1
|
Millan-Domingo F, Garcia-Dominguez E, Gambini J, Olaso-Gonzalez G, Viña J, Gomez-Cabrera MC. Diet and exercise in frailty and sarcopenia. Molecular aspects. Mol Aspects Med 2024; 100:101322. [PMID: 39591800 DOI: 10.1016/j.mam.2024.101322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024]
Abstract
Function declines throughout life although phenotypical manifestations in terms of frailty or disability are only seen in the later periods of our life. The causes underlying lifelong function decline are the aging process "per se", chronic diseases, and lifestyle factors. These three etiological causes result in the deterioration of several organs and systems which act synergistically to finally produce frailty and disability. Regardless of the causes, the skeletal muscle is the main organ affected by developing sarcopenia. In the first section of the manuscript, as an introduction, we review the quantitative and qualitative age-associated skeletal muscle changes leading to frailty and sarcopenia and their impact in the quality of life and independence in the elderly. The reversibility of frailty and sarcopenia are discussed in the second and third sections of the manuscript. The most effective intervention to delay and even reverse frailty is exercise training. We review the role of different training programs (resistance exercise, cardiorespiratory exercise, multicomponent exercise, and real-life interventions) not only as a preventive but also as a therapeutical strategy to promote healthy aging. We also devote a section in the text to the sexual dimorphic effects of exercise training interventions in aging. How to optimize the skeletal muscle anabolic response to exercise training with nutrition is also discussed in our manuscript. The concept of anabolic resistance and the evidence of the role of high-quality protein, essential amino acids, creatine, vitamin D, β-hydroxy-β-methylbutyrate, and Omega-3 fatty acids, is reviewed. In the last section of the manuscript, the main genetic interventions to promote robustness in preclinical models are discussed. We aim to highlight the molecular pathways that are involved in frailty and sarcopenia. The possibility to effectively target these signaling pathways in clinical practice to delay muscle aging is also discussed.
Collapse
Affiliation(s)
- Fernando Millan-Domingo
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain; Programa Mejora S.L, 46002, Valencia, Spain; Sports Science and Innovation Research Group (GICED), Laboratory of Applied Sciences of Sport, Unidades Tecnológicas de Santander (UTS), Bucaramanga, 680006, Santander, Colombia
| | - Esther Garcia-Dominguez
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Juan Gambini
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Gloria Olaso-Gonzalez
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain.
| | - Jose Viña
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Maria Carmen Gomez-Cabrera
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| |
Collapse
|
2
|
Bickel MA, Csik B, Gulej R, Ungvari A, Nyul-Toth A, Conley SM. Cell non-autonomous regulation of cerebrovascular aging processes by the somatotropic axis. Front Endocrinol (Lausanne) 2023; 14:1087053. [PMID: 36755922 PMCID: PMC9900125 DOI: 10.3389/fendo.2023.1087053] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023] Open
Abstract
Age-related cerebrovascular pathologies, ranging from cerebromicrovascular functional and structural alterations to large vessel atherosclerosis, promote the genesis of vascular cognitive impairment and dementia (VCID) and exacerbate Alzheimer's disease. Recent advances in geroscience, including results from studies on heterochronic parabiosis models, reinforce the hypothesis that cell non-autonomous mechanisms play a key role in regulating cerebrovascular aging processes. Growth hormone (GH) and insulin-like growth factor 1 (IGF-1) exert multifaceted vasoprotective effects and production of both hormones is significantly reduced in aging. This brief overview focuses on the role of age-related GH/IGF-1 deficiency in the development of cerebrovascular pathologies and VCID. It explores the mechanistic links among alterations in the somatotropic axis, specific macrovascular and microvascular pathologies (including capillary rarefaction, microhemorrhages, impaired endothelial regulation of cerebral blood flow, disruption of the blood brain barrier, decreased neurovascular coupling, and atherogenesis) and cognitive impairment. Improved understanding of cell non-autonomous mechanisms of vascular aging is crucial to identify targets for intervention to promote cerebrovascular and brain health in older adults.
Collapse
Affiliation(s)
- Marisa A. Bickel
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Boglarka Csik
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Anna Ungvari
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Adam Nyul-Toth
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Department of Public Health, Semmelweis University, Budapest, Hungary
- Institute of Biophysics, Biological Research Centre, Eötvös Lorand Research Network (ELKH), Szeged, Hungary
| | - Shannon M. Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
3
|
Cañadas-Lozano D, Marín-Aguilar F, Castejón-Vega B, Ryffel B, Navarro-Pando JM, Ruiz-Cabello J, Alcocer-Gómez E, Bullón P, Cordero MD. Blockade of the NLRP3 inflammasome improves metabolic health and lifespan in obese mice. GeroScience 2020; 42:715-725. [PMID: 31975052 DOI: 10.1007/s11357-019-00151-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/27/2019] [Indexed: 12/14/2022] Open
Abstract
Aging is the major risk factor for many metabolic chronic diseases. Several metabolic pathways suffer a progressive impairment during aging including body composition and insulin resistance which are associated to autophagy dysfunction and increased inflammation. Many of these alterations are aggravated by non-healthy lifestyle such as obesity and hypercaloric diet which have been shown to accelerate aging. Here, we show that the deleterious effect of hypercaloric diets is reverted by the NLRP3 inflammasome inhibition. NLRP3 deficiency extends mean lifespan of adult mice fed a high-fat diet. This lifespan extension is accompanied by metabolic health benefits including reduced liver steatosis and cardiac damage, improved glucose and lipid metabolism, and improved protein expression profiles of SIRT-1, mTOR, autophagic flux, and apoptosis. These findings suggest that the suppression of NLRP3 prevented many age-associated changes in metabolism impaired by the effect of hypercaloric diets.
Collapse
Affiliation(s)
- Diego Cañadas-Lozano
- Research Laboratory, Oral Medicine Department, University of Sevilla, Seville, Spain
| | - Fabiola Marín-Aguilar
- Research Laboratory, Oral Medicine Department, University of Sevilla, Seville, Spain
| | - Beatriz Castejón-Vega
- Research Laboratory, Oral Medicine Department, University of Sevilla, Seville, Spain
| | - Bernhard Ryffel
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355 CNRS-University of Orleans, Orléans, France.,IDM, University of Cape Town, Cape Town, South Africa
| | - José M Navarro-Pando
- Cátedra de Reproducción y Genética Humana del Instituto para el Estudio de la Biología de la Reproducción Humana (INEBIR), Universidad Europea del Atlántico (UNEATLANTICO)-Fundación Universitaria Iberoamericana (FUNIBER), Santander, Spain
| | - Jesús Ruiz-Cabello
- CIC biomaGUNE, San Sebastian-Donostia, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.,CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Universidad Complutense Madrid, Madrid, Spain
| | - Elísabet Alcocer-Gómez
- Departamento de Psicología Experimental, Facultad de Psicología, Universidad de Sevilla, Seville, Spain
| | - Pedro Bullón
- Research Laboratory, Oral Medicine Department, University of Sevilla, Seville, Spain
| | - Mario D Cordero
- Cátedra de Reproducción y Genética Humana del Instituto para el Estudio de la Biología de la Reproducción Humana (INEBIR), Universidad Europea del Atlántico (UNEATLANTICO)-Fundación Universitaria Iberoamericana (FUNIBER), Santander, Spain. .,Newcastle Institute for Ageing and Institute for Cell an Molecular Biology, Campus for Ageing and Health, Newcastle University, Newcastle University, NE4 5PL, Newcastle upon Tyne, UK.
| |
Collapse
|
4
|
Norling AM, Gerstenecker AT, Buford TW, Khan B, Oparil S, Lazar RM. The role of exercise in the reversal of IGF-1 deficiencies in microvascular rarefaction and hypertension. GeroScience 2019; 42:141-158. [PMID: 31808026 DOI: 10.1007/s11357-019-00139-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 11/19/2019] [Indexed: 12/18/2022] Open
Abstract
Hypertension has been linked with peripheral and central reductions in vascular density, and with devastating effects on brain function. However, the underlying mechanisms in the relationship between blood pressure and cognitive impairment have yet to be fully elucidated. Here, we review compelling evidence from two lines of inquiry: one that links microvascular rarefaction with insulin-like growth factor 1 (IGF-1) deficiencies, and another which posits that vascular dysfunction precedes hypertension. Based on the findings from experimental and clinical studies, we propose that these lines of evidence converge, and suggest that age-related declines in IGF-1 concentrations precede microvascular rarefaction, initiate an increase in vascular resistance, and therefore are causally linked to onset of hypertension. Physical exercise provides a relevant model for supporting our premise, given the well-established effects of exercise in attenuating vascular dysfunction, hypertension, IGF-1 deficiency, and cognitive decline. We highlight here the role of exercise-induced increases in blood flow in improving vascular integrity and enhancing angiogenesis via the actions of IGF-1, resulting in reversal of rarefaction and hypertension, and enhancement of cerebral blood flow and cognition.
Collapse
Affiliation(s)
- Amani M Norling
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,The UAB Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Alabama, AL, 35294, USA
| | - Adam T Gerstenecker
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,The UAB Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Alabama, AL, 35294, USA
| | - Thomas W Buford
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Bilal Khan
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Suzanne Oparil
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Ronald M Lazar
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA. .,The UAB Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Alabama, AL, 35294, USA.
| |
Collapse
|
5
|
Age-dependent effects of caloric restriction on mTOR and ubiquitin-proteasome pathways in skeletal muscles. GeroScience 2019; 41:871-880. [PMID: 31676964 DOI: 10.1007/s11357-019-00109-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 09/20/2019] [Indexed: 01/12/2023] Open
Abstract
In skeletal muscles, calorie restriction (CR) preserves muscle mass in middle-aged rats but not younger rats. The underlying mechanisms for this age-specific response are unknown. Skeletal muscle mass depends on several factors, with protein synthesis and degradation playing major roles. Therefore, the purpose of this study was to investigate whether CR affects younger and older animals differently on mTOR signaling and ubiquitin-proteasome pathway (UPP). Four-, 8-, and 16-month-old rats, with or without 40% CR for a duration of 14 weeks, were sacrificed after an overnight fasting. Total protein content and the phosphorylation level of AKT, mTOR, S6K, and 4EBP1 and protein content of key markers in the UPP (FOXO3a, atrogin, MuRF1, ubiquitinated proteins, proteasome subunits alpha 7 and beta 5) were determined. Unlike younger rats, CR decreased the content of phosphorylated mTOR, S6K, phosphorylated S6K, FOXO3a, and ubiquitinated proteins in middle-aged rats. In conclusion, CR-induced reduction of content/ phosphorylation levels of key proteins in mTOR signaling and the UPP occurred in the middle-aged rats but not younger rats. The age-dependent effects of CR on mTOR signaling and the UPP indirectly explained the age-related effects of CR on muscle mass of animals.
Collapse
|
6
|
Kiss T, Balasubramanian P, Valcarcel-Ares MN, Tarantini S, Yabluchanskiy A, Csipo T, Lipecz A, Reglodi D, Zhang XA, Bari F, Farkas E, Csiszar A, Ungvari Z. Nicotinamide mononucleotide (NMN) treatment attenuates oxidative stress and rescues angiogenic capacity in aged cerebromicrovascular endothelial cells: a potential mechanism for the prevention of vascular cognitive impairment. GeroScience 2019; 41:619-630. [PMID: 31144244 PMCID: PMC6885080 DOI: 10.1007/s11357-019-00074-2] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 05/11/2019] [Accepted: 05/16/2019] [Indexed: 10/26/2022] Open
Abstract
Age-related impairment of angiogenesis likely has a critical role in cerebromicrovascular rarefaction and development of vascular cognitive impairment and dementia (VCID) in the elderly. Recently, we demonstrated that aging is associated with NAD+ depletion in the vasculature and that administration of NAD+ precursors exerts potent anti-aging vascular effects, rescuing endothelium-mediated vasodilation in the cerebral circulation and improving cerebral blood supply. The present study was designed to elucidate how treatment with nicotinamide mononucleotide (NMN), a key NAD+ intermediate, impacts age-related impairment of endothelial angiogenic processes. Using cerebromicrovascular endothelial cells (CMVECs) isolated from young and aged F344xBN rats, we demonstrated that compared with young cells, aged CMVECs exhibit impaired proliferation, cellular migration (measured by a wound-healing assay using electric cell-substrate impedance sensing [ECIS] technology), impaired ability to form capillary-like structures, and increased oxidative stress. NMN treatment in aged CMVECs significantly improved angiogenic processes and attenuated H2O2 production. We also found that pre-treatment with EX-527, a pharmacological inhibitor of SIRT1, prevented NMN-mediated restoration of angiogenic processes in aged CMVECs. Collectively, we find that normal cellular NAD+ levels are essential for normal endothelial angiogenic processes, suggesting that age-related cellular NAD+ depletion and consequential SIRT1 dysregulation may be a potentially reversible mechanism underlying impaired angiogenesis and cerebromicrovascular rarefaction in aging. We recommend that pro-angiogenic effects of NAD+ boosters should be considered in both preclinical and clinical studies.
Collapse
Affiliation(s)
- Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK 73104 USA
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
- Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK 73104 USA
| | - Marta Noa Valcarcel-Ares
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK 73104 USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK 73104 USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK 73104 USA
| | - Tamas Csipo
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK 73104 USA
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Agnes Lipecz
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK 73104 USA
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Dora Reglodi
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pecs Medical School, Pecs, Hungary
| | - Xin A. Zhang
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Ferenc Bari
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
- Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Eszter Farkas
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
- Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK 73104 USA
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
- Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK 73104 USA
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
- Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
- Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, the Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| |
Collapse
|
7
|
Borbély É, Payrits M, Hunyady Á, Mező G, Pintér E. Important regulatory function of transient receptor potential ankyrin 1 receptors in age-related learning and memory alterations of mice. GeroScience 2019; 41:643-654. [PMID: 31327098 PMCID: PMC6885083 DOI: 10.1007/s11357-019-00083-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 07/02/2019] [Indexed: 12/11/2022] Open
Abstract
Expression of the transient receptor potential ankyrin 1 (TRPA1) receptor has been demonstrated not only in the dorsal root and trigeminal ganglia but also in different brain regions (e.g., hippocampus, hypothalamus, and cortex). However, data concerning their role in neurodegenerative and age-related diseases of the CNS is still indistinct. The aim of our study was to investigate the potential role of TRPA1 in a mouse model of senile dementia. For the investigation of changes during aging, we used male young (3-4-month-old) and old (18-month-old) wild-type (TRPA1+/+;WT) and TRPA1 receptor gene-deleted (TRPA1-/-) mice. Novel object recognition (NOR) test as well as Y maze (YM), radial arm maze (RAM), and Morris water maze (MWM) tests were used to assess the decline of memory and learning skills. In the behavioral studies, significant memory loss was detected in aged TRPA1+/+ mice with the NOR and RAM, but there was no difference measured by YM and MWM tests regarding the age and gene. TRPA1-/- showed significantly reduced memory loss, which could be seen as higher discrimination index in the NOR and less exploration time in the RAM. Furthermore, young TRPA1-/- animals showed significantly less reference memory error in the RAM and notably higher mobility in NOR, RAM, and YM compared with the age-matched WTs. Our present work has provided the first evidence that TRPA1 receptors mediate deteriorating effects in the old age memory decline. Understanding the underlying mechanisms could open new perspectives in the pharmacotherapy of dementia.
Collapse
Affiliation(s)
- Éva Borbély
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u.12., Pécs, 7624, Hungary
- Szentágothai Research Center, Center for Neuroscience, University of Pécs, Ifjúság u. 20, Pécs, 7624, Hungary
| | - Maja Payrits
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u.12., Pécs, 7624, Hungary
- Szentágothai Research Center, Center for Neuroscience, University of Pécs, Ifjúság u. 20, Pécs, 7624, Hungary
| | - Ágnes Hunyady
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u.12., Pécs, 7624, Hungary
- Szentágothai Research Center, Center for Neuroscience, University of Pécs, Ifjúság u. 20, Pécs, 7624, Hungary
| | - Gréta Mező
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u.12., Pécs, 7624, Hungary
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u.12., Pécs, 7624, Hungary.
- Szentágothai Research Center, Center for Neuroscience, University of Pécs, Ifjúság u. 20, Pécs, 7624, Hungary.
| |
Collapse
|
8
|
Csiszar A, Yabluchanskiy A, Ungvari A, Ungvari Z, Tarantini S. Overexpression of catalase targeted to mitochondria improves neurovascular coupling responses in aged mice. GeroScience 2019; 41:609-617. [PMID: 31643012 PMCID: PMC6885076 DOI: 10.1007/s11357-019-00111-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 09/20/2019] [Indexed: 12/22/2022] Open
Abstract
Moment-to-moment adjustment of cerebral blood flow (CBF) to neuronal activity via the homeostatic mechanism known as neurovascular coupling (NVC) has an essential role in maintenance of normal brain function. In advanced age cerebromicrovascular endothelial dysfunction impairs NVC responses, which contribute to age-related cognitive decline. Recently, we have shown that pharmacological treatments that attenuate mitochondrial production of reactive oxygen species (ROS) provide significant neurovascular protection, improving NVC responses in aged mice. Transgenic mice that overexpress human catalase localized to the mitochondria (mCAT) are protected from age-related mitochondrial oxidative stress and exhibit a longevity phenotype associated with resistance to several age-related pathologies. The present study was designed to test the hypothesis that mitochondria-targeted overexpression of catalase also confers protection against age-related impairment of NVC responses. To achieve this goal, NVC responses were assessed in aged (24 months old) mCAT mice and compared with those in age-matched wild-type mice and young control mice by measuring CBF responses (laser speckle contrast imaging) evoked by contralateral whisker stimulation. We found that mitochondrial overexpression of catalase resulted in improved NVC in aged mice due to preserved NO-mediated (L-NAME inhibitable) component of the response. Thus, our present and previous findings demonstrate that interventions that boost mitochondrial antioxidative defenses confer significant cerebromicrovascular protective effects, which preserve NVC responses in aged mice. Our findings provide additional proof-of-concept for the potential use of mitochondria-targeted antioxidants as therapy for prevention of vascular cognitive impairment associated with aging.
Collapse
Affiliation(s)
- Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Anna Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA.
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
9
|
Tarantini S, Yabluchanskiy A, Csipo T, Fulop G, Kiss T, Balasubramanian P, DelFavero J, Ahire C, Ungvari A, Nyúl-Tóth Á, Farkas E, Benyo Z, Tóth A, Csiszar A, Ungvari Z. Treatment with the poly(ADP-ribose) polymerase inhibitor PJ-34 improves cerebromicrovascular endothelial function, neurovascular coupling responses and cognitive performance in aged mice, supporting the NAD+ depletion hypothesis of neurovascular aging. GeroScience 2019; 41:533-542. [PMID: 31679124 PMCID: PMC6885075 DOI: 10.1007/s11357-019-00101-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 09/10/2019] [Indexed: 01/12/2023] Open
Abstract
Adjustment of cerebral blood flow (CBF) to neuronal activity via neurovascular coupling (NVC) plays an important role in the maintenance of healthy cognitive function. Strong evidence demonstrates that age-related cerebromicrovascular endothelial dysfunction and consequential impairment of NVC responses contribute importantly to cognitive decline. Recent studies demonstrate that NAD+ availability decreases with age in the vasculature and that supplemental NAD+ precursors can ameliorate cerebrovascular dysfunction, rescuing NVC responses and improving cognitive performance in aged mice. The mechanisms underlying the age-related decline in [NAD+] in cells of the neurovascular unit are likely multifaceted and may include increased utilization of NAD+ by activated poly (ADP-ribose) polymerase (PARP-1). The present study was designed to test the hypothesis that inhibition of PARP-1 activity may confer protective effects on neurovascular function in aging, similar to the recently demonstrated protective effects of treatment with the NAD+ precursor nicotinamide mononucleotide (NMN). To test this hypothesis, 24-month-old C57BL/6 mice were treated with PJ-34, a potent PARP inhibitor, for 2 weeks. NVC was assessed by measuring CBF responses (laser speckle contrast imaging) in the somatosensory whisker barrel cortex evoked by contralateral whisker stimulation. We found that NVC responses were significantly impaired in aged mice. Treatment with PJ-34 improved NVC responses by increasing endothelial NO-mediated vasodilation, which was associated with significantly improved spatial working memory. PJ-34 treatment also improved endothelium-dependent acetylcholine-induced relaxation of aorta rings. Thus, PARP-1 activation, likely by decreasing NAD+ availability, contributes to age-related endothelial dysfunction and neurovascular uncoupling, exacerbating cognitive decline. The cerebromicrovascular protective effects of pharmacological inhibition of PARP-1 highlight the preventive and therapeutic potential of treatments that restore NAD+ homeostasis as effective interventions in patients at risk for vascular cognitive impairment (VCI).
Collapse
Affiliation(s)
- Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Department of Public Health/Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Tamas Csipo
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Department of Public Health/Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Division of Clinical Physiology, Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Gabor Fulop
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Division of Clinical Physiology, Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Department of Medical Physics and Informatics/Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Jordan DelFavero
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Chetan Ahire
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Anna Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Eszter Farkas
- International Training Program in Geroscience, Department of Medical Physics and Informatics/Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Zoltan Benyo
- Institute of Clinical Experimental Research/Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Attila Tóth
- International Training Program in Geroscience, Division of Clinical Physiology, Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Institute of Clinical Experimental Research/Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA.
- International Training Program in Geroscience, Department of Public Health/Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest, Hungary.
- International Training Program in Geroscience, Department of Medical Physics and Informatics/Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary.
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
10
|
Fulop GA, Ahire C, Csipo T, Tarantini S, Kiss T, Balasubramanian P, Yabluchanskiy A, Farkas E, Toth A, Nyúl-Tóth Á, Toth P, Csiszar A, Ungvari Z. Cerebral venous congestion promotes blood-brain barrier disruption and neuroinflammation, impairing cognitive function in mice. GeroScience 2019; 41:575-589. [PMID: 31691147 PMCID: PMC6885079 DOI: 10.1007/s11357-019-00110-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 09/20/2019] [Indexed: 02/07/2023] Open
Abstract
Cognitive impairment is one of the most common co-occurring chronic conditions among elderly heart failure patients (incidence: up to ~ 80%); however, the underlying mechanisms are not completely understood. It is hypothesized that in addition to decreased cardiac output, increases in central-and consequentially, cerebral-venous pressure (backward failure) also contribute significantly to the genesis of cognitive impairment. To test this hypothesis and elucidate the specific pathogenic role of venous congestion in the brain, we have established a novel model of increased cerebral venous pressure: mice with jugular vein ligation (JVL). To test the hypothesis that increased venous pressure in the brain contributes to the development of cognitive deficits by causing blood-brain barrier disruption, dysregulation of blood flow, and/or promoting neuroinflammation, in C57BL/6 mice, the internal and external jugular veins were ligated. Cognitive function (radial arm water maze), gait function (CatWalk), and motor coordination (rotarod) were tested post-JVL. Neurovascular coupling responses were assessed by measuring changes in cerebral blood flow in the whisker barrel cortex in response to contralateral whisker stimulation by laser speckle contrast imaging through a closed cranial window. Blood-brain barrier integrity (IgG extravasation) and microglia activation (Iba1 staining) were assessed in brain slices by immunohistochemistry. Neuroinflammation-related gene expression profile was assessed by a targeted qPCR array. After jugular vein ligation, mice exhibited impaired spatial learning and memory, altered motor coordination, and impaired gait function, mimicking important aspects of altered brain function observed in human heart failure patients. JVL did not alter neurovascular coupling responses. In the brains of mice with JVL, significant extravasation of IgG was detected, indicating blood-brain barrier disruption, which was associated with histological markers of neuroinflammation (increased presence of activated microglia) and a pro-inflammatory shift in gene expression profile. Thus, cerebral venous congestion per se can cause blood-brain barrier disruption and neuroinflammation, which likely contribute to the genesis of cognitive impairment. These findings have relevance to the pathogenesis of cognitive decline associated with heart failure as well as increased cerebal venous pressure due to increased jugular venous reflux in elderly human patients.
Collapse
Affiliation(s)
- Gabor A Fulop
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Division of Clinical Physiology, Department of Cardiology/Kálmán Laki Doctoral School of Biomedical and Clinical Sciences, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Chetan Ahire
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Tamas Csipo
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Division of Clinical Physiology, Department of Cardiology/Kálmán Laki Doctoral School of Biomedical and Clinical Sciences, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Eszter Farkas
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Attila Toth
- International Training Program in Geroscience, Division of Clinical Physiology, Department of Cardiology/Kálmán Laki Doctoral School of Biomedical and Clinical Sciences, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Peter Toth
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Department of Neurosurgery and Szentagothai Research Center, University of Pecs, Medical School, Pecs, Hungary
- Institute for Translational Medicine, University of Pecs, Medical School , Pecs, Hungary
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Institute of Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary.
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary.
| |
Collapse
|
11
|
Ungvari Z, Tarantini S, Yabluchanskiy A, Csiszar A. Potential Adverse Cardiovascular Effects of Treatment With Fluoxetine and Other Selective Serotonin Reuptake Inhibitors (SSRIs) in Patients With Geriatric Depression: Implications for Atherogenesis and Cerebromicrovascular Dysregulation. Front Genet 2019; 10:898. [PMID: 31616477 PMCID: PMC6764114 DOI: 10.3389/fgene.2019.00898] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 08/23/2019] [Indexed: 12/12/2022] Open
Abstract
Late life depression is an important public health problem, which associates with increased risk of morbidity and mortality. Selective serotonin reuptake inhibitors (SSRIs), including fluoxetine, are often prescribed to treat geriatric depression. There is increasing evidence that fluoxetine and other SSRIs exert a wide range of cardiovascular side effects. Furthermore, there is evidence that aging may increase plasma level of SSRIs. In this overview, the potential role of side effects of treatment with fluoxetine and other SSRIs in the pathogenesis of age-related cardiovascular diseases, including atherogenesis, cardiac pathologies, and cerebromicrovascular impairment, is discussed.
Collapse
Affiliation(s)
- Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Medical Physics and Informatics, Faculty of Medicine and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Stefano Tarantini
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Medical Physics and Informatics, Faculty of Medicine and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Andriy Yabluchanskiy
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Anna Csiszar
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Medical Physics and Informatics, Faculty of Medicine and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| |
Collapse
|
12
|
Kiss T, Giles CB, Tarantini S, Yabluchanskiy A, Balasubramanian P, Gautam T, Csipo T, Nyúl-Tóth Á, Lipecz A, Szabo C, Farkas E, Wren JD, Csiszar A, Ungvari Z. Nicotinamide mononucleotide (NMN) supplementation promotes anti-aging miRNA expression profile in the aorta of aged mice, predicting epigenetic rejuvenation and anti-atherogenic effects. GeroScience 2019; 41:419-439. [PMID: 31463647 PMCID: PMC6815288 DOI: 10.1007/s11357-019-00095-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022] Open
Abstract
Understanding molecular mechanisms involved in vascular aging is essential to develop novel interventional strategies for treatment and prevention of age-related vascular pathologies. Recent studies provide critical evidence that vascular aging is characterized by NAD+ depletion. Importantly, in aged mice, restoration of cellular NAD+ levels by treatment with the NAD+ booster nicotinamide mononucleotide (NMN) exerts significant vasoprotective effects, improving endothelium-dependent vasodilation, attenuating oxidative stress, and rescuing age-related changes in gene expression. Strong experimental evidence shows that dysregulation of microRNAs (miRNAs) has a role in vascular aging. The present study was designed to test the hypothesis that age-related NAD+ depletion is causally linked to dysregulation of vascular miRNA expression. A corollary hypothesis is that functional vascular rejuvenation in NMN-treated aged mice is also associated with restoration of a youthful vascular miRNA expression profile. To test these hypotheses, aged (24-month-old) mice were treated with NMN for 2 weeks and miRNA signatures in the aortas were compared to those in aortas obtained from untreated young and aged control mice. We found that protective effects of NMN treatment on vascular function are associated with anti-aging changes in the miRNA expression profile in the aged mouse aorta. The predicted regulatory effects of NMN-induced differentially expressed miRNAs in aged vessels include anti-atherogenic effects and epigenetic rejuvenation. Future studies will uncover the mechanistic role of miRNA gene expression regulatory networks in the anti-aging effects of NAD+ booster treatments and determine the links between miRNAs regulated by NMN and sirtuin activators and miRNAs known to act in the conserved pathways of aging and major aging-related vascular diseases.
Collapse
Affiliation(s)
- Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Department of Medical Physics and Informatics / Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Cory B Giles
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Oklahoma Medical Research Foundation, Genes & Human Disease Research Program, Oklahoma City, OK and Department of Biochemistry and Molecular Biology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Tripti Gautam
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Tamas Csipo
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Department of Medical Physics and Informatics / Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
- Department of Public Health / Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Institute of Biophysics, Biological Research Centre / Theoretical Medicine Doctoral School, Hungarian Academy of Sciences, Szeged, Hungary
| | - Agnes Lipecz
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Department of Medical Physics and Informatics / Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
- Department of Public Health / Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Csaba Szabo
- Chair of Pharmacology, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Eszter Farkas
- Department of Medical Physics and Informatics / Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Jonathan D Wren
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Oklahoma Medical Research Foundation, Genes & Human Disease Research Program, Oklahoma City, OK and Department of Biochemistry and Molecular Biology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Department of Medical Physics and Informatics / Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA.
- Department of Medical Physics and Informatics / Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary.
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
- Department of Public Health / Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest, Hungary.
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
13
|
Csiszar A, Tarantini S, Yabluchanskiy A, Balasubramanian P, Kiss T, Farkas E, Baur JA, Ungvari Z. Role of endothelial NAD + deficiency in age-related vascular dysfunction. Am J Physiol Heart Circ Physiol 2019; 316:H1253-H1266. [PMID: 30875255 PMCID: PMC6620681 DOI: 10.1152/ajpheart.00039.2019] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/26/2019] [Accepted: 03/12/2019] [Indexed: 12/23/2022]
Abstract
Age-related alterations in endothelium and the resulting vascular dysfunction critically contribute to a range of pathological conditions associated with old age. To develop therapies rationally that improve vascular health and thereby increase health span and life span in older adults, it will be essential to understand the cellular and molecular mechanisms contributing to vascular aging. Preclinical studies in model organisms demonstrate that NAD+ availability decreases with age in multiple tissues and that supplemental NAD+ precursors can ameliorate many age-related cellular impairments. Here, we provide a comprehensive overview of NAD+-dependent pathways [including the NAD+-using silent information regulator-2-like enzymes and poly(ADP-ribose) polymerase enzymes] and the potential consequences of endothelial NAD+ deficiency in vascular aging. The multifaceted vasoprotective effects of treatments that reverse the age-related decline in cellular NAD+ levels, as well as their potential limitations, are discussed. The preventive and therapeutic potential of NAD+ intermediates as effective, clinically relevant interventions in older adults at risk for ischemic heart disease, vascular cognitive impairment, and other common geriatric conditions and diseases that involve vascular pathologies (e.g., sarcopenia, frailty) are critically discussed. We propose that NAD+ precursors [e.g., nicotinamide (Nam) riboside, Nam mononucleotide, niacin] should be considered as critical components of combination therapies to slow the vascular aging process and increase cardiovascular health span.
Collapse
Affiliation(s)
- Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Department of Medical Physics and Informatics, University of Szeged , Szeged , Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Department of Medical Physics and Informatics, University of Szeged , Szeged , Hungary
- Theoretical Medicine Doctoral School, University of Szeged , Szeged , Hungary
| | - Eszter Farkas
- Department of Medical Physics and Informatics, University of Szeged , Szeged , Hungary
| | - Joseph A Baur
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Department of Medical Physics and Informatics, University of Szeged , Szeged , Hungary
- Theoretical Medicine Doctoral School, University of Szeged , Szeged , Hungary
- Department of Pulmonology, Semmelweis University , Budapest , Hungary
- Department of Health Promotion Sciences, Hudson College of Public Health, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| |
Collapse
|
14
|
Fulop GA, Tarantini S, Yabluchanskiy A, Molnar A, Prodan CI, Kiss T, Csipo T, Lipecz A, Balasubramanian P, Farkas E, Toth P, Sorond F, Csiszar A, Ungvari Z. Role of age-related alterations of the cerebral venous circulation in the pathogenesis of vascular cognitive impairment. Am J Physiol Heart Circ Physiol 2019; 316:H1124-H1140. [PMID: 30848677 PMCID: PMC6580383 DOI: 10.1152/ajpheart.00776.2018] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/31/2019] [Accepted: 02/18/2019] [Indexed: 02/07/2023]
Abstract
There has been an increasing appreciation of the role of vascular contributions to cognitive impairment and dementia (VCID) associated with old age. Strong preclinical and translational evidence links age-related dysfunction and structural alterations of the cerebral arteries, arterioles, and capillaries to the pathogenesis of many types of dementia in the elderly, including Alzheimer's disease. The low-pressure, low-velocity, and large-volume venous circulation of the brain also plays critical roles in the maintenance of homeostasis in the central nervous system. Despite its physiological importance, the role of age-related alterations of the brain venous circulation in the pathogenesis of vascular cognitive impairment and dementia is much less understood. This overview discusses the role of cerebral veins in the pathogenesis of VCID. Pathophysiological consequences of age-related dysregulation of the cerebral venous circulation are explored, including blood-brain barrier disruption, neuroinflammation, exacerbation of neurodegeneration, development of cerebral microhemorrhages of venous origin, altered production of cerebrospinal fluid, impaired function of the glymphatics system, dysregulation of cerebral blood flow, and ischemic neuronal dysfunction and damage. Understanding the age-related functional and phenotypic alterations of the cerebral venous circulation is critical for developing new preventive, diagnostic, and therapeutic approaches to preserve brain health in older individuals.
Collapse
Affiliation(s)
- Gabor A Fulop
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Heart and Vascular Center, Semmelweis University , Budapest , Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Andrea Molnar
- Heart and Vascular Center, Semmelweis University , Budapest , Hungary
| | - Calin I Prodan
- Veterans Affairs Medical Center , Oklahoma City, Oklahoma
- Department of Neurology, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Vascular Cognitive Impairment Program, Department of Medical Physics and Informatics, University of Szeged , Szeged , Hungary
| | - Tamas Csipo
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Agnes Lipecz
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| | - Eszter Farkas
- Vascular Cognitive Impairment Program, Department of Medical Physics and Informatics, University of Szeged , Szeged , Hungary
| | - Peter Toth
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Cerebrovascular Laboratory, Department of Neurosurgery and Szentagothai Research Center, University of Pecs Medical School , Pecs , Hungary
| | - Farzaneh Sorond
- Department of Neurology, Northwestern University , Chicago, Illinois
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Vascular Cognitive Impairment Program, Department of Medical Physics and Informatics, University of Szeged , Szeged , Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
- Vascular Cognitive Impairment Program, Department of Medical Physics and Informatics, University of Szeged , Szeged , Hungary
- Semmelweis University, Department of Pulmonology , Budapest , Hungary
| |
Collapse
|
15
|
Csiszar A, Balasubramanian P, Tarantini S, Yabluchanskiy A, Zhang XA, Springo Z, Benbrook D, Sonntag WE, Ungvari Z. Chemically induced carcinogenesis in rodent models of aging: assessing organismal resilience to genotoxic stressors in geroscience research. GeroScience 2019; 41:209-227. [PMID: 31037472 DOI: 10.1007/s11357-019-00064-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/04/2019] [Indexed: 02/07/2023] Open
Abstract
There is significant overlap between the cellular and molecular mechanisms of aging and pathways contributing to carcinogenesis, including the role of genome maintenance pathways. In the field of geroscience analysis of novel genetic mouse models with either a shortened, or an extended, lifespan provides a unique opportunity to evaluate the synergistic roles of longevity assurance pathways in cancer resistance and regulation of lifespan and to develop novel targets for interventions that both delay aging and prevent carcinogenesis. There is a growing need for robust assays to assess the susceptibility of cancer in these models. The present review focuses on a well-characterized method frequently used in cancer research, which can be adapted to study resilience to genotoxic stress and susceptibility to genotoxic stress-induced carcinogenesis in geroscience research namely, chemical carcinogenesis induced by treatment with 7,12-dimethylbenz(a)anthracene (DMBA). Recent progress in understanding how longer-living mice may achieve resistance to chemical carcinogenesis and how these pathways are modulated by anti-aging interventions is reviewed. Strain-specific differences in sensitivity to DMBA-induced carcinogenesis are also explored and contrasted with mouse lifespan. The clinical relevance of inhibition of DMBA-induced carcinogenesis for the pathogenesis of mammary adenocarcinomas in older human subjects is discussed. Finally, the potential role of insulin-like growth factor-1 (IGF-1) in the regulation of pathways responsible for cellular resilience to DMBA-induced mutagenesis is discussed.
Collapse
Affiliation(s)
- Anna Csiszar
- Department of Geriatric Medicine Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA.,Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Priya Balasubramanian
- Department of Geriatric Medicine Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Stefano Tarantini
- Department of Geriatric Medicine Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Andriy Yabluchanskiy
- Department of Geriatric Medicine Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA.,Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Xin A Zhang
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zsolt Springo
- Department of Geriatric Medicine Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA.,Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Doris Benbrook
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - William E Sonntag
- Department of Geriatric Medicine Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA.,Department of Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zoltan Ungvari
- Department of Geriatric Medicine Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA. .,Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA. .,Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary. .,Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary. .,Department of Public Health, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
16
|
Szentes N, Tékus V, Mohos V, Borbély É, Helyes Z. Exploratory and locomotor activity, learning and memory functions in somatostatin receptor subtype 4 gene-deficient mice in relation to aging and sex. GeroScience 2019; 41:631-641. [PMID: 30903571 PMCID: PMC6885027 DOI: 10.1007/s11357-019-00059-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/08/2019] [Indexed: 02/06/2023] Open
Abstract
The inhibitory neuropeptide somatostatin regulates several functions in the nervous system including memory. Its concentrations decrease by age leading to functional alterations, but there are little known about the receptorial mechanism. We discovered that somatostatin receptor 4 (sst4) mediates analgesic, anti-depressant, and anti-inflammatory effects without endocrine actions, and it is a unique target for drug development. We investigated the exploratory and locomotor activities and learning and memory functions of male and female sst4gene-deficient mice compared with their wild-types (WT) at ages of 3, 12, 17 months in the Y-maze test, open field test (OFT), radial-arm maze (RAM) test and novel object recognition (NOR) test. Young sst4 gene-deficient females visited, repeated, and missed significantly less arms than the WTs in the RAM; males showed decreased exploration in the NOR. Young mice moved significantly more, spend longer time in OFT center, and visited more arms in the Y-maze than older ones. Young WT females spend significantly longer time in the OFT center, visited, missed and repeated more arms of the RAM than males. Old males found more rewards than females. Young males explored longer the novel object than young females and older males in the NOR; the recognition index was smaller in females. We conclude that aging and sex are important factors of behavioral parameters that should be focused on in such studies. Sst4 is likely to influence locomotion and exploratory behavior only in young mice, but not during normal aging, which is a beneficial feature of a good drug target focusing on the elderly.
Collapse
Affiliation(s)
- Nikolett Szentes
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, Szigeti u. 12, Pécs, H-7624, Hungary
| | - Valéria Tékus
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, Szigeti u. 12, Pécs, H-7624, Hungary
| | - Violetta Mohos
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
| | - Éva Borbély
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, Szigeti u. 12, Pécs, H-7624, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, Szigeti u. 12, Pécs, H-7624, Hungary. .,PharmInVivo Ltd., Pécs, Hungary.
| |
Collapse
|
17
|
Hascup ER, Broderick SO, Russell MK, Fang Y, Bartke A, Boger HA, Hascup KN. Diet-induced insulin resistance elevates hippocampal glutamate as well as VGLUT1 and GFAP expression in AβPP/PS1 mice. J Neurochem 2019; 148:219-237. [PMID: 30472734 DOI: 10.1111/jnc.14634] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 10/31/2018] [Accepted: 11/13/2018] [Indexed: 12/21/2022]
Abstract
The symptomologies of Alzheimer's disease (AD) develop over decades suggesting modifiable lifestyle factors may contribute to disease pathogenesis. In humans, hyperinsulinemia associated with type 2 diabetes mellitus increases the risk for developing AD and both diseases share similar age-related etiologies including amyloidogenesis. Since we have demonstrated that soluble Aβ42 elicits glutamate release, we wanted to understand how diet-induced insulin resistance alters hippocampal glutamate dynamics, which are important for memory formation and consolidation. Eight to twelve-week-old C57BL/6J and AβPP/PS1 mice were placed on either a low-fat diet or high-fat diet (HFD) for 8 months. A HFD led to significant weight increases as well as impaired insulin sensitivity, glucose tolerance, and learning in both C57BL/6J and AβPP/PS1 mice. AβPP/PS1 low-fat diet mice had elevated hippocampal basal as well as stimulus-evoked glutamate release that was further increased with consumption of a HFD. Immunohistochemistry indicated an increase in vesicular glutamate transporter 1 and glial fibrillary acidic protein density in hippocampal subregions corresponding with this elevated extracellular glutamate. While no differences in hippocampal plaque load were observed, the elevated astrogliotic response surrounding the plaques in AβPP/PS1 HFD mice may have been a compensatory mechanism to control plaque accumulation. These data support that AβPP/PS1 mice have chronically elevated extracellular glutamate that is exacerbated by a HFD and that modifiable lifestyle factors such as obesity-induced insulin resistance can contribute to AD pathogenesis. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* and for *Open Data* because it made the data publicly available. The data can be accessed at https://osf.io/5whvu (figures for data) and https://osf.io/gd5vf (materials and methods). The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/. Cover Image for this issue: doi: 10.1111/jnc.14490.
Collapse
Affiliation(s)
- Erin R Hascup
- Department of Neurology, Center for Alzheimer's Disease and Related Disorders, Neurosciences Institute, Springfield, Illinois, USA.,Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Sarah O Broderick
- Department of Neurology, Center for Alzheimer's Disease and Related Disorders, Neurosciences Institute, Springfield, Illinois, USA
| | - Mary K Russell
- Department of Neuroscience, Center on Aging, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Yimin Fang
- Division of Geriatric Research, Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Andrzej Bartke
- Division of Geriatric Research, Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Heather A Boger
- Department of Neuroscience, Center on Aging, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Kevin N Hascup
- Department of Neurology, Center for Alzheimer's Disease and Related Disorders, Neurosciences Institute, Springfield, Illinois, USA
| |
Collapse
|
18
|
Yabluchanskiy A, Ungvari Z, Csiszar A, Tarantini S. Advances and challenges in geroscience research: An update. Physiol Int 2018; 105:298-308. [PMID: 30587027 PMCID: PMC9341286 DOI: 10.1556/2060.105.2018.4.32] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Aging remains the most pervasive risk factor for a wide range of chronic diseases that afflict modern societies. In the United States alone, incidence of age-related diseases (e.g., cardiovascular disease, stroke, Alzheimer's disease, vascular cognitive impairment and dementia, cancer, hypertension, type-2 diabetes, chronic obstructive pulmonary disease, and osteoarthritis) is on the rise, posing an unsustainable socioeconomic burden even for the most developed countries. Tackling each and every age-related disease alone is proving to be costly and ineffective. The emerging field of geroscience has posed itself as an interdisciplinary approach that aims to understand the relationship between the biology of aging and the pathophysiology of chronic age-related diseases. According to the geroscience concept, aging is the single major risk factor that underlies several age-related chronic diseases, and manipulation of cellular and systemic aging processes can delay the manifestation and/or severity of these age-related chronic pathologies. The goal of this endeavor is to achieve health improvements by preventing/delaying the pathogenesis of several age-related diseases simultaneously in the elderly population by targeting key cellular and molecular processes of aging instead of managing diseases of aging as they arise individually. In this review, we discuss recent advances in the field of geroscience, highlighting their implications for potential future therapeutic targets and the associated scientific challenges and opportunities that lay ahead.
Collapse
Affiliation(s)
- A Yabluchanskiy
- 1 Vascular Cognitive Impairment and Neurodegeneration Program Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, OK, USA
- 2 Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma, USA
| | - Z Ungvari
- 1 Vascular Cognitive Impairment and Neurodegeneration Program Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, OK, USA
- 2 Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma, USA
- 3 Department of Medical Physics and Informatics, University of Szeged , Szeged, Hungary
- 4 Department of Pulmonology, Semmelweis University , Budapest, Hungary
| | - A Csiszar
- 1 Vascular Cognitive Impairment and Neurodegeneration Program Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, OK, USA
- 2 Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma, USA
- 3 Department of Medical Physics and Informatics, University of Szeged , Szeged, Hungary
| | - S Tarantini
- 1 Vascular Cognitive Impairment and Neurodegeneration Program Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, OK, USA
- 2 Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma, USA
| |
Collapse
|
19
|
Abstract
Dysregulation of neuropeptides may play an important role in aging-induced impairments. In the long list of neuropeptides, pituitary adenylate cyclase-activating polypeptide (PACAP) represents a highly effective cytoprotective peptide that provides an endogenous control against a variety of tissue-damaging stimuli. PACAP has neuro- and general cytoprotective effects due to anti-apoptotic, anti-inflammatory, and antioxidant actions. As PACAP is also a part of the endogenous protective machinery, it can be hypothesized that the decreased protective effects in lack of endogenous PACAP would accelerate age-related degeneration and PACAP knockout mice would display age-related degenerative signs earlier. Recent results support this hypothesis showing that PACAP deficiency mimics aspects of age-related pathophysiological changes including increased neuronal vulnerability and systemic degeneration accompanied by increased apoptosis, oxidative stress, and inflammation. Decrease in PACAP expression has been shown in different species from invertebrates to humans. PACAP-deficient mice display numerous pathological alterations mimicking early aging, such as retinal changes, corneal keratinization and blurring, and systemic amyloidosis. In the present review, we summarize these findings and propose that PACAP deficiency could be a good model of premature aging.
Collapse
|
20
|
Ungvari Z, Yabluchanskiy A, Tarantini S, Toth P, Kirkpatrick AC, Csiszar A, Prodan CI. Repeated Valsalva maneuvers promote symptomatic manifestations of cerebral microhemorrhages: implications for the pathogenesis of vascular cognitive impairment in older adults. GeroScience 2018; 40:485-496. [PMID: 30288646 DOI: 10.1007/s11357-018-0044-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 09/25/2018] [Indexed: 01/24/2023] Open
Abstract
Multifocal cerebral microhemorrhages (CMHs, also known as "cerebral microbleeds"), which are associated with rupture of small intracerebral vessels, have been recognized as an important cause for cognitive decline in older adults. Although recent studies demonstrate that CMHs are highly prevalent in patients 65 and older, many aspects of the pathogenesis and clinical significance of CMHs remain obscure. In this longitudinal observational study, a case of a 77-year-old man with multifocal CMHs is described, in whom the rupture of intracerebral vessels could be linked to repeatedly performing extended Valsalva maneuvers. This patient was initially seen with acute aphasia after performing a prolonged Valsalva maneuver during underwater swimming. T2-weighted magnetic resonance imaging revealed a left acute frontal intracerebral hemorrhage (ICH) with multiple CMHs. The aphasia was resolved and no cognitive impairment was present. Two years later, he developed unsteadiness and confusion after performing two prolonged Valsalva maneuvers during underwater swimming separated by about 12 days. Repeat brain imaging revealed an acute right and a subacute left ICH, with a marked interval increase in the number of CMHs. The patient also exhibited manifest memory loss after the second admission and was diagnosed with dementia. These observations suggest that prolonged Valsalva maneuver is potentially a common precipitating cause of both CMHs and symptomatic ICHs. The Valsalva maneuver both increases the systolic arterial pressure and gives rise to a venous pressure wave transmitted to the brain in the absence of the competent antireflux jugular vein valves. This pressure increase is superimposed on existing hypertension and/or increases in blood pressure due to exercise and increased venous return due to immersion of the body in water. We advocate that further studies are needed to distinguish between CMHs with arterial and venous origins and their potential to lead to ICH induced by Valsalva maneuver as well as to determine whether these lesions have a predilection for a particular location.
Collapse
Affiliation(s)
- Zoltan Ungvari
- Vascular Cognitive Impairment Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Institute for Translational Medicine, University of Pecs Medical School, Pecs, Hungary
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Toth
- Vascular Cognitive Impairment Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Institute for Translational Medicine, University of Pecs Medical School, Pecs, Hungary.,Cerebrovascular Laboratory, Department of Neurosurgery and Szentagothai Research Center, University of Pecs Medical School, Pecs, Hungary
| | - Angelia C Kirkpatrick
- Veterans Affairs Medical Center, Oklahoma City, OK, USA.,Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment Program, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Calin I Prodan
- Veterans Affairs Medical Center, Oklahoma City, OK, USA. .,Department of Neurology, University of Oklahoma Health Sciences Center, 920 S. L. Young Blvd Suite 2040, Oklahoma City, 73104, OK, USA.
| |
Collapse
|
21
|
Hook M, Roy S, Williams EG, Bou Sleiman M, Mozhui K, Nelson JF, Lu L, Auwerx J, Williams RW. Genetic cartography of longevity in humans and mice: Current landscape and horizons. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2718-2732. [PMID: 29410319 PMCID: PMC6066442 DOI: 10.1016/j.bbadis.2018.01.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/24/2018] [Accepted: 01/28/2018] [Indexed: 12/14/2022]
Abstract
Aging is a complex and highly variable process. Heritability of longevity among humans and other species is low, and this finding has given rise to the idea that it may be futile to search for DNA variants that modulate aging. We argue that the problem in mapping longevity genes is mainly one of low power and the genetic and environmental complexity of aging. In this review we highlight progress made in mapping genes and molecular networks associated with longevity, paying special attention to work in mice and humans. We summarize 40 years of linkage studies using murine cohorts and 15 years of studies in human populations that have exploited candidate gene and genome-wide association methods. A small but growing number of gene variants contribute to known longevity mechanisms, but a much larger set have unknown functions. We outline these and other challenges and suggest some possible solutions, including more intense collaboration between research communities that use model organisms and human cohorts. Once hundreds of gene variants have been linked to differences in longevity in mammals, it will become feasible to systematically explore gene-by-environmental interactions, dissect mechanisms with more assurance, and evaluate the roles of epistasis and epigenetics in aging. A deeper understanding of complex networks-genetic, cellular, physiological, and social-should position us well to improve healthspan.
Collapse
Affiliation(s)
- Michael Hook
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Suheeta Roy
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Evan G Williams
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich CH-8093, Switzerland
| | - Maroun Bou Sleiman
- Interfaculty Institute of Bioengineering, Laboratory of Integrative and Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Khyobeni Mozhui
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - James F Nelson
- Department of Cellular and Integrative Physiology and Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Johan Auwerx
- Interfaculty Institute of Bioengineering, Laboratory of Integrative and Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
22
|
Salmon AB, Dorigatti J, Huber HF, Li C, Nathanielsz PW. Maternal nutrient restriction in baboon programs later-life cellular growth and respiration of cultured skin fibroblasts: a potential model for the study of aging-programming interactions. GeroScience 2018; 40:269-278. [PMID: 29802507 PMCID: PMC6060193 DOI: 10.1007/s11357-018-0024-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/14/2018] [Indexed: 01/12/2023] Open
Abstract
Compelling data exist for programming of chronic later-life diseases and longevity by perinatal developmental programming challenges. Understanding mechanisms by which life course health trajectory and longevity are set is fundamental to understanding aging. Appropriate approaches are needed to determine programming effects on cellular function. We have developed a baboon model in which control mothers eat ad libitum while a second group eat 70% of the global diet fed controls, leading to male and female offspring intrauterine growth restriction (IUGR). We have shown that IUGR suffer from acceleration of several age-related physiological declines. Here, we report on a skin-derived fibroblast model with potential relevance for mechanistic studies on how IUGR impacts aging. Fibroblasts were cultured from the skin biopsies taken from adult baboons from control and IUGR cohorts. IUGR-derived fibroblasts grew in culture less well than controls and those derived from male, but not female, IUGR baboons had a significant reduction in maximum respiration rate compared to control-derived fibroblasts. We also show that relative levels of several mitochondrial protein subunits, including NDUFB8 and cytochrome c oxidase subunit IV, were reduced in IUGR-derived fibroblasts even after serial passaging in culture. The lower levels of electron transport system components provide potential mechanisms for accelerated life course aging in the setting of programmed IUGR. This observation fits with the greater sensitivity of males compared with females to many, but not all, outcomes in response to programming challenges. These approaches will be powerful in the determination of programming-aging interactions.
Collapse
Affiliation(s)
- Adam B Salmon
- Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, USA.
- The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - Jonathan Dorigatti
- The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Hillary F Huber
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Cun Li
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Peter W Nathanielsz
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| |
Collapse
|