1
|
Xu Y, Wei J, Wang W, Mao Z, Wang D, Zhang T, Zhang P. Oleanolic Acid Slows Down Aging Through IGF-1 Affecting the PI3K/AKT/mTOR Signaling Pathway. Molecules 2025; 30:740. [PMID: 39942843 PMCID: PMC11820160 DOI: 10.3390/molecules30030740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
OBJECTIVE A pentacyclic triterpene, oleanolic acid (OA), has anti-inflammatory activity. The role of oleanolic acid in aging is poorly understood, and the regulatory mechanism of IGF-1 signaling in aging is still not fully understood. Thus, we hypothesized that OA could delay aging by regulating the PI3K/AKT/mTOR pathway via insulin-like growth factor-1 (IGF-1). METHOD This study initially established a replicative aging model and a bleomycin-induced aging model in human dermal fibroblast (HDF) and mouse embryonic fibroblast (MEF) cell lines. On this basis, IGF-1 inhibitors or IGF-1 recombinant proteins were then combined with OA (at a concentration of 20 μM) and treated for 72 h. The project plans to detect the expression of aging-related proteins such as CDKN2A (p16) using Western blot technology, detect the expression of aging-related factors such as Interleukin-1 beta (IL-1β), Interleukin-6 (IL-6), and Interleukin-8 (IL-8) using Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR), Enzyme-Linked Immunosorbent Assay (ELISA), and other technologies, and combine Senescence-Associated β-Galactosidase (SA-β-gal) staining to detect changes in aging. RESULTS The expression of IGF-1, PI3K/AKT/mTOR, aging-related proteins P16, and aging-related secretory factors (SASP) IL-1β, IL-6, and IL-8 was increased in senescent cells. After treatment with jujuboside, the expression of IGF-1, PI3K/AKT/mTOR, aging-related protein P16, and aging-related secretory factors IL-1β, IL-6, and IL-8 were decreased. CONCLUSION The findings suggested that OA slowed down aging by inhibiting the PI3K/AKT/mTOR expression through IGF-1. These findings suggest OA as a potential new drug and its mechanisms for anti-aging.
Collapse
Affiliation(s)
- Yan Xu
- Medical College of Basic Sciences, Jiamusi University, Jiamusi 154000, China; (Y.X.); (J.W.); (W.W.); (D.W.)
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases of Heilongjiang Province, Jiamusi University, Jiamusi 154000, China
| | - Jianlei Wei
- Medical College of Basic Sciences, Jiamusi University, Jiamusi 154000, China; (Y.X.); (J.W.); (W.W.); (D.W.)
| | - Wang Wang
- Medical College of Basic Sciences, Jiamusi University, Jiamusi 154000, China; (Y.X.); (J.W.); (W.W.); (D.W.)
| | - Zebin Mao
- Department of Biochemistry and Molecular Biology, Health Science Center, Peking University, Beijing 100191, China;
| | - Didi Wang
- Medical College of Basic Sciences, Jiamusi University, Jiamusi 154000, China; (Y.X.); (J.W.); (W.W.); (D.W.)
| | - Tao Zhang
- Medical College of Basic Sciences, Jiamusi University, Jiamusi 154000, China; (Y.X.); (J.W.); (W.W.); (D.W.)
| | - Pengxia Zhang
- Medical College of Basic Sciences, Jiamusi University, Jiamusi 154000, China; (Y.X.); (J.W.); (W.W.); (D.W.)
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases of Heilongjiang Province, Jiamusi University, Jiamusi 154000, China
| |
Collapse
|
2
|
Stankovics L, Ungvari A, Fekete M, Nyul-Toth A, Mukli P, Patai R, Csik B, Gulej R, Conley S, Csiszar A, Toth P. The vasoprotective role of IGF-1 signaling in the cerebral microcirculation: prevention of cerebral microhemorrhages in aging. GeroScience 2025; 47:445-455. [PMID: 39271571 PMCID: PMC11872839 DOI: 10.1007/s11357-024-01343-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Aging is closely associated with various cerebrovascular pathologies that significantly impact brain function, with cerebral small vessel disease (CSVD) being a major contributor to cognitive decline in the elderly. Consequences of CSVD include cerebral microhemorrhages (CMH), which are small intracerebral bleeds resulting from the rupture of microvessels. CMHs are prevalent in aging populations, affecting approximately 50% of individuals over 80, and are linked to increased risks of vascular cognitive impairment and dementia (VCID). Hypertension is a primary risk factor for CMHs. Vascular smooth muscle cells (VSMCs) adapt to hypertension by undergoing hypertrophy and producing extracellular matrix (ECM) components, which reinforce vessel walls. Myogenic autoregulation, which involves pressure-induced constriction, helps prevent excessive pressure from damaging the vulnerable microvasculature. However, aging impairs these adaptive mechanisms, weakening vessel walls and increasing susceptibility to damage. Insulin-like Growth Factor 1 (IGF-1) is crucial for vascular health, promoting VSMC hypertrophy, ECM production, and maintaining normal myogenic protection. IGF-1 also prevents microvascular senescence, reduces reactive oxygen species (ROS) production, and regulates matrix metalloproteinase (MMP) activity, which is vital for ECM remodeling and stabilization. IGF-1 deficiency, common in aging, compromises these protective mechanisms, increasing the risk of CMHs. This review explores the vasoprotective role of IGF-1 signaling in the cerebral microcirculation and its implications for preventing hypertension-induced CMHs in aging. Understanding and addressing the decline in IGF-1 signaling with age are crucial for maintaining cerebrovascular health and preventing hypertension-related vascular injuries in the aging population.
Collapse
Affiliation(s)
- Levente Stankovics
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
| | - Anna Ungvari
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary.
| | - Mónika Fekete
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Adam Nyul-Toth
- International Training Program in Geroscience, Doctoral College-Health Sciences Program/ Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Mukli
- International Training Program in Geroscience, Doctoral College-Health Sciences Program/ Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Roland Patai
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Boglarka Csik
- International Training Program in Geroscience, Doctoral College-Health Sciences Program/ Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rafal Gulej
- International Training Program in Geroscience, Doctoral College-Health Sciences Program/ Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shannon Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Toth
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
3
|
Gaber M, Quentel A, Holmes J, Lepetit C, Triki H, Wilson A, Payne V, Tenvooren I, Dehours C, Peoples A, Duet ML, Katz AJ, Pécot T, Bougras-Cartron G, Cartron PF, Cook KL, Vidi PA. Obesity increases DNA damage in the breast epithelium. Breast Cancer Res 2025; 27:11. [PMID: 39838489 PMCID: PMC11753040 DOI: 10.1186/s13058-025-01961-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 01/10/2025] [Indexed: 01/23/2025] Open
Abstract
Obesity is a modifiable risk factor for breast cancer. Yet, how obesity contributes to cancer initiation is not fully understood. The goal of this study was to determine if the body mass index (BMI) and metabolic hallmarks of obesity are related to DNA damage in normal breast tissue. In a mouse model of diet-induced obesity, weight gain was associated with elevated levels of DNA double-strand breaks in the mammary gland. We also found a positive correlation between BMI and DNA breaks in the breast epithelium of premenopausal women (but not postmenopausal women). High BMI was associated with elevated systemic and tissue-level oxidative DNA damage across the lifespan, and we propose that the breast epithelium undergoing menstruous proliferation waves is particularly prone to the generation of DNA breaks from oxidative lesions. Ancestry was an important modulator of the obesity-DNA break connection. Compared to non-Hispanic Whites, women identifying as African Americans had higher levels of DNA breaks, as well as elevated leptin and IGF-1. In 3D cultures of breast acini, both leptin and IGF-1 caused an accumulation of DNA damage. The results highlight a connection between premalignant genomic alterations in the breast epithelium and metabolic health modulated by obesity and ancestry. They call for attention on biological determinants of breast cancer risk disparities.
Collapse
Affiliation(s)
- Mohamed Gaber
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Arnaud Quentel
- Institut de Cancérologie de l'Ouest, Angers, F-49055, France
- Université d'Angers, Inserm UMR 1307, CNRS UMR 6075, Nantes Université, CRCI2NA, SFR ICAT, Angers, France
| | - Julia Holmes
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | | | - Hana Triki
- Université d'Angers, Inserm UMR 1307, CNRS UMR 6075, Nantes Université, CRCI2NA, SFR ICAT, Angers, France
- Institut de Cancérologie de l'Ouest, Saint Herblain, F-44805, France
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, Nantes, France
| | - Adam Wilson
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Valerie Payne
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Iliana Tenvooren
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Cloé Dehours
- Institut de Cancérologie de l'Ouest, Angers, F-49055, France
- Université d'Angers, Inserm UMR 1307, CNRS UMR 6075, Nantes Université, CRCI2NA, SFR ICAT, Angers, France
| | - Abigail Peoples
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Mary L Duet
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Adam J Katz
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Thierry Pécot
- Biosit, UAR 3480 CNRS - US 18 Inserm, Rennes University, Rennes, F-35042, France
| | - Gwenola Bougras-Cartron
- Université d'Angers, Inserm UMR 1307, CNRS UMR 6075, Nantes Université, CRCI2NA, SFR ICAT, Angers, France
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, Nantes, France
| | - Pierre-François Cartron
- Université d'Angers, Inserm UMR 1307, CNRS UMR 6075, Nantes Université, CRCI2NA, SFR ICAT, Angers, France
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, Nantes, France
| | - Katherine L Cook
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Pierre-Alexandre Vidi
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA.
- Institut de Cancérologie de l'Ouest, Angers, F-49055, France.
- Université d'Angers, Inserm UMR 1307, CNRS UMR 6075, Nantes Université, CRCI2NA, SFR ICAT, Angers, France.
| |
Collapse
|
4
|
Bickel MA, Csik B, Gulej R, Ungvari A, Nyul-Toth A, Conley SM. Cell non-autonomous regulation of cerebrovascular aging processes by the somatotropic axis. Front Endocrinol (Lausanne) 2023; 14:1087053. [PMID: 36755922 PMCID: PMC9900125 DOI: 10.3389/fendo.2023.1087053] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023] Open
Abstract
Age-related cerebrovascular pathologies, ranging from cerebromicrovascular functional and structural alterations to large vessel atherosclerosis, promote the genesis of vascular cognitive impairment and dementia (VCID) and exacerbate Alzheimer's disease. Recent advances in geroscience, including results from studies on heterochronic parabiosis models, reinforce the hypothesis that cell non-autonomous mechanisms play a key role in regulating cerebrovascular aging processes. Growth hormone (GH) and insulin-like growth factor 1 (IGF-1) exert multifaceted vasoprotective effects and production of both hormones is significantly reduced in aging. This brief overview focuses on the role of age-related GH/IGF-1 deficiency in the development of cerebrovascular pathologies and VCID. It explores the mechanistic links among alterations in the somatotropic axis, specific macrovascular and microvascular pathologies (including capillary rarefaction, microhemorrhages, impaired endothelial regulation of cerebral blood flow, disruption of the blood brain barrier, decreased neurovascular coupling, and atherogenesis) and cognitive impairment. Improved understanding of cell non-autonomous mechanisms of vascular aging is crucial to identify targets for intervention to promote cerebrovascular and brain health in older adults.
Collapse
Affiliation(s)
- Marisa A. Bickel
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Boglarka Csik
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Anna Ungvari
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Adam Nyul-Toth
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Department of Public Health, Semmelweis University, Budapest, Hungary
- Institute of Biophysics, Biological Research Centre, Eötvös Lorand Research Network (ELKH), Szeged, Hungary
| | - Shannon M. Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
5
|
Di Somma C, Scarano E, Arianna R, Romano F, Lavorgna M, Serpico D, Colao A. Long-Term Safety of Growth Hormone Deficiency Treatment in Cancer and Sellar Tumors Adult Survivors: Is There a Role of GH Therapy on the Neoplastic Risk? J Clin Med 2023; 12:jcm12020662. [PMID: 36675591 PMCID: PMC9861672 DOI: 10.3390/jcm12020662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Experimental studies support the hypothesis that GH/IGF-1 status may influence neoplastic tissue growth. Epidemiological studies suggest a link between GH/IGF-1 status and cancer risk. However, several studies regarding GH replacement safety in childhood cancer survivors do not show a prevalence excess of de novo cancers, and several reports on children and adults treated with GH have not shown an increase in observed cancer risk in these patients. The aim of this review is to provide an at-a-glance overview and the state of the art of long-term effects of GH replacement on neoplastic risk in adults with growth hormone deficiency who have survived cancer and sellar tumors.
Collapse
Affiliation(s)
- Carolina Di Somma
- Endocrinology, Diabetes and Andrology Unit, Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy
- UNESCO Chair “Education for Health and Sustainable Development”, University of Naples “Federico II”, 80131 Naples, Italy
- Correspondence:
| | - Elisabetta Scarano
- Endocrinology, Diabetes and Andrology Unit, Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy
| | - Rossana Arianna
- Endocrinology, Diabetes and Andrology Unit, Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy
| | - Fiammetta Romano
- Endocrinology, Diabetes and Andrology Unit, Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy
| | - Mariarosaria Lavorgna
- Endocrinology, Diabetes and Andrology Unit, Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy
| | - Domenico Serpico
- Endocrinology, Diabetes and Andrology Unit, Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy
| | - Annamaria Colao
- Endocrinology, Diabetes and Andrology Unit, Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy
- UNESCO Chair “Education for Health and Sustainable Development”, University of Naples “Federico II”, 80131 Naples, Italy
| |
Collapse
|
6
|
Fazekas-Pongor V, Péterfi A, Major D, Szarvas Z, Fekete M, Tabak AG, Csiszar A, Sonntag WE, Austad SN, Ungvari ZI. Decreased lifespan in female "Munchkin" actors from the cast of the 1939 film version of The Wizard of Oz does not support the hypothesis linking hypopituitary dwarfism to longevity. GeroScience 2022; 44:2527-2539. [PMID: 36334178 PMCID: PMC9768075 DOI: 10.1007/s11357-022-00680-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/21/2022] [Indexed: 11/08/2022] Open
Abstract
In laboratory mice, pituitary dwarfism caused by genetic reduction or elimination of the activity of growth hormone (GH) significantly extends lifespan. The effects of congenital pituitary dwarfism on human longevity are not well documented. To analyse the effects of untreated pituitary dwarfism on human lifespan, the longevity of a diverse group of widely known little people, the 124 adults who played "Munchkins" in the 1939 movie The Wizard of Oz was investigated. Survival of "Munchkin" actors with those of controls defined as cast members of The Wizard of Oz and those of other contemporary Academy Award winning Hollywood movies was compared. According to the Kaplan-Meier survival curves, survival of female and male "Munchkin" actors was shorter than cast controls and Hollywood controls of respective sexes. Cox regression analyses showed that female "Munchkin" actors had significantly higher risk ratios compared to both female cast controls (RR, 1.70; 95% CI, 1.05 to 2.77) and female Hollywood controls (RR, 1.52; 95% CI, 1.03 to 2.24). Similar trends were also discernible for men, albeit point estimates were not significant. The lack of lifespan extension in "Munchkin" actors does not support the hypothesis that hereditary GH deficiency regulates longevity in humans.
Collapse
Affiliation(s)
| | - Anna Péterfi
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Dávid Major
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Zsófia Szarvas
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Monika Fekete
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Adam G Tabak
- Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Epidemiology and Public Health, University College London, London, UK
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Anna Csiszar
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1313, Oklahoma City, OK, 731042, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Departments of Translational Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - William E Sonntag
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1313, Oklahoma City, OK, 731042, USA
| | - Steven N Austad
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zoltan I Ungvari
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1313, Oklahoma City, OK, 731042, USA.
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA.
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK, 73104, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Departments of Translational Medicine and Public Health, Semmelweis University, Budapest, Hungary.
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
7
|
Kopchick JJ, Basu R, Berryman DE, Jorgensen JOL, Johannsson G, Puri V. Covert actions of growth hormone: fibrosis, cardiovascular diseases and cancer. Nat Rev Endocrinol 2022; 18:558-573. [PMID: 35750929 PMCID: PMC9703363 DOI: 10.1038/s41574-022-00702-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2022] [Indexed: 12/20/2022]
Abstract
Since its discovery nearly a century ago, over 100,000 studies of growth hormone (GH) have investigated its structure, how it interacts with the GH receptor and its multiple actions. These include effects on growth, substrate metabolism, body composition, bone mineral density, the cardiovascular system and brain function, among many others. Recombinant human GH is approved for use to promote growth in children with GH deficiency (GHD), along with several additional clinical indications. Studies of humans and animals with altered levels of GH, from complete or partial GHD to GH excess, have revealed several covert or hidden actions of GH, such as effects on fibrosis, cardiovascular function and cancer. In this Review, we do not concentrate on the classic and controversial indications for GH therapy, nor do we cover all covert actions of GH. Instead, we stress the importance of the relationship between GH and fibrosis, and how fibrosis (or lack thereof) might be an emerging factor in both cardiovascular and cancer pathologies. We highlight clinical data from patients with acromegaly or GHD, alongside data from cellular and animal studies, to reveal novel phenotypes and molecular pathways responsible for these actions of GH in fibrosis, cardiovascular function and cancer.
Collapse
Affiliation(s)
- John J Kopchick
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.
- The Diabetes Institute, Ohio University, Athens, OH, USA.
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA.
| | - Reetobrata Basu
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- The Diabetes Institute, Ohio University, Athens, OH, USA
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Darlene E Berryman
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- The Diabetes Institute, Ohio University, Athens, OH, USA
| | - Jens O L Jorgensen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Gudmundur Johannsson
- Department of Endocrinology, Sahlgrenska University Hospital, Sahlgrenska Academy, University of Göteborg, Gothenburg, Sweden
| | - Vishwajeet Puri
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- The Diabetes Institute, Ohio University, Athens, OH, USA
| |
Collapse
|
8
|
Boguszewski MCS, Boguszewski CL, Chemaililly W, Cohen LE, Gebauer J, Higham C, Hoffman AR, Polak M, Yuen KCJ, Alos N, Antal Z, Bidlingmaier M, Biller BMK, Brabant G, Choong CSY, Cianfarani S, Clayton PE, Coutant R, Cardoso-Demartini AA, Fernandez A, Grimberg A, Guðmundsson K, Guevara-Aguirre J, Ho KKY, Horikawa R, Isidori AM, Jørgensen JOL, Kamenicky P, Karavitaki N, Kopchick JJ, Lodish M, Luo X, McCormack AI, Meacham L, Melmed S, Mostoufi Moab S, Müller HL, Neggers SJCMM, Aguiar Oliveira MH, Ozono K, Pennisi PA, Popovic V, Radovick S, Savendahl L, Touraine P, van Santen HM, Johannsson G. Safety of growth hormone replacement in survivors of cancer and intracranial and pituitary tumours: a consensus statement. Eur J Endocrinol 2022; 186:P35-P52. [PMID: 35319491 PMCID: PMC9066587 DOI: 10.1530/eje-21-1186] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/23/2022] [Indexed: 12/02/2022]
Abstract
Growth hormone (GH) has been used for over 35 years, and its safety and efficacy has been studied extensively. Experimental studies showing the permissive role of GH/insulin-like growth factor 1 (IGF-I) in carcinogenesis have raised concerns regarding the safety of GH replacement in children and adults who have received treatment for cancer and those with intracranial and pituitary tumours. A consensus statement was produced to guide decision-making on GH replacement in children and adult survivors of cancer, in those treated for intracranial and pituitary tumours and in patients with increased cancer risk. With the support of the European Society of Endocrinology, the Growth Hormone Research Society convened a Workshop, where 55 international key opinion leaders representing 10 professional societies were invited to participate. This consensus statement utilized: (1) a critical review paper produced before the Workshop, (2) five plenary talks, (3) evidence-based comments from four breakout groups, and (4) discussions during report-back sessions. Current evidence reviewed from the proceedings from the Workshop does not support an association between GH replacement and primary tumour or cancer recurrence. The effect of GH replacement on secondary neoplasia risk is minor compared to host- and tumour treatment-related factors. There is no evidence for an association between GH replacement and increased mortality from cancer amongst GH-deficient childhood cancer survivors. Patients with pituitary tumour or craniopharyngioma remnants receiving GH replacement do not need to be treated or monitored differently than those not receiving GH. GH replacement might be considered in GH-deficient adult cancer survivors in remission after careful individual risk/benefit analysis. In children with cancer predisposition syndromes, GH treatment is generally contraindicated but may be considered cautiously in select patients.
Collapse
Affiliation(s)
| | - Cesar L Boguszewski
- SEMPR (Endocrine Division), Department of Internal Medicine, Federal University of Parana, Curitiba, Brazil
| | - Wassim Chemaililly
- Division of Endocrinology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Laurie E Cohen
- Division of Endocrinology and Diabetes, Department of Pediatrics, The Children’s Hospital at Montefiore, Albert Einstein College of Medicine, New York, New York, USA
| | - Judith Gebauer
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Luebeck, Germany
| | - Claire Higham
- Department of Endocrinology, Christie Hospital NHS Foundation Trust, University of Manchester, and Manchester Academic Health Science Centre, Manchester, UK
| | - Andrew R Hoffman
- Stanford University School of Medicine, Stanford, California, USA
| | - Michel Polak
- Department of Pediatric Endocrinology, Gynecology and Diabetology, Hôpital Universitaire Necker Enfants Malades, AP-HP, Université de Paris, Paris, France
| | - Kevin C J Yuen
- Barrow Pituitary Center, Barrow Neurological Institute, Phoenix, Arizona, USA
- Department of Neuroendocrinology, St. Joseph’s Hospital and Medical Center, University of Arizona College of Medicine and Creighton School of Medicine, Phoenix, Arizona, USA
| | - Nathalie Alos
- Division of Endocrinology, Sainte-Justine University Hospital Centre, University of Montreal, Montreal, Quebec, Canada
| | - Zoltan Antal
- Memorial Sloan-Kettering Cancer Center and Weill Cornel Medicine New York Presbyterian Hospital, New York, New York, USA
| | | | - Beverley M K Biller
- Neuroendocrine & Pituitary Tumor Clinical Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - George Brabant
- Department of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, University of Manchester, Manchester, UK
| | - Catherine S Y Choong
- Department of Endocrinology and Diabetes, Perth Children’s Hospital, Child & Adolescent Health Service, Perth, Australia
- Division of Paediatrics, Faculty of Health & Medical Sciences, University of Western Australia, Perth, Australia
| | - Stefano Cianfarani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome Italy
- Dipartimento Pediatrico Universitario Ospedaliero, IRCCS ‘Bambino Gesu’ Children’s Hospital, Rome Italy
- Department of Women’s and Children’s Health, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Peter E Clayton
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
| | - Regis Coutant
- Department of Pediatric Endocrinology, University Hospital, Angers, France
| | - Adriane A Cardoso-Demartini
- Pediatric Endocrinology Unit, Department of Pediatrics, Hospital de Clínicas, Federal University of Parana, Curitiba, Brazil
| | - Alberto Fernandez
- Endocrinology Department, Hospital Universitario de Mostoles, Mostoles, Spain
| | - Adda Grimberg
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kolbeinn Guðmundsson
- Children’s Medical Center, Landspitali – The National University Hospital of Iceland, Reykjavik, Iceland
| | - Jaime Guevara-Aguirre
- Department of Diabetes and Endocrinology, College of Medicine, Universidad San Francisco de Quito at Quito, Quito, Ecuador
| | - Ken K Y Ho
- The Garvan Institute of Medical Research and St. Vincent Hospital, Sydney, Australia
| | - Reiko Horikawa
- Division of Endocrinology and Metabolism, National Center for Child Health and Development, Tokyo, Japan
| | - Andrea M Isidori
- Department of Experimental Medicine, Sapienza University of Rome, Roma, Italy
| | | | - Peter Kamenicky
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Service d’Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Rares de l’Hypophyse, Le Kremlin-Bicêtre, France
| | - Niki Karavitaki
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
- Department of Endocrinology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Correspondence should be addressed to N Karavitaki;
| | - John J Kopchick
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| | - Maya Lodish
- Division of Pediatric Endocrinology and Diabetes, University of California, San Francisco, California, USA
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital, Tonji Medical College, Hu, China
| | - Ann I McCormack
- Department of Endocrinology, St Vincent’s Hospital, Sydney, Australia
- Hormones and Cancer Group, Garvan Institute of Medical Research, Sydney, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Lillian Meacham
- Children’s Healthcare of Atlanta Aflac Cancer and Blood Disorders Service, Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Shlomo Melmed
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Sogol Mostoufi Moab
- Divisions of Oncology and Endocrinology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Hermann L Müller
- Department of Pediatrics and Pediatric Hematology/Oncology, University Children’s Hospital, Klinikum Oldenburg AöR, Carl von Ossietzki University Oldenburg, Oldenburg, Germany
| | | | - Manoel H Aguiar Oliveira
- Division of Endocrinology, Health Sciences Graduate Program, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Children, Osaka, Japan
| | - Patricia A Pennisi
- Centro de Investigaciones Endocrinológicas ‘Dr. César Bergadá’, CEDIE-CONICET-FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Vera Popovic
- Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Sally Radovick
- Department of Pediatrics, Rutgers Robert Wood, Johnson Medical School, New Brunswick, New Jersey, USA
| | - Lars Savendahl
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- Division of Pediatric Endocrinology, Karolinska University Hospital, Stockholm, Sweden
| | - Philippe Touraine
- Department of Endocrinology and Reproductive Medicine, Center for Rare Endocrine and Gynecological Disorders, Pitie Salpetriere Hospital, Sorbonne Université Medecine, Paris, France
| | - Hanneke M van Santen
- Department of Pediatric Endocrinology, Wilhelmina Chilrdren’s Hospital, University Medical Center and Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Gudmundur Johannsson
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Endocrinology, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
9
|
Shen W, He J, Hou T, Si J, Chen S. Common Pathogenetic Mechanisms Underlying Aging and Tumor and Means of Interventions. Aging Dis 2022; 13:1063-1091. [PMID: 35855334 PMCID: PMC9286910 DOI: 10.14336/ad.2021.1208] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/07/2021] [Indexed: 11/22/2022] Open
Abstract
Recently, there has been an increase in the incidence of malignant tumors among the older population. Moreover, there is an association between aging and cancer. During the process of senescence, the human body suffers from a series of imbalances, which have been shown to further accelerate aging, trigger tumorigenesis, and facilitate cancer progression. Therefore, exploring the junctions of aging and cancer and searching for novel methods to restore the junctions is of great importance to intervene against aging-related cancers. In this review, we have identified the underlying pathogenetic mechanisms of aging-related cancers by comparing alterations in the human body caused by aging and the factors that trigger cancers. We found that the common mechanisms of aging and cancer include cellular senescence, alterations in proteostasis, microbiota disorders (decreased probiotics and increased pernicious bacteria), persistent chronic inflammation, extensive immunosenescence, inordinate energy metabolism, altered material metabolism, endocrine disorders, altered genetic expression, and epigenetic modification. Furthermore, we have proposed that aging and cancer have common means of intervention, including novel uses of common medicine (metformin, resveratrol, and rapamycin), dietary restriction, and artificial microbiota intervention or selectively replenishing scarce metabolites. In addition, we have summarized the research progress of each intervention and revealed their bidirectional effects on cancer progression to compare their reliability and feasibility. Therefore, the study findings provide vital information for advanced research studies on age-related cancers. However, there is a need for further optimization of the described methods and more suitable methods for complicated clinical practices. In conclusion, targeting aging may have potential therapeutic effects on aging-related cancers.
Collapse
Affiliation(s)
- Weiyi Shen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
| | - Jiamin He
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
| | - Tongyao Hou
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
- Correspondence should be addressed to: Dr. Shujie Chen (), Dr. Jianmin Si () and Dr. Tongyao Hou (), Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
| | - Jianmin Si
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
- Correspondence should be addressed to: Dr. Shujie Chen (), Dr. Jianmin Si () and Dr. Tongyao Hou (), Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
| | - Shujie Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
- Correspondence should be addressed to: Dr. Shujie Chen (), Dr. Jianmin Si () and Dr. Tongyao Hou (), Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
| |
Collapse
|
10
|
Bartke A. Somatotropic Axis, Pace of Life and Aging. Front Endocrinol (Lausanne) 2022; 13:916139. [PMID: 35909509 PMCID: PMC9329927 DOI: 10.3389/fendo.2022.916139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/17/2022] [Indexed: 12/01/2022] Open
Abstract
Mice with genetic growth hormone (GH) deficiency or GH resistance live much longer than their normal siblings maintained under identical conditions with unlimited access to food. Extended longevity of these mutants is associated with extension of their healthspan (period of life free of disability and disease) and with delayed and/or slower aging. Importantly, GH and GH-related traits have been linked to the regulation of aging and longevity also in mice that have not been genetically altered and in other mammalian species including humans. Avai+lable evidence indicates that the impact of suppressed GH signaling on aging is mediated by multiple interacting mechanisms and involves trade-offs among growth, reproduction, and longevity. Life history traits of long-lived GH-related mutants include slow postnatal growth, delayed sexual maturation, and reduced fecundity (smaller litter size and increased intervals between the litters). These traits are consistent with a slower pace-of-life, a well-documented characteristic of species of wild animals that are long-lived in their natural environment. Apparently, slower pace-of-life (or at least some of its features) is associated with extended longevity both within and between species. This association is unexpected and may appear counterintuitive, because the relationships between adult body size (a GH-dependent trait) and longevity within and between species are opposite rather than similar. Studies of energy metabolism and nutrient-dependent signaling pathways at different stages of the life course will be needed to elucidate mechanisms of these relationships.
Collapse
|
11
|
Bartke A, Sun LY, Li X, Miller RA. Early Life Interventions Can Shape Aging. Front Endocrinol (Lausanne) 2022; 13:797581. [PMID: 35282433 PMCID: PMC8916564 DOI: 10.3389/fendo.2022.797581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/04/2022] [Indexed: 01/24/2023] Open
Abstract
It is well documented that the environment of the developing fetus, including availability of nutrients and presence of toxins, can have major impact on adult phenotype, age-related traits and risk of chronic disease. There is also accumulating evidence that postnatal environment can impact adult characteristics related to evolutionary fitness, health, and aging. To determine whether early life hormonal interventions can alter trajectory of aging, we have examined the effects of early life growth hormone (GH) replacement therapy in Prop1df (Ames dwarf) mice which are GH deficient and remarkably long lived. Twice-daily GH injections between the ages of two and eight weeks completely normalized ("rescued") a number of adult metabolic characteristics believed to contribute to extended longevity of these mutants. Importantly, longevity of Ames dwarf mice was reduced by early life GH treatment. This was associated with histone H3 modifications. We conclude that the trajectory of mammalian aging can be modified by early life interventions. Mechanistic links among interventions during postnatal development, adult metabolic characteristics, aging, and longevity, apparently involve epigenetic phenomena.
Collapse
Affiliation(s)
- Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, United States
- *Correspondence: Andrzej Bartke,
| | - Liou Y. Sun
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Xinna Li
- Department of Pathology and Paul Glenn Center for Biology of Aging Research, University of Michigan, Ann Arbor, MI, United States
| | - Richard A. Miller
- Department of Pathology and Paul Glenn Center for Biology of Aging Research, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
12
|
Bartke A, Brown-Borg H. Mutations Affecting Mammalian Aging: GH and GHR vs IGF-1 and Insulin. Front Genet 2021; 12:667355. [PMID: 34899820 PMCID: PMC8652133 DOI: 10.3389/fgene.2021.667355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Holly Brown-Borg
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| |
Collapse
|
13
|
Pollock NI, Cohen LE. Growth Hormone Deficiency and Treatment in Childhood Cancer Survivors. Front Endocrinol (Lausanne) 2021; 12:745932. [PMID: 34745010 PMCID: PMC8569790 DOI: 10.3389/fendo.2021.745932] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/27/2021] [Indexed: 01/21/2023] Open
Abstract
Growth hormone (GH) deficiency is a common pituitary hormone deficiency in childhood cancer survivors (CCS). The identification, diagnosis, and treatment of those individuals at risk are important in order to minimize associated morbidities that can be ameliorated by treatment with recombinant human GH therapy. However, GH and insulin-like growth factor-I have been implicated in tumorigenesis, so there has been concern over the use of GH therapy in patients with a history of malignancy. Reassuringly, GH therapy has not been shown to increase risk of tumor recurrence. These patients have an increased risk for development of meningiomas, but this may be related to their history of cranial irradiation rather than to GH therapy. In this review, we detail the CCS who are at risk for GHD and the existing evidence on the safety profile of GH therapy in this patient population.
Collapse
Affiliation(s)
- Netanya I. Pollock
- Division of Endocrinology, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Laurie E. Cohen
- Division of Endocrinology, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA, United States
| |
Collapse
|
14
|
Liu Y, Masternak MM, Schneider A, Zhi X. Dwarf mice as models for reproductive ageing research. Reprod Biomed Online 2021; 44:5-13. [PMID: 34794884 DOI: 10.1016/j.rbmo.2021.09.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/05/2021] [Accepted: 09/17/2021] [Indexed: 01/10/2023]
Abstract
Dwarf mice are characterized by extremely long lifespan, delayed ovarian ageing, altered metabolism, lower age-related oxidative damage and cancer incidence rate. Snell dwarf, Ames dwarf and growth hormone receptor knockout mice are three commonly used models. Despite studies focusing on ageing and metabolism, the reproductive features of female dwarf mice have also attracted interest over the last decade. Female Snell and Ames dwarf mice have regular oestrous cycles and ovulation rates, as in normal mice, but with a larger ovarian reserve and delayed ovarian ageing. The primordial follicle reserve in dwarf mice is greater than in normal littermates. Anti-Müllerian hormone (AMH) concentration is seven times higher in Ames dwarf mice than in their normal siblings, and ovarian transcriptomic profiling showed distinctive patterns in older Ames dwarf mice, especially enriched in inflammatory and immune response-related pathways. In addition, microRNA profiles also showed distinctive differences in Ames dwarf mice compared with normal control littermates. This review aims to summarize research progress on dwarf mice as models in the reproductive ageing field. Investigations focusing on the mechanisms of their reserved reproductive ability are much needed and are expected to provide additional molecular biological bases for the clinical practice of reproductive medicine in women.
Collapse
Affiliation(s)
- Yujun Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital Beijing, PR China; National Clinical Research Center for Obstetrics and Gynecology Beijing, PR China; Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education Beijing, PR China
| | - Michal M Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando FL, USA; Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Xu Zhi
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital Beijing, PR China; National Clinical Research Center for Obstetrics and Gynecology Beijing, PR China; Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education Beijing, PR China.
| |
Collapse
|
15
|
Boguszewski MCS, Cardoso-Demartini AA, Boguszewski CL, Chemaitilly W, Higham CE, Johannsson G, Yuen KCJ. Safety of growth hormone (GH) treatment in GH deficient children and adults treated for cancer and non-malignant intracranial tumors-a review of research and clinical practice. Pituitary 2021; 24:810-827. [PMID: 34304361 PMCID: PMC8416866 DOI: 10.1007/s11102-021-01173-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/12/2021] [Indexed: 11/24/2022]
Abstract
Individuals surviving cancer and brain tumors may experience growth hormone (GH) deficiency as a result of tumor growth, surgical resection and/or radiotherapy involving the hypothalamic-pituitary region. Given the pro-mitogenic and anti-apoptotic properties of GH and insulin-like growth factor-I, the safety of GH replacement in this population has raised hypothetical safety concerns that have been debated for decades. Data from multicenter studies with extended follow-up have generally not found significant associations between GH replacement and cancer recurrence or mortality from cancer among childhood cancer survivors. Potential associations with secondary neoplasms, especially solid tumors, have been reported, although this risk appears to decline with longer follow-up. Data from survivors of pediatric or adult cancers who are treated with GH during adulthood are scarce, and the risk versus benefit profile of GH replacement of this population remains unclear. Studies pertaining to the safety of GH replacement in individuals treated for nonmalignant brain tumors, including craniopharyngioma and non-functioning pituitary adenoma, have generally been reassuring with regards to the risk of tumor recurrence. The present review offers a summary of the most current medical literature regarding GH treatment of patients who have survived cancer and brain tumors, with the emphasis on areas where active research is required and where consensus on clinical practice is lacking.
Collapse
Affiliation(s)
- Margaret C S Boguszewski
- Departamento de Pediatria, Universidade Federal do Paraná, Avenida Agostinho Leão Junior, 285 - Alto da Glória, Curitiba, PR, 80030-110, Brazil.
| | | | - Cesar Luiz Boguszewski
- SEMPR, Serviço de Endocrinologia e Metabologia, Departamento de Clínica Médica, Hospital de Clínicas da Universidade Federal do Paraná, Curitiba, Brazil
| | - Wassim Chemaitilly
- Departments of Pediatric Medicine-Endocrinology and Epidemiology-Cancer Control, St. Jude Children's Research Hospital, Memphis, USA
| | - Claire E Higham
- Department of Endocrinology, Christie Hospital NHS Foundation Trust and University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Gudmundur Johannsson
- Department of Endocrinology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kevin C J Yuen
- Barrow Pituitary Center, Barrow Neurological Institute, Departments of Neuroendocrinology and Neurosurgery, University of Arizona College of Medicine and Creighton School of Medicine, Phoenix, AZ, USA
| |
Collapse
|
16
|
Cheng Y, Li W, Gui R, Wang C, Song J, Wang Z, Wang X, Shen Y, Wang Z, Hao L. Dual Characters of GH-IGF1 Signaling Pathways in Radiotherapy and Post-radiotherapy Repair of Cancers. Front Cell Dev Biol 2021; 9:671247. [PMID: 34178997 PMCID: PMC8220142 DOI: 10.3389/fcell.2021.671247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/17/2021] [Indexed: 12/02/2022] Open
Abstract
Radiotherapy remains one of the most important cancer treatment modalities. In the course of radiotherapy for tumor treatment, the incidental irradiation of adjacent tissues could not be completely avoided. DNA damage is one of the main factors of cell death caused by ionizing radiation, including single-strand (SSBs) and double-strand breaks (DSBs). The growth hormone-Insulin-like growth factor 1 (GH-IGF1) axis plays numerous roles in various systems by promoting cell proliferation and inhibiting apoptosis, supporting its effects in inducing the development of multiple cancers. Meanwhile, the GH-IGF1 signaling involved in DNA damage response (DDR) and DNA damage repair determines the radio-resistance of cancer cells subjected to radiotherapy and repair of adjacent tissues damaged by radiotherapy. In the present review, we firstly summarized the studies on GH-IGF1 signaling in the development of cancers. Then we discussed the adverse effect of GH-IGF1 signaling in radiotherapy to cancer cells and the favorable impact of GH-IGF1 signaling on radiation damage repair to adjacent tissues after irradiation. This review further summarized recent advances on research into the molecular mechanism of GH-IGF1 signaling pathway in these effects, expecting to specify the dual characters of GH-IGF1 signaling pathways in radiotherapy and post-radiotherapy repair of cancers, subsequently providing theoretical basis of their roles in increasing radiation sensitivity during cancer radiotherapy and repairing damage after radiotherapy.
Collapse
Affiliation(s)
- Yunyun Cheng
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Wanqiao Li
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Ruirui Gui
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Chunli Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Jie Song
- College of Animal Science, Jilin University, Changchun, China
| | - Zhaoguo Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Xue Wang
- The First Hospital of Jilin University, Changchun, China
| | - Yannan Shen
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Zhicheng Wang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Linlin Hao
- College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
17
|
Duran-Ortiz S, List EO, Basu R, Kopchick JJ. Extending lifespan by modulating the growth hormone/insulin-like growth factor-1 axis: coming of age. Pituitary 2021; 24:438-456. [PMID: 33459974 PMCID: PMC8122064 DOI: 10.1007/s11102-020-01117-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/10/2020] [Indexed: 02/06/2023]
Abstract
Progress made in the years of aging research have allowed the opportunity to explore potential interventions to slow aging and extend healthy lifespan. Studies performed in yeast, worms, flies and mice subjected to genetic and pharmacological interventions have given insight into the cellular and molecular mechanisms associated with longevity. Furthermore, it is now possible to effectively modulate pathways that slow aging at different stages of life (early life or at an adult age). Interestingly, interventions that extend longevity in adult mice have had sex-specific success, suggesting a potential link between particular pathways that modulate aging and sex. For example, reduction of the growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis at an adult age extends lifespan preferentially in females. Moreover, several postnatal dietary interventions tested by the 'Intervention Testing Program (ITP)' from the National Institute of Aging (NIA) have shown that while pharmacological interventions like rapamycin affect the IGF-1/insulin pathway and preferentially extend lifespan in females; dietary compounds that target other cellular pathways are effective only in male mice-indicating mutually exclusive sex-specific pathways. Therefore, a combination of interventions that target non-overlapping aging-related pathways appears to be an effective approach to further extend healthy lifespan in both sexes. Here, we review the germline and postnatal mouse lines that target the GH/IGF-1 axis as a mechanism to extend longevity as well as the dietary compounds that tested positive in the NIA program to increase lifespan. We believe that the interventions reviewed in this paper could constitute feasible combinations for an extended healthy lifespan in both male and female mice.
Collapse
Affiliation(s)
- Silvana Duran-Ortiz
- Edison Biotechnology Institute, Ohio University, Athens, USA
- Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, USA
| | - Edward O List
- Edison Biotechnology Institute, Ohio University, Athens, USA
| | - Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, USA
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, USA.
- Molecular and Cellular Biology Program, Ohio University, Athens, USA.
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA.
| |
Collapse
|
18
|
Saccon TD, Rovani MT, Garcia DN, Pradiee J, Mondadori RG, Cruz LAX, Barros CC, Fang Y, McFadden S, Mason JB, Bartke A, Masternak MM, Schneider A. Growth hormone increases DNA damage in ovarian follicles and macrophage infiltration in the ovaries. GeroScience 2021; 44:1071-1081. [PMID: 33954912 DOI: 10.1007/s11357-021-00380-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/28/2021] [Indexed: 11/27/2022] Open
Abstract
Evidence points to an important role of the growth hormone (GH) in the aging process and longevity. GH-deficient mice are smaller, live longer than normal littermates, and females have an increased ovarian reserve. The aim of the study was to evaluate the role of GH in the ovarian reserve by evaluating DNA damage, macrophage infiltration, and granulosa cell number in primordial and primary follicles. Experiment 1 used GH-deficient Ames dwarf mice (df/df, n = 12) and their normal littermates (N/df, n = 12), receiving GH or saline injections. Experiment 2 included transgenic mice overexpressing bovine GH (bGH) (n = 6) and normal mice (N, n = 6). DNA damage (anti-γH2AX) and macrophage counting (anti-CD68) were evaluated by immunofluorescence. Female df/df mice had lower γH2AX foci intensity in both oocytes and granulosa cells of primordial and primary follicles (p < 0.05), indicating fewer DNA double-strand breaks (DSBs). GH treatment increased DSBs in both df/df and N/df mice. Inversely, bGH mice had a higher quantity of DSBs in both oocytes and granulosa cells of primordial and primary follicles (p < 0.05). Df/df mice showed ovarian tissue with less macrophage infiltration than N/df mice (p < 0.05) and GH treatment increased macrophage infiltration (p < 0.05). In contrast, bGH mice had ovarian tissue with more macrophage infiltration compared to normal mice (p < 0.05). The current study shows that GH increases DNA DSBs in oocytes and granulosa cells and raises macrophage infiltration in the ovaries, pointing to the role of the GH/IGF-I axis in maintenance of oocyte DNA integrity and ovarian macrophage infiltration in mice.
Collapse
Affiliation(s)
- Tatiana D Saccon
- Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Monique T Rovani
- Faculdade de Veterinária, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Driele N Garcia
- Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Jorgea Pradiee
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Rafael G Mondadori
- Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | | | - Carlos C Barros
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Yimin Fang
- Departments of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Samuel McFadden
- Departments of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Jeffrey B Mason
- Department of Animal, Dairy and Veterinary Sciences, Center for Integrated BioSystems, School of Veterinary Medicine, Utah State University, Logan, UT, USA
| | - Andrzej Bartke
- Departments of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Michal M Masternak
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
19
|
Bartke A, Hascup E, Hascup K, Masternak MM. Growth Hormone and Aging: New Findings. World J Mens Health 2021; 39:454-465. [PMID: 33663025 PMCID: PMC8255405 DOI: 10.5534/wjmh.200201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 12/21/2020] [Accepted: 01/02/2021] [Indexed: 01/04/2023] Open
Abstract
Complex relationships between growth hormone (GH) signaling and mammalian aging continue to attract attention of many investigators. Recent results include evidence that the impact of GH on genome maintenance (DNA damage and repair) is drastically different in normal as compared to cancer cells, consistent with GH promoting aging and cancer progression. Impact of GH on DNA methylation was studied as a possible mechanism linking actions of GH during early life to the trajectory of aging. Animals with reduced or enhanced GH signaling and novel animals with adipocyte-specific deletion of GH receptors were used to elucidate the effects of GH on white and brown adipose tissue, including the impact of this hormone on lipolysis, fibrosis, and thermogenesis. Effects of GH on adipose tissue related to lipid and energy metabolism emerge as mechanistic links between GH, healthspan, and lifespan. Treatment of healthy men with a combination of GH, dehydroepiandrosterone, and metformin was reported to restore thymus function and reduce epigenetic age. Studies of human subjects with deficiency of GH or GH receptors and studies of mice with the same endocrine syndromes identified several phenotypic changes related (positively or negatively) to the previously reported predisposition to healthy aging. Results of these and other recent studies advance present understanding of the mechanisms by which GH influences aging and longevity and of the trade-offs involved.
Collapse
Affiliation(s)
- Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, USA.
| | - Erin Hascup
- Department of Neurology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Kevin Hascup
- Department of Neurology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Michal M Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
20
|
Abstract
Growth hormone (GH) actions impact growth, metabolism, and body composition and have been associated with aging and longevity. Lack of GH results in slower growth, delayed maturation, and reduced body size and can lead to delayed aging, increased healthspan, and a remarkable extension of longevity. Adult body size, which is a GH-dependent trait, has a negative association with longevity in several mammalian species. Mechanistic links between GH and aging include evolutionarily conserved insulin/insulin-like growth factors and mechanistic target of rapamycin signaling pathways in accordance with long-suspected trade-offs between anabolic/growth processes and longevity. Height and the rate and regulation of GH secretion have been related to human aging, but longevity is not extended in humans with syndromes of GH deficiency or resistance. However, the risk of age-related chronic disease is reduced in individuals affected by these syndromes and various indices of increased healthspan have been reported.
Collapse
Affiliation(s)
- Andrzej Bartke
- Southern Illinois University School of Medicine, 801 N. Rutledge, P.O. Box 19628, Springfield, IL, 62794-9628, USA.
| |
Collapse
|
21
|
Abstract
DNA damage response (DDR) and DNA repair pathways determine neoplastic cell transformation and therapeutic responses, as well as the aging process. Altered DDR functioning results in accumulation of unrepaired DNA damage, increased frequency of tumorigenic mutations, and premature aging. Recent evidence suggests that polypeptide hormones play a role in modulating DDR and DNA damage repair, while DNA damage accumulation may also affect hormonal status. We review the available reports elucidating involvement of insulin-like growth factor 1 (IGF1), growth hormone (GH), α-melanocyte stimulating hormone (αMSH), and gonadotropin-releasing hormone (GnRH)/gonadotropins in DDR and DNA repair as well as the current understanding of pathways enabling these actions. We discuss effects of DNA damage pathway mutations, including Fanconi anemia, on endocrine function and consider mechanisms underlying these phenotypes. (Endocrine Reviews 41: 1 - 19, 2020).
Collapse
Affiliation(s)
- Vera Chesnokova
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Shlomo Melmed
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
22
|
Cawthon RM, Meeks HD, Sasani TA, Smith KR, Kerber RA, O'Brien E, Baird L, Dixon MM, Peiffer AP, Leppert MF, Quinlan AR, Jorde LB. Germline mutation rates in young adults predict longevity and reproductive lifespan. Sci Rep 2020; 10:10001. [PMID: 32561805 PMCID: PMC7305191 DOI: 10.1038/s41598-020-66867-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/28/2020] [Indexed: 12/22/2022] Open
Abstract
Ageing may be due to mutation accumulation across the lifespan, leading to tissue dysfunction, disease, and death. We tested whether germline autosomal mutation rates in young adults predict their remaining survival, and, for women, their reproductive lifespans. Age-adjusted mutation rates (AAMRs) in 61 women and 61 men from the Utah CEPH (Centre d’Etude du Polymorphisme Humain) families were determined. Age at death, cause of death, all-site cancer incidence, and reproductive histories were provided by the Utah Population Database, Utah Cancer Registry, and Utah Genetic Reference Project. Higher AAMRs were significantly associated with higher all-cause mortality in both sexes combined. Subjects in the top quartile of AAMRs experienced more than twice the mortality of bottom quartile subjects (hazard ratio [HR], 2.07; 95% confidence interval [CI], 1.21–3.56; p = 0.008; median survival difference = 4.7 years). Fertility analyses were restricted to women whose age at last birth (ALB) was ≥ 30 years, the age when fertility begins to decline. Women with higher AAMRs had significantly fewer live births and a younger ALB. Adult germline mutation accumulation rates are established in adolescence, and later menarche in women is associated with delayed mutation accumulation. We conclude that germline mutation rates in healthy young adults may provide a measure of both reproductive and systemic ageing. Puberty may induce the establishment of adult mutation accumulation rates, just when DNA repair systems begin their lifelong decline.
Collapse
Affiliation(s)
- Richard M Cawthon
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States.
| | - Huong D Meeks
- Population Science, Huntsman Cancer Institute, University of Utah Health, Salt Lake City, UT, United States
| | - Thomas A Sasani
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States
| | - Ken R Smith
- Population Science, Huntsman Cancer Institute, University of Utah Health, Salt Lake City, UT, United States
| | - Richard A Kerber
- Department of Health Management & Systems Sciences, University of Louisville, Louisville, KY, United States
| | - Elizabeth O'Brien
- Department of Health Management & Systems Sciences, University of Louisville, Louisville, KY, United States
| | - Lisa Baird
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States
| | - Melissa M Dixon
- Department of Pediatrics, University of Utah, Salt Lake City, UT, United States
| | - Andreas P Peiffer
- Department of Pediatrics, University of Utah, Salt Lake City, UT, United States
| | - Mark F Leppert
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States
| | - Aaron R Quinlan
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States.,Department of Biomedical Informatics, University of Utah, Salt Lake City, UT, United States.,USTAR Center for Genetic Discovery, University of Utah, Salt Lake City, UT, United States
| | - Lynn B Jorde
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States.,USTAR Center for Genetic Discovery, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
23
|
Primordial follicle reserve, DNA damage and macrophage infiltration in the ovaries of the long-living Ames dwarf mice. Exp Gerontol 2020; 132:110851. [PMID: 31987917 DOI: 10.1016/j.exger.2020.110851] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 01/07/2023]
Abstract
The aim of this study was to evaluate the effect of growth hormone (GH) deficiency in primordial follicle reserve, DNA damage and macrophage infiltration in the ovaries of young mice. Ovaries from six-month-old GH-deficient Ames Dwarf (df/df) and Normal (N/df) mice were used. The number of primordial follicles was higher in df/df mice (p = 0.0026). Also, df/df mice had a lower number of primary (p = 0.023), secondary (p = 0.0052) and tertiary (p = 0.019) follicles. These findings indicate a slower rate of primordial follicle activation in df/df mice. Female df/df mice had decreased γH2AX foci intensity in oocytes of primordial (p = 0.015) and primary (p = 0.0004) follicles compared to N/df mice. Also, df/df mice had reduced γH2AX intensity in granulosa cells of primordial (p = 0.0002) and primary (p < 0.0001) follicles. Overall, this indicate to us that df/df mice accumulate less DNA damage in the ovarian reserve compared to N/df mice. Additionally, macrophage infiltration was also reduced in ovaries of df/df mice compared to N/df mice (p = 0.033). Interestingly, df/df mice had a reduced number of granulosa cells around primordial (p = 0.0024) and primary (p = 0.007) follicles compared to N/df mice. Also, df/df mice had a small diameter of primordial follicle nuclei (p = 0.0093), secondary follicle oocyte (p = 0.046) and tertiary follicle (p = 0.012). This points to the role of granulosa cell proliferation and oocyte growth for primordial follicle activation. The current study points to the role of the GH/IGF-I axis in extending lifespan of reproductive health, along with maintenance of oocyte DNA integrity and reduced ovarian inflammation.
Collapse
|
24
|
Cañadas-Lozano D, Marín-Aguilar F, Castejón-Vega B, Ryffel B, Navarro-Pando JM, Ruiz-Cabello J, Alcocer-Gómez E, Bullón P, Cordero MD. Blockade of the NLRP3 inflammasome improves metabolic health and lifespan in obese mice. GeroScience 2020; 42:715-725. [PMID: 31975052 DOI: 10.1007/s11357-019-00151-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/27/2019] [Indexed: 12/14/2022] Open
Abstract
Aging is the major risk factor for many metabolic chronic diseases. Several metabolic pathways suffer a progressive impairment during aging including body composition and insulin resistance which are associated to autophagy dysfunction and increased inflammation. Many of these alterations are aggravated by non-healthy lifestyle such as obesity and hypercaloric diet which have been shown to accelerate aging. Here, we show that the deleterious effect of hypercaloric diets is reverted by the NLRP3 inflammasome inhibition. NLRP3 deficiency extends mean lifespan of adult mice fed a high-fat diet. This lifespan extension is accompanied by metabolic health benefits including reduced liver steatosis and cardiac damage, improved glucose and lipid metabolism, and improved protein expression profiles of SIRT-1, mTOR, autophagic flux, and apoptosis. These findings suggest that the suppression of NLRP3 prevented many age-associated changes in metabolism impaired by the effect of hypercaloric diets.
Collapse
Affiliation(s)
- Diego Cañadas-Lozano
- Research Laboratory, Oral Medicine Department, University of Sevilla, Seville, Spain
| | - Fabiola Marín-Aguilar
- Research Laboratory, Oral Medicine Department, University of Sevilla, Seville, Spain
| | - Beatriz Castejón-Vega
- Research Laboratory, Oral Medicine Department, University of Sevilla, Seville, Spain
| | - Bernhard Ryffel
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355 CNRS-University of Orleans, Orléans, France.,IDM, University of Cape Town, Cape Town, South Africa
| | - José M Navarro-Pando
- Cátedra de Reproducción y Genética Humana del Instituto para el Estudio de la Biología de la Reproducción Humana (INEBIR), Universidad Europea del Atlántico (UNEATLANTICO)-Fundación Universitaria Iberoamericana (FUNIBER), Santander, Spain
| | - Jesús Ruiz-Cabello
- CIC biomaGUNE, San Sebastian-Donostia, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.,CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Universidad Complutense Madrid, Madrid, Spain
| | - Elísabet Alcocer-Gómez
- Departamento de Psicología Experimental, Facultad de Psicología, Universidad de Sevilla, Seville, Spain
| | - Pedro Bullón
- Research Laboratory, Oral Medicine Department, University of Sevilla, Seville, Spain
| | - Mario D Cordero
- Cátedra de Reproducción y Genética Humana del Instituto para el Estudio de la Biología de la Reproducción Humana (INEBIR), Universidad Europea del Atlántico (UNEATLANTICO)-Fundación Universitaria Iberoamericana (FUNIBER), Santander, Spain. .,Newcastle Institute for Ageing and Institute for Cell an Molecular Biology, Campus for Ageing and Health, Newcastle University, Newcastle University, NE4 5PL, Newcastle upon Tyne, UK.
| |
Collapse
|
25
|
Norling AM, Gerstenecker AT, Buford TW, Khan B, Oparil S, Lazar RM. The role of exercise in the reversal of IGF-1 deficiencies in microvascular rarefaction and hypertension. GeroScience 2019; 42:141-158. [PMID: 31808026 DOI: 10.1007/s11357-019-00139-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 11/19/2019] [Indexed: 12/18/2022] Open
Abstract
Hypertension has been linked with peripheral and central reductions in vascular density, and with devastating effects on brain function. However, the underlying mechanisms in the relationship between blood pressure and cognitive impairment have yet to be fully elucidated. Here, we review compelling evidence from two lines of inquiry: one that links microvascular rarefaction with insulin-like growth factor 1 (IGF-1) deficiencies, and another which posits that vascular dysfunction precedes hypertension. Based on the findings from experimental and clinical studies, we propose that these lines of evidence converge, and suggest that age-related declines in IGF-1 concentrations precede microvascular rarefaction, initiate an increase in vascular resistance, and therefore are causally linked to onset of hypertension. Physical exercise provides a relevant model for supporting our premise, given the well-established effects of exercise in attenuating vascular dysfunction, hypertension, IGF-1 deficiency, and cognitive decline. We highlight here the role of exercise-induced increases in blood flow in improving vascular integrity and enhancing angiogenesis via the actions of IGF-1, resulting in reversal of rarefaction and hypertension, and enhancement of cerebral blood flow and cognition.
Collapse
Affiliation(s)
- Amani M Norling
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,The UAB Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Alabama, AL, 35294, USA
| | - Adam T Gerstenecker
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,The UAB Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Alabama, AL, 35294, USA
| | - Thomas W Buford
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Bilal Khan
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Suzanne Oparil
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Ronald M Lazar
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA. .,The UAB Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Alabama, AL, 35294, USA.
| |
Collapse
|
26
|
Colon G, Saccon T, Schneider A, Cavalcante MB, Huffman DM, Berryman D, List E, Ikeno Y, Musi N, Bartke A, Kopchick J, Kirkland JL, Tchkonia T, Masternak MM. The enigmatic role of growth hormone in age-related diseases, cognition, and longevity. GeroScience 2019; 41:759-774. [PMID: 31485887 PMCID: PMC6925094 DOI: 10.1007/s11357-019-00096-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/22/2019] [Indexed: 12/12/2022] Open
Abstract
Growth hormone (GH) is secreted by the anterior pituitary gland and regulates various metabolic processes throughout the body. GH and IGF-1 levels are markedly reduced in older humans, leading some to hypothesize GH supplementation could be a viable "anti-aging" therapy. However, there is still much debate over the benefits and risks of GH administration. While an early study of GH administration reported reduced adiposity and lipid levels and increased bone mineral density, subsequent studies failed to show significant benefits. Conversely, other studies found positive effects of GH deficiency including extended life span, improved cognitive function, resistance to diseases such as cancer and diabetes, and improved insulin sensitivity despite a higher fat percentage. Thus, the roles of GH in aging and cognition remain unclear, and there is currently not enough evidence to support use of GH as an anti-aging or cognitive impairment therapy. Additional robust and longer-duration studies of efficacy and safety of GH administration are needed to determine if modulating GH levels could be a successful strategy for treating aging and age-related diseases.
Collapse
Affiliation(s)
- Gabriela Colon
- College of Medicine, Florida State University, Tallahassee, FL, 32304, USA
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL, 32827, USA
| | - Tatiana Saccon
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL, 32827, USA
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Marcelo B Cavalcante
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL, 32827, USA
- Faculdade de Medicina, Universidade de Fortaleza, Fortaleza, CE, Brazil
| | - Derek M Huffman
- Departments of Molecular Pharmacology, Medicine, and the Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Darlene Berryman
- Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Ed List
- Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| | - Yuji Ikeno
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Pathology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Geriatric Research Education and Clinical Center (GRECC), Audie L. Murphy VA Hospital, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
| | - Nicolas Musi
- Barshop Institute for Longevity and Aging Studies, San Antonio Geriatric, Research, Education and Clinical Center, San Antonio, TX, 78229, USA
| | - Andrzej Bartke
- Departments of Internal Medicine and Physiology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - John Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - Michal M Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL, 32827, USA.
| |
Collapse
|
27
|
Kiss T, Balasubramanian P, Valcarcel-Ares MN, Tarantini S, Yabluchanskiy A, Csipo T, Lipecz A, Reglodi D, Zhang XA, Bari F, Farkas E, Csiszar A, Ungvari Z. Nicotinamide mononucleotide (NMN) treatment attenuates oxidative stress and rescues angiogenic capacity in aged cerebromicrovascular endothelial cells: a potential mechanism for the prevention of vascular cognitive impairment. GeroScience 2019; 41:619-630. [PMID: 31144244 PMCID: PMC6885080 DOI: 10.1007/s11357-019-00074-2] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 05/11/2019] [Accepted: 05/16/2019] [Indexed: 10/26/2022] Open
Abstract
Age-related impairment of angiogenesis likely has a critical role in cerebromicrovascular rarefaction and development of vascular cognitive impairment and dementia (VCID) in the elderly. Recently, we demonstrated that aging is associated with NAD+ depletion in the vasculature and that administration of NAD+ precursors exerts potent anti-aging vascular effects, rescuing endothelium-mediated vasodilation in the cerebral circulation and improving cerebral blood supply. The present study was designed to elucidate how treatment with nicotinamide mononucleotide (NMN), a key NAD+ intermediate, impacts age-related impairment of endothelial angiogenic processes. Using cerebromicrovascular endothelial cells (CMVECs) isolated from young and aged F344xBN rats, we demonstrated that compared with young cells, aged CMVECs exhibit impaired proliferation, cellular migration (measured by a wound-healing assay using electric cell-substrate impedance sensing [ECIS] technology), impaired ability to form capillary-like structures, and increased oxidative stress. NMN treatment in aged CMVECs significantly improved angiogenic processes and attenuated H2O2 production. We also found that pre-treatment with EX-527, a pharmacological inhibitor of SIRT1, prevented NMN-mediated restoration of angiogenic processes in aged CMVECs. Collectively, we find that normal cellular NAD+ levels are essential for normal endothelial angiogenic processes, suggesting that age-related cellular NAD+ depletion and consequential SIRT1 dysregulation may be a potentially reversible mechanism underlying impaired angiogenesis and cerebromicrovascular rarefaction in aging. We recommend that pro-angiogenic effects of NAD+ boosters should be considered in both preclinical and clinical studies.
Collapse
Affiliation(s)
- Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK 73104 USA
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
- Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK 73104 USA
| | - Marta Noa Valcarcel-Ares
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK 73104 USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK 73104 USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK 73104 USA
| | - Tamas Csipo
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK 73104 USA
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Agnes Lipecz
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK 73104 USA
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Dora Reglodi
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs Medical School, Pecs, Hungary
| | - Xin A. Zhang
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Ferenc Bari
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
- Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Eszter Farkas
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
- Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK 73104 USA
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
- Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK 73104 USA
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
- Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
- Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, the Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| |
Collapse
|
28
|
Csiszar A, Yabluchanskiy A, Ungvari A, Ungvari Z, Tarantini S. Overexpression of catalase targeted to mitochondria improves neurovascular coupling responses in aged mice. GeroScience 2019; 41:609-617. [PMID: 31643012 PMCID: PMC6885076 DOI: 10.1007/s11357-019-00111-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 09/20/2019] [Indexed: 12/22/2022] Open
Abstract
Moment-to-moment adjustment of cerebral blood flow (CBF) to neuronal activity via the homeostatic mechanism known as neurovascular coupling (NVC) has an essential role in maintenance of normal brain function. In advanced age cerebromicrovascular endothelial dysfunction impairs NVC responses, which contribute to age-related cognitive decline. Recently, we have shown that pharmacological treatments that attenuate mitochondrial production of reactive oxygen species (ROS) provide significant neurovascular protection, improving NVC responses in aged mice. Transgenic mice that overexpress human catalase localized to the mitochondria (mCAT) are protected from age-related mitochondrial oxidative stress and exhibit a longevity phenotype associated with resistance to several age-related pathologies. The present study was designed to test the hypothesis that mitochondria-targeted overexpression of catalase also confers protection against age-related impairment of NVC responses. To achieve this goal, NVC responses were assessed in aged (24 months old) mCAT mice and compared with those in age-matched wild-type mice and young control mice by measuring CBF responses (laser speckle contrast imaging) evoked by contralateral whisker stimulation. We found that mitochondrial overexpression of catalase resulted in improved NVC in aged mice due to preserved NO-mediated (L-NAME inhibitable) component of the response. Thus, our present and previous findings demonstrate that interventions that boost mitochondrial antioxidative defenses confer significant cerebromicrovascular protective effects, which preserve NVC responses in aged mice. Our findings provide additional proof-of-concept for the potential use of mitochondria-targeted antioxidants as therapy for prevention of vascular cognitive impairment associated with aging.
Collapse
Affiliation(s)
- Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Anna Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA.
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
29
|
Tarantini S, Yabluchanskiy A, Csipo T, Fulop G, Kiss T, Balasubramanian P, DelFavero J, Ahire C, Ungvari A, Nyúl-Tóth Á, Farkas E, Benyo Z, Tóth A, Csiszar A, Ungvari Z. Treatment with the poly(ADP-ribose) polymerase inhibitor PJ-34 improves cerebromicrovascular endothelial function, neurovascular coupling responses and cognitive performance in aged mice, supporting the NAD+ depletion hypothesis of neurovascular aging. GeroScience 2019; 41:533-542. [PMID: 31679124 PMCID: PMC6885075 DOI: 10.1007/s11357-019-00101-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 09/10/2019] [Indexed: 01/12/2023] Open
Abstract
Adjustment of cerebral blood flow (CBF) to neuronal activity via neurovascular coupling (NVC) plays an important role in the maintenance of healthy cognitive function. Strong evidence demonstrates that age-related cerebromicrovascular endothelial dysfunction and consequential impairment of NVC responses contribute importantly to cognitive decline. Recent studies demonstrate that NAD+ availability decreases with age in the vasculature and that supplemental NAD+ precursors can ameliorate cerebrovascular dysfunction, rescuing NVC responses and improving cognitive performance in aged mice. The mechanisms underlying the age-related decline in [NAD+] in cells of the neurovascular unit are likely multifaceted and may include increased utilization of NAD+ by activated poly (ADP-ribose) polymerase (PARP-1). The present study was designed to test the hypothesis that inhibition of PARP-1 activity may confer protective effects on neurovascular function in aging, similar to the recently demonstrated protective effects of treatment with the NAD+ precursor nicotinamide mononucleotide (NMN). To test this hypothesis, 24-month-old C57BL/6 mice were treated with PJ-34, a potent PARP inhibitor, for 2 weeks. NVC was assessed by measuring CBF responses (laser speckle contrast imaging) in the somatosensory whisker barrel cortex evoked by contralateral whisker stimulation. We found that NVC responses were significantly impaired in aged mice. Treatment with PJ-34 improved NVC responses by increasing endothelial NO-mediated vasodilation, which was associated with significantly improved spatial working memory. PJ-34 treatment also improved endothelium-dependent acetylcholine-induced relaxation of aorta rings. Thus, PARP-1 activation, likely by decreasing NAD+ availability, contributes to age-related endothelial dysfunction and neurovascular uncoupling, exacerbating cognitive decline. The cerebromicrovascular protective effects of pharmacological inhibition of PARP-1 highlight the preventive and therapeutic potential of treatments that restore NAD+ homeostasis as effective interventions in patients at risk for vascular cognitive impairment (VCI).
Collapse
Affiliation(s)
- Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Department of Public Health/Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Tamas Csipo
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Department of Public Health/Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Division of Clinical Physiology, Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Gabor Fulop
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Division of Clinical Physiology, Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Department of Medical Physics and Informatics/Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Jordan DelFavero
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Chetan Ahire
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Anna Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Eszter Farkas
- International Training Program in Geroscience, Department of Medical Physics and Informatics/Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Zoltan Benyo
- Institute of Clinical Experimental Research/Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Attila Tóth
- International Training Program in Geroscience, Division of Clinical Physiology, Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Institute of Clinical Experimental Research/Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA.
- International Training Program in Geroscience, Department of Public Health/Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest, Hungary.
- International Training Program in Geroscience, Department of Medical Physics and Informatics/Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary.
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
30
|
Chucair-Elliott AJ, Ocanas SR, Stanford DR, Hadad N, Wronowski B, Otalora L, Stout MB, Freeman WM. Tamoxifen induction of Cre recombinase does not cause long-lasting or sexually divergent responses in the CNS epigenome or transcriptome: implications for the design of aging studies. GeroScience 2019; 41:691-708. [PMID: 31493147 PMCID: PMC6885072 DOI: 10.1007/s11357-019-00090-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/01/2019] [Indexed: 12/27/2022] Open
Abstract
The systemic delivery of tamoxifen (Tam) to activate inducible CreERT2-loxP transgenic mouse systems is now widely used in neuroscience studies. This critical technological advancement allows temporal control of DNA-cre recombination, avoidance of embryonically lethal phenotypes, and minimization of residual cell labeling encountered in constitutively active drivers. Despite its advantages, the use of Tam has the potential to cause long-lasting, uncharacterized side effects on the transcriptome and epigenome in the CNS, given its mixed estrogen receptor (ER) agonist/antagonist actions. With the welcome focus on including both sexes in biomedical studies and efforts to understand sex differences, Tam administration could also cause sexually divergent responses that would confound studies. To examine these issues, epigenetic and transcriptomic profiles were compared in C57BL/6 J female and male hippocampus, cortex, and retina 1 month after a 5-day Tam treatment typical for cre induction, or vehicle control (sunflower seed oil). Cytosine methylation and hydroxymethylation levels, in both CG and non-CG contexts, were unchanged as determined by oxidative bisulfite sequencing. Long-lasting Tam transcriptomic effects were also not evident/minimal. Furthermore, there is no evidence of sexually divergent responses with Tam administration and Tam did not alter sex differences evident in controls. Combined with recently reported data that Tam alone does not cause long-lasting changes in behavior and neurogenesis, our findings provide confidence that Tam can be used as a cre-recombinase inducer without introducing significant confounds in transcriptomic and epigenomic neuroscience studies, particularly those focused on genomic and transcriptomic aspects of the aging brain.
Collapse
Affiliation(s)
- Ana J Chucair-Elliott
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
| | - Sarah R Ocanas
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
| | - David R Stanford
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
| | - Niran Hadad
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Nathan Shock Center for Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Benjamin Wronowski
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Laura Otalora
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
| | - Michael B Stout
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Willard M Freeman
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Physiology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK, 73104, USA.
- Oklahoma Nathan Shock Center for Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
31
|
Ungvari Z, Tarantini S, Yabluchanskiy A, Csiszar A. Potential Adverse Cardiovascular Effects of Treatment With Fluoxetine and Other Selective Serotonin Reuptake Inhibitors (SSRIs) in Patients With Geriatric Depression: Implications for Atherogenesis and Cerebromicrovascular Dysregulation. Front Genet 2019; 10:898. [PMID: 31616477 PMCID: PMC6764114 DOI: 10.3389/fgene.2019.00898] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 08/23/2019] [Indexed: 12/12/2022] Open
Abstract
Late life depression is an important public health problem, which associates with increased risk of morbidity and mortality. Selective serotonin reuptake inhibitors (SSRIs), including fluoxetine, are often prescribed to treat geriatric depression. There is increasing evidence that fluoxetine and other SSRIs exert a wide range of cardiovascular side effects. Furthermore, there is evidence that aging may increase plasma level of SSRIs. In this overview, the potential role of side effects of treatment with fluoxetine and other SSRIs in the pathogenesis of age-related cardiovascular diseases, including atherogenesis, cardiac pathologies, and cerebromicrovascular impairment, is discussed.
Collapse
Affiliation(s)
- Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Medical Physics and Informatics, Faculty of Medicine and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Stefano Tarantini
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Medical Physics and Informatics, Faculty of Medicine and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Anna Csiszar
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Medical Physics and Informatics, Faculty of Medicine and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| |
Collapse
|
32
|
Basu R, Kopchick JJ. The effects of growth hormone on therapy resistance in cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:827-846. [PMID: 32382711 PMCID: PMC7204541 DOI: 10.20517/cdr.2019.27] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pituitary derived and peripherally produced growth hormone (GH) is a crucial mediator of longitudinal growth, organ development, metabolic regulation with tissue specific, sex specific, and age-dependent effects. GH and its cognate receptor (GHR) are expressed in several forms of cancer and have been validated as an anti-cancer target through a large body of in vitro, in vivo and epidemiological analyses. However, the underlying molecular mechanisms of GH action in cancer prognosis and therapeutic response had been sparse until recently. This review assimilates the critical details of GH-GHR mediated therapy resistance across different cancer types, distilling the therapeutic implications based on our current understanding of these effects.
Collapse
Affiliation(s)
- Reetobrata Basu
- Ohio University Heritage College of Osteopathic Medicine (OU-HCOM), Ohio University, Athens, OH 45701, USA.,Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| | - John J Kopchick
- Ohio University Heritage College of Osteopathic Medicine (OU-HCOM), Ohio University, Athens, OH 45701, USA.,Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
33
|
Csiszar A, Tarantini S, Yabluchanskiy A, Balasubramanian P, Kiss T, Farkas E, Baur JA, Ungvari Z. Role of endothelial NAD + deficiency in age-related vascular dysfunction. Am J Physiol Heart Circ Physiol 2019; 316:H1253-H1266. [PMID: 30875255 PMCID: PMC6620681 DOI: 10.1152/ajpheart.00039.2019] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/26/2019] [Accepted: 03/12/2019] [Indexed: 12/23/2022]
Abstract
Age-related alterations in endothelium and the resulting vascular dysfunction critically contribute to a range of pathological conditions associated with old age. To develop therapies rationally that improve vascular health and thereby increase health span and life span in older adults, it will be essential to understand the cellular and molecular mechanisms contributing to vascular aging. Preclinical studies in model organisms demonstrate that NAD+ availability decreases with age in multiple tissues and that supplemental NAD+ precursors can ameliorate many age-related cellular impairments. Here, we provide a comprehensive overview of NAD+-dependent pathways [including the NAD+-using silent information regulator-2-like enzymes and poly(ADP-ribose) polymerase enzymes] and the potential consequences of endothelial NAD+ deficiency in vascular aging. The multifaceted vasoprotective effects of treatments that reverse the age-related decline in cellular NAD+ levels, as well as their potential limitations, are discussed. The preventive and therapeutic potential of NAD+ intermediates as effective, clinically relevant interventions in older adults at risk for ischemic heart disease, vascular cognitive impairment, and other common geriatric conditions and diseases that involve vascular pathologies (e.g., sarcopenia, frailty) are critically discussed. We propose that NAD+ precursors [e.g., nicotinamide (Nam) riboside, Nam mononucleotide, niacin] should be considered as critical components of combination therapies to slow the vascular aging process and increase cardiovascular health span.
Collapse
Affiliation(s)
- Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Department of Medical Physics and Informatics, University of Szeged , Szeged , Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Department of Medical Physics and Informatics, University of Szeged , Szeged , Hungary
- Theoretical Medicine Doctoral School, University of Szeged , Szeged , Hungary
| | - Eszter Farkas
- Department of Medical Physics and Informatics, University of Szeged , Szeged , Hungary
| | - Joseph A Baur
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Department of Medical Physics and Informatics, University of Szeged , Szeged , Hungary
- Theoretical Medicine Doctoral School, University of Szeged , Szeged , Hungary
- Department of Pulmonology, Semmelweis University , Budapest , Hungary
- Department of Health Promotion Sciences, Hudson College of Public Health, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| |
Collapse
|
34
|
Fulop GA, Tarantini S, Yabluchanskiy A, Molnar A, Prodan CI, Kiss T, Csipo T, Lipecz A, Balasubramanian P, Farkas E, Toth P, Sorond F, Csiszar A, Ungvari Z. Role of age-related alterations of the cerebral venous circulation in the pathogenesis of vascular cognitive impairment. Am J Physiol Heart Circ Physiol 2019; 316:H1124-H1140. [PMID: 30848677 PMCID: PMC6580383 DOI: 10.1152/ajpheart.00776.2018] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/31/2019] [Accepted: 02/18/2019] [Indexed: 02/07/2023]
Abstract
There has been an increasing appreciation of the role of vascular contributions to cognitive impairment and dementia (VCID) associated with old age. Strong preclinical and translational evidence links age-related dysfunction and structural alterations of the cerebral arteries, arterioles, and capillaries to the pathogenesis of many types of dementia in the elderly, including Alzheimer's disease. The low-pressure, low-velocity, and large-volume venous circulation of the brain also plays critical roles in the maintenance of homeostasis in the central nervous system. Despite its physiological importance, the role of age-related alterations of the brain venous circulation in the pathogenesis of vascular cognitive impairment and dementia is much less understood. This overview discusses the role of cerebral veins in the pathogenesis of VCID. Pathophysiological consequences of age-related dysregulation of the cerebral venous circulation are explored, including blood-brain barrier disruption, neuroinflammation, exacerbation of neurodegeneration, development of cerebral microhemorrhages of venous origin, altered production of cerebrospinal fluid, impaired function of the glymphatics system, dysregulation of cerebral blood flow, and ischemic neuronal dysfunction and damage. Understanding the age-related functional and phenotypic alterations of the cerebral venous circulation is critical for developing new preventive, diagnostic, and therapeutic approaches to preserve brain health in older individuals.
Collapse
Affiliation(s)
- Gabor A Fulop
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Heart and Vascular Center, Semmelweis University , Budapest , Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Andrea Molnar
- Heart and Vascular Center, Semmelweis University , Budapest , Hungary
| | - Calin I Prodan
- Veterans Affairs Medical Center , Oklahoma City, Oklahoma
- Department of Neurology, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Vascular Cognitive Impairment Program, Department of Medical Physics and Informatics, University of Szeged , Szeged , Hungary
| | - Tamas Csipo
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Agnes Lipecz
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Eszter Farkas
- Vascular Cognitive Impairment Program, Department of Medical Physics and Informatics, University of Szeged , Szeged , Hungary
| | - Peter Toth
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Cerebrovascular Laboratory, Department of Neurosurgery and Szentagothai Research Center, University of Pecs Medical School , Pecs , Hungary
| | - Farzaneh Sorond
- Department of Neurology, Northwestern University , Chicago, Illinois
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Vascular Cognitive Impairment Program, Department of Medical Physics and Informatics, University of Szeged , Szeged , Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Vascular Cognitive Impairment Program, Department of Medical Physics and Informatics, University of Szeged , Szeged , Hungary
- Semmelweis University, Department of Pulmonology , Budapest , Hungary
| |
Collapse
|
35
|
Csiszar A, Balasubramanian P, Tarantini S, Yabluchanskiy A, Zhang XA, Springo Z, Benbrook D, Sonntag WE, Ungvari Z. Chemically induced carcinogenesis in rodent models of aging: assessing organismal resilience to genotoxic stressors in geroscience research. GeroScience 2019; 41:209-227. [PMID: 31037472 DOI: 10.1007/s11357-019-00064-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/04/2019] [Indexed: 02/07/2023] Open
Abstract
There is significant overlap between the cellular and molecular mechanisms of aging and pathways contributing to carcinogenesis, including the role of genome maintenance pathways. In the field of geroscience analysis of novel genetic mouse models with either a shortened, or an extended, lifespan provides a unique opportunity to evaluate the synergistic roles of longevity assurance pathways in cancer resistance and regulation of lifespan and to develop novel targets for interventions that both delay aging and prevent carcinogenesis. There is a growing need for robust assays to assess the susceptibility of cancer in these models. The present review focuses on a well-characterized method frequently used in cancer research, which can be adapted to study resilience to genotoxic stress and susceptibility to genotoxic stress-induced carcinogenesis in geroscience research namely, chemical carcinogenesis induced by treatment with 7,12-dimethylbenz(a)anthracene (DMBA). Recent progress in understanding how longer-living mice may achieve resistance to chemical carcinogenesis and how these pathways are modulated by anti-aging interventions is reviewed. Strain-specific differences in sensitivity to DMBA-induced carcinogenesis are also explored and contrasted with mouse lifespan. The clinical relevance of inhibition of DMBA-induced carcinogenesis for the pathogenesis of mammary adenocarcinomas in older human subjects is discussed. Finally, the potential role of insulin-like growth factor-1 (IGF-1) in the regulation of pathways responsible for cellular resilience to DMBA-induced mutagenesis is discussed.
Collapse
Affiliation(s)
- Anna Csiszar
- Department of Geriatric Medicine Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA.,Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Priya Balasubramanian
- Department of Geriatric Medicine Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Stefano Tarantini
- Department of Geriatric Medicine Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Andriy Yabluchanskiy
- Department of Geriatric Medicine Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA.,Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Xin A Zhang
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zsolt Springo
- Department of Geriatric Medicine Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA.,Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Doris Benbrook
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - William E Sonntag
- Department of Geriatric Medicine Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA.,Department of Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zoltan Ungvari
- Department of Geriatric Medicine Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA. .,Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA. .,Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary. .,Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary. .,Department of Public Health, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
36
|
Aguiar-Oliveira MH, Bartke A. Growth Hormone Deficiency: Health and Longevity. Endocr Rev 2019; 40:575-601. [PMID: 30576428 PMCID: PMC6416709 DOI: 10.1210/er.2018-00216] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 12/07/2018] [Indexed: 12/13/2022]
Abstract
The important role of GH in the control of mammalian longevity was first deduced from extended longevity of mice with genetic GH deficiency (GHD) or GH resistance. Mice with isolated GHD (IGHD) due to GHRH or GHRH receptor mutations, combined deficiency of GH, prolactin, and TSH, or global deletion of GH receptors live longer than do their normal siblings. They also exhibit multiple features of delayed and/or slower aging, accompanied by extension of healthspan. The unexpected, remarkable longevity benefit of severe endocrine defects in these animals presumably represents evolutionarily conserved trade-offs among aging, growth, maturation, fecundity, and the underlying anabolic processes. Importantly, the negative association of GH signaling with longevity extends to other mammalian species, apparently including humans. Data obtained in humans with IGHD type 1B, owing to a mutation of the GHRH receptor gene, in the Itabaianinha County, Brazil, provide a unique opportunity to study the impact of severe reduction in GH signaling on age-related characteristics, health, and functionality. Individuals with IGHD are characterized by proportional short stature, doll facies, high-pitched voices, and central obesity. They have delayed puberty but are fertile and generally healthy. Moreover, these IGHD individuals are partially protected from cancer and some of the common effects of aging and can attain extreme longevity, 103 years of age in one case. We think that low, but detectable, residual GH secretion combined with life-long reduction of circulating IGF-1 and with some tissue levels of IGF-1 and/or IGF-2 preserved may account for the normal longevity and apparent extension of healthspan in these individuals.
Collapse
Affiliation(s)
| | - Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, Illinois
| |
Collapse
|
37
|
Boguszewski CL, Boguszewski MCDS. Growth Hormone's Links to Cancer. Endocr Rev 2019; 40:558-574. [PMID: 30500870 DOI: 10.1210/er.2018-00166] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/23/2018] [Indexed: 12/13/2022]
Abstract
Several components of the GH axis are involved in tumor progression, and GH-induced intracellular signaling has been strongly associated with breast cancer susceptibility in genome-wide association studies. In the general population, high IGF-I levels and low IGF-binding protein-3 levels within the normal range are associated with the development of common malignancies, and components of the GH-IGF signaling system exhibit correlations with clinical, histopathological, and therapeutic parameters in cancer patients. Despite promising findings in preclinical studies, anticancer therapies targeting the GH-IGF signaling system have led to disappointing results in clinical trials. There is substantial evidence for some degree of protection against tumor development in several animal models and in patients with genetic defects associated with GH deficiency or resistance. In contrast, the link between GH excess and cancer risk in acromegaly patients is much less clear, and cancer screening in acromegaly has been a highly controversial issue. Recent studies have shown that increased life expectancy in acromegaly patients who attain normal GH and IGF-I levels is associated with more deaths due to age-related cancers. Replacement GH therapy in GH deficiency hypopituitary adults and short children has been shown to be safe when no other risk factors for malignancy are present. Nevertheless, the use of GH in cancer survivors and in short children with RASopathies, chromosomal breakage syndromes, or DNA-repair disorders should be carefully evaluated owing to an increased risk of recurrence, primary cancer, or second neoplasia in these individuals.
Collapse
Affiliation(s)
- Cesar Luiz Boguszewski
- Department of Internal Medicine, Endocrine Division (SEMPR), University Hospital, Federal University of Parana, Curitiba, Brazil
| | | |
Collapse
|
38
|
Running out of developmental program and selfish anti-aging: a new hypothesis explaining the aging process in primates. GeroScience 2019; 41:243-253. [PMID: 30915631 DOI: 10.1007/s11357-019-00060-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 03/08/2019] [Indexed: 01/05/2023] Open
Abstract
Of the three complementary theories of aging, two (mutation accumulation and antagonistic pleiotropy) were formulated over fifty years ago before the introduction of molecular biology, and the third (disposable soma) is over thirty years old. Despite rigorous research in the past fifty years, none have gained substantial experimental support. Here, I review these theories and introduce a new hypothesis called the selfish anti-aging (SAA). Aging happens because natural selection is indifferent to the organism's life beyond reproduction; however, many mammalian species acquired anti-aging genes, which are providing instructions following completion of developmental, ontogeny, program. Such instructor-genes might be responsible for the elongation of lifespans of primates as a byproduct of parental care program. According to the SAA hypothesis, the animal models used in aging research could be divided into three groups, based on the degree of perceived presence and action of instructor-genes in each group. This new hypothesis is grounded in evolutionary theory and describes the unique primate aging process.
Collapse
|
39
|
Habermehl TL, Parkinson KC, Hubbard GB, Ikeno Y, Engelmeyer JI, Schumacher B, Mason JB. Extension of longevity and reduction of inflammation is ovarian-dependent, but germ cell-independent in post-reproductive female mice. GeroScience 2019; 41:25-38. [PMID: 30547325 PMCID: PMC6423149 DOI: 10.1007/s11357-018-0049-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/26/2018] [Indexed: 12/27/2022] Open
Abstract
Cardiovascular disease, rare in premenopausal women, increases sharply at menopause and is typically accompanied by chronic inflammation. Previous work in our laboratory demonstrated that replacing senescent ovaries in post-reproductive mice with young, actively cycling ovaries restored many health benefits, including decreased cardiomyopathy and restoration of immune function. Our objective here was to determine if depletion of germ cells from young transplanted ovaries would alter the ovarian-dependent extension of life and health span. Sixty-day-old germ cell-depleted and germ cell-containing ovaries were transplanted to post-reproductive, 17-month-old mice. Mean life span for female CBA/J mice is approximately 644 days. Mice that received germ cell-containing ovaries lived 798 days (maximum = 815 days). Mice that received germ cell-depleted ovaries lived 880 days (maximum = 1046 days), 29% further past the time of surgery than mice that received germ cell-containing ovaries. The severity of inflammation was reduced in all mice that received young ovaries, whether germ cell-containing or germ cell-depleted. Aging-associated inflammatory cytokine changes were reversed in post-reproductive mice by 4 months of new-ovary exposure. In summary, germ cell depletion enhanced the longevity-extending effects of the young, transplanted ovaries and, as with germ cell-containing ovaries, decreased the severity of inflammation, but did so independent of germ cells. Based on these observations, we propose that gonadal somatic cells are programed to preserve the somatic health of the organism with the intent of facilitating future germline transmission. As reproductive potential decreases or is lost, the incentive to preserve the somatic health of the organism is lost as well.
Collapse
Affiliation(s)
- Tracy L Habermehl
- Department of Animal, Dairy and Veterinary Sciences, Center for Integrated BioSystems, School of Veterinary Medicine, Utah State University, 4700 Old Main Hill, Logan, UT, 84322, USA
| | - Kate C Parkinson
- Department of Animal, Dairy and Veterinary Sciences, Center for Integrated BioSystems, School of Veterinary Medicine, Utah State University, 4700 Old Main Hill, Logan, UT, 84322, USA
| | - Gene B Hubbard
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Pathology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Yuji Ikeno
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Pathology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Geriatric Research and Education Clinical Center, Audie L. Murphy VA Hospital, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
| | - Jennifer I Engelmeyer
- The Institute for Genome Stability in Ageing and Disease, Cologne Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases (CECAD) Research Center, University of Cologne, Joseph-Stelzmann-Straße 26, 50931, Köln, Germany
| | - Björn Schumacher
- The Institute for Genome Stability in Ageing and Disease, Cologne Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases (CECAD) Research Center, University of Cologne, Joseph-Stelzmann-Straße 26, 50931, Köln, Germany
| | - Jeffrey B Mason
- Department of Animal, Dairy and Veterinary Sciences, Center for Integrated BioSystems, School of Veterinary Medicine, Utah State University, 4700 Old Main Hill, Logan, UT, 84322, USA.
| |
Collapse
|
40
|
Zhao S, Wu L, Kuang Y, Su J, Luo Z, Wang Y, Li J, Zhang J, Chen W, Li F, He Y, Tao J, Zhou J, Xu X, Peng C, Chen X. Downregulation of CD147 induces malignant melanoma cell apoptosis via the regulation of IGFBP2 expression. Int J Oncol 2018; 53:2397-2408. [PMID: 30272281 PMCID: PMC6203154 DOI: 10.3892/ijo.2018.4579] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/07/2018] [Indexed: 12/18/2022] Open
Abstract
Cluster of differentiation (CD)147, as a transmembrane glycoprotein, is highly expressed in a variety of tumors. Accumulating evidence has demonstrated that CD147 serves critical roles in tumor cell death and survival; however, the underlying mechanism requires further investigation. In the present study, it was revealed that CD147 knockdown significantly increased melanoma cell apoptosis. In addition, downregulation of CD147 reversed the malignant phenotype of melanoma, as demonstrated by the induction of tumor cell apoptosis in a xenograft mouse model. In addition, a human apoptosis antibody array was performed and 9 differentially expressed apoptosis-related proteins associated with CD147 were identified, including insulin-like growth factor-binding protein 2 (IGFBP2). Additionally, CD147 knockdown was observed to significantly decreased IGFBP2 expression at the mRNA and protein levels in melanoma cells. Providing that IGFBP2 is a downstream molecule in the phosphatase and tensin homolog (PTEN)/phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway, the effects of CD147 on this particular pathway were investigated. Interestingly, the expression of phosphorylated (p)-AKT and p‑mechanistic target of rapamycin was attenuated, whereas PTEN was markedly upregulated in CD147-underexpressing melanoma cells. Furthermore, application of a PI3K‑specific inhibitor also decreased IGFBP2 expression. Importantly, IGFBP2 was highly expressed in clinical tissues of melanoma compared with the control group, and its expression exhibited a positive association with CD147. The present study revealed that CD147 served a critical role in mediating the apoptosis of melanoma cells via IGFBP2 and the PTEN/PI3K/AKT signaling pathway. IGFBP2 and CD147 were observed to be overexpressed in clinical melanoma tissues; IGFBP2 was shown to be positively associated with CD147 expression, suggesting that CD147 may be considered as a potential therapeutic target for chemotherapy or prevention for in melanoma.
Collapse
Affiliation(s)
- Shuang Zhao
- Department of Dermatology, Xiangya Hospital
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital
| | - Lisha Wu
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan 410008
| | - Yehong Kuang
- Department of Dermatology, Xiangya Hospital
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital
| | - Juan Su
- Department of Dermatology, Xiangya Hospital
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital
| | - Zhongling Luo
- Department of Dermatology, Xiangya Hospital
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital
| | - Yan Wang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu 210042
| | - Jinmao Li
- Department of Dermatology, Xiangya Hospital
| | - Jianglin Zhang
- Department of Dermatology, Xiangya Hospital
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital
| | - Wangqing Chen
- Department of Dermatology, Xiangya Hospital
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital
| | - Fangfang Li
- Department of Dermatology, Xiangya Hospital
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital
| | - Yijing He
- Department of Dermatology, Xiangya Hospital
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital
| | - Juan Tao
- Department of Dermatology, Affiliated Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030
| | - Jianda Zhou
- Department of Plastic Surgery of The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P. R. China
| | - Xiaowei Xu
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital
| |
Collapse
|
41
|
Bartke A, Quainoo N. Impact of Growth Hormone-Related Mutations on Mammalian Aging. Front Genet 2018; 9:586. [PMID: 30542372 PMCID: PMC6278173 DOI: 10.3389/fgene.2018.00586] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/12/2018] [Indexed: 12/21/2022] Open
Abstract
Mutations of a single gene can lead to a major increase in longevity in organisms ranging from yeast and worms to insects and mammals. Discovering these mutations (sometimes referred to as “longevity genes”) led to identification of evolutionarily conserved molecular, cellular, and organismal mechanisms of aging. Studies in mice provided evidence for the important role of growth hormone (GH) signaling in mammalian aging. Mice with mutations or gene deletions leading to GH deficiency or GH resistance have reduced body size and delayed maturation, but are healthier and more resistant to stress, age slower, and live longer than their normal (wild type) siblings. Mutations of the same genes in people can provide remarkable protection from age-related disease, but have no consistent impact on lifespan. Ongoing research indicates that genetic defects in GH signaling are linked to extension of healthspan and lifespan via a variety of interlocking mechanism, including improvements in genome and stem cell maintenance, stress resistance, glucose homeostasis, and thermogenesis, along with reductions in the mechanistic target of rapamycin (mTOR) C1 complex signaling and in chronic low grade inflammation.
Collapse
Affiliation(s)
- Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Nana Quainoo
- Department of Biology, University of Illinois Springfield, Springfield, IL, United States
| |
Collapse
|
42
|
Vaiserman A, Koliada A, Lushchak O. Developmental programming of aging trajectory. Ageing Res Rev 2018; 47:105-122. [PMID: 30059788 DOI: 10.1016/j.arr.2018.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 12/12/2022]
Abstract
There is accumulating evidence that aging phenotype and longevity may be developmentally programmed. Main mechanisms linking developmental conditions to later-life health outcomes include persistent changes in epigenetic regulation, (re)programming of major endocrine axes such as growth hormone/insulin-like growth factor axis and hypothalamic-pituitary-adrenal axis and also early-life immune maturation. Recently, evidence has also been generated on the role of telomere biology in developmental programming of aging trajectory. In addition, persisting changes of intestinal microbiota appears to be crucially involved in these processes. In this review, experimental and epidemiological evidence on the role of early-life conditions in programming of aging phenotypes are presented and mechanisms potentially underlying these associations are discussed.
Collapse
|
43
|
Abstract
Dysregulation of neuropeptides may play an important role in aging-induced impairments. In the long list of neuropeptides, pituitary adenylate cyclase-activating polypeptide (PACAP) represents a highly effective cytoprotective peptide that provides an endogenous control against a variety of tissue-damaging stimuli. PACAP has neuro- and general cytoprotective effects due to anti-apoptotic, anti-inflammatory, and antioxidant actions. As PACAP is also a part of the endogenous protective machinery, it can be hypothesized that the decreased protective effects in lack of endogenous PACAP would accelerate age-related degeneration and PACAP knockout mice would display age-related degenerative signs earlier. Recent results support this hypothesis showing that PACAP deficiency mimics aspects of age-related pathophysiological changes including increased neuronal vulnerability and systemic degeneration accompanied by increased apoptosis, oxidative stress, and inflammation. Decrease in PACAP expression has been shown in different species from invertebrates to humans. PACAP-deficient mice display numerous pathological alterations mimicking early aging, such as retinal changes, corneal keratinization and blurring, and systemic amyloidosis. In the present review, we summarize these findings and propose that PACAP deficiency could be a good model of premature aging.
Collapse
|
44
|
A Zebrafish Acromegaly Model Elevates DNA Damage and Impairs DNA Repair Pathways. BIOLOGY 2018; 7:biology7040047. [PMID: 30336646 PMCID: PMC6315448 DOI: 10.3390/biology7040047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/15/2018] [Accepted: 10/15/2018] [Indexed: 01/09/2023]
Abstract
Acromegaly is a pathological condition due to excess growth hormone (GH) secretion. Acromegaly patients exhibit a deterioration of health and many associated complications, such as cardiovascular issues, arthritis, kidney diseases, muscular weakness, and colon cancer. Since these complications are generalized throughout the body, we investigated the effect of GH excess on cellular integrity. Here, we established stable acromegaly model zebrafish lines that overexpress tilapia GH and the red fluorescence protein (RFP) reporter gene for tracking GH gene expression throughout generations, and performed RNA-Seq data analysis from different organs. Intriguingly, heatmap and Expression2Kinases (X2K) analysis revealed the enrichment of DNA damage markers in various organs. Moreover, H2A.X immunostaining analysis in acromegaly zebrafish larvae and the adult acromegaly model brain and muscle showed a robust increase in the number of DNA-damaged cells. Using Gene Set Enrichment Analysis (GSEA), we found that the acromegaly zebrafish model had impaired DNA repair pathways in the liver, such as double-strand break (DSB), homologous recombination repair (HRR), non-homologous end joining (NHEJ), nucleotide excision repair (NER), and translesion synthesis (TLS). Interestingly, the impairment of DNA repair was even more prominent in acromegaly model than in aged zebrafish (three years old). Thus, our study demonstrates that affection of cellular integrity is characteristic of acromegaly.
Collapse
|
45
|
Ungvari Z, Yabluchanskiy A, Tarantini S, Toth P, Kirkpatrick AC, Csiszar A, Prodan CI. Repeated Valsalva maneuvers promote symptomatic manifestations of cerebral microhemorrhages: implications for the pathogenesis of vascular cognitive impairment in older adults. GeroScience 2018; 40:485-496. [PMID: 30288646 DOI: 10.1007/s11357-018-0044-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 09/25/2018] [Indexed: 01/24/2023] Open
Abstract
Multifocal cerebral microhemorrhages (CMHs, also known as "cerebral microbleeds"), which are associated with rupture of small intracerebral vessels, have been recognized as an important cause for cognitive decline in older adults. Although recent studies demonstrate that CMHs are highly prevalent in patients 65 and older, many aspects of the pathogenesis and clinical significance of CMHs remain obscure. In this longitudinal observational study, a case of a 77-year-old man with multifocal CMHs is described, in whom the rupture of intracerebral vessels could be linked to repeatedly performing extended Valsalva maneuvers. This patient was initially seen with acute aphasia after performing a prolonged Valsalva maneuver during underwater swimming. T2-weighted magnetic resonance imaging revealed a left acute frontal intracerebral hemorrhage (ICH) with multiple CMHs. The aphasia was resolved and no cognitive impairment was present. Two years later, he developed unsteadiness and confusion after performing two prolonged Valsalva maneuvers during underwater swimming separated by about 12 days. Repeat brain imaging revealed an acute right and a subacute left ICH, with a marked interval increase in the number of CMHs. The patient also exhibited manifest memory loss after the second admission and was diagnosed with dementia. These observations suggest that prolonged Valsalva maneuver is potentially a common precipitating cause of both CMHs and symptomatic ICHs. The Valsalva maneuver both increases the systolic arterial pressure and gives rise to a venous pressure wave transmitted to the brain in the absence of the competent antireflux jugular vein valves. This pressure increase is superimposed on existing hypertension and/or increases in blood pressure due to exercise and increased venous return due to immersion of the body in water. We advocate that further studies are needed to distinguish between CMHs with arterial and venous origins and their potential to lead to ICH induced by Valsalva maneuver as well as to determine whether these lesions have a predilection for a particular location.
Collapse
Affiliation(s)
- Zoltan Ungvari
- Vascular Cognitive Impairment Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Institute for Translational Medicine, University of Pecs Medical School, Pecs, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Toth
- Vascular Cognitive Impairment Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Institute for Translational Medicine, University of Pecs Medical School, Pecs, Hungary.,Cerebrovascular Laboratory, Department of Neurosurgery and Szentagothai Research Center, University of Pecs Medical School, Pecs, Hungary
| | - Angelia C Kirkpatrick
- Veterans Affairs Medical Center, Oklahoma City, OK, USA.,Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Calin I Prodan
- Veterans Affairs Medical Center, Oklahoma City, OK, USA. .,Department of Neurology, University of Oklahoma Health Sciences Center, 920 S. L. Young Blvd Suite 2040, Oklahoma City, 73104, OK, USA.
| |
Collapse
|
46
|
Leone S, Recinella L, Chiavaroli A, Ferrante C, Orlando G, Vacca M, Salvatori R, Brunetti L. Behavioural phenotyping, learning and memory in young and aged growth hormone-releasing hormone-knockout mice. Endocr Connect 2018; 7:924-931. [PMID: 30300535 PMCID: PMC6130317 DOI: 10.1530/ec-18-0165] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Growth hormone-releasing hormone (GHRH) plays an important role in brain functions. The aim of this study was to examine cognitive functions and emotional behaviour in a mouse model of isolated GH deficiency due to bi-allelic ablation of the GHRH gene (GHRH knockout, GHRHKO). METHODS Learning, memory and emotional behaviour were evaluated using a series of validated tests (Morris water maze, eight-arm radial maze, open field, elevated plus maze test, forced swim tests) in 2-, 5- and 12-month-old male mice either homozygous (−/−) or heterozygous (+/−) for the GHRHKO allele. RESULTS Compared with age-matched +/− mice, −/− mice showed decreased cognitive performance in Morris water maze and eight-arm radial maze tests. By comparing the effects of aging in each genotype, we observed an age-related impairment in test results in +/− mice, while in −/− mice a significant decline in cognitive function was found only in 12 months compared with 2-month-old mice, but no difference was found between 5 months old vs 2 months old. −/− mice showed increased exploration activity compared to age-matched +/− controls, while both strains of mice had an age-related decrease in exploration activity. When evaluated through open field, elevated plus maze and forced swim tests, −/− mice demonstrated a decrease in anxiety and depression-related behaviour compared to age-matched +/− controls. CONCLUSIONS Our results suggest that homozygous ablation of GHRH gene is associated with decreased performance in learning and memory tests, possibly linked to increased spontaneous locomotor activity. In addition, we observed an age-related decline in cognitive functions in both genotypes.
Collapse
Affiliation(s)
- Sheila Leone
- Department of PharmacyG. d’Annunzio University, Chieti, Italy
| | - Lucia Recinella
- Department of PharmacyG. d’Annunzio University, Chieti, Italy
| | | | | | - Giustino Orlando
- Department of PharmacyG. d’Annunzio University, Chieti, Italy
- Correspondence should be addressed to G Orlando:
| | - Michele Vacca
- Department of PharmacyG. d’Annunzio University, Chieti, Italy
| | - Roberto Salvatori
- Division of EndocrinologyDiabetes and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Luigi Brunetti
- Department of PharmacyG. d’Annunzio University, Chieti, Italy
| |
Collapse
|
47
|
Insulin-Like Growth Factor-1 Signaling in Lung Development and Inflammatory Lung Diseases. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6057589. [PMID: 30018981 PMCID: PMC6029485 DOI: 10.1155/2018/6057589] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 03/06/2018] [Indexed: 12/19/2022]
Abstract
Insulin-like growth factor-1 (IGF-1) was firstly identified as a hormone that mediates the biological effects of growth hormone. Accumulating data have indicated the role of IGF-1 signaling pathway in lung development and diseases such as congenital disorders, cancers, inflammation, and fibrosis. IGF-1 signaling modulates the development and differentiation of many types of lung cells, including airway basal cells, club cells, alveolar epithelial cells, and fibroblasts. IGF-1 signaling deficiency results in alveolar hyperplasia in humans and disrupted lung architecture in animal models. The components of IGF-1 signaling pathways are potentiated as biomarkers as they are dysregulated locally or systemically in lung diseases, whereas data may be inconsistent or even paradoxical among different studies. The usage of IGF-1-based therapeutic agents urges for more researches in developmental disorders and inflammatory lung diseases, as the majority of current data are collected from limited number of animal experiments and are generally less exuberant than those in lung cancer. Elucidation of these questions by further bench-to-bedside researches may provide us with rational clinical diagnostic approaches and agents concerning IGF-1 signaling in lung diseases.
Collapse
|
48
|
Csipo T, Fulop GA, Lipecz A, Tarantini S, Kiss T, Balasubramanian P, Csiszar A, Ungvari Z, Yabluchanskiy A. Short-term weight loss reverses obesity-induced microvascular endothelial dysfunction. GeroScience 2018; 40:10.1007/s11357-018-0028-9. [PMID: 29916025 PMCID: PMC6060194 DOI: 10.1007/s11357-018-0028-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 06/06/2018] [Indexed: 12/30/2022] Open
Abstract
Obesity is one of the major risk factors for cardiovascular diseases and its prevalence is increasing in all age groups, with the biggest impact observed in middle-aged and older adults. A critical mechanism by which obesity promotes vascular pathologies in these patients involves impairment of endothelial function. While endothelial dysfunction in large vessels promotes atherogenesis, obesity-induced microvascular endothelial dysfunction impairs organ perfusion and thereby is causally related to the pathogenesis of ischemic heart disease, chronic kidney disease, intermittent claudication, exercise intolerance, and exacerbates cognitive decline in aging. Reduction of weight via calorie-based diet and exercise in animal models of obesity results in significant improvement of endothelial function both in large vessels and in the microcirculation, primarily due to attenuation of oxidative stress and inflammation. Clinical data on the protective effects of weight loss on endothelial function is limited to studies of flow-mediated dilation assessed in brachial arteries. Currently, there is no guideline on testing the effects of different weight management strategies on microvascular endothelial function in obese patients. Here, we provide proof-of-concept that weight loss-induced improvement of microvascular endothelial function can be reliably assessed in the setting of a geriatric outpatient clinic using a fast, reproducible, non-invasive method: laser speckle contrast imaging-based measurement of endothelium-dependent microvascular responses during post-occlusive reactive hyperemia tests. Our study also provides initial evidence that short-term weight loss induced by consumption of a low-carbohydrate low-calorie diet can reverse microvascular endothelial dysfunction associated with obesity.
Collapse
Affiliation(s)
- Tamas Csipo
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1315, Oklahoma City, OK, 73104, USA
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gabor A Fulop
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1315, Oklahoma City, OK, 73104, USA
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Agnes Lipecz
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1315, Oklahoma City, OK, 73104, USA
- Department of Ophthalmology, Josa Andras Hospital, Nyiregyhaza, Hungary
| | - Stefano Tarantini
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1315, Oklahoma City, OK, 73104, USA
| | - Tamas Kiss
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1315, Oklahoma City, OK, 73104, USA
| | - Priya Balasubramanian
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1315, Oklahoma City, OK, 73104, USA
| | - Anna Csiszar
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1315, Oklahoma City, OK, 73104, USA
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1315, Oklahoma City, OK, 73104, USA
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1315, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
49
|
McSkane M, Stintzing S, Heinemann V, Puccini A, Naseem M, Cao S, Lenz HJ, Jelas I. Association Between Height and Clinical Outcome in Metastatic Colorectal Cancer Patients Enrolled Onto a Randomized Phase 3 Clinical Trial: Data From the FIRE-3 Study. Clin Colorectal Cancer 2018; 17:215-222.e3. [PMID: 29880436 DOI: 10.1016/j.clcc.2018.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Previous studies have found significant relationships between height and colorectal cancer (CRC) risk. Increased growth has been associated with activated pathways such as insulin-like growth factor 1. This study examined the impact of height on outcomes in metastatic CRC patients enrolled onto the FIRE-3 study, a randomized phase 3 clinical trial. PATIENTS AND METHODS A total of 695 patients with metastatic CRC were studied and height was measured in centimeters. Male patients were grouped as ≤ 165, 166-175, 176-185, and ≥ 186 cm in height; female patients were grouped as ≤ 154, 155-164, 165-174, and ≥ 175 cm in height. Primary end point was overall survival (OS); secondary end point was progression-free survival. RESULTS When patients' heights were categorized into 4 groups, the tallest group showed a worse OS compared to the shortest group; however, there was no linear relationship between height and OS. To investigate this, we showed the association between height as a continuous variable and OS. Patients shorter than 172 cm had a worse OS as their height decreased. Patients taller than 172 cm had a worse OS as their height increased. Moreover, patients with heights between 165 and 179 cm had a better OS compared to other patients (P = .05). This effect was independent of treatment arm and gender. CONCLUSION Patients shorter than 165 cm and taller than 179 cm have a worse OS, while those between 165 and 179 cm have a better OS. Hence, clinicians should consider height as an important prognostic factor when treating metastatic CRC patients. Future prospective studies are warranted to shed light on the mechanisms underlying the worse OS in taller patients.
Collapse
Affiliation(s)
- Michelle McSkane
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Sebastian Stintzing
- Comprehensive Cancer Center, Ludwig-Maximilian-University of Munich, Munich, Germany
| | - Volker Heinemann
- Comprehensive Cancer Center, Ludwig-Maximilian-University of Munich, Munich, Germany
| | - Alberto Puccini
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Madiha Naseem
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Shu Cao
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA; Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA.
| | - Ivan Jelas
- Comprehensive Cancer Center, Ludwig-Maximilian-University of Munich, Munich, Germany
| |
Collapse
|
50
|
Basu R, Qian Y, Kopchick JJ. MECHANISMS IN ENDOCRINOLOGY: Lessons from growth hormone receptor gene-disrupted mice: are there benefits of endocrine defects? Eur J Endocrinol 2018; 178:R155-R181. [PMID: 29459441 DOI: 10.1530/eje-18-0018] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 02/19/2018] [Indexed: 12/12/2022]
Abstract
Growth hormone (GH) is produced primarily by anterior pituitary somatotroph cells. Numerous acute human (h) GH treatment and long-term follow-up studies and extensive use of animal models of GH action have shaped the body of GH research over the past 70 years. Work on the GH receptor (R)-knockout (GHRKO) mice and results of studies on GH-resistant Laron Syndrome (LS) patients have helped define many physiological actions of GH including those dealing with metabolism, obesity, cancer, diabetes, cognition and aging/longevity. In this review, we have discussed several issues dealing with these biological effects of GH and attempt to answer the question of whether decreased GH action may be beneficial.
Collapse
Affiliation(s)
- Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA
| | - Yanrong Qian
- Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA
- Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| |
Collapse
|