1
|
Yao W, Liu Z, Ling H, Wang H, Zheng H, Wang SH, Zhu DY, Zhang SY, Chen X. Convergent Total Synthesis of (-)-Calidoustene. J Am Chem Soc 2025. [PMID: 40298127 DOI: 10.1021/jacs.5c03983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
The first total synthesis of the sesterterpenoid (-)-calidoustene has been accomplished, featuring a stereoselective Michael/aldol cascade to construct the trans-hydrindane backbone, a tandem Pummerer/Sakurai cyclization to establish the bicyclo[3.2.1]octane framework, a metallaphotoredox enone coupling followed by MHAT-initiated cyclization to forge the congested central C-ring, and late-stage functionalization via Cu-catalyzed desaturation and diimide reduction.
Collapse
Affiliation(s)
- Weidong Yao
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China, 730000
| | - Ziqi Liu
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China, 730000
| | - Hao Ling
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China, 730000
| | - Hongyu Wang
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China, 730000
| | - Hufeng Zheng
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China, 730000
| | - Shao-Hua Wang
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China, 730000
| | - Dao-Yong Zhu
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China, 730000
| | - Sheng-Yong Zhang
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China, 730000
| | - Xiaoming Chen
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China, 730000
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China, 518055
| |
Collapse
|
2
|
Zheng Y, Teng LL, Zhou TT, Liu ZW, Guo K, Li H, Li T, Wang LL, Liu Y, Li SH. Discovery and Total Synthesis of a New Class of Minor Immunosuppressive Plant Sesterterpenoids. Angew Chem Int Ed Engl 2025; 64:e202421497. [PMID: 39803769 DOI: 10.1002/anie.202421497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Plant sesterterpenoids are an extremely rare family of natural products that generally possess novel chemical structures and diverse biological activities. Herein, we report the discovery of an unprecedented group of minor plant sesterterpenoids, gracilisoids B-E (2-5), which feature two types of highly functionalized bicyclo[3.2.0]heptane carbon skeletons, along with their biogenetically related precursor gracilisoid A (1), from a Lamiaceae ethnomedicinal plant, Eurysolen gracilis. To confirm their structures and obtain adequate materials for biological research, the asymmetric total syntheses of gracilisoids A-E (1-5) and four new biogenetically-related congeners gracilisoids F-I (6-9) were achieved from commercially available (-)-citronellal by a bioinspired approach that involves a Norrish-Yang photocyclization/α-hydroxy ketone rearrangement tandem reaction and a late-stage biomimetic photooxidation as key steps. Biological investigations revealed that gracilisoids A-I (1-9) significantly inhibited IFN-γ production and/or T cell proliferation probably through inhibition of the STAT pathway. The findings herald the potential of these gracilisoids as novel immunosuppressive agents, and efficient synthetic approaches will facilitate a comprehensive evaluation of their value in future drug development.
Collapse
Affiliation(s)
- Yu Zheng
- State Key Laboratory of Phytochemistry and Natural Medicines, and Yunnan, Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
| | - Lin-Lin Teng
- State Key Laboratory of Phytochemistry and Natural Medicines, and Yunnan, Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
| | - Ting-Ting Zhou
- State Key Laboratory of Phytochemistry and Natural Medicines, and Yunnan, Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
| | - Zhi-Wei Liu
- State Key Laboratory of Phytochemistry and Natural Medicines, and Yunnan, Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Kai Guo
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Hao Li
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Tao Li
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Liang-Liang Wang
- State Key Laboratory of Phytochemistry and Natural Medicines, and Yunnan, Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
| | - Yan Liu
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Sheng-Hong Li
- State Key Laboratory of Phytochemistry and Natural Medicines, and Yunnan, Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| |
Collapse
|
3
|
Georgantopoulos A, Kalousi FD, Pollastro F, Tsialtas I, Kalogiouri NP, Psarra AMG. Chemical Analysis and Antioxidant Activities of Resin Fractions from Pistacia lentiscus L. var. Chia in Neuroblastoma SH-SY5Y Cells. Molecules 2025; 30:997. [PMID: 40076222 PMCID: PMC11901618 DOI: 10.3390/molecules30050997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Chios mastiha is the natural aromatic resin of Pistacia lentiscus L. var. Chia, Anacardiaceae, which is exclusively cultivated in the southern part of the Greek island of Chios. Chios mastiha (P. lenticonus/Chios mastiha) is well-known for its distinctive taste and aroma and has been known since ancient times due to its healing properties in gastrointestinal and inflammatory disorders and because of its anti-bacterial and anti-fungal activities. In this study, the chemical composition, applying LC-QTOF-MS/MS analysis, and the antioxidant activities of three different polarity P. lenticonus/Chios mastiha fractions, apolar, medium polar, and polar, were characterized in human neuroblastoma SH-SY5Y cells. Chemical analysis of the fractions unveiled new components of P. lenticonus/Chios mastiha, mainly fatty acids compounds, known for their antioxidant activity and regulatory effects on lipid metabolism. By applying the MTT assay and confocal microscopy analysis, we showed that P. lenticonus/Chios mastiha fractions, especially the apolar and medium polar fractions, enriched in triterpenes and fatty acids, caused suppression of the H2O2-induced reduction in cell viability, ROS production, and depolarization of the mitochondrial membrane potential, in SH-SY5Y cells. Moreover, Western blot analysis revealed that apolar fraction, enriched in fatty acids, induced expression of the PPARα, which is well-known for its antioxidant activities and its crucial role in lipid metabolism. Induction of PPARα, a GR target gene, was also accompanied by an increase in GR protein levels. Enhanced antioxidant activities of the apolar fraction may be correlated with its chemical composition, enriched in fatty acids and triterpenoids. Thus, our results indicate the neuroprotective actions of P. lenticonus/Chios mastiha fractions, highlighting their potential application as neuroprotective agents in neurodegenerative diseases.
Collapse
Affiliation(s)
- Achilleas Georgantopoulos
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (A.G.); (F.D.K.); (I.T.)
| | - Foteini D. Kalousi
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (A.G.); (F.D.K.); (I.T.)
| | - Federica Pollastro
- Department of Pharmaceutical, University of Eastern Piedmont, 28100 Novara, Italy;
| | - Ioannis Tsialtas
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (A.G.); (F.D.K.); (I.T.)
| | - Natasa P. Kalogiouri
- Laboratory of Analytical Chemistry, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Anna-Maria G. Psarra
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (A.G.); (F.D.K.); (I.T.)
| |
Collapse
|
4
|
Kumar A, Kaushal A, Verma PK, Gupta MK, Chandra G, Kumar U, Yadav AK, Kumar D. An insight into recent developments in imidazole based heterocyclic compounds as anticancer agents: Synthesis, SARs, and mechanism of actions. Eur J Med Chem 2024; 280:116896. [PMID: 39366252 DOI: 10.1016/j.ejmech.2024.116896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 10/06/2024]
Abstract
Among all non-communicable diseases, cancer is ranked as the second most common cause of death and is rising constantly. While cancer treatments mainly include radiation therapy, chemotherapy, and surgery; chemotherapy is considered the most commonly employed and effective treatment. Most of the chemotherapeutic agents are azoles based compounds and imidazole is one such insightful azole. The anticancer properties of imidazole-based compounds have been thoroughly explored in recent years and all monosubstituted, disubstituted, trisubstituted, and tetrasubstituted imidazoles have been explored for their anticancer activities. Along with these compounds, other imidazole-based compounds like 1,3-dihydro-2H-imidazole-2-thiones, imidazolones, and poly imidazole compounds have also been explored for their anticancer activities. The activities of these compounds are heavily influenced by their structural resemblance to combretastatin 4A and ABI (2-aryl-4-benzoyl-imidazole). The lead compounds were highly active on breast, gastric, colon, ovarian, cervical, bone marrow, melanoma, prostate, lung, leukemic, neuroblastoma, liver, Ehrlich, melanoma, and pancreatic cancers. The targets of these leads like tubulin, heme oxygenases, VEGF, tyrosine kinases, EGFR, and others have also been explored. The exploration of the anticancer potential of substituted imidazole compounds is the main topic of this review including synthesis, SAR, and mechanism.
Collapse
Affiliation(s)
- Arun Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173 229, India
| | - Anjali Kaushal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173 229, India; Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Parul University, Vadodara, Gujarat, 391760, India
| | - Prabhakar K Verma
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Manoj K Gupta
- Department of Chemistry, Central University of Haryana, Mahendergarh, Haryana, 123031, India
| | - Girish Chandra
- Department of Chemistry, School of Physical and Chemical Sciences, Central University of South Bihar, Gaya, Bihar, 824236, India
| | - Umesh Kumar
- Catalysis and Bioinorganic Research Lab, Department of Chemistry, Deshbandhu College, University of Delhi, New Delhi, 110019, India
| | - Ashok K Yadav
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173 229, India.
| |
Collapse
|
5
|
Li XD, Li XM, Wang BG, Li X. Antimicrobial sesterterpenoids with a unique 5/8/6/5 tetracyclic carbon-ring-system and diepoxide polyketides from a deep sea-sediment-sourced fungus Chaetomium globosum SD-347. Org Biomol Chem 2024; 22:3979-3985. [PMID: 38691112 DOI: 10.1039/d4ob00449c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Two new sesterterpenoids, sesterchaetins A and B (1 and 2), and two new diepoxide polyketides, chaetoketoics A and B (3 and 4), were characterized from the culture extract of Chaetomium globosum SD-347, a fungal strain derived from deep sea-sediment. Their structures and absolute configurations were unambiguously determined by detailed NMR, mass spectra, and X-ray crystallographic analysis. Compounds 1 and 2 contained a distinctive 5/8/6/5 tetracyclic carbon-ring-system, which represented a rarely occurring natural product framework. The new isolates 1-4 exhibited selective antimicrobial activities against human and aquatic pathogenic bacteria and plant-pathogenic fungi.
Collapse
Affiliation(s)
- Xiao-Dong Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, People's Republic of China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Chunhui Road 17, Yantai 264003, People's Republic of China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, People's Republic of China
| | - Xiao-Ming Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, People's Republic of China
| | - Bin-Gui Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, People's Republic of China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Wenhai Road 1, Qingdao, 266237, People's Republic of China.
| | - Xin Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Wenhai Road 1, Qingdao, 266237, People's Republic of China.
| |
Collapse
|
6
|
Ibrahim IH. Metalloproteins and metalloproteomics in health and disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:123-176. [PMID: 38960472 DOI: 10.1016/bs.apcsb.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Metalloproteins represents more than one third of human proteome, with huge variation in physiological functions and pathological implications, depending on the metal/metals involved and tissue context. Their functions range from catalysis, bioenergetics, redox, to DNA repair, cell proliferation, signaling, transport of vital elements, and immunity. The human metalloproteomic studies revealed that many families of metalloproteins along with individual metalloproteins are dysregulated under several clinical conditions. Also, several sorts of interaction between redox- active or redox- inert metalloproteins are observed in health and disease. Metalloproteins profiling shows distinct alterations in neurodegenerative diseases, cancer, inflammation, infection, diabetes mellitus, among other diseases. This makes metalloproteins -either individually or as families- a promising target for several therapeutic approaches. Inhibitors and activators of metalloenzymes, metal chelators, along with artificial metalloproteins could be versatile in diagnosis and treatment of several diseases, in addition to other biomedical and industrial applications.
Collapse
Affiliation(s)
- Iman Hassan Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt.
| |
Collapse
|
7
|
Kanwal A, Bilal M, Rasool N, Zubair M, Shah SAA, Zakaria ZA. Total Synthesis of Terpenes and Their Biological Significance: A Critical Review. Pharmaceuticals (Basel) 2022; 15:1392. [PMID: 36422521 PMCID: PMC9699253 DOI: 10.3390/ph15111392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/13/2022] [Accepted: 10/24/2022] [Indexed: 09/10/2024] Open
Abstract
Terpenes are a group of natural products made up of molecules with the formula (C5H8)n that are typically found in plants. They are widely employed in the medicinal, flavor, and fragrance industries. The total synthesis of terpenes as well as their origin and biological potential are discussed in this review.
Collapse
Affiliation(s)
- Aqsa Kanwal
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Bilal
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Nasir Rasool
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Zubair
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam 42300, Selangor, Malaysia
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam 42300, Selangor, Malaysia
| | - Zainul Amiruddin Zakaria
- Borneo Research on Algesia, Inflammation and Neurodegeneration (BRAIN) Group, Faculty of Medicine and Health Sciences, Sabah Universiti Malaysia, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia
| |
Collapse
|
8
|
Guo K, Liu Y, Li SH. The untapped potential of plant sesterterpenoids: chemistry, biological activities and biosynthesis. Nat Prod Rep 2021; 38:2293-2314. [PMID: 34114591 DOI: 10.1039/d1np00021g] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: 1969 up to 2021Sesterterpenoids, biosynthetically derived from the precursor, namely geranylfarnesyl diphosphate (GFDP) are amongst the rarest of all isoprenoids with approximately 1300 compounds known. Most sesterterpenoids originate from marine organisms (especially sponges), while only about 15% of these compounds are isolated from several families of plants such as Lamiaceae, Gentianaceae, and Nartheciaceae. Many plant sesterterpenoids possess highly oxygenated and complex cyclic skeletons and exhibit remarkable biological activities involving cytotoxic, anti-inflammatory, antimicrobial, and antifeedant properties. Thus, due to their intrinsic chemical complexity and intriguing biological profiles, plant sesterterpenoids have attracted continuing interest from both chemists and biologists. However, the biosynthesis and distribution of sesterterpenoids in the plant kingdom still remain elusive, although substantial progress has been achieved in recent years. This review provides an overall coverage of sesterterpenoids originating from plant sources, followed by a classification of their chemical skeletons, which summarizes the distribution, chemistry, biological activities, biosynthesis and evolution of plant sesterterpenoids, aiming at strengthening the research efforts toward the untapped great potential of these unique natural product resources.
Collapse
Affiliation(s)
- Kai Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China.
| | - Yan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China. and State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China.
| | - Sheng-Hong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China. and State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China.
| |
Collapse
|
9
|
Guo J, Cai YS, Cheng F, Yang C, Zhang W, Yu W, Yan J, Deng Z, Hong K. Genome Mining Reveals a Multiproduct Sesterterpenoid Biosynthetic Gene Cluster in Aspergillus ustus. Org Lett 2021; 23:1525-1529. [PMID: 33480256 DOI: 10.1021/acs.orglett.0c03996] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Genome mining of Aspergillus ustus 094102 enabled the discovery of a multiproduct bifunctional terpene synthase (BTS), AuAS. Heterologous expression of AuAS led to the discovery of five new sesterterpenes, and coexpression of the upstream CYP450 monooxygenase (AuAP450) generated four new sesterterpene alcohols. Additionally, aspergilol A showed cytotoxic activities against MCF-7, MDA-MB231, and HepG2 cancer cells (IC50 21.20-48.76 μM), and aspergilol B exhibited a cytotoxic effect on MCF-7 cells (IC50 27.41 μM).
Collapse
Affiliation(s)
- Jingjing Guo
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, People's Republic of China
| | - You-Sheng Cai
- Institute of TCM and Natural Products, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, People's Republic of China
| | - Fangcai Cheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, People's Republic of China
| | - Chenjie Yang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, People's Republic of China
| | - Wenqi Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, People's Republic of China
| | - Wulin Yu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, People's Republic of China
| | - Jingjing Yan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, People's Republic of China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, People's Republic of China
| | - Kui Hong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, People's Republic of China
| |
Collapse
|
10
|
Li K, Gustafson KR. Sesterterpenoids: chemistry, biology, and biosynthesis. Nat Prod Rep 2020; 38:1251-1281. [PMID: 33350420 DOI: 10.1039/d0np00070a] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Covering: July 2012 to December 2019Over the last seven years, expanding research efforts focused on sesterterpenoids has led to the isolation, identification, and characterization of numerous structurally novel and biologically active sesterterpenoids. These newly reported sesterterpenoids provide diverse structures that often incorporate unprecedented ring systems and new carbon skeletons, as well as unusual functional group arrays. Biological activities of potential biomedical importance including suppression of cancer cell growth, inhibition of enzymatic activity, and modulation of receptor signaling, as well as ecologically important functions such as antimicrobial effects and deterrence of herbivorous insects have been associated with a variety of sesterterpenoids. There has also been a rapid growth in our knowledge of the genomics, enzymology, and specific pathways associated with sesterterpene biosynthesis. This has opened up new opportunities for future sesterterpene discovery and diversification through the expression of new cryptic metabolites and the engineered manipulation of associated biosynthetic machinery and processes. In this paper we reviewed 498 new sesterterpenoids, including their structures, source organisms, country of origin, relevant bioactivities, and biosynthesis.
Collapse
Affiliation(s)
- Keke Li
- College of Life Science, Dalian Minzu University, Dalian 116600, China.
| | | |
Collapse
|
11
|
Guo K, Liu X, Zhou TT, Liu YC, Liu Y, Shi QM, Li XN, Li SH. Gentianelloids A and B: Immunosuppressive 10,11-seco-Gentianellane Sesterterpenoids from the Traditional Uighur Medicine Gentianella turkestanorum. J Org Chem 2020; 85:5511-5515. [PMID: 32202107 DOI: 10.1021/acs.joc.0c00272] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Kai Guo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, P. R. China
| | - Xin Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Ting-Ting Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yan-Chun Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
| | - Yan Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
| | - Qiu-Mei Shi
- College of Tea and Food Technology, Wuyi University, Wuyishan 354300, P. R. China
| | - Xiao-Nian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
| | - Sheng-Hong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
| |
Collapse
|
12
|
Ciftci HI, Can M, Ellakwa DE, Suner SC, Ibrahim MA, Oral A, Sekeroglu N, Özalp B, Otsuka M, Fujita M, Alparslan M, Radwan MO. Anticancer activity of Turkish marine extracts: a purple sponge extract induces apoptosis with multitarget kinase inhibition activity. Invest New Drugs 2020; 38:1326-1333. [PMID: 32062733 DOI: 10.1007/s10637-020-00911-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/10/2020] [Indexed: 11/29/2022]
Abstract
Marine natural products have drawn a great deal of attention as a vital source of new drugs for the last five decades. However, marine organisms in the seas surrounding Turkey (the Black Sea, the Aegean Sea and the Mediterranean Sea) haven't been yet extensively explored. In the present study, three marine organisms (Dysidea avara, Microcosmus sabatieri and Echinaster sepositus) were sampled from the Dardanelles (Turkish Straits System, Western Turkey) by scientific divers, transferred to the laboratory and then were extracted with 70% ethanol. The extracts were tested for their cytotoxic effect against K562, KMS-12PE, A549, and A375 cancer cell lines. The sponge extract elicited the most promising cytotoxic activity, thus it was further evaluated against H929, MCF-7, HeLa, and HCT116 cancer cells. Most of the designated cells showed a considerable sensitivity for the sponge extract particularly H929, K562, KMS-12PE and HeLa cells with IC50 less than 10 μg/mL. On the contrary, the other two extracts exhibited no cytotoxic activity on all cells at 100 μg/mL concentration. The sponge extract was tested for its capacity to induce apoptosis in cancer cells and to inhibit a panel of tyrosine kinases showing remarkable results. The outcome of this study represents a platform for discovery of new chemotherapeutic agents of marine natural origin.
Collapse
Affiliation(s)
- Halil I Ciftci
- Department of Drug Discovery, Science Farm Ltd., 1-7-30-805 Kuhonji, Chuo-ku, Kumamoto, 862-0976, Japan.,Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-Ku, Kumamoto, 8620973, Japan
| | - Mustafa Can
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-Ku, Kumamoto, 8620973, Japan.,Department of Engineering Sciences, Faculty of Engineering and Architecture, Izmir Katip Celebi University, Havaalani Sosesi Caddesi No:25, 35620, Cigli/Izmir, Turkey
| | - Doha E Ellakwa
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-Ku, Kumamoto, 8620973, Japan.,Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University, Greater Cairo, Nasr City, 11651, Egypt
| | - Salih C Suner
- Chemical and Chemical Processing, Vocational School of Lapseki, Canakkale Onsekiz Mart University, 17800, Canakkale, Turkey
| | - Mohamed A Ibrahim
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Ayhan Oral
- Department of Chemistry, Faculty of Science, Canakkale Onsekiz Mart University, 17020, Canakkale, Turkey
| | - Nazim Sekeroglu
- Department of Horticulture, Faculty of Agriculture, Kilis 7 Aralik University, 79000, Kilis, Turkey
| | - Barış Özalp
- Section of Underwater Technology, Vocational School of Ocean Engineering, Canakkale Onsekiz Mart University, 17100, Canakkale, Turkey
| | - Masami Otsuka
- Department of Drug Discovery, Science Farm Ltd., 1-7-30-805 Kuhonji, Chuo-ku, Kumamoto, 862-0976, Japan.,Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-Ku, Kumamoto, 8620973, Japan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-Ku, Kumamoto, 8620973, Japan.
| | - Mustafa Alparslan
- Faculty of Fisheries and Aquaculture, Izmir Katip Celebi University, 35620, Izmir, Turkey.
| | - Mohamed O Radwan
- Department of Drug Discovery, Science Farm Ltd., 1-7-30-805 Kuhonji, Chuo-ku, Kumamoto, 862-0976, Japan. .,Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-Ku, Kumamoto, 8620973, Japan. .,Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Cairo, 12622, Egypt.
| |
Collapse
|
13
|
Unusual and Highly Bioactive Sesterterpenes Synthesized by Pleurotus ostreatus during Coculture with Trametes robiniophila Murr. Appl Environ Microbiol 2019; 85:AEM.00293-19. [PMID: 31053589 DOI: 10.1128/aem.00293-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/30/2019] [Indexed: 12/15/2022] Open
Abstract
Candida albicans and Cryptococcus neoformans, human-pathogenic fungi found worldwide, are receiving increasing attention due to high morbidity and mortality in immunocompromised patients. In the present work, 110 fungus pairs were constructed by coculturing 16 wood-decaying basidiomycetes, among which coculture of Trametes robiniophila Murr and Pleurotus ostreatus was found to strongly inhibit pathogenic fungi through bioactivity-guided assays. A combination of metabolomics and molecular network analysis revealed that 44 features were either newly synthesized or produced at high levels in this coculture system and that 6 of the features that belonged to a family of novel and unusual linear sesterterpenes contributed to high activity with MICs of 1 to 32 μg/ml against pathogenic fungi. Furthermore, dynamic 13C-labeling analysis revealed an association between induced features and the corresponding fungi. Unusual sesterterpenes were 13C labeled only in P. ostreatus in a time course after stimulation by the coculture, suggesting that these sesterterpenes were synthesized by P. ostreatus instead of T. robiniophila Murr. Sesterterpene compounds 1 to 3 were renamed postrediene A to C. Real-time reverse transcription-quantitative PCR (RT-qPCR) analysis revealed that transcriptional levels of three genes encoding terpene synthase, farnesyl-diphosphate farnesyltransferase, and oxidase were found to be 8.2-fold, 88.7-fold, and 21.6-fold higher, respectively, in the coculture than in the monoculture, indicating that biosynthetic gene cluster 10 was most likely responsible for the synthesis of these sesterterpenes. A putative biosynthetic pathway of postrediene A to postrediene C was then proposed based on structures of sesterterpenes and molecular network analysis.IMPORTANCE A number of gene clusters involved in biosynthesis of secondary metabolites are presumably silent or expressed at low levels under conditions of standard laboratory cultivation, resulting in a large gap between the pool of discovered metabolites and genome capability. This work mimicked naturally occurring competition by construction of an artificial coculture of basidiomycete fungi for the identification of secondary metabolites with novel scaffolds and excellent bioactivity. Unusual linear sesterterpenes of postrediene A to C synthesized by P. ostreatus not only were promising lead drugs against human-pathogenic fungi but also highlighted a distinct pathway for sesterterpene biosynthesis in basidiomycetes. The current work provides an important basis for uncovering novel gene functions involved in sesterterpene synthesis and for gaining insights into the mechanism of silent gene activation in fungal defense.
Collapse
|
14
|
Li YL, Gao Y, Liu CY, Sun CJ, Zhao ZT, Lou HX. Asperunguisins A-F, Cytotoxic Asperane Sesterterpenoids from the Endolichenic Fungus Aspergillus unguis. JOURNAL OF NATURAL PRODUCTS 2019; 82:1527-1534. [PMID: 31117521 DOI: 10.1021/acs.jnatprod.8b01066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Six new asperane-type sesterterpenoids, asperunguisins A-F (1-6), were isolated from the endolichenic fungus Aspergillus unguis, together with a known analogue, aspergilloxide (7); these are rare asperane-type sesterterpenoids, characterized by a unique hydroxylated 7/6/6/5 tetracyclic system. The structures of asperunguisins A-F (1-6) were elucidated on the basis of spectroscopic methods (NMR and HRESIMS), X-ray single-crystal diffraction analysis, ECD calculations, and biogenetic considerations. Asperunguisin C (3) showed cytotoxicity against the human cancer cell line A549 with an IC50 value of 6.2 μM. Further investigation revealed that the observed cell death was a result of G0/G1 cell cycle arrest via DNA damage followed by cellular apoptosis.
Collapse
Affiliation(s)
- Yue-Lan Li
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences , Shandong University , Jinan 250012 , People's Republic of China
| | - Yun Gao
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences , Shandong University , Jinan 250012 , People's Republic of China
| | - Chun-Yu Liu
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences , Shandong University , Jinan 250012 , People's Republic of China
| | - Chun-Jing Sun
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences , Shandong University , Jinan 250012 , People's Republic of China
| | - Zun-Tian Zhao
- College of Life Sciences , Shandong Normal University , Jinan 250014 , People's Republic of China
| | - Hong-Xiang Lou
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences , Shandong University , Jinan 250012 , People's Republic of China
| |
Collapse
|
15
|
Cytotoxic Furan- and Pyrrole-Containing Scalarane Sesterterpenoids Isolated from the Sponge Scalarispongia sp. Molecules 2019; 24:molecules24050840. [PMID: 30818810 PMCID: PMC6429051 DOI: 10.3390/molecules24050840] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 01/25/2023] Open
Abstract
Three furan-containing scalarane sesterterpenoids (1–3) and a novel pyrrole-containing analog (4) were isolated from the sponge Scalarispongia species. Compound 3, reported in the literature as a synthetic derivative of furoscalarol 2, was for the first time isolated from a natural source. During the separation performed using a silica column in the presence of methanol, 16-methoxy derivatives (5, 6) were obtained from the unintended reaction of 2. The isolated natural products 3 and 4 and the artifact 5 showed moderate to high cytotoxicity against six human cancer cell lines, whereas compound 6, the C-16 epimer of 5, showed no cytotoxicity at a concentration of 60 μΜ.
Collapse
|
16
|
Chen YC, Lu MC, El-Shazly M, Lai KH, Wu TY, Hsu YM, Lee YL, Liu YC. Breaking down Leukemia Walls: Heteronemin, a Sesterterpene Derivative, Induces Apoptosis in Leukemia Molt4 Cells through Oxidative Stress, Mitochondrial Dysfunction and Induction of Talin Expression. Mar Drugs 2018; 16:md16060212. [PMID: 29914195 PMCID: PMC6025351 DOI: 10.3390/md16060212] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 12/11/2022] Open
Abstract
Heteronemin, the most abundant secondary metabolite in the sponge Hippospongia sp., exhibited potent cytotoxic activity against several cancer cell lines. It increased the percentage of apoptotic cells and reactive oxygen species (ROS) in Molt4 cells. The use of ROS scavenger, N-acetyl cysteine (NAC), suppressed both the production of ROS from mitochondria and cell apoptosis that were induced by heteronemin treatment. Heteronemin upregulated talin and phosphorylated talin expression in Molt4 cells but it only upregulated the expression of phosphorylated talin in HEK293 cells. However, pretreatment with NAC reversed these effects. Talin siRNA reversed the activation of pro-apoptotic cleaved caspases 3 and 9. On the other hand, the downstream proteins including FAK and NF-κB (p65) were not affected. In addition, we confirmed that heteronemin directly modulated phosphorylated talin expression through ROS generation resulting in cell apoptosis, but it did not affect talin/FAK complex. Furthermore, heteronemin interfered with actin microfilament and caused morphology changes. Taken together, these findings suggest that the cytotoxic effect of heteronemin is associated with oxidative stress and induction of phosphorylated talin expression. Our results suggest that heteronemin represents an interesting candidate which can be further developed as a drug lead against leukemia.
Collapse
Affiliation(s)
- Yu-Cheng Chen
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung 404, Taiwan.
| | - Mei-Chin Lu
- Graduate Institute of Marine Biotechnology, National Dong Hwa University, Pingtung 944, Taiwan.
- National Museum of Marine Biology & Aquarium, Pingtung 944, Taiwan.
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street, Abassia, Cairo 11566, Egypt.
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11432, Egypt.
| | - Kuei-Hung Lai
- National Museum of Marine Biology & Aquarium, Pingtung 944, Taiwan.
| | - Tung-Ying Wu
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Yu-Ming Hsu
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Yi-Lun Lee
- Department of Urology, Sinying Hospital, Ministry of Health and Welfare, Tainan 730, Taiwan.
| | - Yi-Chang Liu
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
17
|
Huang AC, Hong YJ, Bond AD, Tantillo DJ, Osbourn A. Diverged Plant Terpene Synthases Reroute the Carbocation Cyclization Path towards the Formation of Unprecedented 6/11/5 and 6/6/7/5 Sesterterpene Scaffolds. Angew Chem Int Ed Engl 2018; 57:1291-1295. [PMID: 29194888 PMCID: PMC5814883 DOI: 10.1002/anie.201711444] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Indexed: 11/16/2022]
Abstract
Sesterterpenoids are a relatively rare class of plant terpenes. Sesterterpene synthase (STS)-mediated cyclization of the linear C25 isoprenoid precursor geranylfarnesyl diphosphate (GFPP) defines sesterterpene scaffolds. So far only a very limited number of STSs have been characterized. The discovery of three new plant STSs is reported that produce a suite of sesterterpenes with unprecedented 6/11/5 and 6/6/7/5 fused ring systems when transiently co-expressed with a GFPP synthase in Nicotiana benthamiana. Structural elucidation, feeding experiments, and quantum chemical calculations suggest that these STSs catalyze an unusual cyclization path involving reprotonation, intramolecular 1,6 proton transfer, and concerted but asynchronous bicyclization events. The cyclization is diverted from those catalyzed by the characterized plant STSs by forming unified 15/5 bicyclic sesterterpene intermediates. Mutagenesis further revealed a conserved amino acid residue implicated in reprotonation.
Collapse
Affiliation(s)
- Ancheng C. Huang
- Department of Metabolic BiologyJohn Innes CentreColney Lane, Norwich Research ParkNorwichNR4 7UHUK
| | - Young J. Hong
- Department of ChemistryUniversity of California, DavisDavisCA95616USA
| | - Andrew D. Bond
- Department of ChemistryUniversity of CambridgeLensfield RdCambridgeCB2 1EWUK
| | - Dean J. Tantillo
- Department of ChemistryUniversity of California, DavisDavisCA95616USA
| | - Anne Osbourn
- Department of Metabolic BiologyJohn Innes CentreColney Lane, Norwich Research ParkNorwichNR4 7UHUK
| |
Collapse
|
18
|
Huang AC, Hong YJ, Bond AD, Tantillo DJ, Osbourn A. Diverged Plant Terpene Synthases Reroute the Carbocation Cyclization Path towards the Formation of Unprecedented 6/11/5 and 6/6/7/5 Sesterterpene Scaffolds. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201711444] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Ancheng C. Huang
- Department of Metabolic Biology; John Innes Centre; Colney Lane, Norwich Research Park Norwich NR4 7UH UK
| | - Young J. Hong
- Department of Chemistry; University of California, Davis; Davis CA 95616 USA
| | - Andrew D. Bond
- Department of Chemistry; University of Cambridge; Lensfield Rd Cambridge CB2 1EW UK
| | - Dean J. Tantillo
- Department of Chemistry; University of California, Davis; Davis CA 95616 USA
| | - Anne Osbourn
- Department of Metabolic Biology; John Innes Centre; Colney Lane, Norwich Research Park Norwich NR4 7UH UK
| |
Collapse
|
19
|
MicroRNA-300 Regulates the Ubiquitination of PTEN through the CRL4B DCAF13 E3 Ligase in Osteosarcoma Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 10:254-268. [PMID: 29499938 PMCID: PMC5768150 DOI: 10.1016/j.omtn.2017.12.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/18/2017] [Accepted: 12/18/2017] [Indexed: 12/24/2022]
Abstract
Cullins, critical members of the cullin-RING ubiquitin ligases (CRLs), are often aberrantly expressed in different cancers. However, the underlying mechanisms regarding aberrant expression of these cullins and the specific substrates of CRLs in different cancers are mostly unknown. Here, we demonstrate that overexpressed CUL4B in human osteosarcoma cells forms an E3 complex with DNA damage binding protein 1 (DDB1) and DDB1- and CUL4-associated factor 13 (DCAF13). In vitro and in vivo analyses indicated that the CRL4BDCAF13 E3 ligase specifically recognized the tumor suppressor PTEN (phosphatase and tensin homolog deleted on chromosome 10) for degradation, and disruption of this E3 ligase resulted in PTEN accumulation. Further analyses indicated that miR-300 directly targeted the 3' UTR of CUL4B, and DNA hypermethylation of a CpG island in the miR-300 promoter region contributed to the downregulation of miR-300. Interestingly, ectopic expression of miR-300 or treatment with 5-AZA-2'-deoxycytidine, a DNA methylation inhibitor, decreased the stability of CRL4BDCAF13 E3 ligase and reduced PTEN ubiquitination. By applying in vitro screening to identify small molecules that specifically inhibit CUL4B-DDB1 interaction, we found that TSC01131 could greatly inhibit osteosarcoma cell growth and could disrupt the stability of the CRL4BDCAF13 E3 ligase. Collectively, our findings shed new light on the molecular mechanism of CUL4B function and might also provide a new avenue for osteosarcoma therapy.
Collapse
|
20
|
Li Q, Li H, Zhao X, Wang B, Zhang L, Zhang C, Zhang F. DNA Methylation Mediated Downregulation of miR-449c Controls Osteosarcoma Cell Cycle Progression by Directly Targeting Oncogene c-Myc. Int J Biol Sci 2017; 13:1038-1050. [PMID: 28924385 PMCID: PMC5599909 DOI: 10.7150/ijbs.19476] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 07/01/2017] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are critical regulators of gene expression, and they have broad roles in the pathogenesis of different diseases including cancer. Limited studies and expression profiles of miRNAs are available in human osteosarcoma cells. By applying a miRNA microarray analysis, we observed a number of miRNAs with abnormal expression in cancerous tissues from osteosarcoma patients. Of particular interest in this study was miR-449c, which was significantly downregulated in osteosarcoma cells and patients, and its expression was negatively correlated with tumor size and tumor MSTS stages. Ectopic expression of miR-449c significantly inhibited osteosarcoma cell proliferation and colony formation ability, and caused cell cycle arrest at the G1 phase. Further analysis identified that miR-449c was able to directly target the oncogene c-Myc and negatively regulated its expression. Overexpression of c-Myc partially reversed miR-449c-mimic-inhibited cell proliferation and colony formation. Moreover, DNA hypermethylation was observed in two CpG islands adjacent to the genomic locus of miR-449c in osteosarcoma cells. Conversely, treatment with the DNA methylation inhibitor AZA caused induction of miR-449c. In conclusion, our results support a model that DNA methylation mediates downregulation of miR-449c, diminishing miR-449c mediated inhibition of c-Myc and thus leading to the activation of downstream targets, eventually contributing to osteosarcoma tumorigenesis.
Collapse
Affiliation(s)
- Qing Li
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Hua Li
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Xueling Zhao
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Bing Wang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Lin Zhang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Caiguo Zhang
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Fan Zhang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| |
Collapse
|
21
|
Tarhouni-Jabberi S, Zakraoui O, Ioannou E, Riahi-Chebbi I, Haoues M, Roussis V, Kharrat R, Essafi-Benkhadir K. Mertensene, a Halogenated Monoterpene, Induces G2/M Cell Cycle Arrest and Caspase Dependent Apoptosis of Human Colon Adenocarcinoma HT29 Cell Line through the Modulation of ERK-1/-2, AKT and NF-κB Signaling. Mar Drugs 2017; 15:E221. [PMID: 28726723 PMCID: PMC5532663 DOI: 10.3390/md15070221] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/29/2017] [Accepted: 07/07/2017] [Indexed: 12/19/2022] Open
Abstract
Conventional treatment of advanced colorectal cancer is associated with tumor resistance and toxicity towards normal tissues. Therefore, development of effective anticancer therapeutic alternatives is still urgently required. Nowadays, marine secondary metabolites have been extensively investigated due to the fact that they frequently exhibit anti-tumor properties. However, little attention has been given to terpenoids isolated from seaweeds. In this study, we isolated the halogenated monoterpene mertensene from the red alga Pterocladiella capillacea (S.G. Gmelin) Santelices and Hommersand and we highlight its inhibitory effect on the viability of two human colorectal adenocarcinoma cell lines HT29 and LS174. Interestingly, exposure of HT29 cells to different concentrations of mertensene correlated with the activation of MAPK ERK-1/-2, Akt and NF-κB pathways. Moreover, mertensene-induced G2/M cell cycle arrest was associated with a decrease in the phosphorylated forms of the anti-tumor transcription factor p53, retinoblastoma protein (Rb), cdc2 and chkp2. Indeed, a reduction of the cellular level of cyclin-dependent kinases CDK2 and CDK4 was observed in mertensene-treated cells. We also demonstrated that mertensene triggers a caspase-dependent apoptosis in HT29 cancer cells characterized by the activation of caspase-3 and the cleavage of poly (ADP-ribose) polymerase (PARP). Besides, the level of death receptor-associated protein TRADD increased significantly in a concentration-dependent manner. Taken together, these results demonstrate the potential of mertensene as a drug candidate for the treatment of colon cancer.
Collapse
Affiliation(s)
- Safa Tarhouni-Jabberi
- Institut Pasteur de Tunis, Laboratoire de Toxines Alimentaires, LR11IPT08 Laboratoire des Venins et Molécules Thérapeutiques, 1002 Tunis, Tunisia.
- Faculté des Sciences de Bizerte, Université de Carthage, 1002 Tunis, Tunisia.
| | - Ons Zakraoui
- Institut Pasteur de Tunis, LR11IPT04 Laboratoire d'Epidémiologie Moléculaire et de Pathologie Expérimentale Appliquée Aux Maladies Infectieuses, 1002 Tunis, Tunisia.
- Université de Tunis El Manar, 1068 Tunis, Tunisia.
| | - Efstathia Ioannou
- Department of Pharmacognosy and Chemistry of Natural Products, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece.
| | - Ichrak Riahi-Chebbi
- Institut Pasteur de Tunis, LR11IPT04 Laboratoire d'Epidémiologie Moléculaire et de Pathologie Expérimentale Appliquée Aux Maladies Infectieuses, 1002 Tunis, Tunisia.
- Université de Tunis El Manar, 1068 Tunis, Tunisia.
| | - Meriam Haoues
- Université de Tunis El Manar, 1068 Tunis, Tunisia.
- Institut Pasteur de Tunis, LR11IPT02 Laboratoire de Recherche sur la Transmission, le Contrôle et l'Immunobiologie des Infections, 1002 Tunis, Tunisia.
| | - Vassilios Roussis
- Department of Pharmacognosy and Chemistry of Natural Products, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece.
| | - Riadh Kharrat
- Institut Pasteur de Tunis, Laboratoire de Toxines Alimentaires, LR11IPT08 Laboratoire des Venins et Molécules Thérapeutiques, 1002 Tunis, Tunisia.
- Université de Tunis El Manar, 1068 Tunis, Tunisia.
| | - Khadija Essafi-Benkhadir
- Institut Pasteur de Tunis, LR11IPT04 Laboratoire d'Epidémiologie Moléculaire et de Pathologie Expérimentale Appliquée Aux Maladies Infectieuses, 1002 Tunis, Tunisia.
- Université de Tunis El Manar, 1068 Tunis, Tunisia.
| |
Collapse
|
22
|
Huang AC, Kautsar SA, Hong YJ, Medema MH, Bond AD, Tantillo DJ, Osbourn A. Unearthing a sesterterpene biosynthetic repertoire in the Brassicaceae through genome mining reveals convergent evolution. Proc Natl Acad Sci U S A 2017; 114:E6005-E6014. [PMID: 28673978 PMCID: PMC5530694 DOI: 10.1073/pnas.1705567114] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sesterterpenoids are a rare terpene class harboring untapped chemodiversity and bioactivities. Their structural diversity originates primarily from the scaffold-generating sesterterpene synthases (STSs). In fungi, all six known STSs are bifunctional, containing C-terminal trans-prenyltransferase (PT) and N-terminal terpene synthase (TPS) domains. In plants, two colocalized PT and TPS gene pairs from Arabidopsis thaliana were recently reported to synthesize sesterterpenes. However, the landscape of PT and TPS genes in plant genomes is unclear. Here, using a customized algorithm for systematically searching plant genomes, we reveal a suite of physically colocalized pairs of PT and TPS genes for the biosynthesis of a large sesterterpene repertoire in the wider Brassicaceae. Transient expression of seven TPSs from A. thaliana, Capsella rubella, and Brassica oleracea in Nicotiana benthamiana yielded fungal-type sesterterpenes with tri-, tetra-, and pentacyclic scaffolds, and notably (-)-ent-quiannulatene, an enantiomer of the fungal metabolite (+)-quiannulatene. Protein and structural modeling analysis identified an amino acid site implicated in structural diversification. Mutation of this site in one STS (AtTPS19) resulted in premature termination of carbocation intermediates and accumulation of bi-, tri-, and tetracyclic sesterterpenes, revealing the cyclization path for the pentacyclic sesterterpene (-)-retigeranin B. These structural and mechanistic insights, together with phylogenetic analysis, suggest convergent evolution of plant and fungal STSs, and also indicate that the colocalized PT-TPS gene pairs in the Brassicaceae may have originated from a common ancestral gene pair present before speciation. Our findings further provide opportunities for rapid discovery and production of sesterterpenes through metabolic and protein engineering.
Collapse
Affiliation(s)
- Ancheng C Huang
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Satria A Kautsar
- Bioinformatics Group, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Young J Hong
- Department of Chemistry, University of California, Davis, CA 95616
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Andrew D Bond
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Dean J Tantillo
- Department of Chemistry, University of California, Davis, CA 95616
| | - Anne Osbourn
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom;
| |
Collapse
|
23
|
Lai KH, Liu YC, Su JH, El-Shazly M, Wu CF, Du YC, Hsu YM, Yang JC, Weng MK, Chou CH, Chen GY, Chen YC, Lu MC. Antileukemic Scalarane Sesterterpenoids and Meroditerpenoid from Carteriospongia (Phyllospongia) sp., Induce Apoptosis via Dual Inhibitory Effects on Topoisomerase II and Hsp90. Sci Rep 2016; 6:36170. [PMID: 27796344 PMCID: PMC5086919 DOI: 10.1038/srep36170] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/07/2016] [Indexed: 01/24/2023] Open
Abstract
Two new scalarane sesterterpenoids, 12β-(3′β-hydroxybutanoyloxy)-20,24-dimethyl-24-oxo-scalara-16-en-25-al (1) and 12β-(3′β-hydroxypentanoyloxy)-20,24-dimethyl-24-oxo-scalara-16-en-25-al (2), along with one known tetraprenyltoluquinol-related metabolite (3), were isolated from the sponge Carteriospongia sp. In leukemia Molt 4 cells, 1 at 0.0625 μg/mL (125 nM) triggered mitochondrial membrane potential (MMP) disruption and apoptosis showing more potent effect than 2 and 3. The isolates inhibited topoisomerase IIα expression. The apoptotic-inducing effect of 3 was supported by the in vivo experiment through suppressing the volume of xenograft tumor growth (47.58%) compared with the control. Compound 1 apoptotic mechanism of action in Molt 4 cells was further elucidated through inducing ROS generation, calcium release and ER stress. Using the molecular docking analysis, 1 exhibited more binding affinity to N-terminal ATP-binding pocket of Hsp90 protein than 17-AAG, a standard Hsp90 inhibitor. The expression of Hsp90 client proteins, Akt, p70S6k, NFκB, Raf-1, p-GSK3β, and XIAP, MDM 2 and Rb2, and CDK4 and Cyclin D3, HIF 1 and HSF1 were suppressed by the use of 1. However, the expression of Hsp70, acetylated tubulin, and activated caspase 3 were induced after 1 treatment. Our results suggested that the proapoptotic effect of the isolates is mediated through the inhibition of Hsp90 and topoisomerase activities.
Collapse
Affiliation(s)
- Kuei-Hung Lai
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung, 944, Taiwan.,National Museum of Marine Biology &Aquarium, Pingtung 944, Taiwan.,Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.,Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Yi-Chang Liu
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.,Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Jui-Hsin Su
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung, 944, Taiwan.,National Museum of Marine Biology &Aquarium, Pingtung 944, Taiwan
| | - Mohamed El-Shazly
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street, Abassia, Cairo 11566, Egypt
| | - Chih-Fung Wu
- Division of Surgical Oncology, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Ying-Chi Du
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung, 944, Taiwan.,National Museum of Marine Biology &Aquarium, Pingtung 944, Taiwan.,Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yu-Ming Hsu
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Juan-Cheng Yang
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan.,Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
| | - Ming-Kai Weng
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung, 944, Taiwan
| | - Chia-Hua Chou
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung, 944, Taiwan.,National Museum of Marine Biology &Aquarium, Pingtung 944, Taiwan
| | - Guan-Yu Chen
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan.,Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Cheng Chen
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan
| | - Mei-Chin Lu
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung, 944, Taiwan.,National Museum of Marine Biology &Aquarium, Pingtung 944, Taiwan
| |
Collapse
|
24
|
Liu Y, Luo SH, Schmidt A, Wang GD, Sun GL, Grant M, Kuang C, Yang MJ, Jing SX, Li CH, Schneider B, Gershenzon J, Li SH. A Geranylfarnesyl Diphosphate Synthase Provides the Precursor for Sesterterpenoid (C25) Formation in the Glandular Trichomes of the Mint Species Leucosceptrum canum. THE PLANT CELL 2016; 28:804-22. [PMID: 26941091 PMCID: PMC4826006 DOI: 10.1105/tpc.15.00715] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 02/18/2016] [Accepted: 02/27/2016] [Indexed: 05/19/2023]
Abstract
Plant sesterterpenoids, an important class of terpenoids, are widely distributed in various plants, including food crops. However, little is known about their biosynthesis. Here, we cloned and functionally characterized a plant geranylfarnesyl diphosphate synthase (Lc-GFDPS), the enzyme producing the C25 prenyl diphosphate precursor to all sesterterpenoids, from the glandular trichomes of the woody plant Leucosceptrum canum. GFDPS catalyzed the formation of GFDP after expression in Escherichia coli. Overexpressing GFDPS in Arabidopsis thaliana also gave an extract catalyzing GFDP formation. GFDPS was strongly expressed in glandular trichomes, and its transcript profile was completely in accordance with the sesterterpenoid accumulation pattern. GFDPS is localized to the plastids, and inhibitor studies indicated its use of isoprenyl diphosphate substrates supplied by the 2-C-methyl-D-erythritol 4-phosphate pathway. Application of a jasmonate defense hormone induced GFDPS transcript and sesterterpenoid accumulation, while reducing feeding and growth of the generalist insect Spodoptera exigua, suggesting that these C25 terpenoids play a defensive role. Phylogenetic analysis suggested that GFDPS probably evolved from plant geranylgeranyl diphosphate synthase under the influence of positive selection. The isolation of GFDPS provides a model for investigating sesterterpenoid formation in other species and a tool for manipulating the formation of this group in plants and other organisms.
Collapse
Affiliation(s)
- Yan Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P.R. China
| | - Shi-Hong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P.R. China
| | - Axel Schmidt
- Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Guo-Dong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Gui-Ling Sun
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P.R. China
| | - Marcus Grant
- Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Ce Kuang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P.R. China
| | - Min-Jie Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P.R. China
| | - Shu-Xi Jing
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P.R. China
| | - Chun-Huan Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P.R. China
| | - Bernd Schneider
- Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | | | - Sheng-Hong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P.R. China
| |
Collapse
|
25
|
Chen X, Duan N, Zhang C, Zhang W. Survivin and Tumorigenesis: Molecular Mechanisms and Therapeutic Strategies. J Cancer 2016; 7:314-23. [PMID: 26918045 PMCID: PMC4747886 DOI: 10.7150/jca.13332] [Citation(s) in RCA: 245] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 11/25/2015] [Indexed: 12/15/2022] Open
Abstract
Survivin is the smallest member of the inhibitor of apoptosis protein family, which has key roles in regulating cell division and inhibiting apoptosis by blocking caspase activation. Survivin is highly expressed in most human cancers, such as lung, pancreatic and breast cancers, relative to normal tissues. Aberrant survivin expression is associated with tumor cell proliferation, progression, angiogenesis, therapeutic resistance, and poor prognosis. Studies on the underlying molecular mechanisms indicate that survivin is involved in the regulation of cytokinesis and cell cycle progression, as well as participates in a variety of signaling pathways such as the p53, Wnt, hypoxia, transforming growth factor, and Notch signaling pathways. In this review, recent progress in understanding the molecular basis of survivin is discussed. Therapeutic strategies targeting survivin in preclinical studies are also briefly summarized.
Collapse
Affiliation(s)
- Xun Chen
- 1. Hong-Hui Hospital, Xi'an Jiaotong University, College of Medicine, Xi'an, Shaanxi, China, 710054
| | - Ning Duan
- 1. Hong-Hui Hospital, Xi'an Jiaotong University, College of Medicine, Xi'an, Shaanxi, China, 710054
| | - Caiguo Zhang
- 2. Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA, 80045
| | - Wentao Zhang
- 1. Hong-Hui Hospital, Xi'an Jiaotong University, College of Medicine, Xi'an, Shaanxi, China, 710054
| |
Collapse
|
26
|
Piggott AM, Karuso P. Identifying the cellular targets of natural products using T7 phage display. Nat Prod Rep 2016; 33:626-36. [DOI: 10.1039/c5np00128e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A description of the T7 phage biopanning procedure is provided with tips and advice suitable for setup in a chemistry laboratory.
Collapse
Affiliation(s)
- Andrew M. Piggott
- Department of Chemistry and Biomolecular Sciences
- Macquarie University
- Sydney
- Australia
| | - Peter Karuso
- Department of Chemistry and Biomolecular Sciences
- Macquarie University
- Sydney
- Australia
| |
Collapse
|
27
|
Zhang F, Zhang L, Zhang C. Long noncoding RNAs and tumorigenesis: genetic associations, molecular mechanisms, and therapeutic strategies. Tumour Biol 2015; 37:163-75. [PMID: 26586396 DOI: 10.1007/s13277-015-4445-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 11/13/2015] [Indexed: 01/17/2023] Open
Abstract
The human genome contains a large number of nonprotein-coding sequences. Recently, new discoveries in the functions of nonprotein-coding sequences have demonstrated that the "Dark Genome" significantly contributes to human diseases, especially with regard to cancer. Of particular interest in this review are long noncoding RNAs (lncRNAs), which comprise a class of nonprotein-coding transcripts that are longer than 200 nucleotides. Accumulating evidence indicates that a large number of lncRNAs exhibit genetic associations with tumorigenesis, tumor progression, and metastasis. Our current understanding of the molecular bases of these lncRNAs that are associated with cancer indicate that they play critical roles in gene transcription, translation, and chromatin modification. Therapeutic strategies based on the targeting of lncRNAs to disrupt their expression or their functions are being developed. In this review, we briefly summarize and discuss the genetic associations and the aberrant expression of lncRNAs in cancer, with a particular focus on studies that have revealed the molecular mechanisms of lncRNAs in tumorigenesis. In addition, we also discuss different therapeutic strategies that involve the targeting of lncRNAs.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Orthopedics, The first Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Liang Zhang
- Hong-Hui Hospital, Xi'an Jiaotong University, College of Medicine, Xi'an, Shaanxi, 710004, People's Republic of China
| | - Caiguo Zhang
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|