1
|
Watkins BA, Mitchell AE, Shin AC, Dehghani F, Shen CL. Dietary flavonoid actions on senescence, aging, and applications for health. J Nutr Biochem 2025; 139:109862. [PMID: 39929283 DOI: 10.1016/j.jnutbio.2025.109862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/04/2025] [Accepted: 02/06/2025] [Indexed: 03/18/2025]
Abstract
Fruits and vegetables contain biologically active phenolic compounds that show mitigating effects against free radical damage and inflammation. The unique properties of phenolic compounds are protection against oxidative stress, and inception and potentiating of inflammation in the body. Aging is manifest with changes in epigenetic modifications and as with living systems undergo entropy. The gradual decline of body functions and in many cases with aging the cellular processes of senescence are contributors to age-related diseases. Herein the focus is on phenolic compounds as a diet approach to delay the negative consequences of aging. The actions of phenolic compounds on the biology of aging and senescence are presented. The phenolic compounds called flavonoids which are found in many fruits are potential antisenescence factors that benefit health by reducing damage to DNA and the senescence-associated phenotypic cell changes in healthy cells during aging. Flavonoids are proposed to delay and palliate aging where senescence is involved. The dietary sources of natural phenolic compounds afford protection in the aging process and include as some examples naringenin, hesperidin, quercetin, kaempferol, luteolin, genistein, epigallocatechin gallate, and resveratrol. Many of these compounds possess antisenescence effects. The purpose of the review is to discuss where food flavonoids interact with the targets of senescence and how these compounds can attenuate aging-related events. The goal is to provide greater insight into dietary flavonoids and how they improve health and lower the consequences of aging. A novel aspect of this review is the application of flavonoids to neuroprotective effects in brain to reduce pain and improve health with aging.
Collapse
Affiliation(s)
- Bruce A Watkins
- Department of Nutrition, University of California, Davis, Davis CA.
| | - Alyson E Mitchell
- Department of Food Science and Technology, University of California, Davis, Davis CA
| | - Andrew C Shin
- Department of Nutritional Sciences, Neurobiology of Nutrition Laboratory, College of Health & Human Sciences, Texas Tech University, Lubbock, TX
| | - Fereshteh Dehghani
- Department of Nutritional Sciences, Neurobiology of Nutrition Laboratory, College of Health & Human Sciences, Texas Tech University, Lubbock, TX
| | - Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430; Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430
| |
Collapse
|
2
|
Li AP, Li D, Tan X, Xu R, Mao LX, Kang JJ, Li SH, Liu Y. Crocin extends lifespan by mitigating oxidative stress and regulating lipid metabolism through the DAF-16/FOXO pathway. Food Funct 2025. [PMID: 40260541 DOI: 10.1039/d5fo01157d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Aging represents a significant global challenge characterized by persistent oxidative stress and dysregulated lipid metabolism. Crocin, the primary bioactive constituent of saffron (Crocus sativus L.), is widely utilized as a natural food colorant and exhibits potent anti-inflammatory and antioxidant properties. Previous studies have demonstrated crocin's antioxidative, neuroprotective and memory-enhancing effects in aged rats; however, its direct impact on aging and the underlying mechanisms remain unexplored. In this study, we demonstrated that crocin treatment extended lifespan, enhanced survival under heat and juglone-induced oxidative stress, and reduced lipofuscin accumulation in the model organism C. elegans. Mechanistically, crocin activated DAF-16, the C. elegans homolog of human FOXO, resulting in the upregulation of key antioxidant genes (gst-4, sod-3 and hsp-16.2). Notably, the lifespan-extension effect of crocin was abolished in a daf-16 mutant, and its antioxidant effects were significantly attenuated in daf-16 RNAi experiments conducted in N2, CL2166, CF1553 and TJ375 strains. Furthermore, crocin specifically reduced fat accumulation, and upregulated the expression of genes involved in lipid mobilization (lipl-3, lipl-4, atgl-1 and acs-2) and unsaturated fatty acid synthesis (fat-6 and elo-2) in aged nematodes. GC-MS analysis further demonstrated that crocin treatment elevated the levels of unsaturated fatty acids (C18:1n9, C20:4n-6, C20:4n-3 and C20:5n-3), an effect that was completely abolished under daf-16 knockdown conditions. Collectively, these findings suggest that crocin promotes longevity in C. elegans by mitigating oxidative stress and modulating lipid metabolism through the DAF-16/FOXO pathway. These results highlight the potential of crocin as a promising strategy for treating aging and age-related diseases.
Collapse
Affiliation(s)
- Ai-Pei Li
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, China
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China.
| | - Xin Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China.
| | - Rui Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China.
| | - Lin-Xi Mao
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China.
| | - Juan-Juan Kang
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China.
| | - Sheng-Hong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China.
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| | - Yan Liu
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China.
| |
Collapse
|
3
|
Tatar M, Zheng W, Yadav S, Yamamoto R, Curtis-Joseph N, Li S, Wang L, Parkhitko AA. Mutation of an insulin-sensitive Drosophila insulin-like receptor mutant requires methionine metabolism reprogramming to extend lifespan. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640731. [PMID: 40093182 PMCID: PMC11908128 DOI: 10.1101/2025.02.28.640731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Insulin/insulin growth factor signaling is a conserved pathway that regulates lifespan across many species. Multiple mechanisms are proposed for how this altered signaling slows aging. To elaborate these causes, we recently developed a series of Drosophila insulin-like receptor (dInr) mutants with single amino acid substitutions that extend lifespan but differentially affect insulin sensitivity, growth and reproduction. Transheterozygotes of canonical dInr mutants (Type I) extend longevity and are insulin-resistant, small and weakly fecund. In contrast, a dominant mutation (dInr 353, Type II) within the Kinase Insert Domain (KID) robustly extends longevity but is insulin-sensitive, full-sized, and highly fecund. We applied transcriptome and metabolome analyses to explore how dInr 353 slows aging without insulin resistance. Type I and II mutants overlap in many pathways but also produce distinct transcriptomic profiles that include differences in innate immune and reproductive functions. In metabolomic analyses, the KID mutant dInr 353 reprograms methionine metabolism in a way that phenocopies dietary methionine restriction, in contrast to canonical mutants which are characterized by upregulation of the transsulfuration pathway. Because abrogation of S-adenosylhomocysteine hydrolase blocks the longevity benefit conferred by dInr 353, we conclude the methionine cycle reprogramming of Type II is sufficient to slow aging. Metabolomic analysis further revealed the Type II mutant is metabolically flexible: unlike aged wildtype, aged dInr 353 adults can reroute methionine toward the transsulfuration pathway, while Type I mutant flies upregulate the trassulfuration pathway continuously from young age. Altered insulin/insulin growth factor signaling has the potential to slow aging without the complications of insulin resistance by modulating methionine cycle dynamics.
Collapse
Affiliation(s)
- Marc Tatar
- Department of Ecology, Evolution and Organismal Biology, and The Center for the Biology of Aging, Brown University, Providence, RI, USA
| | - Wenjing Zheng
- Department of Ecology, Evolution and Organismal Biology, and The Center for the Biology of Aging, Brown University, Providence, RI, USA
| | - Shweta Yadav
- Aging Institute of UPMC and the University of Pittsburgh, Pittsburgh, PA, USA
| | - Rochele Yamamoto
- Department of Ecology, Evolution and Organismal Biology, and The Center for the Biology of Aging, Brown University, Providence, RI, USA
| | - Noelle Curtis-Joseph
- Department of Ecology, Evolution and Organismal Biology, and The Center for the Biology of Aging, Brown University, Providence, RI, USA
| | - Shengxi Li
- State Key Laboratory of Common Mechanism Research for Major Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Wang
- State Key Laboratory of Common Mechanism Research for Major Disease, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Andrey A Parkhitko
- Aging Institute of UPMC and the University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
4
|
Zhao Z, Guo A, Zou D, Li Z, Wei X. Efficient production of spermidine from Bacillus amyloliquefaciens by enhancing synthesis pathway, blocking degradation pathway and increasing precursor supply. J Biotechnol 2025; 398:87-96. [PMID: 39647709 DOI: 10.1016/j.jbiotec.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/11/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
Spermidine has broad application potential in food, medicine and other fields. In this study, a novel Bacillus amyloliquefaciens cell factory was constructed for production of spermidine from renewablebiomass resources. Firstly, the speB gene was found to be optimal for synthesis of spermidine, and the function of SpeB was explained by amino acid sequence analysis and molecular docking. By replacing the native promoter of the speEB operon with the P43, the synthesis of spermidine was significantly enhanced in B. amyloliquefaciens HSPM1-P43speEB. After knockout of the genes yobN and bltD associated with spermidine degradation, the spermidine titer of the strain HSPM2 was further improved to 115.96 mg/L, increased by 108 % compared to HSPM1-P43speEB. Subsequently, the titer of spermidine was further increased to 277.47 mg/L through enhancing the supply of the precursor methionine by overexpression of speD. Finally, the renewable biomass resources, xylose and feather meal were optimized to produce spermidine, and the maximum titer is up to 588.10 mg/L after optimization. In conclusion, an efficient spermidine producing B. amyloliquefaciens was constructed through combinatorial metabolic engineering strategies, and the sustainable production of spermidine was achieved using the biomass resources of xylose and feather meal.
Collapse
Affiliation(s)
- Ziyue Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ailing Guo
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Dian Zou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhou Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xuetuan Wei
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
5
|
Satarker S, Wilson J, Kolathur KK, Mudgal J, Lewis SA, Arora D, Nampoothiri M. Spermidine as an epigenetic regulator of autophagy in neurodegenerative disorders. Eur J Pharmacol 2024; 979:176823. [PMID: 39032763 DOI: 10.1016/j.ejphar.2024.176823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Autophagy is an abnormal protein degradation and recycling process that is impaired in various neurological diseases like Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease. Spermidine is a natural polyamine found in various plant- and meat-based diets that can induce autophagy, and is decreased in various neurodegenerative diseases. It acts on epigenetic enzymes like E1A-binding protein p300, HAT enzymes like Iki3p and Sas3p, and α-tubulin acetyltransferase 1 that modulate autophagy. Histone modifications like acetylation, phosphorylation, and methylation could influence autophagy. Autophagy is epigenetically regulated in various neurodegenerative disorders with many epigenetic enzymes and miRNAs. Polyamine regulation plays an essential role in the disease pathogenesis of AD and PD. Therefore, in this review, we discuss various enzymes and miRNAs involved in the epigenetic regulation of autophagy in neurodegenerative disorders and the role of spermidine as an autophagy enhancer. The alterations in spermidine-mediated regulation of Beclin-1, LC3-II, and p62 genes in AD and other PD-associated enzymes could impact the process of autophagy in these neurodegenerative diseases. With the ever-growing data and such promising effects of spermidine in autophagy, we feel it could be a promising target in this area and worth further detailed studies.
Collapse
Affiliation(s)
- Sairaj Satarker
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Joel Wilson
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Kiran Kumar Kolathur
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shaila A Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Devinder Arora
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
6
|
Panchin AY, Ogmen A, Blagodatski AS, Egorova A, Batin M, Glinin T. Targeting multiple hallmarks of mammalian aging with combinations of interventions. Aging (Albany NY) 2024; 16:12073-12100. [PMID: 39159129 PMCID: PMC11386927 DOI: 10.18632/aging.206078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 06/28/2024] [Indexed: 08/21/2024]
Abstract
Aging is currently viewed as a result of multiple biological processes that manifest themselves independently, reinforce each other and in their totality lead to the aged phenotype. Genetic and pharmaceutical approaches targeting specific underlying causes of aging have been used to extend the lifespan and healthspan of model organisms ranging from yeast to mammals. However, most interventions display only a modest benefit. This outcome is to be expected if we consider that even if one aging process is successfully treated, other aging pathways may remain intact. Hence solving the problem of aging may require targeting not one but many of its underlying causes at once. Here we review the challenges and successes of combination therapies aimed at increasing the lifespan of mammals and propose novel directions for their development. We conclude that both additive and synergistic effects on mammalian lifespan can be achieved by combining interventions that target the same or different hallmarks of aging. However, the number of studies in which multiple hallmarks were targeted simultaneously is surprisingly limited. We argue that this approach is as promising as it is understudied.
Collapse
Affiliation(s)
- Alexander Y Panchin
- Sector of Molecular Evolution, Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127051, Russia
| | - Anna Ogmen
- Open Longevity, Sherman Oaks, CA 91403, USA
- Department of Molecular Biology and Genetics, Bogazici University, Istanbul 34342, Turkey
| | - Artem S Blagodatski
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | | | | | - Timofey Glinin
- Open Longevity, Sherman Oaks, CA 91403, USA
- Department of Surgery, Endocrine Neoplasia Laboratory, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
7
|
Ajayi AF, Oyovwi MO, Olatinwo G, Phillips AO. Unfolding the complexity of epigenetics in male reproductive aging: a review of therapeutic implications. Mol Biol Rep 2024; 51:881. [PMID: 39085654 DOI: 10.1007/s11033-024-09823-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
INTRODUCTION Epigenetics studies gene expression changes influenced by environmental and lifestyle factors, linked to health conditions like reproductive aging. Male reproductive aging causes sperm decline, conceiving difficulties, and increased genetic abnormalities. Recent research focuses on epigenetics' role in male reproductive aging. OBJECTIVES This review explores epigenetics and male reproductive aging, focusing on sperm quality, environmental and lifestyle factors' impact, and potential health implications for offspring. METHODS An extensive search of the literature was performed applying multiple databases, such as PubMed and Google Scholar. The search phrases employed were: epigenetics, male reproductive ageing, sperm quality, sperm quantity, environmental influences, lifestyle factors, and offspring health. This review only included articles that were published in English and had undergone a peer-review process. The literature evaluation uncovered that epigenetic alterations have a substantial influence on the process of male reproductive ageing. RESULT Research has demonstrated that variations in the quality and quantity of sperm that occur with ageing are linked to adjustments in DNA methylation and histone. Moreover, there is evidence linking epigenetic alterations in sperm to environmental and lifestyle factors, including smoking, alcohol intake, and exposure to contaminants. These alterations can have enduring impacts on the well-being of descendants, since they can shape the activation of genes and potentially elevate the likelihood of genetic disorders. In conclusion, epigenetics significantly influences male reproductive aging, with sperm quality and quantity influenced by environmental and lifestyle factors. CONCLUSION This underscores the need for comprehensive approaches to managing male reproductive health, and underscores the importance of considering epigenetics in diagnosis and treatment.
Collapse
Affiliation(s)
- Ayodeji Folorunsho Ajayi
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Anchor Biomed Research Institute, Ogbomoso, Oyo State, Nigeria
- Department of Physiology, Adeleke University, Ede, Osun State, Nigeria
| | | | - Goodness Olatinwo
- Department of Physiology, School of Basic Medical Sciences, Babcock University, Ilishan Remo, Ogun State, Nigeria
| | - Akano Oyedayo Phillips
- Department of Physiology, School of Basic Medical Sciences, Babcock University, Ilishan Remo, Ogun State, Nigeria
| |
Collapse
|
8
|
Ohtsuka H, Shimasaki T, Aiba H. Low-Molecular Weight Compounds that Extend the Chronological Lifespan of Yeasts, Saccharomyces cerevisiae, and Schizosaccharomyces pombe. Adv Biol (Weinh) 2024; 8:e2400138. [PMID: 38616173 DOI: 10.1002/adbi.202400138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/04/2024] [Indexed: 04/16/2024]
Abstract
Yeast is an excellent model organism for research for regulating aging and lifespan, and the studies have made many contributions to date, including identifying various factors and signaling pathways related to aging and lifespan. More than 20 years have passed since molecular biological perspectives are adopted in this research field, and intracellular factors and signal pathways that control aging and lifespan have evolutionarily conserved from yeast to mammals. Furthermore, these findings have been applied to control the aging and lifespan of various model organisms by adjustment of the nutritional environment, genetic manipulation, and drug treatment using low-molecular weight compounds. Among these, drug treatment is easier than the other methods, and research into drugs that regulate aging and lifespan is consequently expected to become more active. Chronological lifespan, a definition of yeast lifespan, refers to the survival period of a cell population under nondividing conditions. Herein, low-molecular weight compounds are summarized that extend the chronological lifespan of Saccharomyces cerevisiae and Schizosaccharomyces pombe, along with their intracellular functions. The low-molecular weight compounds are also discussed that extend the lifespan of other model organisms. Compounds that have so far only been studied in yeast may soon extend lifespan in other organisms.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
9
|
Wang X, Ma L, Jiang S, Wen J, Yan Z, Tian L, Deng S, Huang B, Stambler I, Caruso C, Min KJ, Su H, Jin K, Mao J, Wu X, Han Q, Zhao RC. Expert Consensus on Prevention and Treatment of Aging-Related Gonadal Dysfunction. Aging Dis 2024; 16:971-979. [PMID: 38739936 PMCID: PMC11964422 DOI: 10.14336/ad.2024.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/10/2024] [Indexed: 05/16/2024] Open
Abstract
Aging-related hypogonadism involves complex mechanisms in humans, predominantly relating to the decline of multiple hormones and senile gonads. Late-onset hypogonadism (LOH) and erectile dysfunction (ED) are the main manifestations in men, while premature ovarian insufficiency (POI) and menopause are the main forms in women. Anti-aging measures include lifestyle modification and resistance training, hormonal supplementation, stem cell therapy, metformin, and rapamycin. In this expert consensus, the mechanisms, efficacy, and side effects of stem cell therapy on aging gonadal function are reviewed. Furthermore, various methods of stem cell therapy, administered intravenously, intracavernously, and intra-ovarially, are exemplified in detail. More clinical trials on aging-related gonadal dysfunction are required to solidify the foundation of this topic.
Collapse
Affiliation(s)
- Xi Wang
- Peking Union Medical College Hospital, Beijing, China.
- Growth and Development and Gonadal Diseases Committee of Chines Aging Well Association, China.
| | - Li Ma
- Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Wulumuqi, China.
- Growth and Development and Gonadal Diseases Committee of Chines Aging Well Association, China.
| | - Sheng Jiang
- The First Affiliated Hospital of Xinjiang Medical University, Wulumuqi, China.
- Growth and Development and Gonadal Diseases Committee of Chines Aging Well Association, China.
| | - Junping Wen
- Fujian Provincial Hospital, Fuzhou, China.
- Growth and Development and Gonadal Diseases Committee of Chines Aging Well Association, China.
| | - Zhaoli Yan
- Affiliated Hospital of Inner Mongolia Medical University, Huhehaote 010000, China.
- Growth and Development and Gonadal Diseases Committee of Chines Aging Well Association, China.
| | - Long Tian
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
- Growth and Development and Gonadal Diseases Committee of Chines Aging Well Association, China.
| | - Shan Deng
- Peking Union Medical College Hospital, Beijing, China.
- Growth and Development and Gonadal Diseases Committee of Chines Aging Well Association, China.
| | - Boxian Huang
- The affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215000, China.
| | - Ilia Stambler
- Department of Science, Technology and Society, Bar-Ilan University, Ramat Gan, Israel.
- International Society on Aging and Disease, Bryan, TX, USA.
| | - Calogero Caruso
- International Society on Aging and Disease, Bryan, TX, USA.
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy.
| | - Kyung-Jin Min
- International Society on Aging and Disease, Bryan, TX, USA.
- Department of Biological Sciences, Inha University, Incheon, Republic of Korea.
| | - Huanxing Su
- International Society on Aging and Disease, Bryan, TX, USA.
- Institute of Chinese Medical Science, University of Macau, Taipa, Macau, China.
| | - Kunlin Jin
- International Society on Aging and Disease, Bryan, TX, USA.
- University of North Texas Health Science Center, Bryan, TX, USA.
| | - Jiangfeng Mao
- Peking Union Medical College Hospital, Beijing, China.
- Growth and Development and Gonadal Diseases Committee of Chines Aging Well Association, China.
| | - Xueyan Wu
- Peking Union Medical College Hospital, Beijing, China.
| | - Qin Han
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.
| | - Robert Chunhua Zhao
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.
- International Society on Aging and Disease, Bryan, TX, USA.
- School of Life Sciences, Shanghai University, shanghai, China.
| |
Collapse
|
10
|
Youssef MAM, Mohamed TM, Bakry AA, El-Keiy MM. Synergistic effect of spermidine and ciprofloxacin against Alzheimer's disease in male rat via ferroptosis modulation. Int J Biol Macromol 2024; 263:130387. [PMID: 38401586 DOI: 10.1016/j.ijbiomac.2024.130387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/04/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
Alzheimer's disease (AD) is a prevalent form of neurodegenerative disease with a complex pathophysiology that remains not fully understood, and the exact mechanism of neurodegeneration is uncertain. Ferroptosis has been linked to the progression of degenerative diseases observed in AD models. The present study is designed to investigate the protective effects of spermidine, a potent antioxidant and iron chelator, and its synergistic interactions with ciprofloxacin, another iron chelator, in modulating ferroptosis and mitigating AD progression in rats. This study investigated AD-related biomarkers like neurotoxic amyloid beta (Aβ), arginase I, and serotonin. Spermidine demonstrated an anti-ferroptotic effect in the AD model, evident from the modulation of ferroptosis parameters such as hippocampus iron levels, reduced protein expression of transferrin receptor 1 (TFR1), and arachidonate 15-lipoxygenase (ALOX15). Additionally, the administration of spermidine led to a significant increase in protein expression of phosphorylated nuclear factor erythroid 2-related factor 2 (p-Nrf2) and upregulation of Cystine/glutamate transporter (SLC7A11) gene expression. Moreover, spermidine notably decreased p53 protein levels, acrolein, and gene expression of spermidine/spermine N1-acetyltransferase 1 (SAT1). Overall, our findings suggest that spermidine and/or ciprofloxacin may offer potential benefits against AD by modulating ferroptosis. Furthermore, spermidine enhanced the antioxidant efficacy of ciprofloxacin and reduced its toxic effects.
Collapse
Affiliation(s)
| | - Tarek M Mohamed
- Biochemistry Division, Chemistry Dept., Faculty of Science, Tanta University, Tanta, Egypt
| | - Azza A Bakry
- Food Technology Research Institute, Agricultural Research Centre, Giza, Egypt
| | - Mai M El-Keiy
- Biochemistry Division, Chemistry Dept., Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
11
|
Srivastava V, Gross E. Mitophagy-promoting agents and their ability to promote healthy-aging. Biochem Soc Trans 2023; 51:1811-1846. [PMID: 37650304 PMCID: PMC10657188 DOI: 10.1042/bst20221363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023]
Abstract
The removal of damaged mitochondrial components through a process called mitochondrial autophagy (mitophagy) is essential for the proper function of the mitochondrial network. Hence, mitophagy is vital for the health of all aerobic animals, including humans. Unfortunately, mitophagy declines with age. Many age-associated diseases, including Alzheimer's and Parkinson's, are characterized by the accumulation of damaged mitochondria and oxidative damage. Therefore, activating the mitophagy process with small molecules is an emerging strategy for treating multiple aging diseases. Recent studies have identified natural and synthetic compounds that promote mitophagy and lifespan. This article aims to summarize the existing knowledge about these substances. For readers' convenience, the knowledge is presented in a table that indicates the chemical data of each substance and its effect on lifespan. The impact on healthspan and the molecular mechanism is reported if known. The article explores the potential of utilizing a combination of mitophagy-inducing drugs within a therapeutic framework and addresses the associated challenges of this strategy. Finally, we discuss the process that balances mitophagy, i.e. mitochondrial biogenesis. In this process, new mitochondrial components are generated to replace the ones cleared by mitophagy. Furthermore, some mitophagy-inducing substances activate biogenesis (e.g. resveratrol and metformin). Finally, we discuss the possibility of combining mitophagy and biogenesis enhancers for future treatment. In conclusion, this article provides an up-to-date source of information about natural and synthetic substances that activate mitophagy and, hopefully, stimulates new hypotheses and studies that promote healthy human aging worldwide.
Collapse
Affiliation(s)
- Vijigisha Srivastava
- Faculty of Medicine, IMRIC Department of Biochemistry and Molecular Biology, The Hebrew University of Jerusalem, PO Box 12271, Jerusalem, Israel
| | - Einav Gross
- Faculty of Medicine, IMRIC Department of Biochemistry and Molecular Biology, The Hebrew University of Jerusalem, PO Box 12271, Jerusalem, Israel
| |
Collapse
|
12
|
Sharma A, Singh AK. Molecular mechanism of caloric restriction mimetics-mediated neuroprotection of age-related neurodegenerative diseases: an emerging therapeutic approach. Biogerontology 2023; 24:679-708. [PMID: 37428308 DOI: 10.1007/s10522-023-10045-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/10/2023] [Indexed: 07/11/2023]
Abstract
Aging-induced neurodegenerative diseases (NDs) are significantly increasing health problem worldwide. It has been well documented that oxidative stress is one of the potential causes of aging and age-related NDs. There are no drugs for the treatment of NDs, therefore there is an immediate necessity for the development of strategies/treatments either to prevent or cure age-related NDs. Caloric restriction (CR) and intermittent fasting have been considered as effective strategies in increasing the healthspan and lifespan, but it is difficult to adhere to these routines strictly, which has led to the development of calorie restriction mimetics (CRMs). CRMs are natural compounds that provide similar molecular and biochemical effects of CR, and activate autophagy process. CRMs have been reported to regulate redox signaling by enhancing the antioxidant defense systems through activation of the Nrf2 pathway, and inhibiting ROS generation through attenuation of mitochondrial dysfunction. Moreover, CRMs also regulate redox-sensitive signaling pathways such as the PI3K/Akt and MAPK pathways to promote neuronal cell survival. Here, we discuss the neuroprotective effects of various CRMs at molecular and cellular levels during aging of the brain. The CRMs are envisaged to become a cornerstone of the pharmaceutical arsenal against aging and age-related pathologies.
Collapse
Affiliation(s)
- Apoorv Sharma
- Amity Institute of Neuropsychology and Neurosciences, Amity University Uttar Pradesh, Noida, 201313, India
| | - Abhishek Kumar Singh
- Amity Institute of Neuropsychology and Neurosciences, Amity University Uttar Pradesh, Noida, 201313, India.
| |
Collapse
|
13
|
Huang H, Zhang W, Su J, Zhou B, Han Q. Spermidine Retarded the Senescence of Multipotent Mesenchymal Stromal Cells In Vitro and In Vivo through SIRT3-Mediated Antioxidation. Stem Cells Int 2023; 2023:9672658. [PMID: 37234959 PMCID: PMC10208764 DOI: 10.1155/2023/9672658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 04/18/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) expand in vitro and undergo replicative senescence, thereby restricting their clinical utilization. Thus, an effective strategy is required to impede MSC senescence. Since spermidine (SPD) supplementation can prolong the lifespan of yeast by inhibiting oxidative stress, spermidine is a potential option for delaying MSC senescence. In this study, to test our hypothesis, we first isolated primary human umbilical cord mesenchymal stem cells (hUCMSCs). Subsequently, the appropriate SPD dose was administered during continuous cell cultivation. Next, we evaluated the antisenescence effects by SA-β-gal staining, Ki67 expression, reactive oxygen species (ROS) levels, adipogenic or osteogenic ability, senescence-associated markers, and DNA damage markers. The results revealed that early SPD intervention significantly delays the replicative senescence of hUCMSCs and constrains premature H2O2-induced senescence. Additionally, by silencing SIRT3, the SPD-mediated antisenescence effects disappear, further demonstrating that SIRT3 is necessary for SPD to exert its antisenescence effects on hUCMSCs. Besides, the findings of this study also suggest that SPD in vivo protects MSCs against oxidative stress and delays cell senescence. Thus, MSCs maintain the ability to proliferate and differentiate efficiently in vitro and in vivo, which reflects the potential clinical utilization of MSCs in the future.
Collapse
Affiliation(s)
- Hua Huang
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
- The Center of Reproductive Medicine, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Wen Zhang
- Department of General Medicine, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Junjie Su
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Bisheng Zhou
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Qingjiang Han
- Department of Urology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| |
Collapse
|
14
|
González-Rodríguez P, Füllgrabe J, Joseph B. The hunger strikes back: an epigenetic memory for autophagy. Cell Death Differ 2023:10.1038/s41418-023-01159-4. [PMID: 37031275 DOI: 10.1038/s41418-023-01159-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/10/2023] Open
Abstract
Historical and demographical human cohorts of populations exposed to famine, as well as animal studies, revealed that exposure to food deprivation is associated to lasting health-related effects for the exposed individuals, as well as transgenerational effects in their offspring that affect their diseases' risk and overall longevity. Autophagy, an evolutionary conserved catabolic process, serves as cellular response to cope with nutrient starvation, allowing the mobilization of an internal source of stored nutrients and the production of energy. We review the evidence obtained in multiple model organisms that support the idea that autophagy induction, including through dietary regimes based on reduced food intake, is in fact associated to improved health span and extended lifespan. Thereafter, we expose autophagy-induced chromatin remodeling, such as DNA methylation and histone posttranslational modifications that are known heritable epigenetic marks, as a plausible mechanism for transgenerational epigenetic inheritance of hunger.
Collapse
Affiliation(s)
- Patricia González-Rodríguez
- Division of Biochemistry, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jens Füllgrabe
- Cambridge Epigenetix Ltd, The Trinity Building, Chesterford Research Park, Cambridge, UK
| | - Bertrand Joseph
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
15
|
Zhang G, Liu H, Xue T, Kong X, Tian D, Luo L, Yang Y, Xu K, Wei Y, Zhuang Z. Ribavirin extends the lifespan of Caenorhabditis elegans through AMPK-TOR Signaling. Eur J Pharmacol 2023; 946:175548. [PMID: 36706801 DOI: 10.1016/j.ejphar.2023.175548] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
Aging is a process accompanied by widespread degenerative changes which are a major cause of human disease and disability. One goal of aging research is to develop interventions or drugs that can extend organism lifespan and treat age-related diseases. Here, we report the identification of a broad spectrum anti-viral agent, ribavirin, as a potential pharmacological aging intervention. Ribavirin extended the lifespan and healthspan of Caenorhabditis elegans by inhibiting Target of Rapamycin (TOR) signaling and activating AMP-activated protein kinase (AMPK). Moreover, our data indicate that ribavirin activated AMPK by reducing the levels of adenosine triphosphate (ATP) and lysosomal v-ATPase-Ragulator-AXIN Complex. Thus, our studies successfully identify ribavirin as a potential anti-aging drug, and indicate that its anti-aging effect is mediated via AMPK-TOR signaling.
Collapse
Affiliation(s)
- Ganlan Zhang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, 213164, China
| | - Hui Liu
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, 213164, China
| | - Ting Xue
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, 213164, China
| | - Xiangming Kong
- Changzhou Railway Higher Vocational and Technical School, Changzhou, 213011, China
| | - Dongmei Tian
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, 213164, China
| | - Libo Luo
- Changzhou Traditional Chinese Medicine Hospital, Changzhou, 213004, China
| | - Yanhua Yang
- Changzhou No.7 People's Hospital, Changzhou, 213011, China
| | - Keqing Xu
- Changzhou No.7 People's Hospital, Changzhou, 213011, China
| | - Youheng Wei
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Ziheng Zhuang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, 213164, China; Changzhou Traditional Chinese Medicine Hospital, Changzhou, 213004, China.
| |
Collapse
|
16
|
Chen JC, Wang R, Wei CC. Anti-aging effects of dietary phytochemicals: From Caenorhabditis elegans, Drosophila melanogaster, rodents to clinical studies. Crit Rev Food Sci Nutr 2023; 64:5958-5983. [PMID: 36597655 DOI: 10.1080/10408398.2022.2160961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Anti-aging research has become critical since the elderly population is increasing dramatically in this era. With the establishment of frailty phenotype and frailty index, the importance of anti-frailty research is concurrently enlightened. The application of natural phytochemicals against aging or frailty is always intriguing, and abundant related studies have been published. Various models are designed for biological research, and each model has its strength and weakness in deciphering the complex aging mechanisms. In this article, we attempt to show the potential of Caenorhabditis elegans in the study of phytochemicals' effects on anti-aging by comparing it to other animal models. In this review, the lifespan extension and anti-aging effects are demonstrated by various physical, cellular, or molecular biomarkers of dietary phytochemicals, including resveratrol, curcumin, urolithin A, sesamin, fisetin, quercetin, epigallocatechin-3-gallate, epicatechin, spermidine, sulforaphane, along with extracts of broccoli, cocoa, and blueberry. Meanwhile, the frequency of phytochemicals and models studied or presented in publications since 2010 were analyzed, and the most commonly mentioned animal models were rats, mice, and the nematode C. elegans. This up-to-date summary of the anti-aging effect of certain phytochemicals has demonstrated powerful potential for anti-aging or anti-frailty in the human population.
Collapse
Affiliation(s)
- Ju-Chi Chen
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Reuben Wang
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei, Taiwan
- Master of Public Health Program, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Chia-Cheng Wei
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
17
|
Therapeutic Effect of Rapamycin on TDP-43-Related Pathogenesis in Ischemic Stroke. Int J Mol Sci 2022; 24:ijms24010676. [PMID: 36614118 PMCID: PMC9820757 DOI: 10.3390/ijms24010676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 01/03/2023] Open
Abstract
Stroke is a major cause of death and disability across the world, and its detrimental impact should not be underestimated. Therapies are available and effective for ischemic stroke (e.g., thrombolytic recanalization and mechanical thrombectomy); however, there are limitations to therapeutic interventions. Recanalization therapy has developed dramatically, while the use of adjunct neuroprotective agents as complementary therapies remains deficient. Pathological TAR DNA-binding protein (TDP-43) has been identified as a major component of insoluble aggregates in numerous neurodegenerative pathologies, including ALS, FTLD and Alzheimer's disease. Here, we show that increased pathological TDP-43 fractions accompanied by impaired mitochondrial function and increased gliosis were observed in an ischemic stroke rat model, suggesting a pathological role of TDP-43 in ischemic stroke. In ischemic rats administered rapamycin, the insoluble TDP-43 fraction was significantly decreased in the ischemic cortex region, accompanied by a recovery of mitochondrial function, the attenuation of cellular apoptosis, a reduction in infarct areas and improvements in motor defects. Accordingly, our results suggest that rapamycin provides neuroprotective benefits not only by ameliorating pathological TDP-43 levels, but also by reversing mitochondrial function and attenuating cell apoptosis in ischemic stroke.
Collapse
|
18
|
Hofer SJ, Simon AK, Bergmann M, Eisenberg T, Kroemer G, Madeo F. Mechanisms of spermidine-induced autophagy and geroprotection. NATURE AGING 2022; 2:1112-1129. [PMID: 37118547 DOI: 10.1038/s43587-022-00322-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/28/2022] [Indexed: 04/30/2023]
Abstract
Aging involves the systemic deterioration of all known cell types in most eukaryotes. Several recently discovered compounds that extend the healthspan and lifespan of model organisms decelerate pathways that govern the aging process. Among these geroprotectors, spermidine, a natural polyamine ubiquitously found in organisms from all kingdoms, prolongs the lifespan of fungi, nematodes, insects and rodents. In mice, it also postpones the manifestation of various age-associated disorders such as cardiovascular disease and neurodegeneration. The specific features of spermidine, including its presence in common food items, make it an interesting candidate for translational aging research. Here, we review novel insights into the geroprotective mode of action of spermidine at the molecular level, as we discuss strategies for elucidating its clinical potential.
Collapse
Affiliation(s)
- Sebastian J Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Anna Katharina Simon
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
- Max Delbrück Center, Berlin, Germany
| | - Martina Bergmann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria.
- Field of Excellence BioHealth, University of Graz, Graz, Austria.
- BioTechMed Graz, Graz, Austria.
| |
Collapse
|
19
|
Guo FF, Meng FG, Zhang XN, Zeng T. Spermidine inhibits LPS-induced pro-inflammatory activation of macrophages by acting on Nrf2 signaling but not autophagy. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
20
|
Metabolic Dysfunction in Motor Neuron Disease: Shedding Light through the Lens of Autophagy. Metabolites 2022; 12:metabo12070574. [PMID: 35888698 PMCID: PMC9317837 DOI: 10.3390/metabo12070574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/26/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) patients show a myriad of energetic abnormalities, such as weight loss, hypermetabolism, and dyslipidaemia. Evidence suggests that these indices correlate with and ultimately affect the duration of survival. This review aims to discuss ALS metabolic abnormalities in the context of autophagy, the primordial system acting at the cellular level for energy production during nutrient deficiency. As the primary pathway of protein degradation in eukaryotic cells, the fundamental role of cellular autophagy is the adaptation to metabolic demands. Therefore, autophagy is tightly coupled to cellular metabolism. We review evidence that the delicate balance between autophagy and metabolism is aberrant in ALS, giving rise to intracellular and systemic pathophysiology observations. Understanding the metabolism autophagy crosstalk can lead to the identification of novel therapeutic targets for ALS.
Collapse
|
21
|
Doeppner TR, Coman C, Burdusel D, Ancuta DL, Brockmeier U, Pirici DN, Yaoyun K, Hermann DM, Popa-Wagner A. Long-term treatment with chloroquine increases lifespan in middle-aged male mice possibly via autophagy modulation, proteasome inhibition and glycogen metabolism. Aging (Albany NY) 2022; 14:4195-4210. [PMID: 35609021 PMCID: PMC9186778 DOI: 10.18632/aging.204069] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/28/2022] [Indexed: 11/25/2022]
Abstract
Previous studies have shown that the polyamine spermidine increased the maximum life span in C. elegans and the median life span in mice. Since spermidine increases autophagy, we asked if treatment with chloroquine, an inhibitor of autophagy, would shorten the lifespan of mice. Recently, chloroquine has intensively been discussed as a treatment option for COVID-19 patients. To rule out unfavorable long-term effects on longevity, we examined the effect of chronic treatment with chloroquine given in the drinking water on the lifespan and organ pathology of male middle-aged NMRI mice. We report that, surprisingly, daily treatment with chloroquine extended the median life span by 11.4% and the maximum life span of the middle-aged male NMRI mice by 11.8%. Subsequent experiments show that the chloroquine-induced lifespan elevation is associated with dose-dependent increase in LC3B-II, a marker of autophagosomes, in the liver and heart that was confirmed by transmission electron microscopy. Quite intriguingly, chloroquine treatment was also associated with a decrease in glycogenolysis in the liver suggesting a compensatory mechanism to provide energy to the cell. Accumulation of autophagosomes was paralleled by an inhibition of proteasome-dependent proteolysis in the liver and the heart as well as with decreased serum levels of insulin growth factor binding protein-3 (IGFBP3), a protein associated with longevity. We propose that inhibition of proteasome activity in conjunction with an increased number of autophagosomes and decreased levels of IGFBP3 might play a central role in lifespan extension by chloroquine in male NMRI mice.
Collapse
Affiliation(s)
- Thorsten R Doeppner
- Department of Neurology, University Medical Center Göttingen, Göttingen 37075, Germany.,Research Institute for Health Sciences and Technologies (SABITA), Medipol University, Istanbul, Turkey.,Department of Anatomy and Cell Biology, Medical University of Varna, Varna, Bulgaria
| | - Cristin Coman
- Cantacuzino National Medico-Military Institute for Research and Development, Bucharest 050096, Romania
| | - Daiana Burdusel
- Department of Biochemistry, University of Medicine and Pharmacy Craiova, Craiova 200349, Romania
| | - Diana-Larisa Ancuta
- Cantacuzino National Medico-Military Institute for Research and Development, Bucharest 050096, Romania.,Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bucharest, Romania
| | - Ulf Brockmeier
- Vascular Neurology and Dementia, Department of Neurology, University of Medicine Essen, Essen 45147, Germany
| | - Daniel Nicolae Pirici
- Department of Biochemistry, University of Medicine and Pharmacy Craiova, Craiova 200349, Romania
| | - Kuang Yaoyun
- Department of Neurology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Dirk M Hermann
- Vascular Neurology and Dementia, Department of Neurology, University of Medicine Essen, Essen 45147, Germany
| | - Aurel Popa-Wagner
- Vascular Neurology and Dementia, Department of Neurology, University of Medicine Essen, Essen 45147, Germany.,Experimental Research Center for Normal and Pathological Aging, ARES, University of Medicine and Pharmacy Craiova, Craiova 200349, Romania
| |
Collapse
|
22
|
Zou D, Zhao Z, Li L, Min Y, Zhang D, Ji A, Jiang C, Wei X, Wu X. A comprehensive review of spermidine: Safety, health effects, absorption and metabolism, food materials evaluation, physical and chemical processing, and bioprocessing. Compr Rev Food Sci Food Saf 2022; 21:2820-2842. [PMID: 35478379 DOI: 10.1111/1541-4337.12963] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 12/15/2022]
Abstract
Spermidine, a natural autophagy inducer, has a variety of health effects, such as antitumor, antiaging, anti-inflammation, cardiovascular protection, and neuromodulation. It has been a hot topic in the field of food processing, and current research findings suggest that spermidine-rich foods may be used in intervention and prevention of age-related diseases. In this article, recent findings on the safety, health effects, absorption and metabolism of spermidine were reviewed, and advances in food processing, including the raw materials evaluation, physical and chemical processing, and biological processing of spermidine, were highlighted. In particular, the core metabolic pathways, key gene targets, and efficient metabolic engineering strategies involved in the biosynthesis of spermidine and its precursors were discussed. Moreover, limitations and future perspectives of spermidine research were proposed. The purpose of this review is to provide new insights on spermidine from its safety to its food processing, which will advance the commercial production and applications of spermidine-rich foods and nutraceuticals.
Collapse
Affiliation(s)
- Dian Zou
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ziyue Zhao
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lu Li
- Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yu Min
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Daiyuan Zhang
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Anying Ji
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Cong Jiang
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xuetuan Wei
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xian Wu
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, Ohio, USA
| |
Collapse
|
23
|
Grant CW, Barreto EF, Kumar R, Kaddurah-Daouk R, Skime M, Mayes T, Carmody T, Biernacka J, Wang L, Weinshilboum R, Trivedi MH, Bobo WV, Croarkin PE, Athreya AP. Multi-Omics Characterization of Early- and Adult-Onset Major Depressive Disorder. J Pers Med 2022; 12:jpm12030412. [PMID: 35330412 PMCID: PMC8949112 DOI: 10.3390/jpm12030412] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 01/14/2023] Open
Abstract
Age at depressive onset (AAO) corresponds to unique symptomatology and clinical outcomes. Integration of genome-wide association study (GWAS) results with additional “omic” measures to evaluate AAO has not been reported and may reveal novel markers of susceptibility and/or resistance to major depressive disorder (MDD). To address this gap, we integrated genomics with metabolomics using data-driven network analysis to characterize and differentiate MDD based on AAO. This study first performed two GWAS for AAO as a continuous trait in (a) 486 adults from the Pharmacogenomic Research Network-Antidepressant Medication Pharmacogenomic Study (PGRN-AMPS), and (b) 295 adults from the Combining Medications to Enhance Depression Outcomes (CO-MED) study. Variants from top signals were integrated with 153 p180-assayed metabolites to establish multi-omics network characterizations of early (<age 18) and adult-onset depression. The most significant variant (p = 8.77 × 10−8) localized to an intron of SAMD3. In silico functional annotation of top signals (p < 1 × 10−5) demonstrated gene expression enrichment in the brain and during embryonic development. Network analysis identified differential associations between four variants (in/near INTU, FAT1, CNTN6, and TM9SF2) and plasma metabolites (phosphatidylcholines, carnitines, biogenic amines, and amino acids) in early- compared with adult-onset MDD. Multi-omics integration identified differential biosignatures of early- and adult-onset MDD. These biosignatures call for future studies to follow participants from childhood through adulthood and collect repeated -omics and neuroimaging measures to validate and deeply characterize the biomarkers of susceptibility and/or resistance to MDD development.
Collapse
Grants
- R01 MH124655 NIMH NIH HHS
- R01 MH113700 NIMH NIH HHS
- K23 AI143882 NIAID NIH HHS
- U19GM61388, R01GM028157, R01AA027486, R01MH108348, R24GM078233, RC2GM092729, U19AG063744, N01MH90003, R01AG04617, U01AG061359, RF1AG051550, R01MH113700, R01MH124655, K23AI143882 NIH HHS
Collapse
Affiliation(s)
- Caroline W. Grant
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55901, USA; (C.W.G.); (L.W.); (R.W.)
| | - Erin F. Barreto
- Department of Pharmacy, Mayo Clinic, Rochester, MN 55901, USA;
| | - Rakesh Kumar
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55901, USA; (R.K.); (M.S.)
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27701, USA;
- Department of Medicine, Duke University, Durham, NC 27708, USA
- Duke Institute for Brain Sciences, Duke University, Durham, NC 27710, USA
| | - Michelle Skime
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55901, USA; (R.K.); (M.S.)
| | - Taryn Mayes
- Department of Psychiatry, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (T.M.); (M.H.T.)
| | - Thomas Carmody
- Department Population and Data Sciences, University of Texas Southwestern Medical Center in Dallas, Dallas, TX 75390, USA;
| | - Joanna Biernacka
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55901, USA;
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55901, USA; (C.W.G.); (L.W.); (R.W.)
| | - Richard Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55901, USA; (C.W.G.); (L.W.); (R.W.)
| | - Madhukar H. Trivedi
- Department of Psychiatry, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; (T.M.); (M.H.T.)
| | - William V. Bobo
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Paul E. Croarkin
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55901, USA; (R.K.); (M.S.)
- Correspondence: (P.E.C.); (A.P.A.); Tel.: +1-507-422-6073 (A.P.A.)
| | - Arjun P. Athreya
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55901, USA; (C.W.G.); (L.W.); (R.W.)
- Correspondence: (P.E.C.); (A.P.A.); Tel.: +1-507-422-6073 (A.P.A.)
| |
Collapse
|
24
|
Rebalance of the Polyamine Metabolism Suppresses Oxidative Stress and Delays Senescence in Nucleus Pulposus Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8033353. [PMID: 35178160 PMCID: PMC8844099 DOI: 10.1155/2022/8033353] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/05/2022] [Indexed: 11/18/2022]
Abstract
Intervertebral disk degeneration (IDD) is a major cause of low back pain that becomes a prevalent age-related disease. However, the pathophysiological processes behind IDD are rarely known. Here, we used bioinformatics analysis based on the microarray datasets (GSE34095) to identify the differentially expressed genes (DEGs) as biomarkers and therapeutic targets in degenerated discs. From the previous studies, oxidative stress has been notified as a positive inducement of IDD, which causes DNA damage and accelerates cell senescence. Polyamine oxidase (PAOX), a member of the observed 1057 DEGs, is involved in polyamine metabolism and influences the oxidative balance in cells. However, it is uncertain if the IDD is implicated in the dysregulation of PAOX and polyamine metabolism. This study firstly verified the PAOX upregulation in human degenerated disc samples and applied an IL-1β-induced nucleus pulposus (NP) cell degeneration model to demonstrate that spermidine supplementation balanced polyamine metabolism and delayed NP cell senescence. Moreover, we confirmed that spermidine/N-acetylcysteine supplementation or Cdkn2a gene deletion stabilized the polyamine metabolism, suppressed oxidative stress, and therefore delayed the progress of IDD in older mice. Collectively, our study highlights the role of polyamine metabolism in IDD and foresees spermidine would be the advanced therapeutical drug for IDD.
Collapse
|
25
|
Abstract
The health of a cell requires proper functioning, regulation, and quality control of its organelles, the membrane-enclosed compartments inside the cell that carry out its essential biochemical tasks. Aging commonly perturbs organelle homeostasis, causing problems to cellular health that can spur the initiation and progression of degenerative diseases and related pathologies. Here, we discuss emerging evidence indicating that age-related defects in organelle homeostasis stem in part from dysfunction of the autophagy-lysosome system, a pivotal player in cellular quality control and damage clearance. We also highlight natural examples from biology where enhanced activity of the autophagy-lysosome system might be harnessed to erase age-related organelle damage, raising potential implications for cellular rejuvenation.
Collapse
|
26
|
Wirth A, Wolf B, Huang CK, Glage S, Hofer SJ, Bankstahl M, Bär C, Thum T, Kahl KG, Sigrist SJ, Madeo F, Bankstahl JP, Ponimaskin E. Novel aspects of age-protection by spermidine supplementation are associated with preserved telomere length. GeroScience 2021; 43:673-690. [PMID: 33517527 PMCID: PMC8110654 DOI: 10.1007/s11357-020-00310-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 12/02/2020] [Indexed: 12/17/2022] Open
Abstract
Ageing provokes a plethora of molecular, cellular and physiological deteriorations, including heart failure, neurodegeneration, metabolic maladaptation, telomere attrition and hair loss. Interestingly, on the molecular level, the capacity to induce autophagy, a cellular recycling and cleaning process, declines with age across a large spectrum of model organisms and is thought to be responsible for a subset of age-induced changes. Here, we show that a 6-month administration of the natural autophagy inducer spermidine in the drinking water to aged mice is sufficient to significantly attenuate distinct age-associated phenotypes. These include modulation of brain glucose metabolism, suppression of distinct cardiac inflammation parameters, decreased number of pathological sights in kidney and liver and decrease of age-induced hair loss. Interestingly, spermidine-mediated age protection was associated with decreased telomere attrition, arguing in favour of a novel cellular mechanism behind the anti-ageing effects of spermidine administration.
Collapse
Affiliation(s)
- Alexander Wirth
- Cellular Neurophysiology, Hanover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Bettina Wolf
- Preclinical Molecular Imaging, Department of Nuclear Medicine, Hanover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Cheng-Kai Huang
- Institute of Molecular and Translational Therapeutic Strategies, Hanover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Silke Glage
- Institute for Laboratory Animal Science, Hanover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Sebastian J Hofer
- Institute of Molecular Biosciences, Karl-Franzens-Universität Graz, Humboldtstraße 50/EG, 8010, Graz, Austria
| | - Marion Bankstahl
- Institute for Laboratory Animal Science, Hanover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies, Hanover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
- REBIRTH Center for Translational Regenerative Medicine, Hanover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hanover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
- REBIRTH Center for Translational Regenerative Medicine, Hanover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Straße 1, 30625, Hannover, Germany
| | - Kai G Kahl
- Dept. of Psychiatry; Social Psychiatry and Psychotherapy, Hanover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Stephan J Sigrist
- Freie University Berlin, Institute of Biology, Takusstraße 6, 14195, Berlin, Germany
| | - Frank Madeo
- Institute of Molecular Biosciences, Karl-Franzens-Universität Graz, Humboldtstraße 50/EG, 8010, Graz, Austria
| | - Jens P Bankstahl
- Preclinical Molecular Imaging, Department of Nuclear Medicine, Hanover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
| | - Evgeni Ponimaskin
- Cellular Neurophysiology, Hanover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, Gagarin ave. 23, Nizhny Novgorod, Russian Federation, 603950.
| |
Collapse
|
27
|
Wang XD, Yu WL, Sun Y. Activation of AMPK restored impaired autophagy and inhibited inflammation reaction by up-regulating SIRT1 in acute pancreatitis. Life Sci 2021; 277:119435. [PMID: 33781829 DOI: 10.1016/j.lfs.2021.119435] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/09/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022]
Abstract
AIMS Acute pancreatitis (AP) is a common inflammatory disorder with high incidence and mortality. AMPK-SIRT1 pathway is involved in a variety of diseases, but its role in AP remains elusive. This study was aimed to explore the role of AMPK-SIRT1 pathway in AP. MAIN METHODS AP models in vivo and vitro were constructed by intraperitoneal administration of L-arginine and caerulein-stimulated respectively. Rat serum amylase, IL-6 and TNF-α were determined by ELISA. The expression levels of AMPK, SIRT1, Beclin-1, LC3 and p62 were determined by qRT-PCR and western blot. The number of autophagosome was checked by transmission electron microscope. KEY FINDINGS Compared with NC rats, serum amylase, IL-6 and TNF-α were increased in AP rats. The expressions of AMPK and SIRT1 were decreased, while Beclin-1, LC3II/Iratio and p62 were markedly increased in AP rats. After activation of AMPK by metformin, expressions of p-AMPKα, SIRT1 were significantly raised, while expressions of Beclin-1, LC3 II/I, p62, TNF-α, IL-6 were reduced, and the number of autophagosome was decreased significantly in caerulein-stimulated AR42J cells. The inhibition of AMPK by compound C obtained opposite results. SIGNIFICANCE During AP occurrence, p-AMPK and SIRT1 were down-regulated, leading to the accumulation of p62, increase of autophagic vacuoles, damage of autophagy, and the occurrence of inflammation. It hinted that activation of AMPK restored impaired autophagy and inhibited inflammation reaction by up-regulating SIRT1. Our findings might provide important theoretical basis for explaining the pathogenesis of AP and investigating therapeutic target to treat and prevent AP.
Collapse
Affiliation(s)
- Xiao-Die Wang
- Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Wei-Li Yu
- Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China.
| | - Yun Sun
- Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China.
| |
Collapse
|
28
|
Blagosklonny MV. The goal of geroscience is life extension. Oncotarget 2021; 12:131-144. [PMID: 33613842 PMCID: PMC7869575 DOI: 10.18632/oncotarget.27882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/13/2021] [Indexed: 12/13/2022] Open
Abstract
Although numerous drugs seemingly extend healthspan in mice, only a few extend lifespan in mice and only one does it consistently. Some of them, alone or in combination, can be used in humans, without further clinical trials.
Collapse
|
29
|
Kodali M, Attaluri S, Madhu LN, Shuai B, Upadhya R, Gonzalez JJ, Rao X, Shetty AK. Metformin treatment in late middle age improves cognitive function with alleviation of microglial activation and enhancement of autophagy in the hippocampus. Aging Cell 2021; 20:e13277. [PMID: 33443781 PMCID: PMC7884047 DOI: 10.1111/acel.13277] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/29/2020] [Accepted: 10/23/2020] [Indexed: 12/20/2022] Open
Abstract
Metformin, a drug widely used for treating diabetes, can prolong the lifespan in several species. Metformin also has the promise to slow down age‐related cognitive impairment. However, metformin's therapeutic use as an anti‐aging drug is yet to be accepted because of conflicting animal and human studies results. We examined the effects of metformin treatment in late middle age on cognitive function in old age. Eighteen‐month‐old male C57BL6/J mice received metformin or no treatment for 10 weeks. A series of behavioral tests revealed improved cognitive function in animals that received metformin. Such findings were evident from a better ability for pattern separation, object location, and recognition memory function. Quantification of microglia revealed that metformin treatment reduced the incidence of pathological microglial clusters with alternative activation of microglia into an M2 phenotype, displaying highly ramified processes in the hippocampus. Metformin treatment also seemed to reduce astrocyte hypertrophy. Additional analysis demonstrated that metformin treatment in late middle age increased adenosine monophosphate‐activated protein kinase activation, reduced proinflammatory cytokine levels, and the mammalian target of rapamycin signaling, and enhanced autophagy in the hippocampus. However, metformin treatment did not alter neurogenesis or synapses in the hippocampus, implying that improved cognitive function with metformin did not involve enhanced neurogenesis or neosynaptogenesis. The results provide new evidence that metformin treatment commencing in late middle age has promise for improving cognitive function in old age. Modulation of microglia, proinflammatory cytokines, and autophagy appear to be the mechanisms by which metformin facilitated functional benefits in the aged brain.
Collapse
Affiliation(s)
- Maheedhar Kodali
- Institute for Regenerative Medicine Department of Molecular and Cellular Medicine Texas A&M University College of Medicine College Station TX USA
| | - Sahithi Attaluri
- Institute for Regenerative Medicine Department of Molecular and Cellular Medicine Texas A&M University College of Medicine College Station TX USA
| | - Leelavathi N. Madhu
- Institute for Regenerative Medicine Department of Molecular and Cellular Medicine Texas A&M University College of Medicine College Station TX USA
| | - Bing Shuai
- Institute for Regenerative Medicine Department of Molecular and Cellular Medicine Texas A&M University College of Medicine College Station TX USA
| | - Raghavendra Upadhya
- Institute for Regenerative Medicine Department of Molecular and Cellular Medicine Texas A&M University College of Medicine College Station TX USA
| | - Jenny Jaimes Gonzalez
- Institute for Regenerative Medicine Department of Molecular and Cellular Medicine Texas A&M University College of Medicine College Station TX USA
| | - Xiaolan Rao
- Institute for Regenerative Medicine Department of Molecular and Cellular Medicine Texas A&M University College of Medicine College Station TX USA
| | - Ashok K. Shetty
- Institute for Regenerative Medicine Department of Molecular and Cellular Medicine Texas A&M University College of Medicine College Station TX USA
| |
Collapse
|
30
|
Mühlfeld C, Pfeiffer C, Schneider V, Bornemann M, Schipke J. Voluntary activity reverses spermidine-induced myocardial fibrosis and lipid accumulation in the obese male mouse. Histochem Cell Biol 2020; 155:75-88. [PMID: 33108533 PMCID: PMC7847856 DOI: 10.1007/s00418-020-01926-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2020] [Indexed: 02/06/2023]
Abstract
Obesity due to high calorie intake induces cardiac hypertrophy and dysfunction, thus contributing to cardiovascular morbidity and mortality. Recent studies in aging suggest that oral supplementation with the natural polyamine spermidine has a cardioprotective effect. Here, the hypothesis was tested that spermidine or voluntary activity alone or in combination protect the heart from adverse effects induced by obesity. Therefore, C57Bl/6 mice (n = 8–10 per group) were subjected to control or high fat diet (HFD) and were left untreated, or either received spermidine via drinking water or were voluntarily active or both. After 30 weeks, the mice were killed and the left ventricle of the hearts was processed for light and electron microscopy. Design-based stereology was used to estimate parameters of hypertrophy, fibrosis, and lipid accumulation. HFD induced cardiac hypertrophy as demonstrated by higher volumes of the left ventricle, cardiomyocytes, interstitium, myofibrils and cardiomyocyte mitochondria. These changes were not influenced by spermidine or voluntary activity. HFD also induced myocardial fibrosis and accumulation of lipid droplets within cardiomyocytes. These HFD effects were enhanced in spermidine treated animals but not in voluntarily active mice. This was even the case in voluntarily active mice that received spermidine. In conclusion, the data confirm the induction of left ventricular hypertrophy by high-fat diet and suggest that—under high fat diet—spermidine enhances cardiomyocyte lipid accumulation and interstitial fibrosis which is counteracted by voluntary activity.
Collapse
Affiliation(s)
- Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Clara Pfeiffer
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Vanessa Schneider
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Melanie Bornemann
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Julia Schipke
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany. .,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany.
| |
Collapse
|
31
|
Guijas C, Montenegro-Burke JR, Cintron-Colon R, Domingo-Almenara X, Sanchez-Alavez M, Aguirre CA, Shankar K, Majumder ELW, Billings E, Conti B, Siuzdak G. Metabolic adaptation to calorie restriction. Sci Signal 2020; 13:13/648/eabb2490. [PMID: 32900879 DOI: 10.1126/scisignal.abb2490] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Calorie restriction (CR) enhances health span (the length of time that an organism remains healthy) and increases longevity across species. In mice, these beneficial effects are partly mediated by the lowering of core body temperature that occurs during CR. Conversely, the favorable effects of CR on health span are mitigated by elevating ambient temperature to thermoneutrality (30°C), a condition in which hypothermia is blunted. In this study, we compared the global metabolic response to CR of mice housed at 22°C (the standard housing temperature) or at 30°C and found that thermoneutrality reverted 39 and 78% of total systemic or hypothalamic metabolic variations caused by CR, respectively. Systemic changes included pathways that control fuel use and energy expenditure during CR. Cognitive computing-assisted analysis of these metabolomics results helped to prioritize potential active metabolites that modulated the hypothermic response to CR. Last, we demonstrated with pharmacological approaches that nitric oxide (NO) produced through the citrulline-NO pathway promotes CR-triggered hypothermia and that leucine enkephalin directly controls core body temperature when exogenously injected into the hypothalamus. Because thermoneutrality counteracts CR-enhanced health span, the multiple metabolites and pathways altered by thermoneutrality may represent targets for mimicking CR-associated effects.
Collapse
Affiliation(s)
- Carlos Guijas
- Scripps Center for Metabolomics, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - J Rafael Montenegro-Burke
- Scripps Center for Metabolomics, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Rigo Cintron-Colon
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Xavier Domingo-Almenara
- Scripps Center for Metabolomics, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Manuel Sanchez-Alavez
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Carlos A Aguirre
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Kokila Shankar
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Erica L-W Majumder
- Scripps Center for Metabolomics, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Elizabeth Billings
- Scripps Center for Metabolomics, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Bruno Conti
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA. .,Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Gary Siuzdak
- Scripps Center for Metabolomics, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA. .,Departments of Chemistry, Molecular, and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|