicine, UKMMC, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000, Cheras, Kuala Lumpur, Malaysia; Faculty of Medicine, Universiti Pertahanan Nasional Malaysia, Kem Sungai Besi, 57000, Sungai Besi, Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Slashcheva GA, Rykov VA, Lobanov AV, Murashev AN, Kim YA, Arutyunyan TV, Korystova AF, Kublik LN, Levitman MK, Shaposhnikona VV, Korystov YN. Dihydroquercetin Does Not Affect Age-Dependent Increase in Blood Pressure and Angiotensin-Converting Enzyme Activity in the Aorta of Hypertensive Rats. Bull Exp Biol Med 2016; 161:670-673. [PMID: 27709387 DOI: 10.1007/s10517-016-3482-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Indexed: 10/20/2022]
Abstract
We analyzed changes in angiotensin-converting enzyme activity in the aorta of hypertensive SHR rats against the background of age-related BP increase (from week 7 to 14) and the effect of dihydroquercetin on BP rise and angiotensin-converting enzyme activity. Normotensive WKY rats of the same age were used as the control. BP and activity of angiotensin-converting enzyme in the aorta of SHR rats increased with age. Dihydroquercetin in doses of 100 and 300 μg/kg per day had no effect on the increase of these parameters; dihydroquercetin administered to 14-week-old WKY rats in a dose of 300 μg/kg reduced activity of the angiotensin-converting enzyme. Thus, the early (7-14 weeks) increase in BP and angiotensin-converting enzyme activity in the aorta of SHR rats was not modified by flavonoids (dihydroquercetin) in contrast to other rat strains and humans, which is indicative of specificity of hypertension mechanism in SHR rats.
Collapse
Affiliation(s)
- G A Slashcheva
- Branch of M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Russia
| | - V A Rykov
- Branch of M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Russia
| | - A V Lobanov
- Branch of M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Russia
| | - A N Murashev
- Branch of M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Russia
| | - Yu A Kim
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - T V Arutyunyan
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - A F Korystova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - L N Kublik
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - M Kh Levitman
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - V V Shaposhnikona
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Yu N Korystov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia.
| |
Collapse
|
16
|
Yang CJ, Wang ZB, Mi YY, Gao MJ, Lv JN, Meng YH, Yang BY, Kuang HX. UHPLC-MS/MS Determination, Pharmacokinetic, and Bioavailability Study of Taxifolin in Rat Plasma after Oral Administration of its Nanodispersion. Molecules 2016; 21:494. [PMID: 27089318 PMCID: PMC6273324 DOI: 10.3390/molecules21040494] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 04/06/2016] [Accepted: 04/11/2016] [Indexed: 02/06/2023] Open
Abstract
A rapid and sensitive LC-MS/MS method based on the Triple Quad system has been developed and validated for the determination and pharmacokinetics of taxifolin and its nanodispersion in rat plasma. Taxifolin plasma samples along with butylparaben (internal standard) were pre-treated by liquid-liquid extraction with ethyl acetate, and then separated on a SB-C18 RRHD column (150 mm × 2.1 mm × 1.8 μm) using isocratic elution with a run time of 3.0 min. The mobile phase was acetonitrile-water (90:10, v/v) containing 5 mM ammonium acetate at a flow rate of 0.4 mL/min. Quantification of taxifolin was performed by the electrospray ionization tandem mass spectrometry in the multiple reaction monitoring (MRM) mode with negative atmospheric ionization at m/z 303.0→285.0 for taxifolin and 193.1→92.0 for I.S., respectively. The calibration curve of taxifolin showed good linearity over a concentration range of 5.0-4280 ng/mL with a correlation coefficient of 0.9995. The limit of quantification (LLOQ) was 5.0 ng/mL. Intra-day, inter-day precision and accuracy (percent relative to standard deviation) were all within 8% at three concentration levels. A total recovery of taxifolin and I.S. was beyond 75%. The present LC-MS/MS method was successfully applied to pharmacokinetic studies of taxifolin after intravenous administration of taxifolin, oral administration of its physical mixture and nanodispersion. The absolute bioavailability of taxifolin was calculated as 0.75% for taxifolin nanodispersion and 0.49% for taxifolin, respectively.
Collapse
Affiliation(s)
- Chun-Juan Yang
- College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, Heilongjang, China.
| | - Zhi-Bin Wang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjang, China.
| | - Ying-Ying Mi
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjang, China.
| | - Ming-Jie Gao
- College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin 150081, Heilongjang, China.
| | - Jin-Nan Lv
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjang, China.
| | - Yong-Hai Meng
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjang, China.
| | - Bing-You Yang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjang, China.
| | - Hai-Xue Kuang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjang, China.
| |
Collapse
|
17
|
Taxifolin protects against cardiac hypertrophy and fibrosis during biomechanical stress of pressure overload. Toxicol Appl Pharmacol 2015; 287:168-177. [PMID: 26051872 DOI: 10.1016/j.taap.2015.06.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 04/14/2015] [Accepted: 06/01/2015] [Indexed: 01/25/2023]
Abstract
Cardiac hypertrophy is a key pathophysiological component to biomechanical stress, which has been considered to be an independent and predictive risk factor for adverse cardiovascular events. Taxifolin (TAX) is a typical plant flavonoid, which has long been used clinically for treatment of cardiovascular and cerebrovascular diseases. However, very little is known about whether TAX can influence the development of cardiac hypertrophy. In vitro studies, we found that TAX concentration-dependently inhibited angiotensin II (Ang II) induced hypertrophy and protein synthesis in cardiac myocytes. Then we established a mouse model by transverse aortic constriction (TAC) to further confirm our findings. It was demonstrated that TAX prevented pressure overload induced cardiac hypertrophy in mice, as assessed by ventricular mass/body weight, echocardiographic parameters, myocyte cross-sectional area, and the expression of ANP, BNP and β-MHC. The excess production of reactive oxygen species (ROS) played critical role in the development of cardiac hypertrophy. TAX arrested oxidative stress and decreased the expression of 4-HNE induced by pressure overload. Moreover, TAX negatively modulated TAC-induced phosphorylation of ERK1/2 and JNK1/2. Further studies showed that TAX significantly attenuated left ventricular fibrosis and collagen synthesis through abrogating the phosphorylation of Smad2 and Smad2/3 nuclear translocation. These results demonstrated that TAX could inhibit cardiac hypertrophy and attenuate ventricular fibrosis after pressure overload. These beneficial effects were at least through the inhibition of the excess production of ROS, ERK1/2, JNK1/2 and Smad signaling pathways. Therefore, TAX might be a potential candidate for the treatment of cardiac hypertrophy and fibrosis.
Collapse
|
18
|
Gocer H, Topal F, Topal M, Küçük M, Teke D, Gülçin İ, Alwasel SH, Supuran CT. Acetylcholinesterase and carbonic anhydrase isoenzymes I and II inhibition profiles of taxifolin. J Enzyme Inhib Med Chem 2015; 31:441-7. [PMID: 25893707 DOI: 10.3109/14756366.2015.1036051] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Taxifolin, also known as dihydroquercetin, is a flavonoid commonly found in plants. Carbonic anhydrase (CA, EC 4.2.1.1) plays an important role in many critical physiological events including carbon dioxide (CO2)/bicarbonate (HCO3(-)) respiration and pH regulation. There are 16 known CA isoforms in humans, of which human hCA isoenzymes I and II (hCA I and II) are ubiquitous cytosolic isoforms. In this study, the inhibition properties of taxifolin against the slow cytosolic isoenzyme hCA I, and the ubiquitous and dominant rapid cytosolic isoenzyme hCA II were studied. Taxifolin, as a naturally bioactive flavonoid, has a K(i) of 29.2 nM against hCA I, and 24.2 nM against hCA II. For acetylcholinesterase enzyme (AChE) inhibition, K(i) parameter of taxifolin was determined to be 16.7 nM. These results clearly show that taxifolin inhibited both CA isoenzymes and AChE at the nM levels.
Collapse
Affiliation(s)
- Hulya Gocer
- a Central Researching Laboratory, Agri Ibrahim Cecen University , Agri , Turkey
| | - Fevzi Topal
- b Department of Medical Services and Techniques, Vocational School of Health Services, Gumushane University , Gumushane , Turkey
| | - Meryem Topal
- b Department of Medical Services and Techniques, Vocational School of Health Services, Gumushane University , Gumushane , Turkey
| | - Murat Küçük
- c Department of Chemistry, Faculty of Sciences, Atatürk University , Erzurum , Turkey
| | - Dilek Teke
- c Department of Chemistry, Faculty of Sciences, Atatürk University , Erzurum , Turkey
| | - İlhami Gülçin
- c Department of Chemistry, Faculty of Sciences, Atatürk University , Erzurum , Turkey .,d Zoology Department, College of Science, Fetal Programming of Diseases Research Chair, King Saud University , Riyadh , Saudi Arabia
| | - Saleh H Alwasel
- d Zoology Department, College of Science, Fetal Programming of Diseases Research Chair, King Saud University , Riyadh , Saudi Arabia
| | - Claudiu T Supuran
- e Dipartimento di Chimica Ugo Schiff, Universita degli Studi di Firenze , Sesto Fiorentino , Firenze , Italy , and.,f Neurofarba Department, Section of Pharmaceutical and Nutriceutical Sciences, Universita degli Studi di Firenze , Sesto Fiorentino , Florence , Italy
| |
Collapse
|
19
|
Paredes-Turrubiarte G, González-Chávez A, Pérez-Tamayo R, Salazar-Vázquez BY, Hernández VS, Garibay-Nieto N, Fragoso JM, Escobedo G. Severity of non-alcoholic fatty liver disease is associated with high systemic levels of tumor necrosis factor alpha and low serum interleukin 10 in morbidly obese patients. Clin Exp Med 2015; 16:193-202. [PMID: 25894568 DOI: 10.1007/s10238-015-0347-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 04/02/2015] [Indexed: 02/06/2023]
Abstract
Morbid obesity has been shown to increase the risk to develop hepatic steatosis, also referred to as non-alcoholic fatty liver disease (NAFLD). Emerging evidence suggests that the severity of NAFLD may associate with increased serum levels of inflammatory markers as well as decreased concentration of mediators with anti-inflammatory actions, such as tumor necrosis factor alpha (TNF-α) and interleukin (IL) 10, respectively. We thus examined the serum levels of TNF-α and IL-10 in 102 morbidly obese women and men (body mass index > 40 kg/m(2)), exhibiting different grades of NAFLD. Blood glucose, glycated hemoglobin, insulin, the homeostatic model assessment of insulin resistance (HOMA-IR), total cholesterol, triglycerides, high- and low-density lipoproteins, parameters of liver function, TNF-α, and IL-10 were measured in each subject. The stage of NAFLD was estimated by abdominal ultrasound imaging. In comparison with morbidly obese subjects without steatosis, morbidly obese patients with NAFLD showed increased age (39.23 ± 9.80 years), HOMA-IR (6.74 ± 1.62), total cholesterol (219.7 ± 9.58 mg/dl), aspartate aminotransferase (36.25 ± 3.24 UI/l), gamma-glutamyl transpeptidase (37.12 ± 3.41 UI/l), and TNF-α (37.41 ± 1.72 pg/ml) as well as decreased serum levels of IL-10 (61.05 ± 2.43 pg/ml). Interestingly, the systemic levels of TNF-α increased, while IL-10 decreased in accordance with the severity of NAFLD, which supports a role for systemic inflammatory mediators in promoting steatosis progression. Further clinical prospective studies need to be addressed to elucidate the role of TNF-α and IL-10 in the development of NAFLD while also establishing their clinical utility in the assessment of morbidly obese patients at higher risk to develop severe steatosis.
Collapse
Affiliation(s)
| | - Antonio González-Chávez
- Department of Internal Medicine, General Hospital of Mexico "Dr. Eduardo Liceaga", 06720, Mexico, D.F., Mexico.
| | - Ruy Pérez-Tamayo
- Unit of Experimental Medicine, School of Medicine, National University of Mexico, General Hospital of Mexico "Dr. Eduardo Liceaga", 06720, Mexico, D.F., Mexico
| | - Beatriz Y Salazar-Vázquez
- Unit of Experimental Medicine, School of Medicine, National University of Mexico, General Hospital of Mexico "Dr. Eduardo Liceaga", 06720, Mexico, D.F., Mexico
| | - Vito S Hernández
- Departament of Physiology, School of Medicine, National University of Mexico, 04510, Mexico, D.F., Mexico
| | - Nayeli Garibay-Nieto
- Department of Human Genetics, General Hospital of Mexico "Dr. Eduardo Liceaga", 06720, Mexico, D.F., Mexico
| | - José Manuel Fragoso
- Department of Molecular Biology, National Institute of Cardiology "Ignacio Chávez", 14080, Mexico, D.F., Mexico
| | - Galileo Escobedo
- Unit of Experimental Medicine, School of Medicine, National University of Mexico, General Hospital of Mexico "Dr. Eduardo Liceaga", 06720, Mexico, D.F., Mexico.
| |
Collapse
|
20
|
Manigandan K, Jayaraj RL, Elangovan N. Taxifolin ameliorates 1,2-dimethylhydrazine induced cell proliferation and redox avulsions in mice colon carcinogenesis. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.bionut.2014.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
21
|
Schneiderová K, Šmejkal K. Phytochemical profile of Paulownia tomentosa (Thunb). Steud. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2014; 14:799-833. [PMID: 32214918 PMCID: PMC7089068 DOI: 10.1007/s11101-014-9376-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 08/02/2014] [Indexed: 06/04/2023]
Abstract
Paulownia tomentosa, a member of the plant family Paulowniaceae and a rich source of biologically active secondary metabolites, is traditionally used in Chinese herbal medicine. Flavonoids, lignans, phenolic glycosides, quinones, terpenoids, glycerides, phenolic acids, and miscellaneous other compounds have been isolated from different parts of P. tomentosa plant. Recent interest in this species has focused on isolating and identifying of prenylated flavonoids, that exhibit potent antioxidant, antibacterial, and antiphlogistic activities and inhibit severe acute respiratory syndrome coronavirus papain-like protease. They show cytotoxic activity against various human cancer cell lines and inhibit the effects of human cholinesterase, butyrylcholinesterase, and bacterial neuraminidases. Most of the compounds considered here have never been isolated from any other species of plant. This review summarizes the information about the isolated compounds that are active, their bioactivities, and the structure-activity relationships that have been worked out for them.
Collapse
Affiliation(s)
- Kristýna Schneiderová
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackého 1/3, 612 42 Brno, Czech Republic
| | - Karel Šmejkal
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackého 1/3, 612 42 Brno, Czech Republic
| |
Collapse
|