1
|
Walkey CJ, Snow KJ, Bulcha J, Cox AR, Martinez AE, Ljungberg MC, Lanza DG, De Giorgi M, Chuecos MA, Alves-Bezerra M, Suarez CF, Hartig SM, Hilsenbeck SG, Hsu CW, Saville E, Gaitan Y, Duryea J, Hannigan S, Dickinson ME, Mirochnitchenko O, Wang D, Lutz CM, Heaney JD, Gao G, Murray SA, Lagor WR. A comprehensive atlas of AAV tropism in the mouse. Mol Ther 2025; 33:1282-1299. [PMID: 39863928 PMCID: PMC11897767 DOI: 10.1016/j.ymthe.2025.01.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/19/2024] [Accepted: 01/22/2025] [Indexed: 01/27/2025] Open
Abstract
Gene therapy with adeno-associated virus (AAV) vectors requires knowledge of their tropism within the body. Here we analyze the tropism of 10 naturally occurring AAV serotypes (AAV3B, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAVrh8, AAVrh10, and AAVrh74) following systemic delivery into male and female mice. A transgene-expressing ZsGreen and Cre recombinase was used to identify transduction in a cell-dependent manner based on fluorescence. Cre-driven activation of tdTomato fluorescence offered superior sensitivity for transduced cells. All serotypes except AAV3B and AAV4 had high liver tropism. Fluorescence activation revealed transduction of unexpected tissues, including adrenals, testes, and ovaries. Rare transduced cells within tissues were also readily visualized. Biodistribution of AAV genomes correlated with fluorescence, except in immune tissues. AAV4 was found to have a pan-endothelial tropism while also targeting pancreatic beta cells. This public resource enables selection of the best AAV serotypes for basic science and preclinical applications in mice.
Collapse
Affiliation(s)
- Christopher J Walkey
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kathy J Snow
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609 USA
| | - Jote Bulcha
- Horae Gene Therapy Center and Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Aaron R Cox
- Section of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alexa E Martinez
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - M Cecilia Ljungberg
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Denise G Lanza
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Marco De Giorgi
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Marcel A Chuecos
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michele Alves-Bezerra
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Carlos Flores Suarez
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sean M Hartig
- Section of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Susan G Hilsenbeck
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Chih-Wei Hsu
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ethan Saville
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609 USA
| | - Yaned Gaitan
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609 USA
| | - Jeff Duryea
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609 USA
| | - Seth Hannigan
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609 USA
| | - Mary E Dickinson
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Oleg Mirochnitchenko
- Office of Research Infrastructure Programs, Division of Program Coordination, Planning, and Strategic Initiatives, Office of the Director, National Institutes of Health, Bethesda, MD USA
| | - Dan Wang
- Horae Gene Therapy Center and Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA; RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Cathleen M Lutz
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609 USA
| | - Jason D Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Guangping Gao
- Horae Gene Therapy Center and Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Stephen A Murray
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609 USA
| | - William R Lagor
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
2
|
Walkey CJ, Snow KJ, Bulcha J, Cox AR, Martinez AE, Ljungberg MC, Lanza DG, Giorgi MD, Chuecos MA, Alves-Bezerra M, Suarez CF, Hartig SM, Hilsenbeck SG, Hsu CW, Saville E, Gaitan Y, Duryea J, Hannigan S, Dickinson ME, Mirochnitchenko O, Wang D, Lutz CM, Heaney JD, Gao G, Murray SA, Lagor WR. A Comprehensive Atlas of AAV Tropism in the Mouse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.10.612279. [PMID: 39314496 PMCID: PMC11418986 DOI: 10.1101/2024.09.10.612279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Gene therapy with Adeno-Associated Viral (AAV) vectors requires knowledge of their tropism within the body. Here we analyze the tropism of ten naturally occurring AAV serotypes (AAV3B, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAVrh8, AAVrh10 and AAVrh74) following systemic delivery into male and female mice. A transgene expressing ZsGreen and Cre recombinase was used to identify transduction in a cell-dependent manner based on fluorescence. Cre-driven activation of tdTomato fluorescence offered superior sensitivity for transduced cells. All serotypes except AAV3B and AAV4 had high liver tropism. Fluorescence activation revealed transduction of unexpected tissues, including adrenals, testes and ovaries. Rare transduced cells within tissues were also readily visualized. Biodistribution of AAV genomes correlated with fluorescence, except in immune tissues. AAV4 was found to have a pan-endothelial tropism while also targeting pancreatic beta cells. This public resource enables selection of the best AAV serotypes for basic science and preclinical applications in mice.
Collapse
|
3
|
Voznesenskaya A, Berggren PO, Ilegems E. Sustained heterologous gene expression in pancreatic islet organoids using adeno-associated virus serotype 8. Front Bioeng Biotechnol 2023; 11:1147244. [PMID: 37545890 PMCID: PMC10400289 DOI: 10.3389/fbioe.2023.1147244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023] Open
Abstract
Genetic modification of pancreatic islet organoids, assembled in vitro prior to transplantation is an emerging alternative to direct in vivo genetic manipulations for a number of clinical and research applications. We have previously shown that dispersion of islet cells followed by re-aggregation into islet organoids, or pseudoislets, allows for efficient transduction with viral vectors, while maintaining physiological functions of native islets. Among viruses currently used for genetic manipulations, adeno-associated viruses (AAVs) have the most attractive safety profile making them suitable for gene therapy applications. Studies reporting on pseudoislet transduction with AAVs are, however, lacking. Here, we have characterized in detail the performance of AAV serotype 8 in transduction of islet cells during pseudoislet formation in comparison with human adenovirus type 5 (AdV5). We have assessed such parameters as transduction efficiency, expression kinetics, and endocrine cell tropism of AAV8 alone or in combination with AdV5. Data provided within our study may serve as a reference point for future functional studies using AAVs for gene transfer to islet cell organoids and will facilitate further development of engineered pseudoislets of superior quality suitable for clinical transplantation.
Collapse
|
4
|
Hu J, Bourne RA, McGrath BC, Lin A, Pei Z, Cavener DR. Co-opting regulation bypass repair as a gene-correction strategy for monogenic diseases. Mol Ther 2021; 29:3274-3292. [PMID: 33892188 PMCID: PMC8571108 DOI: 10.1016/j.ymthe.2021.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/18/2021] [Accepted: 04/15/2021] [Indexed: 12/03/2022] Open
Abstract
With the development of CRISPR-Cas9-mediated gene-editing technologies, correction of disease-causing mutations has become possible. However, current gene-correction strategies preclude mutation repair in post-mitotic cells of human tissues, and a unique repair strategy must be designed and tested for each and every mutation that may occur in a gene. We have developed a novel gene-correction strategy, co-opting regulation bypass repair (CRBR), which can repair a spectrum of mutations in mitotic or post-mitotic cells and tissues. CRBR utilizes the non-homologous end joining (NHEJ) pathway to insert a coding sequence (CDS) and transcription/translation terminators targeted upstream of any CDS mutation and downstream of the transcriptional promoter. CRBR results in simultaneous co-option of the endogenous regulatory region and bypass of the genetic defect. We validated the CRBR strategy for human gene therapy by rescuing a mouse model of Wolcott-Rallison syndrome (WRS) with permanent neonatal diabetes caused by either a large deletion or a nonsense mutation in the PERK (EIF2AK3) gene. Additionally, we integrated a CRBR GFP-terminator cassette downstream of the human insulin promoter in cadaver pancreatic islets of Langerhans, which resulted in insulin promoter regulated expression of GFP, demonstrating the potential utility of CRBR in human tissue gene repair.
Collapse
Affiliation(s)
- Jingjie Hu
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Rebecca A Bourne
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Barbara C McGrath
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Alice Lin
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Zifei Pei
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Douglas R Cavener
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
5
|
Zammit NW, Seeberger KL, Zamerli J, Walters SN, Lisowski L, Korbutt GS, Grey ST. Selection of a novel AAV2/TNFAIP3 vector for local suppression of islet xenograft inflammation. Xenotransplantation 2020; 28:e12669. [PMID: 33316848 DOI: 10.1111/xen.12669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/24/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Neonatal porcine islets (NPIs) can restore glucose control in mice, pigs, and non-human primates, representing a potential abundant alternative islet supply for clinical beta cell replacement therapy. However, NPIs are vulnerable to inflammatory insults that could be overcome with genetic modifications. Here, we demonstrate in a series of proof-of-concept experiments the potential of the cytoplasmic ubiquitin-editing protein A20, encoded by the TNFAIP3 gene, as an NPI cytoprotective gene. METHODS We forced A20 expression in NPI grafts using a recombinant adenovirus 5 (Ad5) vector and looked for impact on TNF-stimulated NF-κB activation and NPI graft function. As adeno-associated vectors (AAV) are clinically preferred vectors but exhibit poor transduction efficacy in NPIs, we next screened a series of AAV serotypes under different transduction protocols for their ability achieve high transduction efficiency and suppress NPI inflammation without impacting NPI maturation. RESULTS Forcing the expression of A20 in NPI with Ad5 vector blocked NF-κB activation by inhibiting IκBα phosphorylation and degradation, and reduced the induction of pro-inflammatory genes Cxcl10 and Icam1. A20-expressing NPIs also exhibited superior functional capacity when transplanted into diabetic immunodeficient recipient mice, evidenced by a more rapid return to euglycemia and improved GTT compared to unmodified NPI grafts. We found AAV2 combined with a 14-day culture period maximized NPI transduction efficiency (>70% transduction rate), and suppressed NF-κB-dependent gene expression without adverse impact upon NPI maturation. CONCLUSION We report a new protocol that allows for high-efficiency genetic modification of NPIs, which can be utilized to introduce candidate genes without the need for germline engineering. This approach would be suitable for preclinical and clinical testing of beneficial molecules. We also report for the first time that A20 is cytoprotective for NPI, such that A20 gene therapy could aid the clinical development of NPIs for beta cell replacement.
Collapse
Affiliation(s)
- Nathan W Zammit
- Immunology Department, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, Australia
| | | | - Jad Zamerli
- Immunology Department, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Stacey N Walters
- Immunology Department, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Leszek Lisowski
- Translational Vectorology Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW, Australia.,Military Institute of Medicine, Laboratory of Molecular Oncology and Innovative Therapies, Warsaw, Poland
| | | | - Shane T Grey
- Immunology Department, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, Australia
| |
Collapse
|
6
|
Quirin KA, Kwon JJ, Alioufi A, Factora T, Temm CJ, Jacobsen M, Sandusky GE, Shontz K, Chicoine LG, Clark KR, Mendell JT, Korc M, Kota J. Safety and Efficacy of AAV Retrograde Pancreatic Ductal Gene Delivery in Normal and Pancreatic Cancer Mice. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 8:8-20. [PMID: 29349096 PMCID: PMC5675991 DOI: 10.1016/j.omtm.2017.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/27/2017] [Indexed: 02/07/2023]
Abstract
Recombinant adeno-associated virus (rAAV)-mediated gene delivery shows promise to transduce the pancreas, but safety/efficacy in a neoplastic context is not well established. To identify an ideal AAV serotype, route, and vector dose and assess safety, we have investigated the use of three AAV serotypes (6, 8, and 9) expressing GFP in a self-complementary (sc) AAV vector under an EF1α promoter (scAAV.GFP) following systemic or retrograde pancreatic intraductal delivery. Systemic delivery of scAAV9.GFP transduced the pancreas with high efficiency, but gene expression did not exceed >45% with the highest dose, 5 × 1012 viral genomes (vg). Intraductal delivery of 1 × 1011 vg scAAV6.GFP transduced acini, ductal cells, and islet cells with >50%, ∼48%, and >80% efficiency, respectively, and >80% pancreatic transduction was achieved with 5 × 1011 vg. In a KrasG12D-driven pancreatic cancer mouse model, intraductal delivery of scAAV6.GFP targeted acini, epithelial, and stromal cells and exhibited persistent gene expression 5 months post-delivery. In normal mice, intraductal delivery induced a transient increase in serum amylase/lipase that resolved within a day of infusion with no sustained pancreatic inflammation or fibrosis. Similarly, in PDAC mice, intraductal delivery did not increase pancreatic intraepithelial neoplasia progression/fibrosis. Our study demonstrates that scAAV6 targets the pancreas/neoplasm efficiently and safely via retrograde pancreatic intraductal delivery.
Collapse
Affiliation(s)
- Kayla A Quirin
- Department of Medical and Molecular Genetics, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202, USA
| | - Jason J Kwon
- Department of Medical and Molecular Genetics, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202, USA
| | - Arafat Alioufi
- Department of Medical and Molecular Genetics, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202, USA
| | - Tricia Factora
- Department of Medical and Molecular Genetics, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202, USA
| | | | - Max Jacobsen
- Department of Pathology, IUSM, Indianapolis, IN 46202, USA
| | | | - Kim Shontz
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Louis G Chicoine
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - K Reed Clark
- Dimension Therapeutics, Cambridge, MA 02139, USA
| | - Joshua T Mendell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Murray Korc
- The Melvin and Bren Simon Cancer Center, IUSM, Indianapolis, IN 46202, USA.,Pancreatic Cancer Signature Center, Indiana University and Purdue University-Indianapolis (IUPUI), Indianapolis, IN 46202, USA.,Department of Biochemistry and Molecular Biology, IUSM, Indianapolis, IN 43202, USA.,Department of Medicine, IUSM, Indianapolis, IN 43202, USA
| | - Janaiah Kota
- Department of Medical and Molecular Genetics, Indiana University School of Medicine (IUSM), Indianapolis, IN 46202, USA.,The Melvin and Bren Simon Cancer Center, IUSM, Indianapolis, IN 46202, USA.,Pancreatic Cancer Signature Center, Indiana University and Purdue University-Indianapolis (IUPUI), Indianapolis, IN 46202, USA
| |
Collapse
|
7
|
Chen M, Maeng K, Nawab A, Francois RA, Bray JK, Reinhard MK, Boye SL, Hauswirth WW, Kaye FJ, Aslanidi G, Srivastava A, Zajac-Kaye M. Efficient Gene Delivery and Expression in Pancreas and Pancreatic Tumors by Capsid-Optimized AAV8 Vectors. Hum Gene Ther Methods 2017; 28:49-59. [PMID: 28125909 DOI: 10.1089/hgtb.2016.089] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Despite efforts to use adeno-associated viral (AAV) vector-mediated gene therapy for treatment of pancreatic ductal adenocarcinoma (PDAC), transduction efficiency remains a limiting factor and thus improvement of AAV delivery would significantly facilitate the treatment of this malignancy. Site-directed mutagenesis of specific tyrosine (Y) residues to phenylalanine (F) on the surface of various AAV serotype capsids has been reported as a method for enhancing gene transfer efficiencies. In the present studies, we determine whether Y-to-F mutations could also enhance AAV8 gene transfer in the pancreas to facilitate gene therapy for PDAC. Three different Y-to-F mutant vectors (a single-mutant, Y733F; a double-mutant, Y447F+Y733F; and a triple-mutant, Y275F+Y447F+Y733F) and wild-type AAV8 (WT-AAV8) were administered by intraperitoneal or tail-vein routes to KrasG12D+/-, KrasG12D+/-/Pten+/-, and wild-type mice. The transduction efficiency of these vectors expressing the mCherry reporter gene was evaluated 2 weeks post administration in pancreas or PDAC and correlated with viral genome copy numbers. Our comparative and quantitative analyses of the transduction profiles demonstrated that the Y-to-F double-mutant exhibited the highest mCherry expression in pancreatic tissues (range 45-70%) compared with WT-AAV8 (7%; p < 0.01). We also detected a 7-fold higher level of vector genome copy numbers in normal pancreas following transduction with the double-mutant AAV8 compared with WT-AAV8 (10,285 vs. 1,500 vector copies/μg DNA respectively, p < 0.05). In addition, we observed that intraperitoneal injection of the double-mutant AAV8 led to a 15-fold enhanced transduction efficiency as compared to WT-AAV8 in mouse PDAC, with a corresponding ∼14-fold increase in vector genome copy numbers (26,575 vs. 2,165 copies/μg DNA respectively, p < 0.05). These findings indicate that the Y447+Y733F-AAV8 leads to a significant enhancement of transduction efficiency in both normal and malignant pancreatic tissues, suggesting the potential use of this vector in targeting pancreatic diseases in general, and PDAC in particular.
Collapse
Affiliation(s)
- Min Chen
- 1 Department of Anatomy and Cell Biology, University of Florida College of Medicine , Gainesville, Florida
| | - Kyungah Maeng
- 1 Department of Anatomy and Cell Biology, University of Florida College of Medicine , Gainesville, Florida
| | - Akbar Nawab
- 1 Department of Anatomy and Cell Biology, University of Florida College of Medicine , Gainesville, Florida
| | - Rony A Francois
- 1 Department of Anatomy and Cell Biology, University of Florida College of Medicine , Gainesville, Florida
| | - Julie K Bray
- 1 Department of Anatomy and Cell Biology, University of Florida College of Medicine , Gainesville, Florida
| | - Mary K Reinhard
- 2 Department of Veterinary Medicine, University of Florida College of Medicine , Gainesville, Florida
| | - Sanford L Boye
- 3 Department of Ophthalmology, University of Florida College of Medicine , Gainesville, Florida
| | - William W Hauswirth
- 3 Department of Ophthalmology, University of Florida College of Medicine , Gainesville, Florida
| | - Frederic J Kaye
- 4 Department of Medicine, University of Florida College of Medicine , Gainesville, Florida
| | - Georgiy Aslanidi
- 5 Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine , Gainesville, Florida
| | - Arun Srivastava
- 5 Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine , Gainesville, Florida
| | - Maria Zajac-Kaye
- 1 Department of Anatomy and Cell Biology, University of Florida College of Medicine , Gainesville, Florida
| |
Collapse
|
8
|
Ito K, Ookawara S, Ishibashi K, Morishita Y. Transgene and islet cell delivery systems using nano-sized carriers for the treatment of diabetes mellitus. NANO REVIEWS & EXPERIMENTS 2017; 8:1341758. [PMID: 30410709 PMCID: PMC6167029 DOI: 10.1080/20022727.2017.1341758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 06/05/2017] [Indexed: 11/09/2022]
Abstract
Gene therapy that targets the pancreas and intestines with delivery systems using nano-sized carriers such as viral and non-viral vectors could improve the control of blood glucose levels, resulting in an improved prognosis for patients with diabetes mellitus. Allogenic pancreatic islet cell transplantations using such delivery systems have been developed as therapeutic options for diabetes mellitus. This review focuses on transgenes and islet cell delivery systems using nano-sized carriers for the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Kiyonori Ito
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Susumu Ookawara
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Kenichi Ishibashi
- Department of Medical Physiology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Yoshiyuki Morishita
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| |
Collapse
|
9
|
Mallol C, Casana E, Jimenez V, Casellas A, Haurigot V, Jambrina C, Sacristan V, Morró M, Agudo J, Vilà L, Bosch F. AAV-mediated pancreatic overexpression of Igf1 counteracts progression to autoimmune diabetes in mice. Mol Metab 2017; 6:664-680. [PMID: 28702323 PMCID: PMC5485311 DOI: 10.1016/j.molmet.2017.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/09/2017] [Accepted: 05/12/2017] [Indexed: 12/31/2022] Open
Abstract
Objective Type 1 diabetes is characterized by autoimmune destruction of β-cells leading to severe insulin deficiency. Although many improvements have been made in recent years, exogenous insulin therapy is still imperfect; new therapeutic approaches, focusing on preserving/expanding β-cell mass and/or blocking the autoimmune process that destroys islets, should be developed. The main objective of this work was to test in non-obese diabetic (NOD) mice, which spontaneously develop autoimmune diabetes, the effects of local expression of Insulin-like growth factor 1 (IGF1), a potent mitogenic and pro-survival factor for β-cells with immunomodulatory properties. Methods Transgenic NOD mice overexpressing IGF1 specifically in β-cells (NOD-IGF1) were generated and phenotyped. In addition, miRT-containing, IGF1-encoding adeno-associated viruses (AAV) of serotype 8 (AAV8-IGF1-dmiRT) were produced and administered to 4- or 11-week-old non-transgenic NOD females through intraductal delivery. Several histological, immunological, and metabolic parameters were measured to monitor disease over a period of 28–30 weeks. Results In transgenic mice, local IGF1 expression led to long-term suppression of diabetes onset and robust protection of β-cell mass from the autoimmune insult. AAV-mediated pancreatic-specific overexpression of IGF1 in adult animals also dramatically reduced diabetes incidence, both when vectors were delivered before pathology onset or once insulitis was established. Transgenic NOD-IGF1 and AAV8-IGF1-dmiRT-treated NOD animals had much less islet infiltration than controls, preserved β-cell mass, and normal insulinemia. Transgenic and AAV-treated islets showed less expression of antigen-presenting molecules, inflammatory cytokines, and chemokines important for tissue-specific homing of effector T cells, suggesting IGF1 modulated islet autoimmunity in NOD mice. Conclusions Local expression of Igf1 by AAV-mediated gene transfer counteracts progression to diabetes in NOD mice. This study suggests a therapeutic strategy for autoimmune diabetes in humans. Local pancreatic IGF1 expression prevents spontaneous autoimmune diabetes. Protection achieved after one-time local administration of IGF1-encoding AAV vectors. Efficacious in animals treated early or once autoimmunity is already established. Protection through maintenance of β-cell mass and endogenous insulin secretion. Treatment leads to reduced infiltration and expression of immunity genes in islets.
Collapse
Affiliation(s)
- Cristina Mallol
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Spain.,Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Madrid, Spain
| | - Estefania Casana
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Spain.,Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Veronica Jimenez
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Spain.,Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Madrid, Spain
| | - Alba Casellas
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Spain.,Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Madrid, Spain
| | - Virginia Haurigot
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Spain.,Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Madrid, Spain
| | - Claudia Jambrina
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Spain.,Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Victor Sacristan
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Spain.,Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Meritxell Morró
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Spain.,Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Madrid, Spain
| | - Judith Agudo
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Spain.,Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Madrid, Spain
| | - Laia Vilà
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Spain.,Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Madrid, Spain
| | - Fatima Bosch
- Center of Animal Biotechnology and Gene Therapy (CBATEG), Spain.,Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Madrid, Spain
| |
Collapse
|
10
|
Regulation of autophagy by systemic admission of microRNA-141 to target HMGB1 in l-arginine-induced acute pancreatitis in vivo. Pancreatology 2016; 16:337-46. [PMID: 27017485 DOI: 10.1016/j.pan.2016.03.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 02/22/2016] [Accepted: 03/04/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS MicroRNAs are endogenous, non-coding RNAs of approximately 20-22 nucleotides that regulate gene expression by binding to the 3' untranslated region (UTR) of target mRNAs and can be applied in gene therapy. Acute pancreatitis is an inflammatory pancreatic disease that carries considerable morbidity and mortality. The purpose of this study was to explore the therapeutic potential of microRNA-141 (miR-141) for acute pancreatitis in vivo. METHODS AP was induced by two hourly intra-peritoneal (i.p.) injections of l-arginine (200mg × 2/100 g.BW). Control mice received normal saline injections. In a separate group, normal saline, empty adenoviral vector and miR-141 adenoviral vector were given to the mice via tail vein hydrodynamically at 72 h before the first l-arginine injection. All the mice were euthanized at 24 h after the last l-arginine injection, and the pancreatic tissues were assessed by qRT-PCR, Western blotting and electron microscopy. RESULTS miR-141 directly inhibited HMGB1 expression in mouse hepal-6 cell. Furthermore, systemic administration of the miR-141 knock-down the expression of HMGB1 protein and further antagonized the downstream protein Beclin-1, leading to the reduction of autophagosomes and autolysosomes, blockade of the LC3-II level and the increased levels of p62 protein after injection of l-arginine. In addition, the level of Lamp-2 was not significantly different. CONCLUSIONS For the first time miR-141 was applied in acute pancreatitis treatment in vivo. Inhibition of HMGB1 by miR-141 may block the process of autophagosome formation through the HMGB1/Beclin-1 pathway. The miR-141 appears to be a promising candidate for the gene therapy of acute pancreatitis.
Collapse
|
11
|
Fang YL, Chen XG, W T G. Gene delivery in tissue engineering and regenerative medicine. J Biomed Mater Res B Appl Biomater 2014; 103:1679-99. [PMID: 25557560 DOI: 10.1002/jbm.b.33354] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 11/07/2014] [Accepted: 11/18/2014] [Indexed: 12/13/2022]
Abstract
As a promising strategy to aid or replace tissue/organ transplantation, gene delivery has been used for regenerative medicine applications to create or restore normal function at the cell and tissue levels. Gene delivery has been successfully performed ex vivo and in vivo in these applications. Excellent proliferation capabilities and differentiation potentials render certain cells as excellent candidates for ex vivo gene delivery for regenerative medicine applications, which is why multipotent and pluripotent cells have been intensely studied in this vein. In this review, gene delivery is discussed in detail, along with its applications to tissue engineering and regenerative medicine. A definition of a stem cell is compared to a definition of a stem property, and both provide the foundation for an in-depth look at gene delivery investigations from a germ lineage angle.
Collapse
Affiliation(s)
- Y L Fang
- Department of Chemical & Biomolecular Engineering, Laboratory for Gene Therapy and Cellular Engineering, Tulane University, 300 Lindy Boggs Center, New Orleans, Louisiana, 70118
| | - X G Chen
- Department of Chemical & Biomolecular Engineering, Laboratory for Gene Therapy and Cellular Engineering, Tulane University, 300 Lindy Boggs Center, New Orleans, Louisiana, 70118
| | - Godbey W T
- Department of Chemical & Biomolecular Engineering, Laboratory for Gene Therapy and Cellular Engineering, Tulane University, 300 Lindy Boggs Center, New Orleans, Louisiana, 70118
| |
Collapse
|
12
|
|
13
|
Griffin MA, Restrepo MS, Abu-El-Haija M, Wallen T, Buchanan E, Rokhlina T, Chen YH, McCray PB, Davidson BL, Divekar A, Uc A. A novel gene delivery method transduces porcine pancreatic duct epithelial cells. Gene Ther 2013; 21:123-30. [PMID: 24257348 PMCID: PMC3946305 DOI: 10.1038/gt.2013.62] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 08/17/2013] [Accepted: 09/27/2013] [Indexed: 01/02/2023]
Abstract
Gene therapy offers the possibility to treat pancreatic disease in Cystic Fibrosis (CF), caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene; however gene transfer to the pancreas is untested in humans. The pancreatic disease phenotype is very similar between humans and pigs with CF, thus CF pigs create an excellent opportunity to study gene transfer to the pancreas. There are no studies showing efficient transduction of pig pancreas with gene transfer vectors. Our objective is to develop a safe and efficient method to transduce wild-type (WT) porcine pancreatic ducts that express CFTR. We catheterized the umbilical artery of WT newborn pigs and delivered an adeno-associated virus serotype 9 vector expressing green fluorescent protein (AAV9CMV.sceGFP) or vehicle to the celiac artery, the vessel that supplies major branches to the pancreas. This technique resulted in stable and dose-dependent transduction of pancreatic duct epithelial cells that expressed CFTR. Intravenous injection of AAV9CMV.sceGFP did not transduce the pancreas. Our technique offers an opportunity to deliver the CFTR gene to the pancreas of CF pigs. The celiac artery can be accessed via umbilical artery in newborns and via femoral artery at older ages; delivery approaches which can be translated to humans.
Collapse
Affiliation(s)
- M A Griffin
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - M S Restrepo
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - M Abu-El-Haija
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - T Wallen
- Department of Otolaryngology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - E Buchanan
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - T Rokhlina
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Y H Chen
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - P B McCray
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - B L Davidson
- 1] Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA [2] Department of Neurology and Physiology & Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - A Divekar
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - A Uc
- 1] Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA [2] Department of Radiation Oncology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
14
|
Houbracken I, Baeyens L, Ravassard P, Heimberg H, Bouwens L. Gene delivery to pancreatic exocrine cells in vivo and in vitro. BMC Biotechnol 2012; 12:74. [PMID: 23088534 PMCID: PMC3487942 DOI: 10.1186/1472-6750-12-74] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 10/19/2012] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Effective gene transfer to the pancreas or to pancreatic cells has remained elusive although it is essential for studies of genetic lineage tracing and modulation of gene expression. Different transduction methods and viral vectors were tested in vitro and in vivo, in rat and mouse pancreas. RESULTS For in vitro transfection/transduction of rat exocrine cells lipofection reagents, adenoviral vectors, and Mokola- and VSV-G pseudotyped lentiviral vectors were used. For in vivo transduction of mouse and rat pancreas adenoviral vectors and VSV-G lentiviral vectors were injected into the parenchymal tissue. Both lipofection of rat exocrine cell cultures and transduction with Mokola pseudotyped lentiviral vectors were inefficient and resulted in less than 4% EGFP expressing cells. Adenoviral transduction was highly efficient but its usefulness for gene delivery to rat exocrine cells in vitro was hampered by a drastic increase in cell death. In vitro transduction of rat exocrine cells was most optimal with VSV-G pseudotyped lentiviral vectors, with stable transgene expression, no significant effect on cell survival and about 40% transduced cells. In vivo, pancreatic cells could not be transduced by intra-parenchymal administration of lentiviral vectors in mouse and rat pancreas. However, a high efficiency could be obtained by adenoviral vectors, resulting in transient transduction of mainly exocrine acinar cells. Injection in immune-deficient animals diminished leukocyte infiltration and prolonged transgene expression. CONCLUSIONS In summary, our study remarkably demonstrates that transduction of pancreatic exocrine cells requires lentiviral vectors in vitro but adenoviral vectors in vivo.
Collapse
Affiliation(s)
- Isabelle Houbracken
- Cell Differentiation Lab, Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, B-1090, Belgium.
| | | | | | | | | |
Collapse
|
15
|
|
16
|
Giacca M, Zacchigna S. Virus-mediated gene delivery for human gene therapy. J Control Release 2012; 161:377-88. [PMID: 22516095 DOI: 10.1016/j.jconrel.2012.04.008] [Citation(s) in RCA: 213] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 03/28/2012] [Accepted: 04/03/2012] [Indexed: 01/21/2023]
Abstract
After over 20 years from the first application of gene transfer in humans, gene therapy is now a mature discipline, which has progressively overcome several of the hurdles that prevented clinical success in the early stages of application. So far, the vast majority of gene therapy clinical trials have exploited viral vectors as very efficient nucleic acid delivery vehicles both in vivo and ex vivo. Here we summarize the current status of viral gene transfer for clinical applications, with special emphasis on the molecular properties of the major classes of viral vectors and the information so far obtained from gene therapy clinical trials.
Collapse
Affiliation(s)
- Mauro Giacca
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy.
| | | |
Collapse
|
17
|
Jimenez V, Ayuso E, Mallol C, Agudo J, Casellas A, Obach M, Muñoz S, Salavert A, Bosch F. In vivo genetic engineering of murine pancreatic beta cells mediated by single-stranded adeno-associated viral vectors of serotypes 6, 8 and 9. Diabetologia 2011; 54:1075-86. [PMID: 21311856 DOI: 10.1007/s00125-011-2070-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 01/02/2011] [Indexed: 10/18/2022]
Abstract
AIMS/HYPOTHESIS The genetic engineering of pancreatic beta cells could be a powerful tool for examining the role of key genes in the cause and treatment of diabetes. Here we performed a comparative study of the ability of single-stranded (ss) adeno-associated viral vectors (AAV) of serotypes 6, 8 and 9 to transduce the pancreas in vivo. METHODS AAV6, AAV8 and AAV9 vectors encoding marker genes were delivered to the pancreas via intraductal or systemic administration. Transduced cells were analysed by immunostaining. AAV9 vectors encoding hepatocyte growth factor (HGF) were delivered intraductally to a transgenic mouse model of type 1 diabetes and glycaemia was monitored. RESULTS AAV6, AAV8 and AAV9 mediated efficient and long-term transduction of beta cells, with AAV6 and AAV8 showing the highest efficiency. However, alpha cells were poorly transduced. Acinar cells were transduced by the three serotypes tested and ductal cells only by AAV6. In addition, intraductal delivery resulted in higher AAV-mediated transduction of the pancreas than did systemic administration. As proof of concept, intraductal delivery of AAV9 vectors encoding for the beta cell anti-apoptotic and mitogenic HGF preserved beta cell mass, diminished lymphocytic infiltration of the islets and protected mice from autoimmune diabetes. CONCLUSIONS/INTERPRETATION Intraductal administration of AAV6, AAV8 and AAV9 is an efficient way to genetically manipulate the pancreas in vivo. This technology may prove useful in the study of islet physiopathology and in assessment of new gene therapy approaches designed to regenerate beta cell mass during diabetes.
Collapse
Affiliation(s)
- V Jimenez
- Center of Animal Biotechnology and Gene Therapy, Edifici H, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Jourdan G, Dusseault J, Benhamou PY, Rosenberg L, Hallé JP. Co-encapsulation of bioengineered IGF-II-producing cells and pancreatic islets: effect on beta-cell survival. Gene Ther 2011; 18:539-45. [DOI: 10.1038/gt.2010.166] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
Phillips MI, de Oliveira EM, Shen L, Liang Tang Y, Qian K. Gene Therapy Strategies: Constructing an AAV Trojan Horse. Genomics 2010. [DOI: 10.1002/9780470711675.ch12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Xu J, Jin C, Hao S, Luo G, Fu D. Pancreatic cancer: gene therapy approaches and gene delivery systems. Expert Opin Biol Ther 2010; 10:73-88. [PMID: 19857184 DOI: 10.1517/14712590903321454] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
IMPORTANCE OF THE FIELD Due to the absence of early diagnosis, the highly invasive and metastatic features and the lack of effective therapeutic modalities, the prognosis of patients with pancreatic cancer is poor. Gene therapy is currently regarded as a potential and promising therapeutic modality for pancreatic cancer. AREAS COVERED IN THIS REVIEW This article summarizes an update of gene therapy approaches and reviews the latest progress in gene delivery systems that have been tested on pancreatic cancer. WHAT THE READER WILL GAIN The treatment effectiveness of gene combination therapy is better than that of the regulation of single-gene or single gene therapy approaches. Naked DNA is limited because of degradation by intracellular and extracellular nucleases. Virus vectors show high transfection efficiency but are limited due to immunogenicity, inflammatory response and potential carcinogenicity. Non-viral vectors, such as cationic polymers or inorganic nanoparticles, show an important feature that they can be easily modified, and the progress of materials science will provide more and better non-viral vectors, accordingly improving the efficiency and safety of gene therapy, which will make them the most promising vectors for pancreatic cancer.
Collapse
Affiliation(s)
- Jin Xu
- Fudan University, Pancreatic Disease Institution, Huashan Hospital, Department of General Surgery, Shanghai, China
| | | | | | | | | |
Collapse
|
21
|
DsAAV8-mediated expression of glucagon-like peptide-1 in pancreatic beta-cells ameliorates streptozotocin-induced diabetes. Gene Ther 2009; 17:171-80. [PMID: 19865180 DOI: 10.1038/gt.2009.143] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) is an incretin hormone that performs a wide array of well-characterized antidiabetic actions, including stimulation of glucose-dependent insulin secretion, upregulation of insulin gene expression and improvements in beta-cell survival. GLP-1-receptor agonists have been developed for treatment of diabetes; however, the short biological half-lives of these peptide-based therapeutics requires that frequent injections be administered to maintain sufficient circulating levels. Thus, novel methods of delivering GLP-1 remain an important avenue of active research. It has recently been demonstrated that self-complimentary, double-stranded, adeno-associated virus serotype-8 (DsAAV8) can efficiently transduce pancreatic beta-cells in vivo, resulting in long-term transgene expression. In this study, we engineered a DsAAV8 vector containing a GLP-1 transgene driven by the mouse insulin-II promoter (MIP). Biological activity of the GLP-1 produced from this transgene was assessed using a luciferase-based bioassay. DsAAV8-MIP-GLP-1 was delivered via intraperitoneal injection and beta-cell damage induced by multiple low dose streptozotocin (STZ) administration. Glucose tolerance was assessed following intraperitoneal glucose injections and beta-cell proliferation measured by PCNA expression. Expression of GLP-1 in Min6 beta-cells resulted in glucose-dependent secretion of biologically active GLP-1. Intraperitoneal delivery of DsAAV8-MIP-GLP-1 to mice led to localized GLP-1 expression in beta-cells and protection against development of diabetes induced by multiple low-dose STZ administration. This protection was associated with significant increase in beta-cell proliferation. Results from this study indicate that expression and secretion of GLP-1 from beta-cells in vivo via DsAAV8 represents a novel therapeutic strategy for treatment of diabetes.
Collapse
|
22
|
A new genetic vaccine platform based on an adeno-associated virus isolated from a rhesus macaque. J Virol 2009; 83:12738-50. [PMID: 19812149 DOI: 10.1128/jvi.01441-09] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We created a hybrid adeno-associated virus (AAV) from two related rhesus macaque isolates, called AAVrh32.33, and evaluated it as a vaccine carrier for human immunodeficiency virus type 1 (HIV-1) and type A influenza virus antigens. The goal was to overcome the limitations of vaccines based on other AAVs, which generate dysfunctional T-cell responses and are inhibited by antibodies found in human sera. Injection of a Gag-expressing AAVrh32.33 vector into mice resulted in a high-quality CD8(+) T-cell response. The resulting Gag-specific T cells express multiple cytokines at high levels, including interleukin-2, with many having memory phenotypes; a subsequent boost with an adenovirus vector yielded a brisk expansion of Gag-specific T cells. A priming dose of AAVrh32.33 led to high levels of Gag antibodies, which exceed levels found after injection of adenovirus vectors. Importantly, passive transfer of pooled human immunoglobulin into mice does not interfere with the efficacy of AAVrh32.33 expressing nucleoproteins from influenza virus, as measured by protection to a lethal dose of influenza virus, which is consistent with the very low seroprevalence to this virus in humans. Studies of macaques with vectors expressing gp140 from HIV-1 (i.e., with AAVrh32.33 as the prime and simian adenovirus type 24 as the boost) demonstrated results similar to those for mice with high-level and high-quality CD8(+) T-cell responses to gp140 and high-titered neutralizing antibodies to homologous HIV-1. The biology of this novel AAV hybrid suggests that it should be a preferred genetic vaccine carrier, capable of generating robust T- and B-cell responses.
Collapse
|
23
|
Koppanati BM, Li J, Xiao X, Clemens PR. Systemic delivery of AAV8 in utero results in gene expression in diaphragm and limb muscle: treatment implications for muscle disorders. Gene Ther 2009; 16:1130-7. [PMID: 19474806 PMCID: PMC2813061 DOI: 10.1038/gt.2009.71] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 03/22/2009] [Accepted: 04/23/2009] [Indexed: 12/19/2022]
Abstract
One of the major challenges in the treatment of primary muscle disorders, which often affect many muscle groups, is achieving efficient, widespread transgene expression in muscle. In utero gene transfer can potentially address this problem by accomplishing the gene delivery when the tissue mass is small and the immune system is immature. Earlier studies with systemic in utero adeno-associated viral (AAV) vector serotype 1 gene delivery to embryonic day 16 (E-16) pups resulted in high levels of transduction in diaphragm and intercostal muscles, but no detectable transgene expression in limb muscles. Recently, newer AAV serotypes, such as AAV8, have shown widespread and high transgene expression in skeletal muscles and diaphragm by systemic delivery in adult and neonatal mice. We tested AAV8 vector gene delivery by intraperitoneal administration in E-16 mice in utero. Using an AAV8 vector carrying a lacZ reporter gene, we observed high-level transduction of diaphragm and intercostal muscles and more moderate transduction of multiple limb muscles and heart. Our current studies show the potential of AAV8 to achieve widespread muscle transduction in utero and suggest its therapeutic potential for primary muscle disorders.
Collapse
Affiliation(s)
- B M Koppanati
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
24
|
Pañeda A, Vanrell L, Mauleon I, Crettaz JS, Berraondo P, Timmermans EJ, Beattie SG, Twisk J, van Deventer S, Prieto J, Fontanellas A, Rodriguez-Pena MS, Gonzalez-Aseguinolaza G. Effect of Adeno-Associated Virus Serotype and Genomic Structure on Liver Transduction and Biodistribution in Mice of Both Genders. Hum Gene Ther 2009; 20:908-17. [DOI: 10.1089/hum.2009.031] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Astrid Pañeda
- Division Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
| | - Lucia Vanrell
- Division Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
| | - Itsaso Mauleon
- Division Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
| | - Julien S. Crettaz
- Division Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
| | - Pedro Berraondo
- Division Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
| | | | | | - Jaap Twisk
- AMT BV, 1105 BA Amsterdam, The Netherlands
| | | | - Jesus Prieto
- Division Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Liver Unit, University Clinic, University of Navarra, 31008 Pamplona, Spain
| | - Antonio Fontanellas
- Division Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
| | | | - Gloria Gonzalez-Aseguinolaza
- Division Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
| |
Collapse
|
25
|
Craig AT, Gavrilova O, Dwyer NK, Jou W, Pack S, Liu E, Pechhold K, Schmidt M, McAlister VJ, Chiorini JA, Blanchette-Mackie EJ, Harlan DM, Owens RA. Transduction of rat pancreatic islets with pseudotyped adeno-associated virus vectors. Virol J 2009; 6:61. [PMID: 19450275 PMCID: PMC2687429 DOI: 10.1186/1743-422x-6-61] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Accepted: 05/18/2009] [Indexed: 11/23/2022] Open
Abstract
Background Pancreatic islet transplantation is a promising treatment for type I diabetes mellitus, but current immunosuppressive strategies do not consistently provide long-term survival of transplanted islets. We are therefore investigating the use of adeno-associated viruses (AAVs) as gene therapy vectors to transduce rat islets with immunosuppressive genes prior to transplantation into diabetic mice. Results We compared the transduction efficiency of AAV2 vectors with an AAV2 capsid (AAV2/2) to AAV2 vectors pseudotyped with AAV5 (AAV2/5), AAV8 (AAV2/8) or bovine adeno-associated virus (BAAV) capsids, or an AAV2 capsid with an insertion of the low density lipoprotein receptor ligand from apolipoprotein E (AAV2apoE), on cultured islets, in the presence of helper adenovirus infection to speed expression of a GFP transgene. Confocal microscopy and flow cytometry were used. The AAV2/5 vector was superior to AAV2/2 and AAV2/8 in rat islets. Flow cytometry indicated AAV2/5-mediated gene expression in approximately 9% of rat islet cells and almost 12% of insulin-positive cells. The AAV2/8 vector had a higher dependence on the helper virus multiplicity of infection than the AAV 2/5 vector. In addition, the BAAV and AAV2apoE vectors were superior to AAV2/2 for transducing rat islets. Rat islets (300 per mouse) transduced with an AAV2/5 vector harboring the immunosuppressive transgene, tgfβ1, retain the ability to correct hyperglycemia when transplanted into immune-deficient diabetic mice. Conclusion AAV2/5 vectors may therefore be useful for pre-treating donor islets prior to transplantation.
Collapse
Affiliation(s)
- Anthony T Craig
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Davis J, Westfall MV, Townsend D, Blankinship M, Herron TJ, Guerrero-Serna G, Wang W, Devaney E, Metzger JM. Designing heart performance by gene transfer. Physiol Rev 2008; 88:1567-651. [PMID: 18923190 DOI: 10.1152/physrev.00039.2007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The birth of molecular cardiology can be traced to the development and implementation of high-fidelity genetic approaches for manipulating the heart. Recombinant viral vector-based technology offers a highly effective approach to genetically engineer cardiac muscle in vitro and in vivo. This review highlights discoveries made in cardiac muscle physiology through the use of targeted viral-mediated genetic modification. Here the history of cardiac gene transfer technology and the strengths and limitations of viral and nonviral vectors for gene delivery are reviewed. A comprehensive account is given of the application of gene transfer technology for studying key cardiac muscle targets including Ca(2+) handling, the sarcomere, the cytoskeleton, and signaling molecules and their posttranslational modifications. The primary objective of this review is to provide a thorough analysis of gene transfer studies for understanding cardiac physiology in health and disease. By comparing results obtained from gene transfer with those obtained from transgenesis and biophysical and biochemical methodologies, this review provides a global view of cardiac structure-function with an eye towards future areas of research. The data presented here serve as a basis for discovery of new therapeutic targets for remediation of acquired and inherited cardiac diseases.
Collapse
Affiliation(s)
- Jennifer Davis
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Bibliography. Current world literature. Diabetes and the endocrine pancreas II. Curr Opin Endocrinol Diabetes Obes 2008; 15:383-93. [PMID: 18594281 DOI: 10.1097/med.0b013e32830c6b8e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
28
|
The Vignette for V14 N5 Issue. J Biomed Sci 2007. [DOI: 10.1007/s11373-007-9195-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|